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One of the first key examples of a quantum modular form, which
unifies the Witten-Reshetikhin-Turaev (WRT) invariants of the
Poincaré homology sphere, appears in work of Lawrence and Za-
gier. We show that the series they construct is one instance in an
infinite family of quantum modular invariants of negative definite
plumbed 3-manifolds whose radial limits toward roots of unity may
be thought of as a deformation of the WRT invariants. We use a
recently developed theory of Akhmechet, Johnson, and Krushkal
(AJK) which extends lattice cohomology and BPS q-series of 3-
manifolds. As part of this work, we provide the first calculation of
the AJK series for an infinite family of 3-manifolds. Additionally,
we introduce a separate but related infinite family of invariants
which also exhibit quantum modularity properties.
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1. Introduction and statement of results

In 1999, Lawrence and Zagier established a connection between modular
forms and invariants of 3-manifolds arising from quantum topology and
physics [16]. The Witten-Reshetihkin-Turaev (WRT) invariants, conceptu-
alized by Witten in terms of a path integral for SU(2) Chern-Simons theory
and made mathematically precise by Reshetikhin and Turaev, are a family
of 3-manifold invariants indexed by roots of unity [23, 21].

Lawrence and Zagier unified these WRT invariants by defining a holo-
morphic function A(q) on the unit disk whose limiting values at roots of
unity recover the invariants of the Poincaré homology sphere. The function
A(q) is in some sense an integral of a theta function; its obstruction to mod-
ularity on the unit circle is given by a factor introduced by integrating. It
is one of the first key examples of a quantum modular form, a term coined
by Zagier in 2010 with this series in mind [24]. Zagier’s seminal work has
inspired an extensive and ongoing body of research on quantum modular
forms; see Chapter 21 of [3] and the references listed therein.

Gukov, Pei, Putrov, and Vafa (GPPV) provided a physical interpretation
for A(q) which not only gave rise to the construction of analogous series
Ẑ(q) for a large class of 3-manifolds equipped with a spinc structure, but
also motivated a conjecture that such series exist for all 3-manifolds [14, 15].
These unified invariants were further extended in [13, 8] and the quantum
modularity of these series for certain classes of manifolds were established
in [4, 5].

Recent work of Akhmechet, Johnson, and Krushkal generalizes Ẑ(q) to

a two-variable series invariant ̂̂ZY (t, q) of a 3-manifold Y [1]. This series
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is defined using an extension of lattice cohomology, a theory developed by

Némethi in [17]. More details on the topological construction and properties

of this invariant appear in Section 2.

The aim of this paper is to show that this two-variable series gives rise to

infinitely many quantum modular forms whose values at roots of unity can

be considered deformations of the WRT invariants. These results realize the

work of Lawrence and Zagier as a special case. As a first step in this process,

we provide a calculation of ̂̂ZΣ(t, q) where Σ is a Brieskorn homology sphere,

generating the first known calculation of this invariant for an infinite family

of manifolds.

In particular, we find explicit formulae for the coefficients ϕ(n; t) of the q-

series ̂̂Z, which are Laurent polynomials in t. The result is, for each Brieskorn

sphere Σ, a q-series of the form

(1) ̂̂ZΣ(t, q) = qΔ
(
C −

∑
n≥0

ϕ(n; t)q
n2

4p

)
,

where Δ ∈ Q, p ∈ Z, and C is zero unless Σ is the Poincaré homology sphere,

in which case it equals q1/120(t+ t−1); see Section 3 for full definitions.

A priori, ̂̂ZΣ(t, q) is convergent as a two-variable series for t ∈ C and

|q| < 1. By leveraging the arithmetic properties of the coefficients ϕ(n; t)

when t is a root of unity, we are able to show the following:

Theorem 1.1. Let ζ be a jth root of unity, ξ a Kth root of unity, and Σ a

Brieskorn sphere. Define ̂̂ZΣ(ζ, ξ) := lim
t↘0

̂̂ZΣ(ζ, ξe
−t). This limit exists and

we have

̂̂ZΣ(ζ, ξ) = ξΔ
(
D +

2pjK∑
n=1

(
n

2pjK
− 1

2

)
ϕ(n; ζ)ξ

n2

4p

)
,

where D = ξ1/120Re(ζ) when Σ is the Poincaré homology sphere and equals

zero otherwise.

In general, these limit calculations give a novel family of “t-deformed”

WRT invariants whose topological interpretation is an open question. How-

ever, using the above results we prove that for t a fixed root of unity, ̂̂ZΣ(t, q)

is, up to normalization, a quantum modular form:
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Theorem 1.2. Let q = e2πiτ . If ζ is a jth root of unity and Σ is a Brieskorn

sphere, then ̂̂ZΣ(ζ, q) = qΔ (C −Aζ(τ)) ,

where Aζ(τ) is a quantum modular form of weight 1/2 with respect to Γ(4pj2).

Remark 1.1. The definition of a quantum modular form is deferred until

Section 5, but we remark here that they are functions on P1(Q) which have

no nice modular or analytic properties, but whose obstructions to modularity

are “nice” (in our case, extend to real-analytic functions on R).

The classical theory of theta functions involves forms of weight 1/2 and

3/2 that are related through differentiation of the Jacobi theta function.

Because of the existence of the second variable, one can differentiate ̂̂ZΣ(t, q),

summand by summand, with respect to t and consider the new invariant that

arises. This series, under specialization, also enjoys quantum modularity

properties; the result is a sum of quantum modular forms of mixed weight:

Theorem 1.3. Define ̂̂Z ′
Σ(t, q) := t

∂

∂t
̂̂ZΣ(t, q). Let ζ be a jth root of unity,

and let C ′ equal q1/120(t− t−1) when Σ is the Poincaré homology sphere and

equal zero otherwise. Then

̂̂Z ′
Σ(ζ, q) = qΔ

(
C ′ −A′

ζ(τ)
)
,

where A′
ζ(τ) is a sum of quantum modular forms of weight 1/2 and 3/2 for

Γ(4pj2).

Remark 1.2. The quantum set is notably smaller for the quantum modular

forms in Theorem 1.3. This is due to the fact that the weight 3/2 quantum

modular form need not correspond to the Eichler integral of a cusp form.

For more details, see Section 6 and Theorem 1.1 of [11].

The paper is organized as follows. In Section 2 we recall the necessary

background from low-dimensional topology to understand and motivate the

study of this two-variable series. In Section 3 we derive an explicit formula

for the q-series coefficients of ̂̂ZΣ(t, q) where Σ is a Brieskorn sphere and give

two tables of example calculations for selected manifolds. Section 4 contains

a proof of Theorem 1.1. In Section 5 we discuss the theory of modular and

quantum modular forms as it pertains to ̂̂ZΣ(t, q), and in Section 6 we offer

proofs of Theorems 1.2 and 1.3.



Infinite families of quantum modular 3-manifold invariants 241

2. The AJK series invariant

We begin with a motivating overview of the ̂̂Z invariant. This recently-
developed two-variable series provides a common refinement of two existing
invariants: the GPPV invariant Ẑ [14] and lattice cohomology [17]. As is the

case for each of these theories, the ̂̂Z series is defined for negative-definite
plumbed 3-manifolds equipped with spinc structures. Complex spin struc-
tures, or spinc structures, rose to prominence in low-dimensional topology
through the advent of the Seiberg-Witten equations, which led to novel in-
variants of smooth 4-manifolds.

Using information from lattice cohomology, one can associate to a negative-
definite plumbed 3-manifold and spinc structure an object called a graded
root. The authors of [1] assigned Laurent polynomial weights to the vertices
of this root such that this new “weighted graded root” is still an invari-

ant of the manifold. The series ̂̂ZY (t, q) results from taking the limit, in a
precise sense, of these weights. Setting t = 1 recovers the GPPV invariant

Ẑ(q). This paper calculates the two-variable series ̂̂Z for an infinite family
of 3-manifolds, however the calculation of weighted graded roots remains an
open problem. Below, we cover details of this construction necessary for our
work.

2.1. Negative definite plumbed 3-manifolds

Let Γ be a finite graph with integer weights on its vertices. As in [1], we
restrict to the case in which Γ is a tree. Let m : v(Γ) → Z be the corre-
sponding weight function and s = |v(Γ)|. Choosing an order on v(Γ) enables
us to write a weight vector m ∈ Zs given by mi = m(vi) and a degree vector
δ ∈ Zs given by δi = δ(vi). With this ordering, we can associate to Γ a
symmetric s× s matrix M given by

Mi,j =

⎧⎪⎨⎪⎩
mi i = j

1 i �= j and vi and vj are connected by an edge

0 otherwise.

We say Γ is negative definite whenever M is negative definite.
To obtain a 3-manifold from Γ, create a framed link L(Γ) ⊂ S3 by

associating to each vertex vi an unknot with framing mi and Hopf linking
unknots together whenever their corresponding vertices share an edge. The
resulting linking matrix of L(Γ) is the plumbing matrix M . Y (Γ) is defined
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Figure 1: A plumbing tree and its associated link for the Poincaré homology
sphere Σ(2, 3, 5).

to be the 3-manifold obtained by Dehn surgery on L(Γ). Y also bounds the
4-manifold X which is obtained by adding 2-handles to D4 along L(Γ). From
this perspective, M represents the intersection form of X.

In general, we say Y is a negative-definite plumbed 3-manifold if it is
homeomorphic to Y (Γ) for some negative-definite plumbing graph Γ. Two
distinct plumbing trees may result in homeomorphic manifolds; in fact this
is the case if and only if the trees can be related by a finite sequence of Neu-
mann moves of type (a) and (b) [18]. Therefore, an invariant of a negative-
definite plumbed manifold Y must be invariant under these two moves on
its plumbing graph.

As with the GPPV invariant, ̂̂ZY (t, q) takes as inputs a negative-definite
plumbed 3-manifold Y and a chosen spinc structure. In the particular case
of a negative-definite plumbed manifold, the set of spinc structures can be
given in terms of the plumbing data; it is known that

(2) spinc(Y ) ∼= m+ 2Zs

2MZs
∼= δ + 2Zs

2MZs
,

where the second isomorphism is given by [k] �→ [k − (m + δ)]; for details,
see [1, Section 2.2]. For negative definite plumbed 3-manifolds, one can also
identify spinc structures with abelian flat connections; see [12, Section 2].
More generally, the set of spinc structures admits a free, transitive action
by H2(Y ;Z), giving a bijective correspondence between these sets. We note
that both of these identifications are non-canonical.

2.1.1. Key example: Brieskorn homology spheres Brieskorn man-
ifolds are well-studied, in part due to the fact they produce examples of
exotic 7-spheres. In three dimensions, they are realized as the intersection
of a singular complex surface with the unit sphere in C3. In particular, let
(b1, b2, b3) be pairwise relatively prime positive integers b1 < b2 < b3. The
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corresponding Brieskorn sphere Σ(b1, b2, b3) is given by

Σ(b1, b2, b3) := {(z1, z2, z3) ∈ C3 | zb11 + zb22 + zb33 = 0} ∩ S5 ⊂ C3.

Given (b1, b2, b3), Neumann and Reymond provide an algorithm by which
one can find a plumbing tree Γ for the associated Brieskorn sphere [19]. This
process guarantees that Γ is always a star graph with one 3-valent vertex
and 3 legs, as is the case in Figure 1.

As integral homology spheres, Brieskorn spheres have only one spinc

structure, and ̂̂Z is independent of choice of spinc representative. There-
fore, in calculations involving Brieskorn spheres we will drop the subscript
indicating the spinc structure.

The general formula for ̂̂ZY (t, q) depends on plumbing data, but in
Section 3 we give a formula for Brieskorn spheres which only requires the
triple (b1, b2, b3). To achieve this, we use methods similar to those of Gukov
and Manolescu, who provide a formula for the GPPV invariant in terms of
(b1, b2, b3); see Proposition 4.8 of [13].

2.2. The two-variable series

For a choice k ∈ Zs of a spinc representative [k] ∈ m+ 2Zs

2MZs
, and for any

x ∈ Zs, let

χk(x) :=
−k · x+ 〈x, x〉

2
∈ Z,

where (·) denotes the Euclidean dot product and 〈−,−〉 denotes the bilinear
form given by the plumbing matrix M . For r ∈ Z and n ∈ N, let

(3) F̂n(r) :=

{
1
2sgn(r)

n
(n+|r|

2
−2

n−3

)
if |r| ≥ n− 2, r ≡ n (mod 2);

0 otherwise,

and define

F̂Γ,k(x) :=
∏

vi∈v(Γ)
F̂δi((2Mx+ k −Mu)i).

Note that F̂n(r) : Z → Q describes the coefficient on z−r in the expansion

of (z− z−1)2−n. To state the definition of ̂̂Z we will use for our calculations,
we define u : = (1, 1, . . .) as well as

Θk =
k · u− 〈u, u〉

2
, εk = −(k −Mu)2 + 3s+

∑
v mv

4
+ 2χk(x) + 〈x, u〉.
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Then we have the following:

Theorem 2.1 (Theorems 6.3 and 7.6 of [1]). Let Y be a negative-definite

plumbed 3-manifold with spinc structure [k]. The series

(4) ̂̂ZY,[k](t, q) :=
∑
x∈Zs

F̂Γ,k(x)q
εk(x)tΘk+〈x,u〉

is an invariant of the pair (Y, [k]), and

Ẑa(q) =
̂̂ZY,[k](1, q),

where Ẑa(q) is the GPPV invariant for (Y, [a]) and a corresponds to k via

(2).

Remark 2.1. The family of functions {F̂n}n∈N is defined in [1] to be ad-

missible in that it satisfies axioms that guarantee that the series (4) is an

invariant. In this sense, ̂̂Z belongs to a family of two-variable series invari-

ants developed in [1], parametrized by admissible families.

3. Series analysis

We now develop an explicit formula for the coefficients of ̂̂ZΣ(t, q) as a series

in q whenever Σ is a Brieskorn sphere. The arithmetic properties of these

coefficients will allow us to take limits toward roots of unity and establish

quantum modularity properties in Sections 4 and 6. For a general negative-

definite plumbed 3-manifold Y , one can use a program created by Peter

Johnson1 to calculate the first N coefficients of ̂̂ZY (t, q).

Let k be a spinc representative for the unique spinc structure [k] of Σ,

and set a = k − Mu. For x ∈ Zs, we let 
 := a + 2Mx. Using the fact

established in [1] that �TM�
4 = a2

4 − 2χk(x)− 〈x, u〉, we write

̂̂ZΣ(t, q) = q−
3s+

∑
v mv

4

∑
x∈Zs

∏
vi∈v(Γ)

F̂δi(
i)q
− �T M−1�

4 tΘk+〈x,u〉.

Below is the plumbing graph of a Brieskorn sphere with the vertices ordered

as needed for this section. The only x ∈ Zs for which
∏

vi
F̂δi(
i) �= 0 are

1Available at https://github.com/peterkj1/plum

https://github.com/peterkj1/plum
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Figure 2: The plumbing graph for a Brieskorn sphere Σ.

those of the form 
 = (ε1, ε2, ε3,m, 0, . . .) for εi ∈ {±1} and m odd. In this

case, we have that F̂1(εi) = −εi and F̂3(m) = 1
2sign(m), so

∏
vi∈v(Γ)

F̂δi(
i) = −1

2
ε1ε2ε3sign(m).

Since Brieskorn spheres have unimodular plumbing matrices M , every possi-

ble combination (ε1, ε2, ε3,m, 0, . . . ) is in a+2MZs. Therefore we can write

̂̂ZΣ(t, q) =
−q−

3s+
∑

v mv

4

2

∑
εi∈{±1}

∑
m odd

ε1ε2ε3sign(m)q−
�T M−1�

4 tΘk+〈x,u〉.

One can check that 〈u, x〉 = ε1+ε2+ε3+m−aTu
2 . Moreover, since ̂̂Z does not

depend on a choice of spinc representative, we make the convenient choice

of a = (1, 1, 1, 1, 0, . . .) ∈ δ + 2MZs. In this case, Θk = 2 and the exponent

on t becomes (ε1 + ε2 + ε3 +m)/2.

Remark 3.1. Following Section 4.6 of [13] we can can rewrite

−
tM−1


4
=

b1b2b3
4

(
m+

∑
i

εi
bi

)2

− b1b2b3
4

∑ 1

b2i
+

∑
i hi
4

,

where hi refers to the cardinality of H1(Σ
′) for Σ′ the plumbed manifold that

results from removing the ith vertex of the plumbing graph for Σ. Setting

Δ :=
1

4

(∑
i

hi − 3s−
∑
v

mv −
b2b3
b1

− b1b3
b2

− b1b2
b3

)
,
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and rewriting ε := ε1 + ε2 + ε3, we now have

(5) ̂̂ZΣ(t, q) =
−qΔ

2

∑
m odd

∑
εi∈{±1}

ε1ε2ε3sign(m)q
b1b2b3

4
(m+

∑
i

εi
bi
)2
t

ε+m

2 .

Now, set p := b1b2b3 and

α1 := b1b2b3 − b1b2 − b1b3 − b2b3;

α2 := b1b2b3 + b1b2 − b1b3 − b2b3;

α3 := b1b2b3 − b1b2 + b1b3 − b2b3;

α4 := b1b2b3 + b1b2 + b1b3 − b2b3.

Theorem 3.1. Let Σ(b1, b2, b3) be a Brieskorn sphere. Then

̂̂ZΣ(t, q) = qΔ
(
C −

∑
n≥1

ϕ(n; t)q
n2

4p

)
,

where C is nonzero and equals q
1

120 (t+ t−1) only when (b1, b2, b3) = (2, 3, 5)
and

ϕ(n; t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∓1

2(t
∓n+(α1+2p)

2p + t
±n−(α1+2p)

2p ) n ≡ ±α1 (mod 2p),

±1
2(t

∓n+αk
2p + t

±n−αk
2p ) n ≡ ±αk (mod 2p), k = 2, 3

∓1
2(t

∓n+(α4−2p)

2p + t
±n−(α4−2p)

2p ) n ≡ ±α4 (mod 2p),

0 otherwise.

Remark 3.2. Note that when t = 1, this collapses back to the GPPV in-
variant as calculated by Gukov and Manolescu in [13]. Fixing Σ = Σ(2, 3, 5),
the function ϕ(n; 1) is equal to χ+(n) as defined in [16].

Proof. Begin with the calculation given by (5). Using the fact that
(ε1)(ε2)(ε3)(sign(m)) = (−ε1)(−ε2)(−ε3)(sign(−m)), replacing m odd with
2n+ 1, and setting ε′ := ε+2n+1

2 , we write

̂̂ZΣ(t, q) =
−qΔ

2

∑
εi∈{±1}

∑
n≥0

ε1ε2ε3q
p(n2+n+ 1

4
+(n+ 1

2
)
∑

i

εi
bi
+ 1

4
(
∑

i

εi
bi
)2)

(tε
′
+ t−ε′).

Following [13], fix ε2 and ε3 and split into two cases based on the value of
ε1. If ε1 = −1, observe that b1b2b3(1 +

∑
i
εi
bi
) = αk for some k ∈ {1, 2, 3, 4}.
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The corresponding summation over n for this triple of εi’s is

(6) − ε2ε3
∑
n≥0

qpn
2+αkn+

α2
k

4p (t
ε2+ε3+2n

2 + t
−(ε2+ε3+2n)

2 ).

On the other hand, when ε1 = 1, we can replace n with n− 1 in the corre-
sponding sum to get

(7) ε2ε3
∑
n≥1

qpn
2−αjn+

α2
j

4p (t
ε2+ε3+2n

2 + t
−(ε2+ε3+2n)

2 ),

where for each k the corresponding j is given by

k 1 2 3 4

j 4 3 2 1.

Remark 3.3. In [13], it is incorrectly claimed that j = k for each k. This
fact does not change the outcome of their calculations, but it does affect ours.

Summing over all four possible values of (ε2, ε3) gives eight sums, each
of which has exponent on q of the form pn2±αkn+

n2

4p as in (6) and (7). The
sums involving +αkn begin at n = 0 and the sums involving −αkn begin at
n = 1. The four values of (ε1, ε2, ε3) for which ε2 = −ε3 contribute

∑
n≥0

qpn
2+α2n+

α2
2

4p (tn + t−n)−
∑
n≥1

qpn
2−α2n+

α2
2

4p (tn + t−n);

∑
n≥0

qpn
2+α3n+

α2
3

4p (tn + t−n)−
∑
n≥1

qpn
2−α3n+

α2
3

4p (tn + t−n),(8)

whereas when ε2 = ε3 we have

−
∑
n≥0

qpn
2+α4n+

α2
4

4p (tn+1 + t−(n+1)) +
∑
n≥1

qpn
2−α4n+

α2
4

4p (tn−1 + t−(n−1));

−
∑
n≥0

qpn
2+α1n+

α2
1

4p (tn−1 + t−(n−1)) +
∑
n≥1

qpn
2−α1n+

α2
1

4p (tn+1 + t−(n+1)).(9)

For t = 1 and αk ≥ 0, each of the above collapse to the false theta functions

Ψ̃
(αk)
p into which Ẑ is decomposed in [13]. The only case in which αk < 0

for some k is Σ(2, 3, 5), for which α1 = −1. We momentarily postpone this
case and take (b1, b2, b3) �= (2, 3, 5). Focusing on the case given by (8), we
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write pn2 ± nα3 +
a2
3

4p = p(n ± α3

2p )
2 and perform the changes of variables

m = 2pn± α3. This gives∑
m≥0

m≡α3 (2p)

q
m2

4p (t
m−α3

2p + t−
m−α3

2p )−
∑
m≥0

m≡−α3 (2p)

q
m2

4p (t
m+α3

2p + t−
m+α3

2p ).

The calculation is the same when α3 is replaced with α2. When ε1 = ε3 = 1,
we get the sums

−
∑
m≥0

m≡α4 (2p)

q
m2

4p (t
m−α4

2p
+1+t−(

m−α4
2p

+1))+
∑
m≥0

m≡−α4 (2p)

q
m2

4p (t
m+α4

2p
−1+t−(

m+α4
2p

−1)),

and when ε2 = ε3 = −1 we get

−
∑
m≥0

m≡α1 (2p)

q
m2

4p (t
m−α1

2p
−1+t−(

m−α1
2p

−1))+
∑
m≥0

m≡−α1 (2p)

q
m2

4p (t
m+α1

2p
+1+t−(

m+α1
2p

+1)).

If (b1, b2, b3) �= (2, 3, 5) we are done. We conclude with the special case
of the Poincaré homology sphere. The argument is the same up through the
calculation of (9). In this case, we have that

−
∑
n≥1

q30n
2−n+ 1

120 (tn−1 + t−(n−1)) +
∑
n≥0

q30n
2+n+ 1

120 (tn+1 + t−(n+1))

= −
∑
m≥0

m≡−1 (60)

q
m2

120 (t
m−59

60 + t−(m−59

60
)) +

∑
m≥0

m≡1 (60)

q
m2

120 (t
m+59

60 + t−(m+59

60
)),

and the bounds on the sums on the left hand side do not agree with those in
(9). The solution is to subtract 2q

1

120 (t+ t−1) from (9), as they only disagree
in the sign of their constant term.

Remark 3.4. In the course of the above proof, it becomes apparent that̂̂ZΣ(t, q) can be written terms of false theta functions of the form∑
n∈Z

sgn(n)q
p
(
n+ α

2p

)
t2n+α,

for α ∈ {α1, α2, α3, α4}. This observation, along with Theorem 1.2, motivate

the question of whether ̂̂ZΣ(t, q) is a quantum Jacobi form; see, e.g. [2].
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3.1. Example calculations

Below are calculations of ̂̂ZΣ(ζ, q) for various specializations of ζ for the
Brieskorn spheres Σ(2, 3, 5) and Σ(2, 7, 15).

Table 1: Examples of ̂̂ZΣ(ζ, q) for Σ(2, 3, 5).

ζ
̂

̂ZΣ(ζ, q)

1 2q−3/2 − q−3/2(1 + q + q3 + q7 − q8 − q14 − q20 − q29 + q31 + q42 + q52 + . . .)

−1 −2q−3/2 − q−3/2(−1 + q + q3 + q7 + q8 + q14 + q20 − q29 + q31 − q42 + . . .)

e
2πi
3 −q−3/2 − q−3/2(− 1

2
+ q + q3 + q7 + 1

2
q8 + 1

2
q14 + 1

2
q20 − q29 − 1

2
q31 + . . .)

i −q−3/2(q + q3 + q7 − q29 − q31 + q69 + q85 + q99 − q143 − q161 − q185 + . . .)

Table 2: Examples of ̂̂ZΣ(ζ, q) for Σ(2, 7, 15).

ζ
̂

̂ZΣ(ζ, q)

1 −q5/2(−q4 + q9 + q17 − q26 + q87 − q106 − q130 + q153 − q275 + q308 + . . . )

−1 −q5/2(q4 + q9 + q17 + q26 + q87 + q106 + q130 + q153 − q275 − q308 + . . . )

e
2πi
3 −q5/2( 1

2
q4 + q9 + q17 + 1

2
q26 + 1

2
q30 − 1

2
q153 − q275 − 1

2
q308 − 1

2
q348 + . . . )

i −q5/2(q9 + q17 + q87 − q153 − q275 + q385 + q615 + q671 − q1027 − q1099 + . . . )

In the above examples, we factor out a rational power of q so that all
other powers are integral. This can be done in general, and is explicitly
realized for Brieskorn spheres in the following lemma:

Lemma 3.2. Define αk for 1 ≤ k ≤ 4 as on page 8 preceding Theorem 3.1.
Then α2

1 ≡ α2
2 ≡ α2

3 ≡ α2
4 (mod 4p).

We will denote this common congruence class modulo 4p by w for the
remainder of the paper.

4. Radial limits at roots of unity

In this section, we analyze the arithmetic properties of the coefficients ϕ(n; t)
which will ultimately allow for the calculation of radial limits at roots of
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unity in terms of particular L-series. We first check that the coefficients of
ϕ(n; t) have the necessary properties for our method of calculation.

Lemma 4.1. If ζ is a jth root of unity, then ϕ(n; ζ) is 2pj-periodic and has
mean value zero.

In order to calculate these radial limits, we will make use of a general
result that allows for the computation of full asymptotic expansions of our
series as q radially approaches roots of unity. We are interested in asymptotic
expansions of functions f(t) : R>0 → C as t → 0+. In particular, we will be
interested in expansions of the form

f(t) ∼
∞∑
n=0

ant
n, (t → 0+),

meaning that the difference f(t) −
∑N−1

n=0 ant
n = O(tN ) as t → 0+. Note

that
∑∞

n=0 ant
n need not be convergent for any nonzero t for this definition

to be sensible, but in the following case there is indeed a positive radius
of convergence. To realize these radial limits, we make use of the following
general proposition.

Proposition 4.2. Let C : Z → C be a periodic function with mean value

zero. Then the associated L-series L(s, C) :=
∑

n≥1
C(n)
ns , �(s) > 1, extends

holomorphically to all of C and the function
∑

n≥1C(n)e−n2t, t > 0, has
the asymptotic expansion∑

n≥1

C(n)e−n2t ∼
∑
r≥0

L(−2r, C)
(−t)r

r!

as t → 0+. Then numbers L(−r, C) are given explicitly by

L(−r, C) = − M r

r + 1

M∑
n=1

C(n)Br+1

( n

M

)
, (r = 0, 1, . . . ),

where Bk(x) is the kth Bernoulli polynomial and M is any period of the
function C(n).

For details, see e.g. [16] p. 98. Note the slight abuse of notation where
C may refer to either an arithmetic function or the extra term C which
appears in (1) in the case were the 3-manifold in question is the Poincaré
homology sphere. We will specify when unclear from context.
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4.1. Proof of Theorem 1.1

Let ξ be a root of unity and set C(n) := ϕ(n; ζ)ξ
n2

4p . IfK is a period of ξ, then
C(n) is 2pjK-periodic and has mean value zero since C(2pjK−n) = −C(n).
Let

(10) Aζ(q) :=
∑
n≥0

ϕ(n; ζ)q
n2

4p ,

and observe that

Aζ(ξe
−t) =

∞∑
n=1

C(n)e−n2(t/4p).

By the previous proposition, the above has asymptotic expansion

∞∑
r=0

L(−2r, C)
(−t/4p)r

r!

as t → 0+ and limiting value

Aζ(ξ) := lim
t→0+

Aζ(ξe
−t) = L(0, C).

The analytic continuation of this L-series to s = 0 is given by the sum

−
2pjK∑
n=1

(
n

2pjK
− 1

2

)
ϕ(n; ζ)ξ

n2

4p .

Evaluating both qΔ the extra term C = q
1

120 (t + t−1) (which appears only
when Σ is the Poincaré homology sphere) at (ζ, ξ) gives the desired formula.

�

5. Modular and quantum modular forms

We begin with a brief introduction to the theory of modular forms of half-
integral weight. For a more thorough discussion, see [20, 22]. Let
γ =

(
a b
c d

)
∈ SL2(Z) act on H by the linear fractional transformation

γτ :=
aτ + b

cτ + d
.
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We are interested in the action of particular congruence subgroups Γ of
SL2(Z). Define

Γ1(N) :=

{(
a b
c d

)
∈ SL2(Z) : a ≡ d ≡ 1 (mod N), c ≡ 0 (mod N)

}
;

Γ(N) :=

{(
a b
c d

)
∈ SL2(Z) : a ≡ d ≡ 1 (mod N), b ≡ c ≡ 0 (mod N)

}
.

The above are congruence subgroups of SL2(Z) of level N . Note the contain-
ment Γ(N) ⊆ Γ1(N). The equivalence classes in P1(Q) = Q ∪ {i∞} under
the action of a congruence subgroup Γ are called the cusps of Γ.

To state the appropriate transformation law for half-integral weight mod-
ular forms, we need the following definitions. For odd d, define

εd :=

{
1 if d ≡ 1 (mod 4);

i if d ≡ 3 (mod 4),

and let
( ·
·
)
denote the Jacobi symbol. Throughout, we let

√
z be the branch

of the square root with argument in (−π/2, π/2]. For functions f : H → C,
the Petersson slash operator of weight k ∈ 1

2Z for γ =
(
a b
c d

)
∈ SL2(Z) is

defined by

f |kγ(τ) :=
{
(cτ + d)−kf(γτ) if k ∈ Z;

ε2kd
(
c
d

)
(cτ + d)−kf(γτ) if k ∈ 1

2 + Z,

where additionally one must require that γ is contained in a congruence
subgroup of level 4 when k is not an integer. We can now state the following:

Definition 5.1. Let Γ be a congruence subgroup of level N such that 4 | N .
We say that a holomorphic function f : H → C is a modular form (resp. cusp
form) of weight k ∈ 1

2Z with multiplier χ for Γ if:

1. for all γ ∈ Γ, the function f satisfies f − χ(γ)f |kγ = 0, and
2. for all γ ∈ SL2(Z), (cτ + d)−kf(γτ) is bounded (resp. vanishes) as

τ → i∞.

While our work makes contact with modular forms as described above,
the modular objects of primary interest will be quantum modular forms.
This term, coined by Zagier in 2010, was inspired in part by the examples
arising from quantum field theory and quantum invariants of 3-manifolds
such as the WRT invariants [24].
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Fix a congruence subgroup Γ of level N such that 4 | N , and sup-
pose Q = Q\S where S is discrete and Q is closed under the action of Γ.
We define a quantum modular form of weight k with multiplier χ for Γ to
be a function f : Q → C such that for all γ =

(
a b
c d

)
∈ Γ, the functions

hγ : Q\{γ−1(i∞)}) → C,

(11) hγ(x) := f(x)− χ(γ)f |kγ(x)

extends to some “nice” function on R (away from possibly a bad set of
points). The set Q is called the quantum set of f .

Remark 5.1. This definition is intentionally vague, as it was built to fit
varied examples naturally arising from disparate areas of study. A variety of
specializations of this definition are considered to fall under the “quantum
modular” umbrella; however, for the purposes of this paper, it suffices to
replace “nice” with “real-analytic.”

Ultimately, we need the following lemma in order to renormalize the
powers of q that appear in Section 6. Using the definitions, one can verify
the following:

Lemma 5.2. If ψ(τ) is a quantum modular form of weight 1/2 for Γ(4pj)
with multiplier χ, then ψ(jτ) is a quantum modular form of weight 1/2 for
Γ(4pj2) with the same multiplier.

5.1. Eichler integrals

The utilization of Eichler integrals to construct quantum modular forms has
its roots in the work of Lawrence and Zagier previously discussed [16]. Many
authors have since extended and generalized this procedure to systematically
construct families of quantum modular forms: see e.g. [10, 7, 11]. Here we
sketch the procedure by which the authors of [7] construct quantum modular
forms, modified to fit our context. For references that reflect these arguments
with our particular congruence subgroups and multiplier systems, see e.g.
[6, 11].

Suppose a function F (τ) for τ ∈ H may be written as

F (τ) =
∑
n≥0

a(n)q
n2

4pj , (q = e2πiτ ),

for some integers p, j. Further suppose that

f(τ) :=
∑
n≥0

na(n)q
n2

4pj
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is a cusp form of weight 3/2 for Γ1(N). We consider the non-holomorphic

Eichler integral of f , given by

F ∗(τ) :=

∫ i∞

τ

f(ω)√
−i(ω − τ)

dω, (τ ∈ H−).

Bringmann and Rolen show that, after suitable renormalization, the func-

tions F (τ) and F ∗(τ) “agree to infinite order” at any x ∈ Q. That is, for

any x there exists a sequence β(0), β(1), . . . such that as t → 0+,

F

(
x+

it

2π

)
∼

∑
r≥0

β(r)
(−t)r

r!
and F ∗

(
x− it

2π

)
∼

∑
r≥0

β(r)
tr

r!
.

This is accomplished by first integrating F ∗ term-by-term to obtain a series

expansion for F ∗(τ) involving Γ-factors. Then using Proposition 4.2 and

more general tools for studying the Mellin transform of error functions, they

obtain asymptotic expansions of both of these functions which agree in the

above sense.

The function F ∗(τ) admits an explicit obstruction to modularity from

its definition; for τ ∈ H− and γ =
(
a b
c d

)
∈ Γ1(N), we have

F ∗(τ)−
(−4

d

)
F ∗|kγ (τ) = rγ(τ),

where

rγ(τ) :=

∫ i∞

γ−1(i∞)

f(ω)√
−i(ω − τ)

dω.

which extends to a C∞ function on ∂H− = R which is real-analytic on

R\{γ−1(i∞)} and gives hγ for the resulting quantum modular form.

6. Proofs of main theorems

Below we prove two results regarding the quantum modularity of ̂̂ZΣ(t, q).

The main novelty of these results is our uniform treatment of these series

as two-parameter families in t and Σ. This is only possible once we have

explicitly computed these series by Theorem 3.1.
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6.1. Proof of Theorem 1.2

In light of the work summarized in the preceding section, it suffices to show
that

(12)
∑
n≥0

nϕ(n; ζ)q
n2

4pj

is a cusp form for Γ(4pj). Then the results of Section 5.1 used in conjunction
with Lemma 5.2 will imply

Aζ(τ) :=
∑
n≥0

ϕ(n; ζ)q
n2

4p

is a quantum modular form. We further have that Aζ(τ) is a “strong” quan-
tum modular form in the sense of [24]. We begin with an elementary lemma
which will be useful for simplifying our expressions later.

Lemma 6.1. Let 0 ≤ n < 2pj be such that n ≡ ±αk (mod 2p) for some k.
Then we have n2 ≡ w + 4pi (mod 4pj) for some 0 ≤ i < j, where w is the
common congruence class modulo 4p of the α2

k’s coming from Lemma 3.2.

We are now ready to analyze (12). Since ϕ(n; ζ) is 2pj-periodic, we have∑
n≥0

nϕ(n; ζ)q
n2

4pj =
∑

0≤α<2pj

ϕ(α; ζ)
∑
n≥0

(2pjn+ α)q
(2pjn+α)2

4pj .

Every α for which ϕ(α; ζ) is nonzero satisfies α ≡ ±αk (mod 2p) for some
k. Thus, we can write this sum as∑

0≤α<2pj
α≡αk(2p)

ϕ(α, ζ)
∑
n≥0

(2pjn+ α)q
(2pjn+α)2

4pj

+
∑

0<α≤2pj
α≡αk(2p)

ϕ(2pj − α, ζ)
∑
n≥0

(2pjn+ (2pj − α))q
(2pjn+(2pj−α))2

4pj .

Using the fact that ϕ(n; ζ) is odd and 2pj-periodic, the second set of sums
can be rewritten as∑

0<α≤2pj
α≡αk(2p)

−ϕ(α, ζ)
∑
n≥0

(2pj(n+ 1)− α)q
(2pj(n+1)−α))2

4pj .
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Reindexing by n+ 1 �→ −n and combining with the first set of sums gives

(13)
∑
n≥0

nϕ(n; ζ)q
n2

4pj =
∑

0≤α<2pj
α≡αk(2p)

ϕ(α; ζ)
∑
n∈Z

n≡α(2pj)

nq
n2

4pj .

The inner sum of the above equation is a theta function which is modular
of weight 3/2. More precisely, define

Θ(τ ; k,M) :=
∑
n∈Z

n≡k(M)

nq
n2

2M .

By Proposition 2.1 of [22], we have that for γ ∈ Γ1(2M) that

Θ(γτ ; k,M) = e
πiabk2

M ε−3
d

(
2Mc

d

)
(cτ + d)3/2Θ(τ ; ak,M),

and since k ≡ ak (mod M), we have

Θ(z; ak,M) = Θ(z; k,M).

By Lemma 6.1, every n for which the coefficient of q
n2

4pj in (13) is nonzero
satisfies n2 ≡ w + 4pi (mod 4pj) for some 0 ≤ i < j. Then

e
πiabn2

2pj = e
πiab(w+4pi)

2pj

for some 0 ≤ i < j. Then one may group the n’s based on the corresponding
i to get j functions fi(τ) which for γ =

(
a b
c d

)
∈ Γ1(4pj) satisfy

fi(γτ) = e
πiab(w+4pi)

2pj ε−3
d

(
4pjc

d

)
(cτ + d)3/2fi(τ).

Note the dependence of this transformation law on w. If one restricts to
γ ∈ Γ(4pj) ⊂ Γ1(4pj), the multipliers for each fi become identical. Thus the
sum of the fi’s transform together as a cusp form on Γ(4pj). �

6.2. Proof of Theorem 1.3

As in the study of the Jacobi Triple Product formula, one is often able to
generate a modular object of dual-weight by differentiating with respect to
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one variable; see e.g. [9]. Following this approach, we find a second infinite

family of quantum invariants by differentiating ̂̂ZΣ(t, q), summand by sum-
mand, with respect to t. Our contribution to this principle is Theorem 1.3.
Here we offer of proof of this result.

Fix ζ a jth root of unity. Consider the series

A′
ζ(τ) :=

∑
n≥0

ϕ′(n; ζ)q
n2

4p ,

where ϕ′(n; ζ) is the derivative of ϕ(n; t) evaluated at t = ζ. By Theorem 3.1,
this is

ϕ′(n; ζ):=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n∓(α1+2p)
4p (ζ

∓n+(α1+2p)

2p − ζ
±n−(α1+2p)

2p ) n≡± α1 (mod 2p);

−n∓αk

4p (ζ
∓n+αk

2p − ζ
±n−αk

2p ) n≡± αk (mod 2p),k=2, 3;
n∓(α4−2p)

4p (ζ
∓n+(α4−2p)

2p − ζ
±n−(α4−2p)

2p ) n≡± α4 (mod 2p);

0 otherwise.

Note that we may write A′
ζ(τ) as∑

n≥0

nψ(n; ζ)q
n2

4p +
∑
n≥0

χ(n; ζ)q
n2

4p ,

where

ψ(n; ζ):=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
4p(ζ

∓n+(α1+2p)

2p − ζ
±n−(α1+2p)

2p ) n ≡ ±α1 (mod 2p);

− 1
4p(ζ

∓n+αk
2p − ζ

±n−αk
2p ) n ≡ ±αk (mod 2p), k = 2, 3;

1
4p(ζ

∓n+(α4−2p)

2p − ζ
±n−(α4−2p)

2p ) n ≡ ±α4 (mod 2p);

0 otherwise;

χ(n; ζ):=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∓ (α1+2p)

4p (ζ
∓n+(α1+2p)

2p − ζ
±n−(α1+2p)

2p ) n ≡ ±α1 (mod 2p);

±αk

4p (ζ
∓n+αk

2p − ζ
±n−αk

2p ) n ≡ ±αk (mod 2p),k = 2, 3;

∓ (α4−2p)
4p (ζ

∓n+(α4−2p)

2p − ζ
±n−(α4−2p)

2p ) n ≡ ±α4 (mod 2p);

0 otherwise.

Then ψ(n; ζ) is even and 2pj-periodic and χ(n; ζ) is odd and 2pj-periodic.
Following the same style of argument as Theorem 1.2, one concludes that∑
n≥0

χ(n; ζ)q
n2

4p is a quantum modular form of weight 1/2 on Γ(4pj2).
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To analyze
∑
n≥0

nψ(n; ζ)q
n2

4p , note that the series
∑
n≥0

ψ(n; ζ)q
n2

4p is modu-

lar but may not be a cusp form. This requires us to appeal to a more general
result of Goswami and Osburn (Theorem 1.1 of [11]) which gives a careful
treatment of this more general case. Their result tells us that∑

n≥0

nψ(n; ζ)q
n2

4pj

is a quantum modular form on Q2pj with respect to Γ1(4pj), where

Q2pj := {x ∈ Q : x is Γ1(4pj)-equivalent to i∞}.

Note that one must still utilize Lemmas 5.2 and 6.1 in order to contend
with the supports of these series. This ultimately allows us to conclude that∑

n≥0 nψ(n; ζ)q
n2

4p is a quantum modular form of weight 3/2 as desired. �
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