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Witten–Reshetikhin–Turaev invariants
and homological blocks for plumbed

homology spheres
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In this paper, we prove a conjecture by Gukov–Pei–Putrov–Vafa
for a wide class of plumbed 3-manifolds. Their conjecture states
that Witten–Reshetikhin–Turaev (WRT) invariants are radial lim-
its of homological blocks, which are q-series introduced by them
for plumbed 3-manifolds with negative definite linking matrices.
The most difficult point in our proof is to prove the vanishing of
weighted Gauss sums that appear in coefficients of negative degree
in asymptotic expansions of homological blocks. To deal with it,
we develop a new technique for asymptotic expansions, which en-
ables us to compare asymptotic expansions of rational functions
and false theta functions related to WRT invariants and homo-
logical blocks, respectively. In our technique, our vanishing results
follow from holomorphy of such rational functions.
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1. Introduction

In this paper, we studyWitten–Reshetikhin–Turaev (WRT) invariants. They
are quantum invariants of 3-manifolds constructed by Witten [Wit89] from
a physical viewpoint and constructed by Reshetikhin–Turaev [RT91, Theo-
rem 3.3.2] from a mathematical viewpoint. The Witten’s asymptotic expan-
sion conjecture plays a central role in studying WRT invariants. It claims
that the Chern-Simons invariants and the Reidemeister torsions appear in
the asymptotic expansion of WRT invariants. This conjecture is proved by
Lawrence–Zagier [LZ99] for the Poincaré homology sphere, Hikami [Hik05a]
for Brieskorn homology spheres, Hikami [Hik06a] and Matsusaka–Terashima
[MT21] independently for Seifert homology spheres. Many other authors
have studied this conjecture [AH12, AM22, And13, BW05, Cha16, Chu17,
CM15, FIMT21, FG91, GMnP16, Hik05b, Hik06b, HT04, Jef92, Roz94,
Roz96, Wu21].

Recently, Gukov–Pei–Putrov–Vafa [GPPV20] introduced q-series invari-
ants called homological blocks or GPPV invariants for plumbed manifolds.
They conjectured that homological blocks have good modular transforma-
tions and their radial limits yield WRT invariants. These conjectures show
a roadmap to prove the Witten’s asymptotic expansion conjecture. The
first conjecture, modular transformations of homological blocks, are related
to quantum modular forms introduced by Zagier [Zag10]. This conjecture
is proved by Matsusaka–Terashima [MT21] for Seifert homology spheres
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and Bringmann–Mahlburg–Milas [BMM20] for non-Seifert homology spheres
whose surgery diagrams are the H-graphs. Bringmann–Nazaroglu [BN19]
and Bringmann–Kaszian–Milas–Nazaroglu [BKMN21] clarified and proved
the modular transformation formulas of false theta functions, which are main
tools to study modular transformations of homological blocks.

The second conjecture, which asks the relation between WRT invariants
and radial limits of homological blocks, is proved by Fuji–Iwaki–Murakami–
Terashima [FIMT21] with a result in Andersen–Misteg̊ard [AM22] for Seifert
homology spheres and Mori–Murakami [MM22] for non-Seifert homology
spheres whose surgery diagrams are the H-graphs. In this paper, we prove
this conjecture for a large class of plumbed manifolds by developing some
new techniques.

Let us explain our setting. Let Γ = (V,E, (wv)v∈V ) be a plumbing graph,
that is, a finite tree with the vertex set V , the edge set E, and integral
weights wv ∈ Z for each vertex v ∈ V . Following [GPPV20], we assume
that the linking matrix W of Γ is negative definite. Then one can define the
homological block ẐΓ(q) with q ∈ C and |q| < 1. Let M(Γ) be the plumed 3-
manifold obtained from S3 through the surgery along the diagram defined by
Γ. We also assume that M(Γ) is an integral homology sphere. This condition
is equivalent to detW = ±1 since H1(M(Γ),Z) ∼= ZV /W (ZV ) by use of the
Mayer–Vietoris sequence. For a positive integer k, let WRTk(M(Γ)) be the
WRT invariant of M(Γ) normalised as WRTk(S

3) = 1. We also denote

ζk := e2π
√
−1/k.

In the above setting, we can state the conjecture of Gukov–Pei–Putrov–
Vafa [GPPV20] by the following.

Conjecture 1.1 ([GPPV20, Conjecture 2.1, Equation (A.28)]).

WRTk(M(Γ)) =
1

2(ζ2k − ζ−1
2k )

lim
q→ζk

ẐΓ (q) .

In this paper, we prove this conjecture for a wide class of plumbing
graphs.

Theorem 1.2. Conjecture 1.1 is true for plumbing graphs depicted in Fig-
ure 1.

Here we remark that a plumbing graph has the form depicted in Figure 1
if and only if |v|+ 2− deg(v) > 0 for any vertex v ∈ V , where deg(v) is the
degree of v and v := {i ∈ V | {i, v} ∈ E, deg(i) = 1}.

In a proof of Theorem 1.2, the most difficult point is to prove the vanish-
ing of weighted Gauss sums that appear in coefficients of negative degree in
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asymptotic expansions of homological blocks. The previous works [BMM20,
MM22] deal with this difficulty by direct calculations ([BMM20, Theorem
4.1], [MM22, Proposition 4.2]). However, we prove it indirectly by using our
asymptotic formula (Proposition 5.4 and Corollary 5.7) and holomorphy of
a rational function whose radial limits are WRT invariants. In a sense, our
technique is a generalisation of the method of Lawrence–Zagier [LZ99, pp.98,
Proposition] using L-functions for periodic maps.

This paper will be organised as follows. In Section 2, we prepare some
notations for plumbing graphs Γ which we use throughout this paper. In Sec-
tion 3, we calculate WRT invariants for plumbed homology spheres M(Γ).
The point of our calculation is to represent WRT invariants as a sum for
the submatrix of W−1 with vertices whose degrees are greater than 2. In
Section 4, we express homological blocks as false theta functions. Then we
can study the asymptotic expansions of homological blocks as q → ζk. To
calculate asymptotic expansions, we develop a formula in Section 5.1 by
the Euler–Maclaurin summation formula based on Zagier [Zag06, Equation
(44)]. In Section 5.2, we develop the important asymptotic formula, which
plays a central role in proving our main theorem. This formula asserts that
the same factors appear in the asymptotic expansions of homological blocks
and rational functions whose radial limits are WRT invariants. Finally, we
prove our main theorem in Section 6.

2. Basic notations for plumbing graphs

In this section, we list some notations for plumbing graphs and their basic
properties, which we use throughout this paper.

2.1. Notations for graphs

In this subsection, we prepare settings for graphs. As in Section 1, let Γ =
(V,E, (wv)v∈V ) be a plumbing graph and W be its linking matrix such that
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it is negative definite and detW = ±1. Here we consider the edge set E as
the subset of {{v, v′} | v, v′ ∈ V }. We identify M|V |(Z) and End(ZV ) and

consider W as the element of End(ZV ). We remark that wv ∈ Z<0 for any
vertex v ∈ V .

For two plumbing graphs Γ and Γ′, Neumann ([Neu80, Proposition 2.2],
[Neu81, Theorem 3.1]) proved that two 3-manifolds M(Γ) and M(Γ′) are
homeomorphic if and only if Γ and Γ′ are related by Neumann moves shown
in Figure 2. Thus, we can assume wi ≤ −2 for a vertex i with deg(i) = 1.

w ± 1 ±1 w′ ± 1···

....

←
→

w w′···

....

w ± 1 ±1···

←
→

w···

w 0 w′···

....

←
→

w + w′···

....

Figure 2: Neumann moves.

For a positive integer d, let

Vd := {v ∈ V | deg(v) = d}, V≥d := {v ∈ V | deg(v) ≥ d}.

Let Wd ∈ End(ZVd) and W≥d ∈ End(ZV≥d) be the submatrices of W with
Vd × Vd and V≥d × V≥d components respectively. Moreover, for a positive
integer e, let Wd,≥e ∈ Hom(ZV≥e ,ZVd) and W≥d,e ∈ Hom(ZVe ,ZV≥d) be the
submatrices of W with Vd × V≥e and V≥d × Ve components respectively.

We need to focus on vertices with degree 1 to calculate WRT invariants
and homological blocks. For this reason, we define

v := {i ∈ V1 | {i, v} ∈ E}, Mv :=
∏
i∈v

wi

for each vertex v ∈ V≥2. Here we define Mv := 1 if v = ∅.
The condition detW = ±1 implies the following lemma, which Akihito

Mori told the author.

Lemma 2.1. For a vertex v ∈ V≥2 = {v ∈ V | deg v ≥ 2} and distinct
vertices i, j ∈ v, it holds that gcd(wi, wj) = 1.

Proof. Let {ev}v∈V be the standard basis of RV . Since

Wei −Wej = (ev + wiei)− (ev + wjej) = wiei − wjej ,

gcd(wi, wj) divides detW = ±1.
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2.2. The inverse matrix of the linking matrix

In this subsection, we calculate the inverse matrix of the linking matrix.
Let S ∈ Aut(QV≥2)∩End(ZV≥2) be the V≥2×V≥2 submatrix of −W−1 ∈

Aut(QV ). Here we recall V≥2 = {v ∈ V | deg v ≥ 2}. We also denote
T := −W−1

1 W1,≥2. Here we remark that S is positive definite since W is
negative definite.

The inverse matrices W−1 and S−1 have the following properties.

Proposition 2.2. (i)

−W−1 =

(
T
I

)
S
(
tT I

)
−
(
W−1

1

O

)
.

(ii)

detS = detW
∏
i∈V1

wi =
∏
i∈V1

|wi| .

(iii)

S−1 = −W≥2 + diag

(∑
i∈v

1

wi

)
v∈V≥2

.

Here, we denote diag(av)v∈V≥2
the diagonal matrix whose

(v, v)-component is av.
(iv) For distinct vertices v, v′ ∈ V≥2, the (v, v)-component of S is in MvZ

and the (v, v′)-component of S is in MvMv′Z.
(v)

S−1
(
ZV≥2

)
=

⊕
v∈V≥2

1

Mv
Z ⊂ QV≥2 .

To prove this proposition, we prepare a lemma for the inverse matrices
of symmetric block matrices.

Lemma 2.3. For a symmetric block matrix

X =

(
A B
tB C

)
∈ GLm+n(C)

such that A ∈ GLm(C) and C ∈ GLn(C) be symmetric matrices and B ∈
Mm,n(C), let

S := (C − tBA−1B)−1 ∈ GLn(C), T := −A−1B ∈ Mm,n(C).
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Then, it holds that

X−1 =

(
T
I

)
S
(
tT I

)
+

(
A−1

O

)
, detS =

detA

detX
.

In particular, S is the n× n bottom right submatrix of X−1.

Proof. The first equality follows from

X

((
T
I

)
S
(
tT I

)
+

(
A−1

O

))
=

(
(AT +B)StT + I (AT +B)S

(tBT + C)StT + tBA−1 (tBT + C)S

)
and the second equality follows from

X =

(
I

−tT I

)(
A

S−1

)(
I −T

I

)
.

Here we remark that Lemma 2.3 is a generalisation of the completing
the square ax2 + bx+ c = a(x+ b/2a)2 − (b2 − 4ac)/4a for symmetric block
matrices.

Proof of Proposition 2.2. We obtain (i) and the equalities

S−1 = −W≥2 +W≥2,1W
−1
1 W1,≥2, detS =

detW1

detW

by applying Lemma 2.3 for the block matrix

W =

(
W1 W1,≥2

W≥2,1 W≥2

)
∈ GLm+n(Z).

Since detW ∈ {±1},W1 = diag(wi)i∈V1
, and detS > 0, we get (ii). (iii)

follows from the fact that the (v, v′)-component of W≥2,1W
−1
1 W1,≥2 is∑

i∈V1, {i,v},{i,v′}∈E

1

wi
= δv,v′

∑
i∈V1, {i,v}∈E

1

wi
.

We prove (iv). By (iii), the (v, v′)-cofactor of S−1 is an element of(∏
v′′∈V≥2�{v,v′} 1/Mv′′

)
Z. Since detS = ±

∏
v∈V≥2

Mv by (iii), we obtain
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the claim. Finally, we prove (v). Let W ′
≥2 := diag(Mv)v∈V≥2

∈ Aut(Q|V≥2|).

It suffices to show S−1W ′
≥2 ∈ Aut(Q|V≥2|). Since detS = ± detW ′

≥2, we need

only check that each component of S−1W ′
≥2 is an integer, which follows from

(iii).

2.3. Periodic maps determined by the linking matrix

In this subsection, we introduce periodic maps determined by the linking
matrix and prove its basic properties.

For each vertex v ∈ V≥2, let

Sv :=

{
1

2
deg(v)− 1 +

∑
i∈v

li
2wi

∣∣∣∣∣ (li)i∈v ∈ {±1}v
}

Here we set Sv := {deg(v)/2− 1} if v = ∅. We also define the periodic map
εv :

1
2Mv

Z/Z → {0,±1} by

εv(αv) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∏
i∈v

li if αv ≡ 1

2
deg(v)− 1 +

∑
i∈v

li
2wi

mod Z

for some (li)i∈v ∈ {±1}v,
0 αv /∈ (Sv + Z)/Z.

This map is well-defined by the following lemma.

Lemma 2.4. For a vertex v ∈ V≥2 such that v �= ∅, the followings hold.

(i) The map

{±1}v −→ Sv

(li)i∈v −→ 1

2
deg(v)− 1 +

∑
i∈v

li
2wi

is bijective.
(ii) The natural projection Sv → 1

2Mv
Z/Z is injective. Thus, the map εv is

well-defined.
(iii) For any αv ∈ Sv, it holds that gcd(2Mvαv,Mv) = 1.

Proof. By Lemma 2.1, there exists i0 ∈ v such that wi is odd for any i ∈
v � {i0}. Then, we have

Z/2MvZ ∼= Z/2wi0Z⊕
⊕

i∈v�{i0}
Z/wiZ
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by the Chinese remainder theorem. For each

αv =
1

2
deg(v)− 1 +

∑
i∈v

li
2wi

∈ Sv, (li)i∈v ∈ {±1}v,

it holds that

2Mvαv ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Mv

wi
li mod wi if i ∈ v � {i0},

Mv deg(v) +
Mv

wi0

li0 +
∑

i∈v�{i0}

Mv

wi
mod 2wi0 if i = i0.

Here Mv/wi �≡ −Mv/wi mod wi for any vertex i ∈ v � {i0} since wi is
odd. We also have Mv/wi0 �≡ −Mv/wi0 mod wi0 since we assume wi0 ≤
−2 in Section 2.1. Thus, we obtain (ii). By this argument, we can prove
injectivity of the composition of the map {±1}v → Sv in (i) and the map
Sv → Z/2MvZ, αv → 2Mvαv which is injective by (ii). Hence, we obtain (i).
Moreover, we have (iii) since gcd(Mv/wi, wi) = 1 for each i ∈ v.

In the above lemma, (i) was first proved by Akihito Mori. The proof
presented here is due to the author.

The following lemma follows from the definition immediately.

Lemma 2.5. For any vertex v ∈ V≥2, the followings hold.

(i) ∑
αv∈ 1

2Mv
Z/Z

εv(αv) = 0.

(ii) For each αv ∈ 1
2Mv

Z/Z such that εv(αv) �= 0, Mvαv,Mvα
2
v mod Z are

independent of αv respectively.
(iii) ∑

αv∈Sv

εv(αv)q
αv = qdeg(v)/2−1

∏
i∈v

(
q1/2wi − q−1/2wi

)
.

The following lemma is very important for our proof of our main theo-
rem. We use it in a proof of Proposition 6.1 later.

Lemma 2.6 ([FIMT21, Lemma 8]). For 0 ≤ n ≤ |v| − 1, it holds that∑
αv∈Sv

εv(αv)α
n
v = 0.
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In the next subsection, we give a proof of this lemma by a different

method from [FIMT21].

At the end of this section, we consider products for vertices. Let S :=∏
v∈V≥2

Sv and the map ε : (2S)−1(ZV≥2)/ZV≥2 → {0,±1} be

ε
(
(αv)v∈V≥2

)
:=

∏
v∈V≥2

εv(αv).

This is well-defined since S ⊂ (2S)−1(ZV≥2) by Proposition 2.2 (v).

The following lemma follows from Lemma 2.4.

Lemma 2.7. (i) The map

{±1}V1 −→ S

(li)i∈V1
−→

(
1

2
deg(v)− 1 +

∑
i∈v

li
2wi

)
v∈V≥2

is bijective.

(ii) The natural projection S → (2S)−1(ZV≥2)/ZV≥2 is injective.

2.4. Rational functions determined by the linking matrix

In this subsection, we introduce rational functions determined by the linking

matrix and prove its basic properties.

For a vertex v ∈ V≥2 and complex variable q, define a rational function

Gv(q) := (qMv − q−Mv)2−deg(v)
∏
i∈v

(
qMv/wi − q−Mv/wi

)
.

It has the following Laurent expansion.

Remark 2.8. Gv(q
−1) = (−1)deg(v)+|v|Gv(q).

The rational function Gv(q) has the following Laurent expansion.

Lemma 2.9. For a vertex v ∈ V≥2, Gv(q) is expanded as

Gv(q) =
∑

αv∈Sv

εv(αv)

∞∑
nv=0

(
nv + deg(v)− 3

nv

)
q2Mv(nv+αv)
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for 0 < |q|sgnMv < 1. Here we define

(2.1)

(
m
l

)
:=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m!

l!(m− l)!
if 0 ≤ l ≤ m,

1 if m = −1,

0 otherwise.

Proof. The claim follows from Lemma 2.5 (iii) and the binomial theorem

(1− q)−d =

∞∑
n=0

(
n+ d− 1

n

)
qn

which holds for any integer d ≥ 0.

The rational function Gv(q) is expanded at q = 1 as follows.

Lemma 2.10. For a vertex v ∈ V≥2, it holds that

Gv(q) = 22−deg(v)+|v|(Mv)
1−deg(v)+|v|(q−1)2−deg(v)+|v|+O((q−1)3−deg(v)+|v|).

Proof. The idea of our proof is due to Akihito Mori. The claim follows from

Gv(q) = q(deg(v)−1−
∑

i∈v 1/wi)Mv(q2Mv − 1)2−deg(v)(q − 1)v
∏
i∈v

q2Mv/wi − 1

q − 1

= q(deg(v)−1−
∑

i∈v 1/wi)Mv(1 + q+ · · ·+q2Mv−1)2−deg(v)(q − 1)2−deg(v)+v∏
i∈v

q2Mv/wi − 1

q − 1

and

lim
q→1

q2Mv/wi − 1

q − 1
= lim

q→1

(
1 + q + · · ·+ q2Mv/wi−1

)
=

2Mv

wi
.

Lemma 2.6 follows from Lemma 2.10. Thus, Lemma 2.10 is a refinement
of Lemma 2.6.

Proof of Lemma 2.6. Since

Gv(q) = (q2Mv − 1)2−deg(v)
∑

αv∈Sv

εv(αv)q
2Mvαv ,
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we have

Gv(e
−t) =

(
t2−deg(v) +O(t3−deg(v))

) ∞∑
n=0

(−2Mvt)
n

n!

∑
αv∈Sv

εv(αv)α
n
v .

Since Gv(e
−t) = O(t2−deg(v)+|v|) by Lemma 2.10, we obtain the claim.

At the end of this section, we consider products for vertices.
For n ∈ ZV≥3 , we denote

(2.2) P (n) :=
∏

v∈V≥4

(nv + deg(v)− 3)(nv + deg(v)− 4) · · · (nv + 1)

(deg(v)− 3)!
.

We remark that for n ∈ Z
V≥3

≥−1 it holds that

P (n) =
∏

v∈V≥4

(
nv + deg(v)− 3

nv

)
=

∏
v∈V≥3

(
nv + deg(v)− 3

nv

)

by our definition of binomial coefficients in (2.1).

For each complex number z, we denote e(z) := e2π
√
−1z. We fix a positive

integer k and denote ζk := e2π
√
−1/k.

Then, the following holds by Lemma 2.9.

Lemma 2.11. For μ ∈ ZV≥2 and t ∈ R
V≥2

>0 , it holds that∏
v∈V≥2

Gv

(
ζμv

2kMv
e−tv/2Mv

)
=

∑
α∈S

ε(α)
∑

n∈ZV≥3
≥0

P (n)e

(
1

k
t(n+ α)μ

)
exp

(
−t(n+ α)t

)
.

3. Calculations of WRT invariants

In this section, we calculate WRT invariants of the plumbed homology sphere
M(Γ). Our starting point is the following expression by [GPPV20].

Proposition 3.1 ([GPPV20, Equation A.12]).

WRTk(M(Γ))

=
e(|V | /8)ζ−

∑
v∈V (wv+3)

4k

2
√
2k

|V |
(ζ2k − ζ−1

2k )

∑
μ∈(Z�kZ)V /2kZV

ζ
tμWμ
4k

∏
v∈V

(
ζμv

2k − ζ−μv

2k

)2−deg(v)
.
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We can calculate WRT invariants as follows.

Proposition 3.2.

WRTk(M(Γ)) =
(−1)|V1|e(|V≥2| /8)ζ

−
∑

v∈V (wv+3)−
∑

i∈V1
1/wi

4k

2
√
2k

|V≥2|
(ζ2k − ζ−1

2k )
∏

i∈V1

√
|wi|∑

μ∈(Z�kZ)V≥2/2kS(ZV≥2 )

e

(
− 1

4k
tμS−1μ

) ∏
v∈V≥2

Gv

(
ζμv

2kMv

)
.

To prove this, we need the following property called “reciprocity of Gauss

sums.”

Proposition 3.3 ([DT07, Theorem 1]). Let L be a lattice of finite rank n

equipped with a non-degenerated symmetric Z-valued bilinear form 〈·, ·〉. We

write

L′ := {y ∈ L⊗ R | 〈x, y〉 ∈ Z for all x ∈ L}

for the dual lattice. Let 0 < k ∈ |L′/L|Z, u ∈ 1
kL, and h : L⊗R → L⊗R be

a self-adjoint automorphism such that h(L′) ⊂ L′ and k
2 〈y, h(y)〉 ∈ Z for all

y ∈ L′. Let σ be the signature of the quadratic form 〈x, h(y)〉. Then it holds

that

∑
x∈L/kL

e

(
1

2k
〈x, h(x)〉+ 〈x, u〉

)

=
e(σ/8)kn/2√
|L′/L| |deth|

∑
y∈L′/h(L′)

e

(
−k

2

〈
y + u, h−1(y + u)

〉)
.

Proof of Proposition 3.2. Idea of our proof is the same as in [MM22, Propo-

sition 6.1] which deal with the case when Γ is the H-graph. However, our

calculation is slightly different and clearer than it. To begin with, since

ζμv

2k − ζ−μv

2k = 0 for μv ∈ kZ, we can write

(3.1)

∑
μ∈(Z�kZ)V /2kZV

ζ
tμWμ
4k

∏
v∈V

(
ζμv

2k − ζ−μv

2k

)2−deg(v)

=
∑

μ∈(Z/2kZ)V1⊕((Z�kZ)/2kZ)V≥2

ζ
tμWμ
4k

∏
v∈V

(
ζμv

2k − ζ−μv

2k

)2−deg(v)
.
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Since ∏
i∈V1

(
ζμi

2k − ζ−μi

2k

)
=

∏
i∈V1

∑
li∈{±1}

liζ
liμi

2k

and for μ = (μ1, μ≥2) ∈ ZV , μ1 ∈ ZV1 , μ≥2 ∈ ZV≥2 it holds that

tμWμ = tμ≥2Wμ≥2 +
∑

v∈V≥2

∑
i∈v

(
wiμ

2
i + 2μvμi

)
,

the right hand side of (3.1) can be written as

∑
μ≥2∈((Z�kZ)/2kZ)V≥2

ζ
tμ≥2Wμ≥2

4k

∏
v∈V≥2

(
ζμv

2k − ζ−μv

2k

)2−deg(v)

∏
i∈v

∑
li∈{±1}

li
∑

μi∈Z/2kZ
ζ
wiμ2

i+2(μv+li)μi

4k .

Since the last sum for μi is equal to

e(−1/8)
√
2k√

|wi|
∑

μi∈Z/wiZ

ζ
−(2kμi+μv+li)

2

4kwi

by reciprocity of Gauss sums (Proposition 3.3), the right hand side of (3.1)

can be written as

(3.2)

e(− |V1| /8)
√
2k

|V1|∏
i∈V1

√
|wi|

∑
μ≥2∈((Z�kZ)/2kZ)V≥2

ζ
tμ≥2Wμ≥2

4k

∏
v∈V≥2

(
ζμv

2k − ζ−μv

2k

)2−deg(v)

∏
i∈v

∑
li∈{±1}

li
∑

μi∈Z/wiZ

ζ
−(2kμi+μv+li)

2

4kwi
.

Since
⊕

i∈v Z/wiZ ∼= Z/MvZ by the Chinese remainder theorem and

Lemma 2.1, the last line in (3.2) is equal to∑
μ′

v∈Z/MvZ

∏
i∈v

∑
li∈{±1}

liζ
−(2kμ′

v+μv+li)
2

4kwi
.

By replacing 2kμ′
v + μv by μv and using Proposition 2.2 (v), the sum for
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μ≥2 in (3.2) is written as

∑
μ≥2∈(Z�kZ)V≥2/2kS(ZV≥2)

ζ
tμ≥2Wμ≥2

4k

∏
v∈V≥2

(
ζμv

2k − ζ−μv

2k

)2−deg(v)∏
i∈v

∑
li∈{±1}

liζ
−(μv+li)

2

4kwi

=
∑

μ≥2∈(Z�kZ)V≥2/2kS(ZV≥2)

e

⎛⎝ 1

4k

⎛⎝tμ≥2Wμ≥2 −
∑

v∈V≥2

∑
i∈v

1

wi
μ2
v

⎞⎠⎞⎠
∏

v∈V≥2

(
ζμv

2k − ζ−μv

2k

)2−deg(v)∏
i∈v

∑
li∈{±1}

liζ
−2liμv−l2i
4kwi

= ζ
−

∑
i∈V1

1/wi

4k

∑
μ≥2∈(Z�kZ)V≥2/2kS(ZV≥2)

e

⎛⎝ 1

4k

⎛⎝tμ≥2Wμ≥2 −
∑

v∈V≥2

∑
i∈v

1

wi
μ2
v

⎞⎠⎞⎠
∏

v∈V≥2

(−1)|v|Gv

(
ζμv

2kMv

)
.

By Proposition 2.2 (iii), it holds that

tμ≥2Wμ≥2 −
∑

v∈V≥2

∑
i∈v

1

wi
μ2
v = −tμ≥2S

−1μ≥2.

Thus, we obtain the claim.

4. Expressions of homological blocks as false theta functions

In this section, we represent the homological block of M(Γ) as a false theta

function.

For the plumbed homology sphere M(Γ), the homological block ẐΓ(q)

is defined as follows.

Definition 4.1 ([GPPV20, Subsection 3.4]). The homological block of the

plumbed homology sphere M(Γ) is defined as

ẐΓ(q) = 2−|V |q−
∑

v∈V (wv+3)/4p.v.

∫
|zv|=1,v∈V

Θ−W,δ(q; z)∏
v∈V

(zv − 1/zv)
2−deg(v) dzv

2π
√
−1zv

,
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where p.v. is the Cauchy principal value defined as

p.v.

∫
|z|=1

:= lim
ε→+0

(∫
|z|=1+ε

+

∫
|z|=1−ε

)
,

δ := (deg(v))v∈V ∈ ZV , and

Θ−W,δ(q; z) :=
∑

l∈2ZV +δ

q−
tlW−1l/4

∏
v∈V

zlvv

is the theta function.

Here we remark that our definition of the Cauchy principal value is

half of the previous definition in [GPPV20] ([GPPV20, p.55]). However, our

definition of the homological block ẐΓ(q) is the same as [GPPV20] since we

multiply it by 2−|V |.

Our main result in this section is the following.

Proposition 4.2. It holds

ẐΓ(q) = (−1)|V1|2−|V≥3|q−(
∑

v∈V (wv+3)+
∑

i∈V1
1/wi)/4

∑
e∈{±1}V≥3

⎛⎝ ∏
v∈V≥3

edeg(v)+|v|
v

⎞⎠∑
α∈S

ε(α)
∑

n∈ZV≥3

P (n)qQ(e(n+α)),

where P (n) is the polynomial defined in (2.2), Q(x) := txSx and ex :=

((xv)v∈V2
, (evxv)v∈V≥3

) for x ∈ ZV≥2 and e ∈ {±1}V≥3 .

To prove this proposition, we need the following lemma.

Lemma 4.3 ([AM22, p. 743]). For d ∈ Z>0 and l ∈ Z, it holds that

p.v.

∫
|z|=1

zl−1

(z − 1/z)d−2

dz

2π
√
−1

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−2l d = 1, l ∈ {±1},
2 d = 2, l = 0,

sgn(l)d
(
m+ d− 3

d− 3

)
d ≥ 3,±l ∈ d− 2 + 2m for some m ∈ Z≥0,

0 otherwise.
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Proof of Proposition 4.2. By definition, we have

2|V |q
∑

v∈V (wv+3)/4ẐΓ(q)

=
∑

l∈2ZV +δ

q−
tlW−1l/4

∏
v∈V

p.v.

∫
|zv|=1

zlv−1
v

(zv − 1/zv)deg(v)−2

dzv

2π
√
−1

.

By Lemma 4.3, this is equal to

∑
l=(l1,l2,l≥3),

l1∈{±1}V1 , l2=0,

±l≥3∈2Z
V≥3
≥−1+δ≥3

q−
tlW−1l/4

(∏
i∈V1

(−2li)

)
2|V2|

∏
v∈V≥3

sgn(lv)
deg(v)

(
(|lv| − deg(v) + 2)/2 + deg(v)− 3

deg(v)− 3

)
,

where δ≥3 := (deg(v))v∈V≥3
∈ ZV≥3 . For l = t(ε1, l2, l≥3) with l2 = 0, we have

− tlW−1l = Q(l≥3 +
tT l1)−

∑
i∈V1

l2i
wi

by Proposition 2.2 (i). By letting

li = evεi, lv = ev(nv + deg(v)− 2), ev, εi ∈ {±1}, nv ∈ Z≥0

for v ∈ V≥3 and i ∈ v, we obtain

(−1)|V1|2|V≥3|q(
∑

v∈V (wv+3)+
∑

i∈V1
1/wi)/4ẐΓ(q)

=
∑

e∈{±1}V≥3

⎛⎝ ∏
v∈V≥3

edeg(v)v

⎞⎠ ∑
ε∈{±1}V1

⎛⎝ ∏
v∈V≥3

∏
i∈v

evεi

⎞⎠
∑

n∈ZV≥3
≥0

qQ(e(n+δ≥3/2+tTε/2−(1,...,1)))
∏

v∈V≥3

(
nv + deg(v)− 3

nv

)
.

Since W−1 ∈ Aut(ZV ), every matrix entries of StT is integers by Propo-
sition 2.2 (i). Thus, for any ε ∈ {±1}V1 , we have tTε/2 ∈ (2S)−1(ZV≥2).
Since

1

2
tTε =

(∑
i∈v

εi
2wi

)
v∈V≥2
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by the definition of T in Section 2.2, the map

{±1}V1 −→ S
ε −→ δ≥3/2 +

tTε/2− (1, . . . , 1)

is bijective by Lemma 2.7 (ii). Thus, the claim follows by letting α = δ≥3/2+
tTε/2− (1, . . . , 1).

5. An asymtotic formula

In this section, we develop an asymptotic formula which we need to calculate
radial limits of homological blocks.

5.1. Asymtotic formulas obtained from Euler–Maclaurin
summation formula

Some useful methods have been developed to calculate radial limits of false
theta functions. The method of Lawrence–Zagier [LZ99, p. 98, Proposition]
is the beginning of these. Lawrence–Zagier [LZ99] developed it by using
L-functions for periodic maps. Zagier [Zag06] collected many techniques
to calculate asymptotic expansions of infinite series. In particular, [Zag06,
Equation (44)] is the very powerful method followed by the Euler–Maclaurin
summation formula. In our setting, these methods deal with the case when
|V≥2| = 1 (in this case, M(Γ) is a Seifert 3-manifold). Bringmann–Kaszian–
Milas [BKM19, Equation (2.8)] and Bringmann–Mahlburg–Milas [BMM20,
Lemma 2.2] stated the two-variable case of [Zag06, Equation (44)].

In this subsection, we develop a more general formula (Proposition 5.4)
to deal with n-variable case with polynomial weights.

To begin with, we prepare the notation for asymptotic expansion by
Poincaré.

Definition 5.1 (Poincaré). Let L be a positive number, f : R>0 → C be
maps, t be a variable of R>0, and (an)n≥−L be a family of complex numbers.
Then, we write

f(t) ∼
∑

n≥−L

ant
n as t → +0

if for any positive number M there exist positive numbers KM and ε such
that ∣∣∣∣∣∣f(t)−

∑
−L≤n≤M

ant
n

∣∣∣∣∣∣ ≤ KM

∣∣tM+1
∣∣
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for any 0 < t < ε. In this case, we call the infinite series
∑

n≥−L ant
n as the

asymptotic expansion of f(t) as t → +0.

Here we remark that asymptotic expansions are typically divergent se-
ries.

We also need the following terminology.

Definition 5.2. A function f : R → C is called of rapid decay as x → ∞
if xmf (n)(x) is bounded as x → ∞ for any m,n ∈ Z≥0.

Our starting point is the following lemma followed by the Euler–Maclaurin
summation formula.

Lemma 5.3 ([Zag06, Equation (44)]). Let N be a positive number and
f : RN → C be a C∞ function of rapid decay as x1, . . . , xN → ∞. Fix
α ∈ RN . Then, for a variable t ∈ R>0, an asymptotic expansion as t → +0

∑
n∈ZN

≥0

f(t(n+ α)) ∼
∑

−1≤ni, 1≤i≤N

⎛⎝ ∏
1≤i≤N

Bni+1(αi)

(ni + 1)!

⎞⎠ f (n)(0)tn1+···+nN

holds. Here, F (t) ∼ G(t) means that F (t) = G(t) + O(tR) for any positive
number R, Bi(x) is the i-th Bernoulli polynomial, and

g(−1)(x) =
d−1

dx−1
g(x) := −

∫ ∞

x
g(x′)dx′, f (n)(x) :=

∂n1+···+nNf

∂xn1

1 · · · ∂xnN
r

(x).

Here we remark that Zagier [Zag06, Equation (44)] stated for the case
N = 1 and Bringmann–Kaszian–Milas [BKM19, Equation (2.8)] and
Bringmann–Mahlburg–Milas [BMM20, Lemma 2.2] stated for the case N =
2.

By Lemma 5.3, we obtain the following asymptotic expansion formula.

Proposition 5.4. Let N and N ′ be non-negative integers, f : RN+N ′ → C
be a C∞ function of rapid decay as x1, . . . , xN → ∞, and P (x) =

∑
m∈ZN

≥0

pmxm1

1 · · ·xmN

N be a polynomial. Fix α, λ ∈ RN and α′ ∈ RN ′
. Then, for a

variable t ∈ R>0, an asymptotic expansion as t → +0∑
n∈ZN

≥0

P (λ+ n)f(t(α+ λ+ n), tα′)

∼
∑

n∈ZN×Z
N′
≥0

tn1+···+nN+N′f (n)(0)
α′
1
nN+1 · · ·α′

N ′
nN+N′

nN+1! · · ·nN+N ′ !

∑
m∈ZN

≥0

pmBm,n(α, λ)
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holds. Here we define

Bm,n(α, λ) :=
∏

1≤i≤N

Bmi,ni
(αi, λi),

Bmi,ni
(αi, λi) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑
0≤l≤mi+ni+1

bmi,ni,lBmi+ni+1−l(λi)α
l
i if ni ≥ 0,

mi!

(mi + ni + 1)!
(−αi)

mi+ni+1 if −mi − 1 ≤ ni

≤ −1,

0 if ni ≤ −mi − 2,

bmi,ni,l :=
mi!

(mi + ni + 1− l)!

∑
0≤k≤l

(
mi + ni − k

ni

)
(−1)k

k!(l − k)!
.

Proof. It suffices to show the case when (N,N ′) = (1, 0) or (0, 1). In the
last case, the claim follows from the Taylor’s formula. In the following, we
assume (N,N ′) = (1, 0). Let gα(m, f ;x) := (x − α)mf(x). By Lemma 5.3,
we have ∑

n≥0

P (λ+ n)f(t(α+ λ+ n))

=
∑
m≥0

pmt−m
∑
n≥0

(t(α+ λ+ n)− tα)m f(t(α+ λ+ n))

=
∑
m≥0

pmt−m
∑
n≥0

gtα(m, f ; t(α+ λ+ n))

∼
∑
m≥0

pmt−m
∑
n≥−1

Bn+1(α+ λ)

(n+ 1)!
g
(n)
tα (m, f ; 0)tn

=
∑

n>−∞
tn

∑
m≥0

pm
Bm+n+1(α+ λ)

(m+ n+ 1)!
g
(m+n)
tα (m, f ; 0).

We need the following lemma.

Lemma 5.5. For any n ≥ −1, it holds that

g(n)α (m, f ; 0) =
∑

0≤l≤m

(
m
l

)(
n
l

)
l!(−α)m−lf (n−l)(0)

= m!
∑

0≤l≤m

(
n
l

)
(−α)m−l

(m− l)!
f (n−l)(0).
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Proof. We recall that
(
n
l

)
= 1 for n = −1 by our definition of binomial

coefficients in (2.1). If n ≥ 0, then by the Leibnitz rule, we have

g(n)α (m, f ; 0) =
∑

0≤l≤n

(
n
l

)
dl

dxl
(x− α)m

∣∣∣∣
x=0

f (n−l)(0).

Thus, we obtain the claim. If n = −1, then the claim follows by induction
and

g(−1)
α (m, f ; 0) = (−α)mf (−1)(0) +mg(−1)

α

(
m− 1, f (−1); 0

)
which follows from an integration by parts.

We turn back to the proof of Proposition 5.4. By Lemma 5.5, we have∑
n≥0

P (λ+ n)f(t(α+ λ+ n))

∼
∑

n>−∞
tn

∑
m≥0

pm
Bm+n+1(α+ λ)

(m+ n+ 1)!
m!

∑
0≤l≤m

(
m+ n

l

)
(−tα)m−l

(m− l)!
f (m+n−l)(0).

By replacing m+ n− l by n, this can be written as

∑
n>−∞

tnf (n)(0)
∑
m≥0

pmm!
∑

0≤l≤m

Bn+l+1(α+ λ)

(n+ l + 1)!

(
n+ l
l

)
(−α)m−l

(m− l)!
.

Thus, it suffices to show that

(5.1) Bm,n(α, λ) = m!
∑

0≤l≤m

Bn+l+1(α+ λ)

(n+ l + 1)!

(
n+ l
l

)
(−α)m−l

(m− l)!
.

By the addition formula of Bernoulli polynomials (for example, see [AS64,
Equation 23.1.7])

Bi(α+ λ) =
∑

0≤j≤i

(
i
j

)
Bj(λ)α

j ,

the right hand side of (5.1) is equal to

m!
∑

0≤l≤m

(
n+ l
l

)
(−α)m−l

(m− l)!

∑
0≤k≤n+l+1

Bn+l+1−k(λ)

(n+ l + 1− k)!

αk

k!
.
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By letting i := m+ k − l, j := m− l, this is written as∑
0≤i≤m+n+1

Bm+n+1−i(λ)α
i m!

(m+ n+ 1− i)!

∑
0≤j≤i

(
m+ n− j

n

)
(−1)j

j!(i− j)!
.

Thus, we obtain (5.1) for the case when n ≥ 0. Assume n ≤ −1. Then, the
right hand side of (5.1) is 0 unless m + n − j = −1 for some 0 ≤ j ≤ i ≤
m + n + 1. It occurs only for the case when i = j = m + n + 1. Thus, if
m + n + 1 < 0 then the right hand side of (5.1) is 0 and (5.1) holds. If
m+ n+ 1 ≥ 0, the right hand side of (5.1) is written as

m!

(m+ n+ 1)!
(−α)m+n+1

and thus, (5.1) also holds in this case.

Remark 5.6. If mi = 0, then since b0,ni,l = 1/l!(ni + 1− l)! we have

B0,ni
(αi, λi) = Bni+1(λi + αi)

by the addition formula of Bernoulli polynomials (for example, see [AS64,
Equation 23.1.7]). Thus, in this case, Proposition 5.4 coincides with [Zag06,
Equation (44)], [BKM19, Equation (2.8)], and [BMM20, Lemma 2.2].

5.2. Asymtotic expansion of infinite series with weighted Gauss
sums

In this subsection, we study a family of infinite series F (f ; t) with weighted
Gauss sums, which involves both WRT invariants and homological blocks.
We start with the following asymptotic formula following from Proposi-
tion 5.4. In the following statement, we use notations ε,S, Q and so on,
which we prepared in Sections 2 and 4.

Corollary 5.7. For e ∈ {±1}V≥3 and a C∞ function f : RV≥2 → C of rapid
decay as xv → ∞ for each v ∈ V≥2, let

Fe(f ; t) :=
∑
α∈S

ε(α)
∑

n∈ZV≥3
≥0

e

(
1

k
Q(e(n+ α))

)
P (n)f(t(n+ α))

be a series for a variable t ∈ R>0. Then, it holds that

Fe(f ; t) ∼
∑

n∈ZV≥2

ce,nf
(n)(0)t

∑
v∈V≥2

nv
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as t → +0, where we define

ce,n =
∑
α∈S

ε(α)

(∏
v∈V2

αnv
v

nv!

) ∑
m∈ZV≥3

≥0

pm

⎛⎝ ∏
v∈V≥3

kmv+nv

⎞⎠
∑

λ∈{0,...,k−1}V≥3

e

(
1

k
Q(e(λ+ α))

)
Bm,n(α, λ)

for n ∈ ZV≥2 .

We define two C∞ function of rapid decay f1, f2 : R
V≥2 → C as f1(x) :=

exp(−
∑

v∈V≥2
xv) and f2 := exp(−Q(x)) respectively. Then, WRT invari-

ants and limit values of homological blocks can be written as limit values
of F (f1; t) and F (f2; t) as t → 0 shown later in Propositions 5.8 and 6.3,
respectively.

Here, we need to prove that F (f ; t) has a limit as t → 0, that is,
cn vanishes for n ∈ ZV≥3 with non-positive components. Such a result
is called “a vanishing result of weighted Gauss sums” in [MM22], and it
is the most important part in a proof of the conjecture of Gukov–Pei–
Putrov–Vafa [GPPV20, Conjecture 2.1, Equation (A.28)]. In the previous
works [BMM20, MM22], it is proved by direct calculations ([BMM20, The-
orem 4.1], [MM22, Proposition 4.2]). On the other hand, our proof is based
on the above asymptotic expansion in Corollary 5.7. Since cn is independent
of f in this asymptotic expansion, it suffices to consider not for any f , but
for f1. Since F (f1; t) is a rational function shown later in Lemma 5.10, van-
ishings results of cn is equivalent to holomorphy of F (f1; t), which is proved
in Section 6.

The homological block ẐΓ(ζke
−t2) can be written in term of F (f2; t) as

follows.

Proposition 5.8. It holds that(
(−1)|V1|q−(

∑
v∈V (wv+3)+

∑
i∈V1

1/wi)/4ẐΓ(q)
)∣∣∣

q=ζke−t2

=
∑

e∈{±1}V≥3

⎛⎝ ∏
v∈V≥3

edeg(v)+|v|
v

⎞⎠Fe(f2; t).

This proposition follows from Proposition 4.2 for C(n) = e(Q(e(n+α))/
k).
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In the last of this subsection, we prove that F (f1; t) is a rational function
related to WRT invariants. To begin with, we replace quadratic forms Q(n+
α) as linear forms in the indices of ζk in the definition of F (f ; t).

Lemma 5.9. For e ∈ {±1}V≥3 and a C∞ function f : RV≥2 → C of rapid
decay as xv → ∞ for each v ∈ V≥2, it holds that

Fe(f ; t) =
e (|V≥2| /8)

√
2k

|V≥2|∏
i∈V1

√
|wi|

∑
μ∈ZV≥2/2kS(ZV≥2)

e

(
− 1

4k
tμS−1μ

)
∑
α∈S

ε(α)
∑

n∈ZV≥3
≥0

e

(
1

k
tμe(n+ α)

)
P (n)f(t(n+ α)).

Proof. Let

G(2kS) :=
∑

μ∈ZV≥2/2kS(ZV≥2)

e

(
− 1

4k
tμS−1μ

)
.

Then, we have G(2kS) =
(√

2ke (−1/8)
)|V≥2|√

detS by Proposition 3.3.

Here we remark detS =
∏

i∈V1
|wi| by Proposition 2.2 (ii). Then, we can

write

G(2kS)Fe(f ; t)

=
∑

μ∈ZV≥2/2kS(ZV≥2)

∑
α∈S

ε(α)

∑
n∈ZV≥3

≥0

e

(
1

k

(
Q(e(n+ α))− 1

4
tμS−1μ

))
P (n)f(t(n+ α)).

By replacing μ by μ− 2Se(n+ α), we obtain the claim.

By this lemma, we obtain the following representation.

Lemma 5.10. For e ∈ {±1}V≥3 ,

Fe(f1; t) = edeg(v)+|v|
v

e (|V≥2| /8)
(2k)|V≥2|

∏
i∈V1

√
|wi|

∑
μ∈ZV≥2/2kS(ZV≥2)

e

(
− 1

4k
tμS−1μ

)
∏

v∈V≥2

Gv

(
ζμv

2kMv
e−evt/2Mv

)
.
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In particular, Fe(f1; t) is a meromorphic function.

Proof. By Lemma 5.9, we have

G(2kS)Fe(f1; t)

=
∑

μ∈ZV≥2/2kS(ZV≥2)

e

(
− 1

4k
tμS−1μ

)

∑
α∈S

ε(α)
∑

n∈ZV≥3
≥0

e

(
1

k
tμe(n+ α)

)
P (n) exp

⎛⎝−
∑

v∈V≥3

tv(nv + αv)

⎞⎠ .

By applying Lemma 2.11 for this, we have

G(2kS)Fe(f1; t) =
∑

μ∈ZV≥2/2kS(ZV≥2)

e

(
− 1

4k
tμS−1μ

) ∏
v∈V≥2

Gv

(
ζevμv

2kMv
e−t/2Mv

)
.

By Remark 2.8, we obtain the claim.

6. A proof of the main theorem

Let

F (t) :=
∑

μ∈ZV≥2/2kS(ZV≥2)

e

(
− 1

4k
tμS−1μ

) ∏
v∈V≥2

Gv

(
ζμv

2kMv
e−tv/2Mv

)
.

In this section, we prove holomorphy of this meromorphic function at t = 0
(that is, vanishings of cn) and our main result.

6.1. The main result

In this subsection, we state our main result without a proof.

Proposition 6.1. (i) For each vertex v ∈ V≥3, the order of F (t) at tv = 0
satisfies

ordtv=0 F (t) ≥ min{0, |v|+ 2− deg(v)}.
(ii) If |v|+ 2− deg(v) > 0 for each vertex v ∈ V≥3, then the meromorphic

function F (f1; t) is holomorphic at t = 0 and it holds

F (0) =
e (|V≥2| /8)

√
2k

|V≥2|∏
i∈V1

√
|wi|

∑
μ∈(Z�kZ)V≥2/2kS(ZV≥2)

e

(
− 1

4k
tμS−1μ

)
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∏
v∈V≥2

Gv

(
ζμv

2kMv

)
.

We obtain the following corollary by Proposition 6.1 (i).

Corollary 6.2. Suppose |v| + 2 − deg(v) ≥ 0 for each vertex v ∈ V≥3. Let
e ∈ {±1}V≥3 . Then, ce,n = 0 holds for n ∈ ZV≥3 such that nv ≤ −1 for some
vertex v ∈ V≥3. In particular, for a C∞ function f : RV≥2 → C of rapid decay
as xv → ∞ for each v ∈ V≥2, the limit limt→+0 Fe(f ; t) converges and it can
be written as

lim
t→+0

Fe(f ; t) = ce,0 = edeg(v)+|v|
v F (0),

which is independent of f .

We obtain the following proposition by combining Proposition 6.1 (ii)
and Proposition 3.2.

Proposition 6.3. If |v| + 2 − deg(v) > 0 for any vertices v ∈ V≥3, then it
holds that

WRTk(M(Γ)) =
(−1)|V1|ζ

−
∑

v∈V (wv+3)−
∑

i∈V1
1/wi

4k

2(ζ2k − ζ−1
2k )

F (0).

We obtain our main result by combining Propositions 5.8 and 6.3 and
Corollary 6.2.

Corollary 6.4 (Theorem 1.2). If |v| + 2 − deg(v) > 0 for any vertices
v ∈ V≥3, then it holds that

WRTk(M(Γ)) =
1

2(ζ2k − ζ−1
2k )

lim
q→ζk

ẐΓ(q).

6.2. A proof of the main result

Finally, we prove Proposition 6.1. We need the following lemma.

Lemma 6.5. Let k,M ∈ Z � {0} and a, b ∈ Z be integers such that
gcd(a,M) = 1. For α ∈ 1

2MZ such that gcd(2Mα,M) = 1, the complex
number ∑

μ∈Z/kZ+α

e

(
M

k

(
aμ2 + bμ

))
depends only on Mα2,Mα mod Z.
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This lemma is a little generalisation of [MM22, Lemma 4.7 and 4.8]
which is based on the proof of [BMM20, Theorem 4.1]. In this lemma, we
remove the assumption gcd(2M, 2Mα) = 1 in [MM22, Lemma 4.7 and 4.8].
Although our proof is essentially the same as in [MM22, Lemma 4.7 and
4.8], we give a proof for the convenience of readers.

Proof. Case 1: Suppose gcd(M,k) > 1. We can write

∑
μ∈Z/kZ+α

e

(
M

k

(
aμ2 + bμ

))

= e

(
M

k

(
aα2 + bα

)) ∑
μ∈Z/kZ

e

(
1

k

(
Maμ2 + (2Mαa+Mb)μ

))
.

By the assumption, we have gcd(a,M) = 1, gcd(2Mα,M) = 1 and thus,
gcd(2Mαa+Mb,M) = 1 holds. By combining with gcd(M,k) | gcd(Ma, k)
and 1 < gcd(M,k) | M , we obtain gcd(Ma, k) � 2Mαa + Mb. Thus, it is
0 by the well-known vanishing result of one-variable Gauss sums ([MM22,
Lemma 4.3]).

Case 2: Suppose gcd(M,k) = 1. Let M∗ ∈ Z be an integer such that
MM∗ ≡ 1 mod k. For any μ ∈ Z, we have

M
(
a(μ+ α)2 + b(μ+ α)

)
−M

(
a(μ+MM∗α)2 + b(μ+MM∗α)

)
=M

(
(1− (MM∗)2)aα2 + (1−MM∗)(b+ 2aμ)α

)
≡ (1−MM∗)

(
(1 +MM∗)aα2 + bα

)
mod kZ.

Thus, we obtain

∑
μ∈Z/kZ+α

e

(
M

k

(
aμ2 + bμ

))

= e

(
1−MM∗

k
M

(
(1 +MM∗)aα2 + bα

)) ∑
m∈Z/kZ+MM∗α

e

(
M

k

(
aμ2 + bμ

))
.

Since this sum depends only on Mα2 mod Z and Mα mod Z, we obtain the
claim.

Proof of Proposition 6.1. For (i), fix a vertex v ∈ V≥3 and let

F (t) := (2ke (−1/8))|V≥2|√detSF (f1; t)
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Fv(t) :=
∑

μ∈(ZV≥2�{v}⊕kZ)/2kS(ZV≥2)

e

(
− 1

4k
tμS−1μ

)
∏

v′∈V≥2

Gv′

(
ζμv′
2kMv′e

−tv′/2Mv′
)
.

By Lemma 5.10, we can write

F (t)− Fv(t)

=
∑

μ∈(ZV≥2�{v}⊕(Z�kZ))/2kS(ZV≥2)

e

(
− 1

4k
tμS−1μ

)
∏

v′∈V≥2

Gv′

(
ζμv′
2kMv′e

−tv′/2Mv′
)
.

Since the rational function

Gv(ζ
μv

2k e
−tv/2)

= (ζμv

2k e
−tv/2 − ζ−μv

2k etv/2)2−deg(v)
∏
i∈v

((
ζμv

2k e
−tv/2

)Mv/wi

−
(
ζμv

2k e
−tv/2

)−Mv/wi

)
is holomorphic at tv = 0 for any μv ∈ Z � kZ, the rational function F (t)−
Fv(t) is also holomorphic at tv = 0. Thus, it suffices to show ordtv=0 Fv(t) ≥
|v|+ 2− deg(v). Let

av := Mv

(
−wv +

∑
i∈v

1

wi

)
, bv :=

∑
v′∈V≥3, {v,v′}∈E

μv′

for each μ′ ∈ ZV≥2�{v}. Under this notations, we can write

(6.1)

Fv(t) :=
∑

μ′∈
⊕

v′∈V≥2�{v} Z/2kMv′Z

e

(
− 1

4k
tμ′S−1μ′

)
( ∏

v∈V≥2�{v}
Gv′

(
ζμv′
2kMv′e

−tv′/2Mv′
))

∑
μv∈Z/2MvZ

e

(
− 1

4k

(
ka′v
Mv

μ2
v + 2bvμv

))
Gv

(
ζμv

2Mv
e−tv/2Mv

)
.
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Since we have

Gv(q) = (q2Mv − 1)2−deg(v)
∑

αv∈Sv

εv(αv)q
2Mvαv

by the definition of Gv(q), the last line of (6.1) is equal to

(e−tv − 1)2−deg(v)
∑

αv∈Sv

εv(αv)e
−αvtv

∑
μv∈Z/2MvZ

e

(
− ka′v
4Mv

μ2
v +

(
αv −

bv
2

)
μv

)
.

By applying reciprocity of Gauss sums (Proposition 3.3), this can be written
as

e(1/8)
√
kav√

2(|Mv)|
(e−tv − 1)2−deg(v)

∑
αv∈Sv

εv(αv)e
−αvtv(6.2)

∑
μv∈Z/kavZ

e

(
−Mv

ka′v

(
μv + αv −

bv
2

)2
)
.

Since the second summation is independent of αv by Lemma 2.5 (ii),
Lemma 2.4 (iii), and Lemma 6.5, (6.2) is the multiplication of Gv(e

−tv/2Mv)
by a constant independent of αv. Thus, we obtain ordtv=0 Fv(t) ≥ ordtv=0

Gv(e
−tv/2Mv). Since ordtv=0Gv(e

−tv/2Mv) = 2 − deg(v) + |v| holds by
Lemma 2.10, the claim holds.

Finally we prove (ii). If |v| + 2 − deg(v) > 0 for each vertex v ∈ V≥3,
then Gv(e

−tv/2Mv) has a zero at tv = 0 by Lemma 2.10, thus Fv(t) also has
a zero. Thus, we obtain

F (t)|tv=0 = F (t)− Fv(t)|tv=0 .

Fix any vertex v′ ∈ V≥2 � {v} and let

Fv,v′(t) := F (t)− Fv(t)−
∑

μ∈
(
Z

V≥2�{v,v′}⊕(Z�kZ){v,v′}
)/

2kS(ZV≥2)

e

(
− 1

4k
tμS−1μ

)
∏

v′∈V≥2

Gv′

(
ζμv′
2kMv′e

−tv′/2Mv′
)
.

By the same argument in a proof of (i), the rational function Fv,v′(t) has a
zero at tv′ = 0. By induction, we obtain the claim.
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