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Global well-posedness for the critical Schrödinger-Debye
system
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Abstract. We establish global well-posedness results for the initial value
problem associated to the Schrödinger-Debye system in dimension two, for
data in Hs(R2)× L2(R2), 2/3 < s ≤ 1 and for data in H1(R2)×H1(R2).
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1. Introduction

We consider the initial value problem (IVP) for the Schrödinger-Debye system

(1.1)

 iut + 1
2∆u = uv, t > 0, x ∈ Rn,

µvt + v = λ|u|2, µ > 0, λ = ±1,
u(0) = u0, v(0) = v0,

where u = u(x, t) is a complex-valued function, v = v(x, t) is a real-valued function
and ∆ is the Laplacian operator in the spatial variable. This model describes
the propagation of an electromagnetic wave through a non-resonant medium whose
material response time is relevant. See Newel and Moloney [10] for a more complete
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discussion of this model. In the absence of the delay (µ = 0), the system (1.1)
reduces to the cubic nonlinear Schrödinger equation (NLS)

iut +
1
2
∆u = λu|u|2,

which is focusing or defocusing for λ = −1 and 1, respectively. Similarly, the sign
of the parameter λ provides an analogous classification for (1.1). For sufficiently
regular data, the mass of the solution u of the system (1.1) is invariant. More
precisely,

(1.2)
∫

Rn

|u(x, t)|2 dx =
∫

Rn

|u0(x)|2 dx.

The system (1.1) has the following pseudo-Hamiltonian structure

(1.3)
d

dt
E(u(t), v(t)) = 2λµ

∫
Rn

|vt|2 dx,

where

E(u(t), v(t)) := E(u, v) =
∫

Rn

( |∇u|2 + 2v|u|2 − λv2) dx

=
∫

Rn

( |∇u|2 + λ|u|4 − λµ2|vt|2) dx.
(1.4)

Also, the system (1.1) is equivalent to the following integral form

(1.5) u(t) = S(t)u0 + i

∫ t

0

S(t− τ)u(τ)v(τ) dτ,

and

(1.6) v(t) = e−
t
µ v0 +

λ

µ

∫ t

0

e−
(t−τ)

µ |u(τ)|2 dτ,

where S(t) = eit∆/2 is the unitary Schrödinger group.
The well-posedness of the system (1.1) has been studied by different authors. In
2000, Bidégaray ([4] and [5]) studied the local well-posedness (LWP) of the system
(1.1) in dimensions n = 1, 2, 3 and for data in Hs(Rn) ×Hs(Rn), s > n/2, s = 0
and s = 1. In 2004, Corcho and Linares ([7]) obtained the best LWP result in
dimension one. Later, in 2009, Corcho and Matheus ([8]) obtained a refined LWP
and global-well posedness (GWP) result in the framework of Bourgain spaces, also
in dimension one. Recently, Corcho, Oliveira e Silva (see [9]), also in the framework
of Bourgain spaces Xs,b (see definition in Section 2), obtained the following LWP
result in dimensions two and three.

Theorem 1.1. Let n = 2, 3. For any (u0, v0) ∈ Hs1(Rn) ×Hs2(Rn), with s1
and s2 satisfying the conditions

(1.7) max{0, s1 − 1} ≤ s2 ≤ min{2s1, s1 + 1},
there exists a positive time

T = T (‖u0‖Hs1 , ‖v0‖Hs2 )

and a unique solution (u(t), v(t) ) of the IVP (1.1) on the time interval [0, T ], such
that

(i) (ψTu(t), ψT v(t) ) ∈ Xs1,b ×Hs2,c;
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(ii) (u, v ) ∈ C( [0, T ];Hs1(Rn)×Hs2(Rn) )
for suitable b and c close to 1/2+ ( ψT denotes, as usual, a cutoff function for the
time interval [0, T ]). Moreover, the map (u0, v0) → (u(t), v(t) ) is locally Lipschitz
from Hs1(Rn)×Hs2(Rn) into C( [0, T ];Hs1(Rn)×Hs2(Rn) ).

In the following graphic we resume the LWP in the above theorem:

s1

s2

1 2 3 4

s2 = s1 − 1

s2 = s1 + 1

s2 = 2s1

The shaded region represents the region where the LWP result exists. They also
proved the following GWP result in dimension two.

Theorem 1.2. Let (u0, v0) ∈ H1(R2) × L2(R2). Then, for all T > 0, there
exists a unique solution

(u, v) ∈ C([0, T ];H1(R2)× L2(R2))

to the initial value problem (1.1), such that

(1.8) ||∇u(., t)||2L2
x

+ ||v(., t)||2L2
x
≤ α0 e

α1 T , t ∈ [0, T ], T > 0,

where α0 = α0(E(u0, v0), ||v0||2L2
x
, ||u0||2L2

x
) and α1 = α1(||u0||2L2

x
).

In this work we prove the following GWP result in the space H1(R2)×H1(R2).

Theorem 1.3. Let (u0, v0) ∈ H1(R2) × H1(R2). Then, for all T > 0, there
exists a unique solution

(u, v) ∈ C([0, T ];H1(R2)×H1(R2))

to the initial value problem (1.1).

This solves a problem left open in Corcho, Oliveira and Silva [9]; see Remark
4.3 therein. The proof of this theorem is simple; it uses basic properties of the
unitary Schrödinger group and the Gronwell inequality.

Next we prove a result of GWP (small data) below energy space for the
Schrödinger solution u. We will use the method of Bourgain ([3]) on high and
low frequencies together with the framework of dispersive Sobolev spaces.

Theorem 1.4. Let (u0, v0) ∈ Hs(R2)× L2(R2), with 2/3 < s ≤ 1, such that

2 c20||u0||L2
x
< 1,
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where c0 is the best constant in the Gagliardo-Nirenberg inequality

‖u‖L4
x(R2) ≤ c0‖u‖1/2

L2
x(R2)‖u‖

1/2
H1

x(R2).

Then, for all T > 0, there exists a unique solution

(u, v) ∈ C([0, T ];Hs(R2)× L2(R2))

to the initial value problem (1.1) with λ = −1.

The difficulty in the proof of these theorems lies in the absence of conserved
quantities in the energy space.

2. notation and basic properties

Let Yx be a normed space on Rn. We denote by Lp
tYx(J×Rn) := Lp

t (J ;Yx(Rn)),
where J ⊆ R is an interval, the completion of the space of Schwartz functions f(x, t),
with the norm

‖f‖Lp
t Yx(J×Rn) =

(∫
J

‖f(t)‖p
Yx
dt

)1/2

.

When Rn and J are implicit, we denote this norm by ‖f‖Lp
t Yx

.
Let h be a continuous function on R. We define the space Xs,b by

Xs,b = Xh
s,b(Rn × R) := Sx,t(Rn × R)

||.||Xs,b ,

where Sx,t is the Schwartz space, with norm

||u||
X

h(ξ)
s,b

:= ||〈ξ〉s〈τ − h(ξ)〉bũ(ξ, τ)||L2
τ L2

x
,

with the notation 〈·〉 :=
{
1 + | · |2

}1/2 ∼ 1+|·|, recalling that the Fourier transform
(space-time) is given by

ũ(ξ, τ) =
∫

R

∫
Rn

e−i( x.ξ+tτ)u(x, t) dxdt.

The space Xs,b is called Bourgain space or dispersive Sobolev space. Similarly we
define the space Hl,c with norm

||u||Hl,c
:= ||〈ξ〉l〈τ〉cũ(ξ, τ)||L2

τ L2
x
.

Let I ⊂ R be any interval of time. We define

Xs,b(Rn × I) :=
{
u ; u = v|Rn×I , v ∈ X

h
s,b(Rn × R)

}
with norm

||u||Xs,b(Rn×I) := inf{ ||v||Xs,b
; v|Rn×I = u }.

We have that

Xs,0 = L2
tH

s
x and (Xh(ξ)

s,b )′ = X
−h(−ξ)
−s,−b ,

and moreover,

Xs,b ↪→ C(R;Hs(Rn) ) and Hl,c ↪→ C(R;H l(Rn) ),

for any b, c > 1/2 and s, l ∈ R.

Proposition 2.1. We have the following known embedding
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(1) if 2 ≤ p <∞ and b ≥ 1
2 −

1
p then ||u||Lp

t Hs
x
≤ c||u||Xs,b

,

(2) if 2 ≤ p, q < ∞ and b ≥ 1
2 −

1
p and s ≥ n

2 −
1
q then ||u||Lp

t Lq
x
≤

c ||u||Xs,b
,

(3) if 1 < p ≤ 2 and b ≤ 1
2 −

1
p then ||u||Xs,b

≤ c||u||Lp
t Hs

x
,

(4)

‖D1/2−

x (u1u2)‖L2
t L2

x
≤ c ‖u1‖X1/2,1/2+

‖u2‖X0,1/2−
,

and

‖D1/2+

x (u1u2)‖L2
t L2

x
≤ c ‖u1‖X1/2+,1/2+

‖u2‖X0+,1/2+
,

where (̂Ds
xf)(ξ) = 〈ξ〉sf̂(ξ).

Proof. For the items (1), (2) and (3) see [11] and for the item (4) see [3]. �

We define an operator L by L̂u(ξ) = −ih(ξ)û(ξ).

Proposition 2.2. Let f ∈ Hs
x(Rd) for some s ∈ R and for some polynomial

h : Rd → R. Then
i) For any Schwartz time cutoff η ∈ Sx(R), we have

‖η(t)etLf‖
X

h(ξ)
s,b

(R× Rd) .η,b ‖f‖Hs
x(Rd).

ii) Let Y be a Banach space of functions on R× Rd with the property that

‖eitτ0etLf‖Y . ‖f‖Hs
x(Rd),

for all f ∈ Hs
x(Rd). Then we have the embedding

‖u‖Y .b ‖u‖X
h(ξ)
s,b (R×Rd)

,

for b > 1/2.

Proof. See [11]. �

Now define the function ϑ : R → R by

(2.1) ϑ(t) :=
{

1 |t| < 1,
0 |t| ≥ 2,

and ϑ ∈ C∞0 (R). Moreover, define ϑT (t) := ϑ( t
T ).

Consider the IVP

(2.2)
{
ut − Lu = F,
u(0) = u0.

The solution of this IVP is given by

(2.3) u(t) = eitLu0 +
∫ t

0

ei(t−s)LF (s)ds.
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Theorem 2.1. Let u be the solution of the integral equation (2.3). If s ∈ R
and b > 1

2 , then
||ϑTu||Xh(ξ)

s,b

≤ C ||u0||Hs
x

+ C ||F ||
X

h(ξ)
s,b−1

.

Proof. See [11]. �

We establish the properties of the group {eit∆}∞t=−∞ in the Lp(Rn)− space.

Proposition 2.3. If t 6= 0, 1
p + 1

p′ = 1 and p′ ∈ [1, 2], then we have eit∆ :
Lp′

x (Rn) → Lp
x(Rn) is continuous and

(2.4) ||eit∆f ||Lp
x(Rn) ≤ c|t|−n/2(1/p′−1/p)||f ||

Lp′
x (Rn)

.

For a proof of this proposition we refer to [11].

We proceed with the notion of admissible pair.

Definition 2.1. We say that the exponent pair (q, r) is admissible if
2
q

= n(
1
2
− 1
r
),

where
• 2 ≤ r ≤ 2n

n−2 if n > 2,
• 2 ≤ r <∞ if n = 2,
• 2 ≤ r ≤ ∞ if n = 1.

Proposition 2.4 (Strichartz estimates). If n ≥ 1, s ∈ R, (q1, r1) and (q2, r2)
are admissible and 1

q2
+ 1

q′2
= 1, 1

r2
+ 1

r′2
= 1, then we have the homogeneous

Strichartz estimate

(2.5) ||eit∆u0||Lq1
t L

r1
x (R×Rn) ≤ C(n, q, r)||u0||L2

x(Rn),

the dual homogeneous Strichartz estimate

(2.6) ||
∫ t

0

eis∆F (s)ds||L2
x(Rn) ≤ C(n, q2, r2)||F ||

L
q′2
t L

r′2
x (R×Rn)

,

and the inhomogeneous Strichartz estimate

(2.7) ||
∫ t

0

ei(t−s)∆F (s)ds||Lq
t Lr

x(R×Rn) ≤ C(n, q1, r1, q2, r2)||F ||
L

q′2
t L

r′2
x (R×Rn)

.

Proof. See [11]. �

3. Global Well-posedness in H1(R2)×H1(R2)

In this paper we give a negative answer to the question of the existence of blow-up
solutions for the initial data in H1(R2)×H1(R2) in Corcho, Oliveira and Silva [9];
see Remark 4.3 therein.

In order to prove a global theory in H1(R2) × H1(R2) we need an estimate
∇v(.). To achieve this, we apply the gradient in the equation (1.6) and we obtain

(3.1) ∇v(t) = ∇v0e−
t
µ +

λ

µ

∫ t

0

e−(t−τ)/µ∇|u(τ)|2 dτ.
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Observe that,

∇|u|2 = ∇{u.u} = 2Re(u.∇u).

Replacing this expression in (3.1), we get

(3.2) ||∇v(t)||L2
x
≤ ||∇v0||L2

x
+ 2

∣∣∣∣λµ
∣∣∣∣ ∫ t

0

e−(t−τ)/µ||u(τ).∇u(τ)||L2
x
dτ.

Therefore

||∇v(t)||L2
x
≤ ||∇v0||L2

x
+ 2

∣∣∣∣λµ
∣∣∣∣ ∫ t

0

e−(t−τ)/µ||u(τ)||L4
x
||∇u(τ)||L4

x
dτ

≤ ||∇v0||L2
x

+
√

2
µ
||u(t)||L4

t L4
x
||∇u(t)||L4

t L4
x
.(3.3)

Moreover, applying the gradient in the equation (1.5), we have

(3.4) ∇u = S(t)∇u0 + i( I1 + I2 ),

where

I1 =
∫ t

0

S(t− τ)∇u(τ).v(τ) dτ, I2 =
∫ t

0

S(t− τ)u(τ).∇v(τ) dτ.

Since (4, 4) is an admissible pair, we conclude that

(3.5) ||∇u||L4
t L4

x
≤ c ||∇u0||L2

x
+ ||I1||L4

t L4
x

+ ||I2||L4
t L4

x
,

and using the inhomogeneous Strichartz estimate (2.7), we have

(3.6) ||I1||L4
t L4

x
≤ c ||∇u(τ).v(τ)||

L
4/3
t L

4/3
x

≤ c ||∇u||L2
t L2

x
||v||L4

t L4
x
.

By immersion

(3.7) ||v||L4
x
≤ c0||v||1/2

L2
x
||∇v||1/2

L2
x
,

and from (3.6) and (3.7), we have

(3.8)

||I1||L4
t L4

x
≤ c||∇u||L2

t L2
x

(∫ t

0

||v||2L2
x
||∇v||2L2

x
dτ

)1/4

≤ c||∇u||L2
t L2

x
||v||1/2

L∞t L2
x

(∫ t

0

||∇v||2L2
x
dτ

)1/4

≤ c||∇u||2
L2

t L2
x
||v||L∞t L2

x
+

(∫ t

0

||∇v||2L2
x
dτ

)1/2

.

Now we estimate I2:

(3.9)

||I2||L4
t L4

x
≤ ||u(τ).∇v(τ)||

L
4/3
t L

4/3
x

≤ c||u0||1/2
L2

x
||∇u||1/2

L2
t L2

x

(∫ t

0

||∇v||2L2
x
dτ

)1/2

.
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Here we used (3.7) and the conserved quantity (1.2). Replacing (3.9) and (3.8) in
(3.5), we get

(3.10)
||∇u||L4

t L4
x
≤ c||∇u0||L2

x
+ c||∇u||2

L2
t L2

x
||v||L∞t L2

x
+

(∫ t

0

||∇v||2L2
x
dτ

)1/2

+c||u0||1/2
L2

x
||∇u||1/2

L2
t L2

x

(∫ t

0

||∇v||2L2
x
dτ

)1/2

.

Using (3.7), it follows that

(3.11) ||u||L4
t L4

x
≤ T 1/4

max||u||L∞t L4
x
≤ c0T

1/4
max||u0||1/2

L2
x
||∇u||1/2

L∞t L2
x
.

Combining (3.3), (3.10) and (3.11), we can show that
(3.12)

||∇v(t)||L2
x
≤ ||∇v0||L2

x
+ KT ||∇u(t)||L4

t L4
x

≤ ||∇v0||L2
x

+ KT

{
||∇u0||L2

x
+ ||∇u||2

L2
t L2

x
||v||L∞t L2

x
+

(∫ t

0

||∇v||2L2
x
dτ

)1/2
}

+KT ||u0||1/2
L2

x
||∇u||1/2

L∞T L2
x

(∫ t

0

||∇v||2L2
x
dτ

)1/2

,

where

KT = c0

√
2
µ
T 1/4

max||u0||1/2
L2

x
||∇u||1/2

L∞t L2
x
.

Observe that

(3.13) ||∇v(t)||L2
x
≤ Φ +G(T )

(∫ t

0

||∇v(τ)||2L2
x
dτ

)1/2

,

where
G(T ) = KT (1 + ||u0||1/2

L2
x
||∇u||1/2

L∞T L2
x
)

Φ = ||∇v0||L2
x

+ KT ||∇u0||L2
x

+ KT ||∇u||2L∞T L2
x
||v||L∞T L2

x
,

for all 0 ≤ T ≤ Tmax.

Hence, by Gronwall inequality, we obtain

(3.14) ||∇v(t)||2L2
x
≤ 2Φ2 e2G(T )2 t, t ∈ [0, Tmax).

The estimate (3.14) proves Theorem 1.3.

We also have the following.

Remark 3.1. Let µ > 0 and let uµ(t), vµ(t) be the solutions of the initial value
problem (1.1), with uµ ∈ C([0, Tmax], L2

x). If the initial data v0 ∈ L1, then we get

lim sup
µ→∞

||vµ(t)||L1 ≤ ||u0||L2 , t ∈ [0, Tmax],

and ∣∣∣∣∫
Rn

vµ(t, x)dx− λ||u0||2L2

∣∣∣∣ µ→∞
−→ 0 .
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Proof. Observe that

(3.15) |vµ(t)| ≤ e−
t
µ |v0|+

|λ|
µ

∫ t

0

e−
t−s

µ |uµ(s)|2ds.

Integrating (3.15) and using the conserved quantity (1.2), we have

(3.16)
∫

Rn

|vµ(x, t)|dx ≤ e−
t
µ ( ||v0||1−|λ|||u0||2L2)+ |λ|||u0||2L2 , ∀ t ∈ [0, Tmax].

Similarly, we obtain∫
Rn

v(x, t)dx = e−
t
µ (

∫
Rn

v0(x)dx− λ||u0||2L2) + λ||u0||2L2 , ∀ t ∈ [0, Tmax].

Note that this equality proves the remark.

Lemma 3.1. Let T > 0, 1 ≤ p < q ≤ ∞ and A,B ≥ 0. It follows that there
exists Γ = Γ(B, p, q, T ) such that if f ∈ Lq

(0,T ) satisfies

(3.17) ‖f‖Lq
(0,t)

≤ A+B‖f‖Lp
(0,t)

,

for all 0 < t < T , then
‖f‖Lq

(0,t)
≤ AΓ.

Proof. See [6]. �

Remark 3.2. In order to estimate ‖u‖L4
xL4

(0,t)
, we also could have used the

Lemma 3.1.
In fact, let 0 ≤ t ≤ T ≤ Tmax and let v0 ∈ L2, u0 ∈ L2. Since (4, 4) is an admissible
pair in R2, using the integral equation for u and the global well-posedness result in
L2 × L2, we have

‖u‖L4
xL4

(0,t)
≤ C‖u0‖L2 + ‖

∫ t

0

S(t− t′)u(t′)v(t′)dt′‖L4
xL4

(0,t)

≤ C‖u0‖L2 + C‖u v‖
L

4/3
x L

4/3
(0,t)

≤ C‖u0‖L2 + C‖u‖
L

4/3
(0,t)L

4
x
‖v‖L∞(0,T )L

2
x
.

Now by Lemma 3.1 we conclude that

‖u‖L4
xL4

(0,t)
≤ ‖u0‖L2Γ(‖v‖L∞(0,T )L

2
x
, T ).

4. Global well-posedness in Hs(R2)× L2(R2), 2/3 < s ≤ 1

In this section we will prove Theorem 1.4.

4.1. A priori Estimates. If one takes λ = −1 in (1.3), then the energy of
the system is decreasing, i.e,

(4.1) E(u, v) = E(u(t), v(t)) ≤ E(u0, v0), ∀ t ≥ 0,

where

(4.2) E(u, v) =
∫

Rn

( |∇u|2 + 2v|u|2 + v2) dx =
∫

Rn

( |∇u|2 − |u|4 + µ2|vt|2 ) dx.

From (1.2), (4.2) and the immersion
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(4.3) ||u(t)||L4
x
≤ c0||u(t)||1/2

L2
x
||∇u(t)||1/2

L2
x
,

we get ∫
R2
|∇u|2 dx+

∫
R2
|v|2 dx ≤ E(u0, v0)− 2

∫
R2
|u|2v dx

≤ E(u0, v0) + 2‖v‖L2
x
‖u‖2L4

x

≤ E(u0, v0) + 2c20‖v‖L2
x
‖u0‖L2

x
||∇u(t)||L2

x
.

Thus

(4.4)
1
2

∫
R2
|∇u|2 dx+ (1− 2c40||u0||2L2

x
)
∫

R2
|v|2 dx ≤ E(u0, v0),

which gives

(4.5)
∫

R2
|v|2 dx ≤ 2E(u0, v0),

∫
R2
|∇u|2 dx ≤ 2E(u0, v0), ∀t ≥ 0,

since

(4.6) 2 c20||u0||L2
x
≤ 1.

In a similar way, by (4.2), the immersion (4.3) and (4.5), we get∫
R2
µ2|vt|2 dx ≤ E(u0, v0) +

∫
R2
|u|4 dx

≤ E(u0, v0) + c40‖u0‖2L2
x
||∇u(t)||2L2

x

≤ 3
2
E(u0, v0), if 2 c20||u0||L2

x
≤ 1.(4.7)

Moreover, by (4.3), (4.4) and (4.6), also is not dificult to see that∫
R2
|u|4 dx ≤ 1

2
E(u0, v0), if 2 c20||u0||L2

x
≤ 1.(4.8)

Remark 4.1. 1) As a consequence of the immersion (4.3) it follows that if
c40||u0||2L2

x
≤ 1, then

E(u, v) ≥ 0.
2) If 4 c20||u0||L2

x
≤ 1, then

(4.9)
∫

R2
|∇u|2 dx+

∫
R2
|v|2 dx ≤ 5

3

∫
R2
|∇u0|2 dx+

5
3

∫
R2
|v0|2 dx.

In fact, by (4.2) and (4.1), we have∫
R2
|∇u|2 dx+

∫
R2
|v|2 dx ≤

∫
R2
|∇u0|2 dx+

∫
R2
|v0|2 dx

+ 2c20‖v‖L2
x
‖u0‖L2

x
||∇u(t)||L2

x
+ 2c20‖v0‖L2

x
‖u0‖L2

x
||∇u0||L2

x
,

and using the Young inequality we deduce (4.9).
3) The integral representation (1.6) of v and the Cauchy-Schwartz inequality

give

(4.10) ‖v(t)‖L2
x
≤ e−t/µ‖v0‖L2 +

√
1
2µ

(1− e−2t/µ)1/2‖u‖2L4
[0,t]L

4
x
, t ≥ 0,
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and the estimate (4.8) shows that if 2c20‖u0‖L2 ≤ 1, then

(4.11) ‖v(t)‖L2
x
≤ e−t/µ‖v0‖L2 +

√
1
µ
E(u0, v0)1/2(1− e−2t/µ)1/2t1/2, t ≥ 0.

4.2. Iteration. Now let v0 ∈ L2 and u0 ∈ Hs, 2/3 < s < 1, be the initial
data of the IVP (1.1), with the small condition (4.6), i.e.,

2 c20||u0||L2
x
< 1.(4.12)

Fix a large time T and let N = N(T ) be a cutoff (to be specified). Write
(4.13)

u0 := ω0 + η0 with ω0 =
∫
|ξ|<N

eix.ξû0(ξ)dξ, η0 =
∫
|ξ|≥N

eix.ξû0(ξ)dξ.

We observe that

(4.14) ||ω0||Ḣθ =

{∫
|ξ|<N

|ξ|2θ|û0(ξ)|2dξ

}1/2

< ||u0||ḢsN
θ−s, for any θ ≥ s.

Similarly, we get

(4.15) ||η0||Ḣσ =

{∫
|ξ|≥N

|ξ|2σ|û0(ξ)|2dξ

}1/2

≤ ||u0||ḢsN
σ−s, if σ ≤ s,

and

(4.16) ||ω0||L2
x
≤ ||u0||L2

x
,

In particular, these estimates proves that w0 ∈ H∞ and η0 ∈ Hs. Now we
consider the IVP

(4.17)


i
0
ut + 1

2∆
0
u =

0
u

0
v,

µ
0
vt +

0
v = − |0u|2,

0
u(0) = ω0 and

0
v(0) = v0,

where w0 is defined in (4.13) and verifies (4.14) and (4.16). We know by the
Theorem 1.2 that if the initial data (u0, v0) ∈ H1(R2)×L2(R2), then there exists a
unique solution (u, v) ∈ C([0, T ];H1(R2)× L2(R2) ) of IVP (1.1). Shortly problem
(4.17) is globally well-posedness in H1(R2)× L2(R2).

We write the solution (u, v) of the system (1.1), as

(4.18) u =
0
u+

0
η and v =

0
v +

0
z,

where (
0
η,

0
z) satisfies the IVP

(4.19)


i
0
ηt + 1

2∆
0
η = (

0
u+

0
η)(

0
v +

0
z)− 0

u
0
v,

µ
0
zt +

0
z = − |0u+

0
η|2 + |0u|2,

0
η(0) = η0,

0
z(0) = z0 = 0,



262 XAVIER CARVAJAL AND PEDRO GAMBOA

where η0 is defined in (4.13) and verifies (4.15).

Consider the IVP (4.19) in the following integral form

(4.20)
0
η(t) = eit∆/2η0 +

0

ψ(t),

where

(4.21)
0

ψ(t) = i

∫ t

0

ei∆(t−τ)/2(
0
u

0
z +

0
η

0
v +

0
η

0
z) dτ,

and

(4.22)
0
z =

1
µ

∫ t

0

e−(t−τ)/µ

(
−|0η|2 − 2Re (

0
u

0
η)

)
dτ.

We have the following LWP result

Theorem 4.1. Let (ω̃0, ṽ0) ∈ Hs1(R2) × Hs2(R2), where (s1, s2) satisfy the
condition (1.7). Then, for all T such that

(4.23) 0 < T ≤ c

‖ω̃0‖2Hs1 + ‖ṽ0‖2Hs2

,

there exists a unique solution

(
0
u,

0
v) ∈ C([0, T ];Hs1(R2)×Hs2(R2))

to the initial value problem (4.17) with initial data (ω̃0, ṽ0) such that:

(4.24) ||ϑT (t)
0
u(·, t)||Xs1,b1

+ ||ϑT (t)
0
v(·, t)||Hs2,b2

≤ c ‖ω̃0‖Hs1 + c ‖ṽ0‖Hs2 ,

wehere ϑT is defined in (2.1) and for some suitable b1 > 1/2 and b2 > 1/2.

Proof. It follows immediately from the proof of Theorem 1.1 in Corcho,
Oliveira and Silva [9]. �

We also have the following.

Theorem 4.2. Let u0 be in Hs(R2) and let η0 be as defined in (4.13). Then,
there exists t1 > 0 such that

(4.25) t1 = N−2(1−s)−,

and there exists a unique solution

(
0
η,

0
z) ∈ C([0, t1];Hs(R2)× L2(R2))

to the initial value problem (4.19) with initial data η0 and z0 = 0, such that

(4.26) ||ϑt1(t)
0
η(·, t)||Xs,b

≤ c ‖η0‖Hs ,

for some suitable b > 1/2.

Proof. The proof is very similar to the proof of Theorem 1.1 and to the proof
of Theorem 4.1 in Corcho, Oliveira and Silva [9]. �

Remark 4.2. If in Theorem 4.1 we take s1 = 1, s2 = 0 and if also we consider
ω̃0 = ω0 as defined in (4.13) and ṽ0 = v0, then we can take T = t1 = N−2(1−s)− and
thus obtain the same existence interval [0, t1], for the systems (4.17) and (4.19).
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Note that by (4.14), we have ||∇ω0||L2
x(R2) . ‖ω0‖Ḣ1(R2) ≤ ||u0||ḢsN1−s. From

(4.16) it follows that

E(ω0, v0) =
∫

R2

(
|∇ω0|2 + 2 |ω0|2v0 + |v0|2

)
dx ≤ ||∇ω0||2L2

x(R2) + ||v0||2L2
x(R2)

+ c0||ω0||L2
x(R2)||∇ω0||L2

x(R2)||v0||L2
x(R2)

.sN
2(1−s).(4.27)

Integrating the inequality (4.8), considering the time t1 as in (4.25), we have

(4.28)
∫ t1

0

∫
R2
|u|4 dxdt ≤ 1

2
E(u0, v0) t1 ≤ 1.

By Remark (4.2) in the time interval [0, t1] we have local existence for both systems
(4.17) and (4.19).

Now from (4.16), 2 c20||w0||L2
x
≤ 2 c20||u0||L2

x
< 1, thus by (4.5) we have

(4.29) ||∇0
u(t1)||L2

x(R2) .s N
(1−s),

and

(4.30) ||0v(t1)||L2
x(R2) .s N

(1−s).

Furthemore, the immersion (4.3), conservation law (1.2), inequalities (4.29) above
and (4.36) below imply that

(4.31) ||
0

ψ(t1)||L4
x

. N (−3s/4)+ and ||0u(t1)||L4
x

.s N
(1−s)/2.

For t ∈ [0, t1], by (4.18) and (4.20), we have

(4.32) u(t) =
0
u(t) +

0

ψ(t) + eit∆/2η0 and v(t) =
0
v(t) +

0
z(t),

where (
0
u,

0
v) is the solution of (4.17) and (

0
η,

0
z) = (ψ+ eit∆/2η0,

0
z) is the solution of

(4.19). Now we define the new intial data for the second iteration

(4.33)
ω1 =

0
u(t1) +

0

ψ(t1) and v1 =
0
v(t1) +

0
z(t1),

η1 = eit1∆/2η0 and z1 = 0.

In each iteration we consider the decomposition of the initial data as in (4.33).
Therefore η1, . . . , ηk = eik t∆/2η0 have the same properties of η0 with ‖ηk‖Hs =
‖η0‖Hs and z1 = · · · = zk = 0. We hope that ω1, . . . , ωk and v1, . . . , vk also have
the same properties of ω0 and v0 respectively in order to ensure the same existence
interval [0, t1] in each iteration and attach the existence interval [0, T ], extending
the solution of the systems (4.17) and (4.19). This fact is proved by induction.
Here we will prove only the case k = 1 and note that a similar argument works in
the general case.

From (4.1), we have

E(
0
u(t1),

0
v(t1) ) ≤ E(

0
u(0),

0
v(0) ) = E(ω0, v0).
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Thus we get

(4.34) E(ω1, v1) ≤ E(ω0, v0) +
[
E(ω1, v1)− E(

0
u(t1),

0
v(t1) )

]
.

Using the immersion (4.3) and (4.33), we obtain

|E(ω1, v1)− E(
0
u(t1),

0
v(t1))| = |E(

0
u(t1) +

0

ψ(t1),
0
v(t1) +

0
z(t1))− E(

0
u(t1),

0
v(t1) )|

≤ ||∇
0

ψ(t1)||2L2
x

+ 2||∇
0

ψ(t1)||L2
x
||∇0

u(t1)||L2
x

+ 2 ||0v(t1)||L2
x(R2)||

0

ψ(t1)||2L4
x

+ 4 ||0u(t1)||L4
x
||

0

ψ(t1)||L4
x

(
||0v(t1)||L2

x
+ ||0z(t1)||L2

x

)
+ 2||0z(t1)||L2

x
||

0

ψ(t1)||2L4
x

+ ||0z(t1)||2L2
x

+ 2||0v(t1)||L2
x
||0z(t1)||L2

x
+ 2||0z(t1)||L2

x
||0u(t1)||L4

x
.

(4.35)

In order to estimate (4.35), initially we will assume the following result, which be
will proved later.

Lemma 4.1. Let
0
η(t) be a solution of the IVP (4.19), and let

0

ψ(t) be the forcing
term as defined in (4.20) and (4.21), then we have the following estimates

(4.36) ||
0

ψ(t)||L2
x(R2) ≤ cN−s and ||∇

0

ψ(t)||L2
x(R2) ≤ cN (−s/2)+ ,

and also that

(4.37) ‖0
η‖L4

t L4
x([0,t1]×R2) ≤ cN−s.

Using (4.22), the Minkowsky and the Cauchy-Schwartz inequalities, together with
(4.28) and (4.37), for any t ∈ [0, t1] we have

||0z(t)||L2
x(R2) ≤

1
µ

∫ t1

0

e−(t−τ)/µ
(
‖0
η(τ)‖2L4

x(R2) + 2‖0
η(τ)‖L4

x(R2)‖
0
u(τ)‖L4

x(R2)

)
.µ ‖

0
η‖2L4

[0,t1]L
4
x

+ ‖0
η‖L4

[0,t1]L
4
x
‖0
u‖L4

[0,t1]L
4
x

.µ ‖
0
η‖2L4

[0,t1]L
4
x

+ ‖0
η‖L4

[0,t1]L
4
x

(4.38)

.µN
−s.(4.39)

From (4.29), (4.30), (4.31), (4.35), (4.36) and (4.39) we obtain

|E(ω1, v1)− E(
0
u(t1),

0
v(t1))| . N (−s)+ +N1−sN (−s/2)+

+N (1−s)N (−3s/2)+ +N (1−s)/2N (−3s/4)+
(
N (1−s) +N−s

)
+N−sN (−3s/2)+ +N−2s +N1−sN−s +N1−sN−s . N ((2−3s)/2)+ .(4.40)

Combining (4.27), (4.34) and (4.40), we get that

(4.41) E(ω1, v1) ≤ E(ω0, v0) + cN ((2−3s)/2)+ .

Also, observe that by conservation quantity (1.2) and Lemma 4.1, we have

(4.42) ‖ω1‖L2 ≤ ‖0
u(t1)‖L2 + ‖

0

ψ(t1)‖L2 ≤ ‖ω0‖L2 + cN−s ≤ ‖u0‖L2 + cN−s.
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Thus, the small condition (4.12) remains valid in the second iteration if

(4.43) 2c20‖ω1‖L2 ≤ 2c20(‖u0‖L2 + cN−s) < 1,

i.e., if 2c20cN
−s < 1 − 2c20‖u0‖L2 , which happens indeed if N is very large. Also

from (4.5), it follows that

(4.44) ‖v1‖L2 ≤ ‖0
v(t1)‖L2 + ‖0

z(t1)‖L2 ≤
√

2E(ω0, v0) + cN−s ≤ cN1−s.

The number of steps in the iteration is

T

t1
∼ TN2(1−s)+ .

Thus, by (4.27), we need that

TN2(1−s)+N ((2−3s)/2)+ < E(ω0, v0) ∼ N2(1−s),

which is posible if s > 2/3 and

N = N(T ) = T 2+/(3s−2), or equivalently T = N (3s−2)/(2+).

Observe also that the small condition remains valid in each iteration since, in similar
way as in (4.43), we have

TN2(1−s)+ 2c20cN
−s = N (3s−2)/(2+)N2(1−s)+ 2c20cN

−s = 2c20cN
(2−3s)/2

< 1− 2c20‖u0‖L2 ,(4.45)

and similarly as in (4.44)√
2E(ω0, v0) + TN2(1−s)+ cN−s ≤

√
2E(ω0, v0) +N (3s−2)/2+

N2(1−s)+ cN−s

≤ cN1−s,(4.46)

and the inequalities (4.45), (4.46) are true if N is very large and s > 2/3.

4.3. Proof of Lemma 4.1. First we will prove the inequality (4.37). Since
(4, 4) is an admissible pair of the group {eit∆/2}, by (4.20) and Prosition 2.4, it
follows that

‖0
η‖L4

[0,t1]L
4
x
≤ c ‖η0‖L2

x
+ ‖

0

ψ‖L4
t L4

x([0,t1]×R2).(4.47)

Moreover, Proposition 2.4, the equality (4.21) and the Hölder inequality show that

‖
0

ψ‖L4
t L4

x([0,t1]×R2) . ‖0
u

0
z +

0
η

0
v +

0
η

0
z‖

L
4/3
[0,t1]L

4/3
x

. ‖0
u‖L4

[0,t1]L
4
x
‖0
z‖L2

[0,t1]L
2
x

+ ‖0
η‖L4

[0,t1]L
4
x
‖0
v‖L2

[0,t1]L
2
x

+ ‖0
η‖L4

[0,t1]L
4
x
‖0
z‖L2

[0,t1]L
2
x
.(4.48)

By estimates (4.5) and (4.27), we get

(4.49) ‖0
v(t)‖L2

x
≤

√
2E(ω0, v0) . N1−s, t ≥ 0.
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Therefore, combining (4.28), (4.38), (4.48) and (4.49), we obtain

‖
0

ψ‖L4
[0,t1]L

4
x

. t
1/2
1 ‖0

z‖L∞[0,t1]L
2
x

+ t
1/2
1 ‖0

η‖L4
[0,t1]L

4
x
‖0
v‖L∞[0,t1]L

2
x

+ t
1/2
1 ‖0

η‖L4
[0,t1]L

4
x
‖0
z‖L∞[0,t1]L

2
x

. t
1/2
1 ‖0

η‖L4
[0,t1]L

4
x

(
N1−s + ‖0

η‖L4
[0,t1]L

4
x

+ ‖0
η‖2L4

[0,t1]L
4
x

)
.(4.50)

Note that t1/2
1 = N−(1−s)− , 1 � N . Thus, it follows from (4.47) and (4.50) that

‖0
η‖L4

[0,t1]L
4
x
≤ c ‖η0‖L2

x
+ c t

1/2
1 ‖0

η‖2L4
[0,t1]L

4
x

(
1 + ‖0

η‖L4
[0,t1]L

4
x

)
,

and from a standard continuity argument it follows that

(4.51) ‖0
η‖L4

t L4
x([0,t1]×R2) ≤ 2c ‖η0‖L2

x
. N−s.

Now we will prove the first inequality in (4.36). Since (∞, 2) and (4, 4) are admis-
sible pairs of the group {eit∆/2}, using (4.21), (4.48)-(4.51) it follows that

‖
0

ψ‖L2
x

. ‖0
u

0
z +

0
η

0
v +

0
η

0
z‖

L
4/3
[0,t1]L

4/3
x

. t
1/2
1 ‖0

η‖L4
[0,t1]L

4
x

(
N1−s + ‖0

η‖L4
[0,t1]L

4
x

+ ‖0
η‖2L4

[0,t1]L
4
x

)
. N−s.(4.52)

Finally we will prove the second inequality in (4.36). By Theorem 2.1, it follows
that

||∇
0

ψ(t)||L2
x(R2) ≤ c‖

0

ψ‖X1,b

≤ c‖0
u

0
z +

0
η

0
v +

0
η

0
z‖X1,b−1

= c sup
‖W‖X{−1,1−b}≤1

∣∣∣∣∣
∫

Rt×R2
x

(
0
u

0
z +

0
η

0
v +

0
η

0
z)W dxdt

∣∣∣∣∣
= c sup

‖W‖X{0,1−b}≤1

∣∣∣∣∣
∫

Rt×R2
x

D1
x(

0
u

0
z +

0
η

0
v +

0
η

0
z)W dxdt

∣∣∣∣∣ ,(4.53)

where (̂Ds
xf)(ξ) = 〈ξ〉sf̂(ξ), D1

x := Dx. Without loss of generality we only consider

the term with
0
u

0
z, because the estimates on the other terms in (4.53) are similar or

better. Using the Plancherel equality and the Hölder inequality, we have∣∣∣∣∣
∫

Rt×R2
x

Dx(
0
u

0
z)W dxdt

∣∣∣∣∣ ≤
∣∣∣∣∣
∫

Rt×R2
x

Dx(
0
u)

0
zW dx dt

∣∣∣∣∣ +

∣∣∣∣∣
∫

Rt×R2
x

0
uDx(

0
z)W dxdt

∣∣∣∣∣
≤ ‖0

z‖
L2+

t1
L2+

x
‖Dx(

0
u)‖L4

t1
L4

x
‖W‖

L4−
t1

L4−
x

+

∣∣∣∣∣
∫

Rt×R2
x

D1/2+

x (
0
z) D1/2−

x (W
0
u) dx dt

∣∣∣∣∣
≤ ‖0

z‖
L2+

t1
L2+

x
‖Dx(

0
u)‖L4

t1
L4

x
‖W‖

L4−
t1

L4−
x

+ ‖D1/2+

x (
0
z)‖L2

t1
L2

x
‖D1/2−

x (W
0
u)‖L2

t1
L2

x

:= I1 I2 I3 + I4 I5 .
(4.54)
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Now we will estimate all the terms in (4.54):
(1) Estimate of I5:

Observe that the local well-posedness theory in Theorem 4.1, the conservation
quantity (1.2) and a priori estimates (4.5) imply that

(4.55) ||ϑt1(t)
0
u(·, t)||X1,b

≤ c ‖ω0‖H1 + c ‖v0‖L2 ≤ cN1−s,

and

(4.56) ||ϑt1(t)
0
u(·, t)||X0,b

≤ c ‖ω0‖L2 + c ‖v0‖L2 ≤ c.

Using the Proposition 2.1 item (4), interpolation, (4.55) and (4.56), we have

I5 = ‖D1/2−

x (W
0
u)‖L2

t1
L2

x
≤ c ‖0

u‖X1/2,1/2+
‖W‖X0,1/2−

≤ c‖0
u‖1/2

X1,1/2+
‖0
u‖1/2

X0,1/2+

≤ cN (1−s)/2.

(2) Estimate of I3:
Using the Proposition 2.2 item ii) (because (4, 4) is an admisible pair) we have

‖W‖L4
x,t
≤ c ||W (·, t)||X0,1/2+

.

Interpolating this inequality with

‖W‖L2
x,t
≤ c ||W (·, t)||X0,0 ,

we obtain

I3 = ‖W‖
L4−

t1
L4−

x
≤ c ||W (·, t)||X0,1/2−

≤ c.(4.57)

(3) Estimate of I2:
To estimate I2 we also will use the Proposition 2.2 item ii). Thus

I2 = ‖Dx
0
u‖L4

t1
L4

x
≤ c ||ϑt1

0
u||X1,1/2+

≤ cN1−s.

(4) Estimate of I1 and I4:
By Theorem 4.2 and the bilinear estimates in Proposition 2.4 of Corcho, Oliveira

and Silva [9] for s > 1/2+ we have that

||ϑt1

0
z||Hs,1/2+

≤ c ‖η0‖Hs ≤ c‖u0‖Hs .(4.58)

From Gagliardo-Nirenberg inequality and (4.39), we get

I1 = ‖0
z‖

L2+
t1

L2+
x

= t
1/2+

1 ‖0
z‖L∞t1

L2+
x
≤ t

1/2
1 ‖0

z‖1−θ
L∞t1

L2
x
‖Ds

x

0
z‖θ

L∞t1
L2

x
.µ N

−1+
,

where 2θ = 0+/(2+). Finally, using interpolating and (4.58), we obtain

I4 = ‖D1/2+

x (
0
z)‖L2

t1
L2

x
≤ t

1/2
1 ‖Ds

x

0
z‖θ1

L∞t1
L2

x
‖0
z‖1−θ1

L∞t1
L2

x
≤ c t

1/2
1 ‖0

z‖1−θ1
L∞t1

L2
x

.µ N
(−1/2)+ ,

where sθ1 = (1/2)+.
Combining (4.53), (4.54) and the estimates on I1, ..., I5, we have

||∇
0

ψ(t)||L2
x(R2) ≤ cN (−s/2)+ .
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Remark 4.3. 1) By (4.4), the condition (4.12) can be replaced by the weaker
condition: √

2 c20||u0||L2
x
< 1.

2) The inequality (4.35) shows that a better estimate for ||∇
0

ψ(·)||L2
x

implies a
better GWP result.
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[1] J. Berg and J. Löfström, Interpolation spaces, Springer, Berlin, (1976).
[2] J. Bourgain, Fourier restriction phenomena for certain lattice subsets and applications to

nonlinear evolution equations. Parts I, II, Geometric and Funct. Anal., 3 (1993), 107–156,
209–262.

[3] J. Bourgain, Global solutions of nonlinear Schrödinger equations, American Mathematical
Society, Colloquium Publications, 46, (1999).
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