
Dynamics of PDE, Vol.17, No.2, 129-163, 2020

On coupled systems of PDEs with unbounded coefficients

Luciana Angiuli and Luca Lorenzi

Communicated by Y. Charles Li, received February 25, 2019.

Abstract. We study the Cauchy problem associated with parabolic systems
of the form Dtu = A(t)u in Cb(R

d;Rm), the space of continuous and bounded
functions f : Rd → Rm. Here A(t) is a coupled nonautonomous elliptic oper-
ator acting on vector-valued functions, having diffusion and drift coefficients
which change from equation to equation. We prove existence and uniqueness
of the evolution operator G(t, s) which governs the problem in Cb(R

d;Rm) and
its positivity. The compactness of G(t, s) in Cb(R

d;Rm) and some of its con-
sequences are also studied. Finally, we extend the evolution operator G(t, s)
to the Lp- spaces related to the so called “evolution system of measures” and
we provide conditions for the compactness of G(t, s) in this setting.
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1. Introduction

In the study of the diffusion processes, second-order elliptic operators with
unbounded coefficients appear naturally and the associated parabolic equation rep-
resents the Kolmogorov equation of the process. The theory of such equations is
now well developed in the scalar case as the systematic treatise of [17] and the
reference therein show. On the contrary, the literature on systems of parabolic
equations with unbounded coefficients is at a first stage and only some partial re-
sults are available. The interest in the study of systems is on one hand motivated
by the natural sake of extending the known results of the scalar case. On the other
hand, systems of parabolic equations with unbounded coefficients arise in many
applications. Among them we quote the study of backward-forward stochastic dif-
ferential systems, the study of Nash equilibria to stochastic differential games, the
analysis of the weighted ∂- problem in C

d, in the time-dependent Born-Openheimer
theory and also in the study of Navier-Stokes equations. We refer the reader to [2,
Section 6] and [7, 9, 12, 13, 15, 16].

One of the first papers concerning parabolic systems with unbounded coeffi-
cients is [14] where the authors prove that the realization Ap of the weakly cou-
pled elliptic operator Au = div(Q∇u) + F · ∇u + Cu in Lp(Rm;Rm) generates
a strongly continuous semigroup and they characterize its domain under suitable
assumptions on its coefficients. More precisely, they assume that the diffusion coef-
ficients Q = (qij) are uniformly elliptic and bounded together with their first-order
derivatives, the drift coefficient F and the potential V are sufficiently smooth and
allow to grow as |x| log |x| and log |x|, respectively, as |x| → +∞.

Next, first in [10] (in the weakly coupled case) and then in [2] (also in the
nonautonomous case), systems of parabolic equations with unbounded coefficients
coupled up to the first order have been studied in the space of bounded and contin-
uous functions over Rd, and existence and uniqueness results for a classical solution
to the associated Cauchy problem are established. This allows to introduce a vector-
valued semigroup T (t) (an evolution operator G(t, s) in the nonautonomous case)
in L(Cb(R

d;Rm)) associated with the operator A(t).
Taking advantage of the results in [2], the authors of [6] provide sufficient

conditions for the semigroup T (t) to admit a bounded extension to Lp(Rd;Rm).
Also some summability improving properties of the semigroup are studied. More
precisely, hypercontractivity estimates of the form ‖T (t)‖L(Lp(Rd;Rm),Lq(Rd;Rm)) ≤
cp,q(t) for any 1 ≤ p ≤ q ≤ +∞ and some positive function cp,q : (0,+∞) →
(0,+∞) are established. We stress that also the nonautonomous case is considered
in [6].

All the above papers have a common feature: the elliptic operators therein
considered have all the diffusion coefficients that do not change from equation to
equation, i.e.,

(A0u)k = Tr(QD2uk) +

d∑
i=1

(BiDiu)k + (Cu)k, k = 1, . . . ,m.

This form of the equations allows to extend easily the classical maximum principle
for systems with bounded coefficients, which in turn allows to prove the uniqueness
of the classical solution of the Cauchy problem associated with the operator A0 and
provides a comparison between the vector-valued semigroup T (t) associated with
A0 and the scalar semigroup T (t) associated with the operator A = Tr(QD2) +
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〈b,∇〉 for a suitable drift term b, i.e., it can be shown that there exists K ∈ R such
that

|T (t)f |2 ≤ eKtT (t)|f |2, f ∈ Cb(R
d;Rm), t > 0.

This is also the case considered in [4] where the matrices Bi split in two terms: the
leading one which is of diagonal type (like in the weakly coupled case) and the other
one whose growth at infinity is controlled by a power of the minimum eigenvalue
of the diffusion matrix.

In this paper, differently from the cases so far considered, we deal with nonau-
tonomous weakly coupled operators with diffusion and drift coefficients which may
vary from equation to equation, acting on a smooth function ψ as follows

(A(t)ψ)k(t, x) = Tr(Qk(t, x)D2ψk(x)) + 〈bk(t, x),∇ψk(x)〉+ (C(t, x)ψ(x))k,

for any (t, x) ∈ I × R and k = 1, . . . ,m, I being a right halfline (possibly I = R).
The form of the operator A(t) makes the associated Cauchy problem

(1.1)

{
Dtu = A(t)u, in (s,+∞)× R

d,

u(s, ·) = f ∈ Cb(R
d;Rm), in R

d,

quite involved. In particular, in this case we are not able to control the solution of
problem (1.1) in terms of a scalar semigroup. To overcome this difficulty we extend
to our situation a maximum principle for systems having bounded coefficients to the
case of unbounded coefficients assuming that the off-diagonal entries of the matrix
C are bounded from below and the sum of each row of the matrix C is bounded
from above. This yields the uniqueness of the classical solution to problem (1.1).

Once uniqueness is guaranteed, the existence of a classical solution of the prob-
lem (1.1) is then proved by some compactness and localization argument based
on interior Schauder estimates recalled in the Appendix. As a byproduct, we can
associate an evolution operator G(t, s) to A(t) in Cb(R

d;Rm), in the natural way.
The evolution operator G(t, s) is positive if the off-diagonal entries of C are

nonnegative and the system does not contain any subsystem which decouple, then
each component of G(·, s)f is strictly positive in (s,+∞) × R

d whenever f is a
nonnegative function which has at least a component that does not identically
vanish in R

d.
In [2] the authors study the compactness of the evolution operator G0(t, s)

(t > s ∈ I) in L(Cb(R
d;Rm)) showing that it is equivalent to the tightness of the

measures {|pij(t, s, x, ·)| : x ∈ R
d} for any i, j = 1, . . . ,m, where pij(t, s, x, ·) are

the transition kernels associated with the problem, i.e., for any f ∈ Cb(R
d;Rm),

s ∈ I and k = 1, . . . ,m

(G(t, s)f)k(x) =

m∑
i=1

∫
Rd

fi(y)pki(t, s, x, dy), (t, x) ∈ (s,+∞)× R
d.

This fact together with the pointwise estimate of |G(t, s)f |2 in terms of the scalar
evolution operator associated with the operator A, guarantees that the compactness
of the scalar evolution operator is a sufficient condition for the compactness of
G(t, s), hence the problem reduces to find conditions that ensure compactness in
the scalar case. We prove that, also in our case, the compactness of G(t, s) is
equivalent to the tightness of the transition kernels associated with the problem
(which are nonnegative measures if the off-diagonal entries of C are nonnegative).
On the other hand, the lack of a scalar evolution operator which “dominates”
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G(t, s) prevents us from applying the results of the scalar case. However, it is
possible to provide sufficient conditions for the compactness ofG(t, s) in Cb(R

d;Rm)
in terms of the existence of some Lyapunov functions, see Theorem 3.11. In this
case G(t, s) preserves neither C0(R

d;Rm) nor Lp(Rd;Rm) for p ∈ [1,+∞). Further,
assumptions on the coefficients ofA are provided in order that these spaces together
with the space C1

b (R
d;Rm) are preserved by the action of G(t, s).

Finally, we prove the existence of an evolution system of measures associated
with the evolution operatorG(t, s) consisting of positive measures (which are equiv-
alent to the Lebesgue one), where, according to the definition introduced in [3, 4],
a family {μi,t : t ∈ I, i = 1, . . . ,m} is an evolution system of measures if

m∑
j=1

∫
Rd

(G(t, s)f)jdμj,t =

m∑
j=1

∫
Rd

fjdμi,s, I 
 s < t,

for any f = (f1, . . . , fm) ∈ Cb(R
d;Rm), where (G(t, s)f)j denotes the j-th com-

ponent of the vector-valued function G(t, s)f . We prove that the evolution oper-
ator G(t, s) can be extended with a bounded operator mapping Lp

μs
(Rd;Rm) into

Lp
μt
(Rd;Rm) for any p ∈ [1,+∞) and provide sufficient conditions to be compact

from Lp
μs
(Rd;Rm) into Lp

μt
(Rd;Rm) for any p ∈ (1,+∞).

Notation. Vector-valued functions are displayed in bold style. Given a func-
tion f (resp. a sequence (fn)) as above, we denote by fi (resp. fn,i) its i-th
component (resp. the i-th component of the function fn). By Bb(R

d;Rm) we de-
note the set of all the bounded Borel measurable functions f : Rd → R

m, where
‖f‖2∞ =

∑m
k=1 supx∈Rd |fk(x)|2. For any k ≥ 0, Ck

b (R
d;Rm) is the space of all

f : Rd → R
m whose components belong to Ck

b (R
d), where the notation Ck(Rd)

(k ≥ 0) is standard and we use the subscripts “c”, “0” and “b”, respectively,
for spaces of functions with compact support, vanishing at infinity and bounded.
Similarly, when k ∈ (0, 1), we use the subscript “loc” to denote the space of all
f ∈ C(Rd) which are Hölder continuous in any compact set of Rd. We assume that
the reader is familiar also with the parabolic spaces Cα/2,α(I×R

d) (α ∈ (0, 1)) and
C1,2(I × R

d), and we use the subscript “loc” with the same meaning as above.
The symbols Dtf , Dif and Dijf , respectively, denote the time derivative, the

first-order spatial derivative with respect to the i-th variable and the second-order
spatial derivative with respect to the i-th and j-th variables. We write Jxu for the
Jacobian matrix of u with respect to the spatial variables, omitting the subscript x
when no confusion may arise. By ej we denote the j-th vector of the Euclidean basis
of Rm. 1l (resp. 0) denotes the m-valued function with entries all equal to 1l (resp.
0) where 1l is the function which is identically equal to 1 in R

d. For any function
f : Rd → R

m, we set f+ = f ∨0 and f− = f ∧0. Throughout the paper we denote
by c a positive constant, which may vary from line to line and, if not otherwise
specified, may depend on d and m. We write cδ when we want to stress that the
constant depends on δ. For any interval I ⊂ R, we set ΛI := {(t, s) ∈ I× I : t > s}.
Finally, we point out that all the inequalities which involve vector-valued functions
are intended componentwise.

2. Preliminary results

Let I be either an open right-interval or I = R and (A(t))t∈I be a family of
second order uniformly elliptic operators defined on smooth vector-valued functions



ON COUPLED SYSTEMS OF PDES WITH UNBOUNDED COEFFICIENTS 133

ψ : Rd → R
m by

(A(t)ψ)k(t, x) =Tr(Qk(t, x)D2ψk(x)) + 〈bk(t, x),∇ψk(x)〉+ (C(t, x)ψ(x))k,

=(Ak(t)ψk)(t, x) + (C(t, x)ψ(x))k(2.1)

for any t ∈ I and k = 1, . . . ,m. Fixed s ∈ I, we study the Cauchy problem

(2.2)

{
Dtu = A(t)u, in (s,+∞)× R

d,

u(s, ·) = f , in R
d.

for initial data which are vector-valued bounded and continuous functions f : Rd →
R

m. The standing hypotheses considered in the whole paper are the following.

Hypotheses 2.1.

(i) The coefficients qkij = qkji, b
k
j and the entries chk of the not identically vanishing

matrix-valued function C belong to C
α/2,α
loc (I × R

d) for some α ∈ (0, 1) and
each i, j = 1, . . . , d and h, k = 1, . . . ,m;

(ii) the infimum μ0
k over I ×R

d of the minimum eigenvalue μk(t, x) of the matrix
Qk(t, x) = (qkij(t, x)) is positive for any k = 1, . . . ,m;

(iii) there does not exist a nontrivial set K ⊂ {1, . . . ,m} such that the coefficients
cij identically vanish on I × R

d for any i ∈ K and j /∈ K;
(iv) for any J ⊂ I bounded, there exists a positive function ϕJ ∈ C2(Rd;Rm),

blowing up componentwise as |x| tends to +∞ such that (A(t)ϕJ)(x) ≤
λJϕJ(x) for any t ∈ J , x ∈ R

d and some positive constant λJ ;
(v) the off-diagonal entries of the matrix-valued function C are bounded from

below on R
d and the sum of the elements on each row of C is a bounded from

above function on R
d.

Remark 2.2. Some comments on the set of our assumptions are in order.
Hypotheses 2.1(i) and (ii) are a standard regularity assumption on the coefficients
of the operator (2.1) and a standard uniform ellipticity hypothesis on the diffusion
matrices Qk, k = 1, . . . ,m.
We consider weakly-coupled systems of parabolic equations and Hypothesis 2.1(iii)
is a condition on the entries of the matrix-valued function C which guarantees
that the differential system in (2.2) does not contain subsystems with less than m
unknowns.
Hypothesis 2.1(iv) is the vector-valued version of the scalar one which requires the
existence of a Lyapunov function for the scalar elliptic operator associated with
the problem. This is a typical request when dealing with parabolic problems with
unbounded coefficients since it allows to prove a variant of the classical maximum
principle.
Also Hypothesis 2.1(v) is finalized to prove a maximum principle when, as in our
case, the diffusion coefficients and the drift terms can change from line to line. We
point out that the assumptions considered here do not imply that the quadratic
form associated with the matrix-valued function C is bounded from above in R

d.
Indeed, if

C(x) = (|x|+ 1)

⎛⎜⎜⎝
−4 1 2 1
1 −3 1 0
0 1 −1 0
0 2 0 −2

⎞⎟⎟⎠ , x ∈ R
d,
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then condition (v) in Hypothesis 2.1 is satisfied. However, the matrix C(0)+C(0)∗

has a positive eigenvalue γ. Thus, if ξ denotes a unit eigenvector associated with
γ, then 〈C(x)ξ, ξ〉 = γ(|x|+ 1) for any x ∈ R

d.
On the other hand we can find out matrices whose associated quadratic form

is non positive definite on R
d which do not satisfy Hypothesis 2.1(v). Consider for

instance the matrix-valued function C defined by

C(x) = (|x|+ 1)

⎛⎜⎜⎝
−4 0 2 1
0 −3 1 0
0 1 −1 0
1 2 0 −2

⎞⎟⎟⎠ , x ∈ R
d,

and notice that the sum of the terms on the last row is positive.
We point out that if C is symmetric, the off-diagonal entries of the matrix-valued
function C are nonnegative and the sum of each row of C is nonpositive then the
quadratic form associated with the matrix-valued function C is nonpositive. This
is an immediate consequence of the Gershgorin’s theorem related to the localization
of the spectrum of C.

In order to deduce uniqueness of a classical solution to problem (2.2) we prove
a variant of the classical maximum principle which holds under more restrictive
assumptions on the entries of the matrix-valued function C and whose proof is
deeply based on the existence of the Lyapunov function in Hypothesis 2.1(iv).

Theorem 2.3. Let us assume that Hypotheses 2.1(i)-(iv) hold true. Further
suppose that the off-diagonal entries of the matrix-valued function C are nonneg-
ative and the sum of each row of C is nonpositive. Then, for any T > s ∈ I, if
u ∈ Cb([s, T ]× R

d;Rm) ∩ C1,2((s, T ]× R
d;Rm) satisfies{

Dtu−A(t)u ≤ 0, in (s, T ]× R
d,

u(s, ·) ≤ 0, in R
d,

then u ≤ 0 in [s, T ]× R
d.

Proof. For each n ∈ N we introduce the vector valued function vn defined by

vn(t, x) := u(t, x)− 1

n
eλ0(t−s)ϕ(x), (t, x) ∈ [s, T ]× R

d,

where λ0 is a constant larger than λ[s,T ] and ϕ = ϕ[s,T ]. Note that, for any t ∈ (s, T ]
and k = 1, . . . ,m,

Dtvn,k(t, ·)− (A(t)vn)k(t, ·) =Dtuk(t, ·)− (A(t)u)k(t, ·)
+

1

n
eλ(t−s)

(
(A(t)ϕ)k − λϕk

)
< 0,(2.3)

due to Hypotheses 2.1(iii),(v).
Let us prove that vn(t, x) < 0 for every (t, x) ∈ [s, T ] × R

d and n ∈ N, or
equivalently, that En = {t ∈ [s, T ] : vn(t, x) < 0 for every x ∈ R

d} = [s, T ]. Note
that En �= ∅ since vn(s, x) < 0 for any x ∈ R

d. Moreover, En contains a right-
neighborhood of t = s. Indeed, by continuity, for any R > 0 there exists δR > 0
such that vn < 0 in [s, s + δR] × BR. Since vn tends to −∞, uniformly with
respect to t ∈ [s, T ] as |x| → +∞, there exists R0 > 0 such that vn is negative
in [s, T ] × (Rd \ BR0). Thus, En contains the interval [s, s + δR0 ]. The previous
argument also shows that En is an interval.
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Denote by tn the supremum of En and assume by contradiction that t̄n < T . By
continuity vn(t̄n, ·) ≤ 0 in R

d, and by definition of t̄n there exist kn ∈ {1, . . . ,m} and
x̄n ∈ R

d such that vn,kn(t̄n, x̄n) = 0. Since vn(t, x) ≤ 0 for every t ≤ t̄n and x ∈ R
d

it follows that x̄n is a maximum point for vn,kn
(t̄n, ·) and Dtvn,kn

(tn, xn) ≥ 0.
Hence,

Dtvn,kn(t̄n, x̄n)−
d∑

i,j=1

qkn
ij Dijvn,kn(t̄n, x̄n)−

d∑
i=1

bkn
i Divn,kn(t̄n, x̄n) ≥ 0,(2.4)

and, since ckn,i ≥ 0 for every i �= kn (see Hypothesis 2.1(iii)),
m∑
i=1

ckn,ivn,i(t̄n, x̄n) =

m∑
i=1
i �=kn

ckn,ivn,i(t̄n, x̄n) ≤ 0.(2.5)

Estimates (2.4) and (2.5) contradict (2.3). Thus we get vn(t, x) < 0 for any (t, x) ∈
[s, T ]×R

d and n ∈ N. Consequently, letting n → +∞, we infer that u(t, x) ≤ 0 for
every (t, x) ∈ [s, T ]× R

d. �
Theorem 2.4. Under Hypotheses 2.1, for any f ∈ Cb(R

d;Rm) and s ∈ I,
the Cauchy problem (2.2) admits a unique solution u which belongs to Cb([s, T ] ×
R

d;Rm)∩C
1+α/2,2+α
loc ((s,+∞)×R

d;Rm) for any T > s and it satisfies the estimate

(2.6) ‖u(t, ·)‖∞ ≤ eK(t−s)‖f‖∞, t > s,

for some positive constant K (explicitely determined in the proof ).

Proof. We split the proof into two steps. In the first one we consider the case
when the off-diagonal elements of the matrix C are nonnegative and the sum of the
elements of each row of C is nonpositive. In the second step we address the general
case.

S tep 1. To begin with, we prove that, if u in Cb([s, T ]×R
d)∩C1,2((s, T )×R

d)
is a solution to problem (2.2), then it is unique and satisfies the estimate

|ui(t, x)| ≤ max
k=1,...,m

‖fk‖∞(2.7)

for every (t, x) ∈ [s, T ]×R
d and i = 1, . . . ,m. For this purpose, it suffices to apply

Theorem 2.3 to the function

v := u− max
k=1,...,m

‖fk‖∞1l.

Indeed, clearly v ∈ Cb([s, T ]× R
d;Rm) ∩ C1,2((s, T ]× R

d;Rm) and

v(s, x) = u(s, x)− max
k=1,...,m

‖fk‖∞1l = f(x)− max
k=1,...,m

‖fk‖∞1l ≤ 0,

for any x ∈ R
d. Moreover, for any k = 1, . . . ,m,

Dtvk − (A(t)v)k =Dtuk − (A(t)u)k + max
j=1,...,m

‖fj‖∞
m∑
i=1

cki

= max
j=1,...,m

‖fj‖∞
m∑
i=1

cki ≤ 0,

due to the fact that
∑m

i=1 cki ≤ 0 in (s, T ] × R
d for any k = 1, . . . ,m. Hence,

Theorem 2.3 implies that v ≤ 0 in [s, T ] × R
d and the claim is so proved. By the

arbitrariness of T > s we get uniqueness in [s,+∞)× R
d.
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To prove the existence part let us consider the unique classical solution un to
the Dirichlet problem⎧⎪⎨⎪⎩

Dtun(t, x) = (A(t)un)(t, x) t > s, x ∈ Bn

un(t, x) = 0 t > s, x ∈ ∂Bn

un(0, x) = f(x) x ∈ Bn,

(see [11]). By [19, Theorem 8.15], un satisfies (2.7) for any n ∈ N, i.e.,

‖un,i‖∞ ≤ max
k=1,...,m

‖fk‖∞(2.8)

holds true for any n ∈ N and i = 1, . . . ,m. The interior Schauder estimates
in Theorem 7.2 together with estimate (2.8) guarantee that the sequence (un) is
bounded in C1+α/2,2+α(E;Rm) where E is any compact subset of (s,+∞) × R

d.
Classical arguments involving the Ascoli–Arzelà theorem and a diagonal procedure
allow us to determine a sequence (unj

) ⊂ (un) converging in C1,2(E;Rm) to a

function u belonging to Cb((s,+∞) × R
d;Rm) ∩ C

1+α/2,2+α
loc ((s,+∞) × R

d;Rm).
Clearly u solves the differential equation in (2.2) and estimate (2.7). To prove the
claim we need to show that u is continuous at t = s where equals f . For this
purpose, we fix R ∈ N and let θR be any smooth function such that χBR−1

≤ θR ≤
χBR

. For any j ∈ N such that nj ≥ R we set vj = θRunj . Note that vj belongs to

C([s, T ]×BR;R
m) ∩ C1,2((s, T ]×BR;R

m) and satisfies the problem⎧⎪⎨⎪⎩
Dtvj(t, x)−A(t)vj(t, x) = gj(t, x), (t, x) ∈ (s, T ]×BR,

vj(t, x) = 0, (t, x) ∈ (s, T ]× ∂BR,

vj(s, x) = θR(x)f(x), x ∈ BR,

where gj,k = −2〈Qk∇unj ,k,∇θR〉 − unj ,kAkθR. Since all the hypotheses in Propo-
sition 7.1 are satisfied, by using (7.1) and (2.8) we get

|gj(t, x)| ≤ KR

(
1 +

1√
t− s

)
max

k=1,...,m
‖fk‖∞

for every (t, x) ∈ (s, s+ 1)×BR and any nj > R, where KR is a positive constant
independent of j. We can write vj by means of the variation-of-constants formula

vj(t, x) = (GD
R (t, s)(θRf))(x) +

∫ t

s

(GD
R (t, r)gj(r, ·))(x)dr t ∈ [s, T ], x ∈ BR,

where GD
R (t, s) denotes the evolution operator associated with A(t) in Cb(BR;R

m)
with homogeneous Dirichlet boundary conditions. Recalling that vj = unj in BR−1,
we get

|unj
(t, ·)− f | ≤ |GD

R (t, s)(θRf)− f |+K ′
R

√
t− s‖f‖∞

in BR−1 for any t ∈ (s, s + 1), where K ′
R is a positive constant independent of j.

Now, letting j tend to +∞ and, then, t to s+, we conclude that u is continuous on
{s} ×BR−1. The arbitrariness of R yields the claim.

Step 2. Now, we consider the general case and prove the claim by using a
perturbation argument. We introduce the m × m matrix C with entries cij =
infI×Rd cij , if i �= j, and cii = supI×Rd

∑m
k=1 cik − ∑

k �=i cik, and note that the
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Cauchy problem (2.2) can be written as follows:{
Dtu = A0(t)u+ Cu, in (s,+∞)× R

d,

u(s, ·) = f , in R
d,

where A0 := A − C and the off-diagonal elements of the potential of A0 are
nonnegative, whereas the sum of each row is nonpositive. The existence part can
be obtained arguing as in Step 1. Indeed, observing that for any n ∈ N, the

function un satisfies the uniform estimate ‖un(t, ·)‖∞ ≤ e‖C‖(t−s)‖f‖∞ for any
t > s, we can prove that problem (2.2) admits a solution u which belongs to

Cb([s, T ]×R
d;Rm)∩C

1+α/2,2+α
loc ((s,+∞)×R

d;Rm) for any T > s. Moreover, (2.6)

holds true with K = ‖C‖.
To prove the uniqueness of the solution, it suffices to point out that any solution

u to the problem (2.2) which belongs to Cb([s, T ]×R
d;Rm)∩C

1+α/2,2+α
loc ((s,+∞)×

R
d;Rm) for each T > s can be written as follows

(2.9) u(t, ·) = G0(t, s)f +

∫ t

s

G0(t, r)(Cu(r, ·)))dr,

where {G0(t, s) : t ≥ s ∈ I} denotes the contractive evolution operator associated
with A0 in Cb(R

d;Rm). Formula (2.9) and the Gronwall Lemma yield immediately

that ‖u(t, ·)‖∞ ≤ e‖C‖(t−s)‖f‖∞ for every t > s, whence uniqueness follows. �
As a consequence of Theorem 2.4 we can define a family of bounded operators

{G(t, s)}t≥s∈I on Cb(R
d;Rm) by setting G(t, s)f = u(t, ·) for any t > s ∈ I, where

u is the unique solution to the Cauchy problem (2.2) with f ∈ Cb(R
d;Rm).

Remark 2.5. We stress that the solution u of the problem (2.2) could be also
approximated by the solution to the Neumann-Cauchy problem⎧⎪⎨⎪⎩

Dtun(t, x) = (A(t)un)(t, x) t > s, x ∈ Bn

〈∇xun(t, x), ν(x)〉 = 0 t > s, x ∈ ∂Bn

un(0, x) = f(x) x ∈ Bn

where ν is the unit normal exterior vector to ∂Bn which is governed by the Neumann
evolution operator GN

n (t, s). Also in this case the sequence (GN
n (·, s)f) converges

to u in C1,2(E,Rm) for any compact set E ⊂ (s,+∞)× R
d.

Here, we list some continuity properties of the evolution operator G(t, s) to-
gether with an integral representation formula. The proof of these results can be
obtained arguing as in [2, Proposition 3.2 & Theorem 3.3].

Theorem 2.6. If (fn) is a bounded sequence of functions in Cb(R
d;Rm) then

the following properties hold true:

(i) if fn converges pointwise to f ∈ Cb(R
d;Rm), then G(·, s)fn converges to

G(·, s)f in C1,2(E) for any compact set E ⊂ (s,+∞)× R
d;

(ii) if fn converges to f locally uniformly in R
d, then G(·, s)fn converges to

G(·, s)f locally uniformly in [s,+∞)× R
d.

Moreover, there exists a family of finite Borel measures {pij(t, s, x, dy) : t > s ∈
I, x ∈ R

d, i, j = 1, . . . ,m} such that

(2.10) (G(t, s)f(x))k =

m∑
i=1

∫
Rd

fi(y)pki(t, s, x, dy), f ∈ Cb(R
d;Rm).
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Finally, through formula (2.10) G(t, s) can be extended to Bb(R
d;Rm) with a strong

Feller evolution operator.

Now we are interested in finding conditions which ensure the positivity of the
evolution operatorG(t, s) in Cb(R

d;Rm) in the sense that, if f ∈ Cb(R
d;Rm) has all

nonnegative components, then the function G(t, s)f has nonnegative components
as well, for any t > s. Weakly coupled operators with the same principal part have
been considered in [3] extending the result proved in [18] for operators with bounded
coefficients. Similar results can be proved also in the case considered here, where,
an additional assumption on the matrix-valued function C guarantees also the strict
positivity (with the obvious meaning) of the evolution operator G(t, s). In what
follows, in order to simplify the notation we set Îi := {j ∈ N, 1 ≤ j ≤ m, j �= i}.

Hypotheses 2.7. The off-diagonal entries of the matrix-valued function C are
nonnegative.

Proposition 2.8. Under Hypotheses 2.1 and 2.7, if f ∈ Cb(R
d;Rm) has all

nonnegative components and it has at least a component which does not identically
vanish in R

d then (G(t, s)f)j > 0 in R
d for any t > s and j = 1, . . . ,m. Conse-

quently, for any i, j = 1, . . . ,m, t > s ∈ I and x ∈ R
d, each measure pij(t, s, x, ·) is

positive and equivalent to the Lebesgue measure.

Proof. We split the proof into three steps.
Step 1. Here, for each k = 1, . . . ,m and i ∈ N, we introduce the sets Hi

k,
defined by{

H0
k = {j ∈ {1, . . . ,m} \ {k} : cjk �≡ 0 in I × R

d},
Hi

k = {j ∈ {1, . . . ,m} \ {k} ∪⋃i−1
r=0 H

r
k : ∃l ∈ Hi−1

k s.t. cjl �≡ 0 in I × R
d},

and prove that, for each k, there exists mk < m such that Hi
k �= ∅ (i = 1, . . . ,mk)

and {1, . . . ,m} \ {k} =
⋃mk

i=0 H
i
k.

Let us fix k ∈ {1, . . . ,m} and suppose, by contradiction, that H0
k = ∅. This

would imply that cjk = 0 for any j �= k. Clearly this condition contradicts Hypoth-

esis 2.1(iii), taking K = {k}. Let us now fix r > 0 such that
⋃r

j=0 H
j
k is properly

contained in the set {1, . . . ,m} \ {k} and prove that Hr+1
k �= ∅. On the contrary,

let us assume that Hr+1
k = ∅. This means that, for any i /∈ H0

k ∪ · · ·Hr
k ∪ {k} and

 ∈ Hr
k , ci� identically vanishes in I × R

d. By the definitions of Hi
k, i = 0, . . . , r,

it follows that cij identically vanishes in I × R
d for any j ∈ {k} ∪H0

k ∪ · · ·Hr−1
k .

Summing up we conclude that cij ≡ 0 in I × R
d for any j ∈ {k} ∪ H0

k ∪ · · ·Hr
k

and i /∈ {k} ∪ H0
k ∪ · · ·Hr

k contradicting again Hypothesis 2.1(iii), taking K =
{k} ∪H0

k ∪ · · ·Hr
k . The second statement now follows immediately.

Step 2. Here, we prove the first part of the claim. Let f ∈ Cb(R
d;Rm) be

such that fk does not identically vanish in R
d and let us show that (GD

n (t, s)f)j
is positive in R

d for any t > s ∈ I and j ∈ {1, . . . ,m}. Then, letting n tends
to infinity we get the claim by monotonicity. Let us consider first the case j = k
and let GD

n,k(t, s) be the evolution operator associated with the operator Ak + ckk

in C(Bn) with homogeneous Dirichlet boundary conditions. Since GD
n,k(t, s) is

irreducible, it is known that GD
n,k(t, s)fk > 0 in R

d for any t > s. Taking into

account that (GD
n (·, s)f)j is nonnegative in (s,+∞) × Bn for any j ∈ {1, . . . ,m}

(see [3, Proposition 2.8] with the obvious changes) and that the off-diagonal entries
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of C are nonnegative functions, using a scalar maximum principle we deduce that

(2.11) (GD
n (t, s)f)k)(x) ≥ (GD

n,k(t, s)fk)(x) > 0, (t, x) ∈ (s,+∞)×Bn.

Now, we fix j ∈ {1, . . . ,m} \ {k}. Clearly, if fj does not identically vanish the
claim follows immediately arguing as above. Hence, let us assume that fj ≡ 0

in R
d. Since j belongs to

⋃m
r=0 H

r
k and Hi

k ∩ Hj
k = ∅ for i �= j, there exists

a unique r ∈ {0, . . . ,mk} such that j ∈ Hr
k . Now, if r = 0 then cjk does not

identically vanish in I × R
d and, since un

j := (GD
n (·, s)f)j satisfies the equation

Dtu
n
j = Aju

n
j + cjju

n
j +

∑
h �=j cjhu

n
h in (s,+∞)×Bn, we get

un
j (t, ·) = GD

n,j(t, s)fj +
∑
i �=j

∫ t

s

GD
n,j(t, r)(cji(r, ·)un

i (r, ·))dr

=
∑
i �=j

∫ t

s

GD
n,j(t, r)(cji(r, ·)un

i (r, ·))dr

≥
∫ t

s

GD
n,k(t, r)(cjk(r, ·)un

k (r, ·))dr(2.12)

and the last side of (2.12) is strictly positive in R
d for any t > s ∈ I. Otherwise if

r > 0, then by definition of Hr
k , we deduce that there exists 1 ∈ Hr−1

k such that

cj�1 does not identically vanish in I×R
d. Iterating this argument we conclude that

for any h ≤ r there exist h ∈ Hr−h
k such that c�h−1�h does not identically vanish in

I × R
d. In particular, since r ∈ H0

k , c�r−1�r �≡ 0 in I × R
d and, consequently c�rk,

does not identically vanish in I×R
d. The above arguments imply that (GD

n (·, s)f)�r
is positive in (s,+∞) × R

d. But, again, since c�r−1�r �≡ 0 in I × R
d we get that

(GD
n (·, s)f)�r−1 is positive in (s,+∞) × R

d. Iterating this procedure we finally

conclude that (GD
n (·, s)f)j is positive in (s,+∞)×R

d. As a byproduct we deduce
that for any t > s, x ∈ R

d and i, j = 1, . . . ,m the measure pij(t, s, x, dy) is positive.
Indeed, pij(t, s, x,R

d) = (G(t, s)ej)i(x) > 0.
Step 3. Here we prove that the measures {pij(t, s, x, dy) : t > s, x ∈ R

d, i, j =
1, . . . ,m} are equivalent to the Lebesgue measure. Arguing as in [2, Theorem
3.3] it can be proved that if A is a Borel set with null Lebesgue measure then
G(t, s)(χAej)(x) = 0 for any t > s, x ∈ R

d and j = 1, . . . ,m. Consequently, since

(2.13) pij(t, s, x, A) = (G(t, s)(χAej))i(x),

each pij(t, s, x, dy) is absolutely continuous with respect to the Lebesgue measure.
On the other hand, let us assume that pij(t, s, x, A) = 0 for any i, j, t, s and x as
above and prove that the Lebesgue measure of A is zero. Suppose, by contradic-
tion, that this measure is positive. Then, the strong Feller property of GD

n (t, s)
and GD

n,k(t, s) allows to extend estimate (2.11) to any bounded Borel function. In

particular (GD
n (t, s)χAej)j ≥ GD

n,j(t, s)χA for any t > s and j = 1, . . . ,m. Let-
ting n → +∞ we infer that (G(t, s)χAej)j ≥ Gj(t, s)χA > 0 for any t > s. The
vector-valued function G(t, s)(χAej) is the unique solution to the Cauchy problem{

Dtu = A(t)u, (s+ ε,+∞)× R
d,

u(s+ ε, ·) = G(s+ ε, s)(χAej), R
d

for any ε > 0. Thus, since G(s+ ε, s)(χAej) is a bounded, continuous, nonnegative
and not identically vanishing function, by the first part of the proof we conclude that
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(G(t, s)(χAej))i is positive for any t > s and i = 1, . . . ,m contradicting formula
(2.13). �

3. Compactness of G(t, s) in the space of continuous functions

In this section we prove some compactness results for the evolution operator
G(t, s) in the space of continuous and bounded functions. The main results are
stated in Theorems 3.8 and 3.11. More precisely, the first theorem provides us
with sufficient conditions for the evolution operator G(t, s) to be locally compact
in Cb(R

d;Rm) uniformly with respect to t > s ∈ I, in the sense that for any s ∈ I
and (fn)n ⊂ Cb(R

d;Rm), the sequence (G(·, s)fn)n admits a subsequence which
converges uniformly in (t0,+∞) × Bk for any k > 0 and some t0 ≥ s ∈ I. The
second result is concerned with the compactness of the evolution operator G(t, s)
in Cb(R

d;Rm) for (t, s) ∈ ΛJ and bounded J ⊂ I. To prove these results we need
to straighten the hypotheses on the coefficients of the operator (2.1).

Hypotheses 3.1. (i) For any bounded interval J ⊂ I there exist m-nonneg-
ative functions ψJ

k ∈ C2(Rd) (k = 1, . . . ,m), blowing up as |x| → +∞, a real
constant δJ > 0 such that

(Ak(t)ψ
J
k )(x) ≤ δJψ

J
k (x), t ∈ J, x ∈ R

d, k = 1, . . . ,m;

(ii) the sum of the elements of each row of the matrix-valued function C is non-
positive in R

d.

Lemma 3.2. Under Hypotheses 2.1(i)-(iii), 2.7 and 3.1, for any x ∈ R
d and f ∈

C2
b (R

d;Rm) constant and nonnegative outside a ball, the function (G(t, ·)A(·)f)(x)
is locally integrable in I ∩ (−∞, t] and

(3.1) (G(t, s1)f)(x)− (G(t, s0)f)(x) ≥ −
∫ s1

s0

(G(t, σ)A(σ)f)(x)dσ

for any s0 ≤ s1 ≤ t and x ∈ R
d.

Proof. First of all, we show that

(3.2) (G(t, s1)f)(x)− (G(t, s2)f)(x) = −
∫ s2

s1

(G(t, σ)A(σ)f)(x)dσ

for any f ∈ C2
c (R

d;Rm). To this aim, let us consider the evolution operatorGD
n (t, s)

associated with A in Cb(Bn;R
m) with homogeneous Dirichlet boundary conditions.

It is well known that, for any f ∈ C2
c (R

d;Rm) and n sufficiently large such that
supp(fi) ⊂ Bn for any i = 1, . . . ,m, it holds that

(GD
n (t, s1)f)(x)− (GD

n (t, s2)f)(x) = −
∫ s2

s1

(GD
n (t, σ)A(σ)f)(x)dσ

for any s0 ≤ s1 ≤ t and x ∈ R
d. Since the function A(σ)f ∈ Cb(R

d;Rm) for any
σ ∈ [s1, s2], using the approximation arguments in the proof of Theorem 2.4, we
can let n tend to +∞ and deduce (3.2), by the dominated convergence theorem.

Now, let f be as in the statement. Thanks to (3.2) and to the linearity of
G(t, s), we can limit ourselves to proving (3.1) for f = 1l. First, assume that all
the entries of the matrix-valued function C are bounded in J ×R

d for any bounded
J ⊂ I. In this case, since 1l belongs to the domain of the generator of the evolution
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operator GN
n (t, s) associated with A in Cb(Bn;R

m) with homogeneous Neumann
boundary conditions, it follows that

(GN
n (t, s1)1l)(x)− (GN

n (t, s2)1l)(x) = −
∫ s2

s1

(GN
n (t, σ)(C(σ, ·)1l))(x)dσ.

By Remark 2.5, estimate (2.7) and the dominated convergence theorem we get

(G(t, s1)1l)(x)− (G(t, s2)1l)(x) = −
∫ s2

s1

(G(t, σ)(C(σ, ·)1l))(x)dσ.

Finally, if the matrix-valued function C is unbounded, we can consider a se-
quence of functions ϑn ∈ Cc(R

d) such that χBn
≤ ϑn ≤ χBn+1

for any n ∈ N,
and set Cn = ϑnC for any n ∈ N. Clearly, thanks to Hypothesis 3.1, for any
n ∈ N the operator An(t) = A(t)−C(t, ·)+Cn(t, ·) satisfies Hypotheses 2.1. Thus,
we can consider the positive evolution operator Gn(t, s) associated with An in
Cb(R

d;Rm). Since Cm ∈ C(I;Cc(R
d;Rm)) and, by Hypothesis 3.1(ii), Cm1l ≤ Cn1l

for any m > n we can estimate

(Gm(t, s1)1l)(x)− (Gm(t, s2)1l)(x) =−
∫ s2

s1

(Gm(t, σ)(Cm(σ, ·)1l))(x)dσ

≥−
∫ s2

s1

(Gm(t, σ)(Cn(σ, ·)1l))(x)dσ(3.3)

for any m > n, m ∈ N. We now observe that Gm(t, s)f converges to G(t, s)f
pointwise in R

d, for any I ∈ s < t, as m → +∞ for any f ∈ Cb(R
d,Rm). Indeed,

the Schauder estimates in Theorem 7.2 show that there exists a subsequence (mk)
such that Gmk

(·, s)f converges to a function v ∈ C1,2((s,+∞)×R
d;Rm). Function

v is bounded since each Gm(·, s)f is bounded in (s,+∞)×R
d. To identify v with

G(·, s)f , we need to show that v can be extended by continuity on {s} × R
d,

where it equals f . For this purpose, we start considering f ∈ C2
c (R

d;Rm) and note
that formula (3.2) holds true with the evolution operator G(t, s) being replaced by
Gm(t, s). From that formula it is clear that

‖Gmk
(t, s)f − f‖∞ ≤ c(t− s)‖f‖∞, t > s.

Letting k tend to +∞, the continuity of v at t = s follows at once. The above
arguments also show that from any subsequence of (Gm(·, s)f) we can extract
a subsequence which converges (locally uniformly on (s,+∞) × R

d) to G(·, s)f .
Thus, all the sequence (Gm(·, s)f) converges to G(·, s)f as m → +∞. A density
argument shows that v is continuous on {s} × R

d, where it equals f , also when f
is continuous in R

d with compact support. Moreover, all the sequence (Gm(·, s)f)
converges to G(·, s)f as m → +∞. For a general f ∈ Cb(R

d), we fix M > 0
and a smooth function ϑ such that χBM

≤ ϑ ≤ χB2M
. We split Gm(t, s)f =

Gm(t, s)(ϑf) +Gm(t, s)((1− ϑ)f). Since Gm(t, s) is a positive evolution operator
and −(1− ϑ)‖f‖∞1 ≤ (1− ϑ)f ≤ (1− ϑ)‖f‖∞1 componentwise, we can estimate

|Gm(t, s)((1− ϑ)f)| ≤‖f‖∞Gm(t, s)((1− ϑ)1) = ‖f‖∞[Gm(t, s)1−Gm(t, s)(ϑ1)]

≤‖f‖∞[1−Gm(t, s)(ϑ1)],

where we have used Theorem 2.3 to derive the last inequality. Thus,

|Gmk
(t, s)f − f | ≤ |Gmk

(t, s)(ϑf)− f |+ ‖f‖∞[1−Gmk
(t, s)(ϑ1)].
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Letting k tend to +∞, we obtain

|v(t, ·)− f | ≤ |Gmk
(t, s)(ϑf)− f |+ ‖f‖∞[1−G(t, s)(ϑ1)].

From this inequality, it follows that v tends to f as t → s+, uniformly with respect
to x ∈ BM . The arbitrariness of M > 0 allows us to conclude that v = G(·, s)f as
claimed.

Now, we can let m tend to +∞ in (3.3) and get

(G(t, s1)1l)(x)− (G(t, s2)1l)(x) ≥−
∫ s2

s1

(G(t, σ)(Cn(σ, ·)1l))(x)dσ.

Since G(t, s) is a positive operator and the sequence (Cn1l) is decreasing compo-
nentwise, we can apply twice the monotone convergence theorem to pass to the
limit as n → +∞ and get

(G(t, s1)1l)(x)− (G(t, s2)1l)(x) ≥−
∫ s2

s1

(G(t, σ)(C(σ, ·)1l))(x)dσ.

The proof is complete. �

Hypotheses 3.3. There exist a nonnegative function ϕ ∈ C2(Rd), blowing up
as |x| → +∞, constants a, c > 0 and t0 ∈ I such that

(A(t)(ϕ1l))(x) ≤ (a− cϕ(x))1l, t ≥ t0, x ∈ R
d.

Remark 3.4. Note that under Hypothesis 3.1(ii), Hypotheses 3.1(i) and 3.3
are both satisfied if there exists a nonnegative function ϕ ∈ C2(Rd), blowing up as
|x| → +∞ and constants a, c > 0, t0 ∈ I such that (Ai(t)ϕ)(x) ≤ a− cϕ(x) for any
t ≥ t0 ∈ I, x ∈ R

d and i = 1, . . . ,m.

Lemma 3.5. Let the assumptions of Lemma 3.2 and Hypothesis 3.3 be satisfied.
Then, the function G(t, s)(ϕ1l) is well defined for any t0 ≤ s ≤ t ∈ I. Moreover, for
any fixed x ∈ R

d, the function (t, s) �→ (G(t, s)(ϕ1l))(x) is bounded in Λ0 = {(t, s) ∈
I × I : t0 ≤ s ≤ t} and satisfies the inequality (G(t, s)(ϕ1l))(x) ≤ ((ϕ+ ac−1)1l)(x)
for any x ∈ R

d and (t, s) ∈ Λ0.

Proof. First we prove that the function G(t, s)(ϕ1l) is well defined in R
d for

any t > s ≥ t0. To this aim, for any n ∈ N choose ψn ∈ C2([0,+∞)) such that

(i) ψn(x) = x for x ∈ [0, n];
(ii) ψn(x) = n+ 1/2 for x ≥ n+ 1;
(iii) 0 ≤ ψ′n ≤ 1 and ψ′′n ≤ 0.

Note that the previous conditions imply that ψ′n(x)x ≤ ψn(x) for any x ∈ [0,+∞).
Moreover, since the functions ϕn = ψn ◦ ϕ belong to C2

b (R
d) and are constant

outside a compact set, Lemma 3.2 and the nonnegativity of G(t, s) yield

ϕn(x) ≥ ϕn(x)− (G(t, s)ϕn1l)i(x)

≥ −
∫ t

s

(G(t, σ)A(σ)ϕn1l)i(x)dσ

= −
m∑
j=1

∫ t

s

∫
Rd

(A(σ)ϕn1l)j(y)pij(t, σ, x, dy)dσ

= −
m∑
j=1

∫ t

s

∫
Rd

ψ′n(ϕ(y))(Aj(σ)ϕ)(y)pij(t, σ, x, dy)dσ
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−
m∑
j=1

∫ t

s

∫
Rd

ψ′′n(ϕ(y))〈Qj(σ, y)∇ϕ(y),∇ϕ(y)〉pij(t, σ, x, dy)dσ

−
m∑

j,k=1

∫ t

s

∫
Rd

ψn(ϕ(y))cjk(σ, y)pij(t, σ, x, dy)dσ

for any i = 1, . . . ,m, t > s ∈ I and x ∈ R
d, where Aj(σ) is defined in (2.1).

Using Hypothesis 2.1(ii) and recalling that Aj(σ)ϕ = (A(σ)(ϕ1l))j − (C(σ, ·)ϕ1l)j
for any j = 1, . . . ,m, we estimate

ϕn(x)− (G(t, s)ϕn1l)i(x)

≥−
m∑
j=1

∫ t

s

∫
Rd

ψ′n(ϕ(y))(A(σ)ϕ1l)j(y)pij(t, σ, x, dy)dσ

−
m∑
j=1

∫ t

s

∫
Rd

[ψn(ϕ(y))− ψ′n(ϕ(y))ϕ(y)]
m∑

k=1

cjk(σ, y)pij(t, σ, x, dy)dσ

≥−
m∑
j=1

∫ t

s

∫
Rd

ψ′n(ϕ(y))(A(σ)ϕ1l)j(y)pij(t, σ, x, dy)dσ,(3.4)

where in the last line we have used Hypothesis 3.1(ii). Now, we can split

−
m∑
j=1

∫ t

s

∫
Rd

ψ′n(ϕ(y))(A(σ)ϕ1l)j(y)pij(t, σ, x, dy)dσ

=

m∑
j=1

∫ t

s

∫
Rd

ψ′n(ϕ(y)) [a− (A(σ)ϕ1l)j(y)] pij(t, σ, x, dy)dσ

− a

m∑
j=1

∫ t

s

∫
Rd

ψ′n(ϕ(y))pij(t, σ, x, dy)dσ,

where a is the constant in Hypothesis 3.3. The monotonicity of the sequence (ψ′n(x))
for any x ∈ R

d and the monotone convergence theorem yield immediately that both
integrals in the right-hand side of the previous formula converge. Thus, since ϕn(x)
converges to ϕ(x) as n → +∞ for any x ∈ R

d, taking the limit as n → +∞ in (3.4),
it follows that (G(t, s)ϕ1l)(x) is well defined for any t ≥ s ∈ Λ, x ∈ R

d and

(G(t, s)ϕ1l)i(x) ≤ ϕ(x) +

∫ t

s

(G(t, σ)(A(σ)ϕ1l))i(x)dσ

≤ ϕ(x) +

∫ t

s

(a− c(G(t, σ)(ϕ1l))i(x))dσ

≤ ϕ(x) + a(t− s)

for any i = 1, . . . ,m and (t, s) ∈ Λ0, where we used the fact that G(t, σ)1 ≤ 1.
To complete the proof, for any i = 1, . . . ,m, t > s ≥ t0 and x ∈ R

d we define
gi(s) = (G(t, s)ϕ1l)i(x). Arguing as above it can be proved that

gi(s)− gi(r) ≤
∫ s

r

(a− cgi(σ))dσ, t0 ≤ r ≤ s ≤ t.
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From this inequality it follows easily that the function ζ : [s, t] → R, defined by

ζ(r) =

(
gi(s)− a

c
+

∫ r

s

(cgi(σ)− a)dσ

)
e−cr, r ∈ [s, t],

is weakly differentiable and its derivative is almost everywhere nonnegative in [s, t].
This implies that ζ(s) ≤ ζ(t), which is the claim. �

Remark 3.6. In the proof of the previous lemma, Hypothesis 3.1(ii) has played
a crucial role. It is for this reason that we needed to consider a vector-valued
Lyapunov function with all the components equal each other.

Corollary 3.7. Under the hypotheses of Lemma 3.5, supt>s pij(t, s, x,R
d\Br)

converges to 0, for any i, j = 1, . . . ,m and s ≥ t0 (where t0 is defined in Hypothesis
3.3), as r → +∞, locally uniformly with respect to x ∈ R

d.

Proof. The proof of this result is quite standard. However for the sake of
completeness we provide a sketch of it. Taking into account the positivity of the
transition kernels, it holds that

pij(t, s, x,R
d \Br) =

∫
Rd\Br

pij(t, s, x, dy) ≤ 1

infRd\Br
ϕ

∫
Rd\Br

ϕpij(t, s, x, dy)

≤ 1

infRd\Br
ϕ
(G(t, s)ϕ1l)i(x) ≤ 1

infRd\Br
ϕ
(ϕ(x) + ac−1)(3.5)

for any i, j = 1, . . . ,m. The claim follows since ϕ blows up as |x| → +∞. �
Now we prove the first compactness result for the evolution operator G(t, s).

Note that this result improves that in Theorem 2.6(ii). Indeed here we gain an
uniform convergence in time of G(·, s)fn to G(·, s)f as n → +∞ when (fn) is a
sequence approaching f locally uniformly in R

d.

Theorem 3.8. Assume that Hypotheses 2.1(i)-(iii), 2.7, 3.1 and 3.3 hold true
and let (fn) ⊂ Cb(R

d;Rm) be a bounded sequence converging locally uniformly in
R

d to f , as n → +∞. Then, for any s ≥ t0 (where t0 is defined in Hypothesis
3.3) G(·, s)fn converges uniformly to G(·, s)f in (s,+∞) × Br for any r > 0,
as n → +∞. In general, for any sequence (fn) ⊂ Cb(R

d;Rm), there exists a
subsequence (fnk

) such that G(·, s)fnk
converges uniformly in (t0,+∞) × Br for

every r > 0.

Proof. Let (fn) be a sequence as in the first part of the statement and assume
that supn∈N ‖fn‖∞ ≤ M . Let t > s ≥ t0 and x ∈ Bk for some k ∈ N. Then, for
any i = 1, . . . ,m we can estimate

|(G(t, s)(fn − f))i(x)| ≤
m∑
j=1

∫
Br

|fn,j(y)− fj(y)|pij(t, s, x, dy)

+

m∑
j=1

∫
Rd\Br

|fn,j(y)− fj(y)|pij(t, s, x, dy)

≤ ‖fn − f‖Cb(Br;Rd)

m∑
j=1

pij(t, s, x,Br)

+ 2M

m∑
j=1

sup
t>s

sup
x∈Bk

pij(t, s, x,R
d \Br)(3.6)
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for every r > 0 and n ∈ N. Since
∑m

j=1 pij(t, s, ·, Br) = (G(t, s)χBr
1l)i, by estimate

(2.7) it follows that supx∈Rd

∑m
j=1 pij(t, s, x,Br) ≤ 1 for any t > s and r > 0. Thus,

letting n tend to +∞ in (3.6) we obtain that

lim sup
n→+∞

‖(G(·, s)(fn − f))i‖Cb((s,+∞)×Bk;Rm) ≤ 2M

m∑
j=1

sup
t>s

sup
x∈Bk

pij(t, s, x,R
d \Br)

for every r > 0. Finally, letting r tend to +∞ and using Corollary 3.7 we conclude
that

lim sup
n→+∞

‖(G(·, s)(fn − f))i‖Cb((s,+∞)×Bk;Rm) ≤ 0

and the first part of the claim is so proved.
To conclude, let us consider a sequence (fn) ⊂ Cb(R

d;Rm) for any n ∈ N

and r ∈ I. The Schauder estimates (7.2) and estimate (2.7) yield that, for any
fixed t0 > s, the sequence (G(t0, s)fn) is bounded in C2+α(Br;R

m) for any r > 0.
Then, up to subsequences, it converges locally uniformly in R

d to some function
g ∈ Cb(R

d;Rm). Thus, since |G(t, s)fnk
−G(t, t0)g| = |G(t, t0) (G(t0, s)fnk

− g) |
in R

d for every t > t0 > s and k ∈ N, applying the first part of the claim to the
sequence (G(t0, s)fnk

− g)k we conclude the proof. �

Now, we are interested in finding conditions that ensure that, for any bounded
interval J ⊂ I and any fixed (t, s) ∈ ΛJ the operator G(t, s) is compact in
Cb(R

d;Rm). First of all, let observe that the compactness of G(t, s) in Cb(R
d;Rm)

is equivalent to the tightness of the measures {pij(t, s, x, ·) : x ∈ R
d}, i, j = 1, . . . ,m

(see formula (2.10)), as the next proposition states.

Proposition 3.9. Let J ⊂ I be a bounded interval and (t, s) ∈ ΛJ . The
evolution operator G(t, s) is compact in Cb(R

d;Rm) if and only if the measures
{pij(t, s, x, ·) : x ∈ R

d} are tight for any i, j = 1, . . . ,m, i.e., for any ε > 0 there
exists r > 0 such that supx∈Rd pij(t, s, x,R

d \Br) < ε for any i, j = 1, . . . ,m.

Proof. The proof follows adapting the arguments in [2, Theorem 4.1 ], recall-
ing that the measures pij(t, s, x, ·) are nonnegative for any t > s ∈ I, x ∈ R

d and
i, j = 1, . . . ,m. �

Differently from the case considered in [2] where a domination of G(t, s) in
terms of a scalar semigroup reduces the problem of finding conditions that en-
sure the tightness of the measures pij(t, s, x, ·) to the same problem for the kernel
associated with the scalar semigroup in Cb(R

d), here we argue directly with the
vector valued operator G(t, s). To this aim we need to strengthen Hypothesis 3.3
as follows.

Hypotheses 3.10. There exist R > 0, I 
 d1 < d2 and

(i) a positive function ϕ ∈ C2(Rd), blowing up as |x| → +∞, and m-convex
functions hi : [0,+∞) → R, i = 1, . . . ,m, with 1/hi ∈ L1((M,+∞)) for
some positive M such that (A(t)ϕ1l)i(x) ≤ −hi(ϕ(x)) for any t ∈ [d1, d2],
x ∈ R

d \BR and i = 1, . . . ,m;
(ii) bounded functions wk ∈ C2(Rd\BR) (k = 1, . . . ,m), with infx∈Rd\BR

wk(x) >
0 such that ((Ak(t) + ckk(t, ·))wk)(x)− μwk(x) ≥ 0 for any (t, x) ∈ [d1, d2]×
(Rd \BR), k = 1, . . . ,m and some μ ∈ R.
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Theorem 3.11. Assume that Hypotheses 2.1(i)-(iii) and (v), 2.7 and 3.10 hold
true. Then G(t, s) is compact in Cb(R

d;Rm) for any (t, s) ∈ ΛI with s ≤ d2 and
t ≥ d1.

Proof. Due to its length we divide the proof into three steps.
Step 1. Here, we prove that for any s0, t0 ∈ [d1, d2] with s0 < t0, there exists a
positive constant c0 such that

(3.7) (G(t, s)1l)k(x) ≥ c0, s0 ≤ s ≤ t ≤ t0, x ∈ R
d, k = 1, . . . ,m.

Let us fix s0, t0 as above and observe that, under our assumptions, [5, Proposition
4.3] can be applied and implies that there exists a positive constant c0 such that
(Gk(t, s)1l)(x) ≥ c0 for any s0 ≤ s ≤ t ≤ t0, x ∈ R

d and k = 1, . . . ,m. Here,
Gk(t, s) denotes the positive evolution operator associated with Ak(t) + ckk(t, ·) in
Cb(R

d;Rm). In order to prove (3.7) it suffices to prove that (G(t, s)1l)k ≥ Gk(t, s)1l
for any k = 1, . . . ,m and t ≥ s ∈ I. For this purpose we observe that, for any
non positive initial datum f ∈ Cb(R

d;Rm), the function wk(t, x) = (G(t, s)f)k −
Gk(t, s)fk vanishes at t = s and satisfies the inequality

Dtwk(t, ·)− (Ak(t) + ckk(t, ·))wk(t, ·) =
∑
i �=k

cki(G(t, s)f)i ≤ 0

for any t > s ∈ I, where in the last inequality we have used the positivity of G(t, s)
and Hypothesis 2.7. Thanks to Hypothesis 2.1(v), the functions ckk are bounded
from above in I × R

d, hence a variant of the classical maximum principle (see [5,
Proposition 2.2]) yields that wk is non positive in I ×R

d. As a by product, taking
f = −1l in the definition of wk, the claim follows.

Step 2. Here, we prove that for any δ ∈ (0, d2 − d1) there exists a positive
constant Kδ such that (G(t, s)(ϕ1l)) ≤ Kδ1l in R

d for any (t, s) ∈ Λ[d1,d2] with
t ≥ s+ δ.
Clearly, it suffices to prove the claim for x outside a large enough ball. In view of
this, we observe that since h(x) ≥ c̃x− ã outside a suitable ball, for some positive
constants ã and c̃, the arguments in Lemma 3.5 can be applied to the function ϕ
and imply that (G(t, s)ϕ1l)(x) is well defined and

(3.8) (G(t, s)ϕ(1l))(x)− (G(t, r)(ϕ1l))(x) ≥ −
∫ t

s

(G(t, σ)(A(σ)ϕ1l))(x)dσ

for any r ≤ s ≤ t and x ∈ R
d. Now, let us fix i ∈ {1, . . . ,m} and set μi(t, s, x, dy) =∑m

j=1 pij(t, s, x, dy). Jensen inequality for Borel finite measures and Step 1 yield
that

hi ((G(t, s)(ϕ1l))i(x)) = hi

(∫
Rd

ϕ(y)μi(t, s, x, dy)

)
≤ 1

μi(t, s, x,Rd)

∫
Rd

hi(ϕ(y))μi(t, s, x, dy)

=
1

μi(t, s, x,Rd)
(G(t, s)(hi(ϕ)1l))i(x)

≤ c−1
0 (G(t, s)(hi(ϕ)1l))i(x)(3.9)

for any d1 ≤ s ≤ t ≤ d2 and x ∈ R
d, where in the last line we used equal-

ity μi(t, s, x,R
d) = (G(t, s)1l)i(x) and estimate (3.7). Now, let us fix x ∈ R

d,
t ∈ [d1, d2] and consider the functions βi : [0, t − inf I) → [0,+∞) defined by
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βi(σ) = (G(t, t − σ)(ϕ1l))i(x), for any σ ∈ [0, t − inf I). Then, from (3.8), using
also Hypothesis 3.3 and (3.9), we deduce that

βi(b)− βi(0) ≤ −
∫ t

t−b

(G(t, σ)(hi ◦ ϕ))i(x)dσ

≤ −c0

∫ t

t−b

hi((G(t, σ)(ϕ))i(x))dσ = −c0

∫ b

0

hi(βi(σ))dσ,(3.10)

where b := t − d1. From the previous chain of inequalities we can conclude that
βi(r) ≤ yi(r) for every r ∈ [0, b], where yi is the solution to the Cauchy problem{

y′(r) = −c0h(y(r)), r ≥ 0,

y(0) = ϕ(x).

Indeed, if this were not the case, we could determine s0 ∈ (0, b) and an interval
J containing s0 such that βi > yi in J . From (3.10), written with the interval
(0, b) being replaced by (s1, s2), we can infer that the function s �→ β(s) + c0Ms is
decreasing, where M denotes the minimum of h in R. Therefore, lims→s−0

(β(s) +

c0Ms) > lims→s−0
(y(s) + c0Ms) and this implies that β is greater than y in a left

neighborhood of s0. Denoting by τ the infimum of J , then clearly, β(τ) = y(τ).
Writing (3.10) with [0, b] being replaced by [a, s], s ∈ J , and observing that

y′(s)− y′(a) = −c0

∫ s

a

h(y(r))dr

we get

β(s)− y(s) ≤ c0

∫ s

a

[h(y(r))− h(β(r))]dr, s ∈ J,

which is clearly a contradiction since the left-hand side of the previous inequality
is positive while its right-hand side is negative.

To conclude this step, it suffices to observe that y is bounded from above in
[δ,+∞) for every δ > 0 as it can be easily checked writing∫ y(t)

ϕ(x)

dr

h(r)
= −c0t

and using the integrability of 1/h in a neighborhood of +∞. Now, arguing as in
the proof of [5, Theorem 4.4] we can prove that the functions βi are bounded from
above in [δ, b] for every 0 < δ < b, uniformly with respect to x ∈ R

d and this proves
the claim.

Step 3. Here, we show that the measures {pij(t, s, x, ·) : x ∈ R
d} are tight for

any (t, s) ∈ Λ[d1,d2] and i, j = 1, . . . ,m. Let us fix ε > 0. Then, arguing as in (3.5),
we can prove that there exists R0 > 0 such that

0 < pij(t, s, x,R
d \Br) =

(
inf

Rd\Br

ϕ

)−1

(G(t, s)ϕ1l)i(x) ≤ Kδ

(
inf

Rd\Br

ϕ

)−1

< Kδε,

for any s, t ∈ Λ[d1,d2] with t ≥ s+ δ and r > R0, where we have taken into account

that the family {pij(t, s, x, ·) : x ∈ R
d, (t, s) ∈ λI} are equivalent to the Lebesgue

measure for any i, j = 1, . . . ,m. This implies that the family {pij(t, s, x, ·) : x ∈ R
d}

is tight for any (t, s) ∈ Λ[d1,d2], with t ≥ s+δ and i, j = 1, . . . ,m. The arbitrariness
of δ allows to deduce the tightness of pij(t, s, x, ·) for any (t, s) ∈ Λ[d1,d2] and
i, j = 1, . . . ,m and, consequently, from Proposition 3.9, the compactness of G(t, s)
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in Cb(R
d;Rm) for any (t, s) ∈ Λ[d1,d2]. For the other values of s, t the compactness of

G(t, s) can be proved by using the evolution law and the continuity of the operators
G(t, s) in L(Cb(R

d;Rm)). This completes the proof.
�

4. The action of the evolution operator G(t, s) over some functional
spaces

Here, we study how the operator G(t, s) acts over the spaces C0(R
d;Rm) of

all continuous functions f : Rd → R
m vanishing at infinity componentwise (i.e.,

lim|x|→+∞ fi(x) = 0 for any i = 1, . . . ,m), Lp(Rd;Rm) and C1
b (R

d;Rm).
It is well known in the scalar case that the compactness property in the space

of bounded and continuous functions is a sufficient condition which implies that the
spaces C0(R

d) and Lp(Rd) are not preserved by action of the semigroup. Actually
this is the case also for the vector-valued evolution operator G(t, s) as we prove in
the following.

Theorem 4.1. Under the assumptions of Theorem 3.11, the space C0(R
d;Rm)

is not preserved by G(t, s) for any (t, s) ∈ ΛI with s ≤ d2 and t ≥ d1. On the
other hand, if Hypotheses 2.1(i)-(iv) and 2.7 hold true and there exist λ0 > 0,
[a, b] ⊂ I and a function v ∈ C2(Rd;Rm) ∩ C0(R

d;Rm), whose entries are all
strictly positive and such that λ0v − A(t)v ≥ 0 for any (t, x) ∈ [a, b] × R

d, then
G(t, s)(C0(R

d;Rm)) ⊂ C0(R
d;Rm) for any (t, s) ∈ Λ[a,b].

Proof. Let us fix (t, s) ∈ ΛI with s ≤ d2 and t ≥ d1 and consider a sequence
(fn) ⊂ C0(R

d;Rm) such that χBn
1l ≤ fn ≤ χBn+1

1l for any n ∈ N. Formula (2.10),

estimate (2.7) and the compactness of G(t, s) in Cb(R
d;Rm) yield that G(t, s)fn

converges uniformly in R
d to G(t, s)1l as n → +∞. Since G(t, s)1l is bounded from

below by a positive constant (see Step 1 in the proof of Theorem 3.11), it follows
immediately that G(t, s) does not preserve C0(R

d;Rm).
Now, we prove the second part of the claim. Let a, b and v be as in state-

ment and without loss of generality we can assume that λ0 ≥ maxi=1,...,m

∑m
j=1 cij

in order to apply Theorem 2.3 to A(t) − λ0I. We begin by proving that G(t, s)
preserves the subset of C0(R

d;Rm) consisting of nonnegative functions which be-
long to Cc(R

d;Rm). Let f ∈ Cc(R
d;Rm) be a nonnegative function and let

r > 0 be such that suppfk ⊂ Br for any k = 1, . . . ,m. The function z(t, ·) =
e−λ0(t−s)u(t, ·)− δ−1‖f‖∞v where u is the classical solution of the problem (2.2),
δ = maxk∈{1,...,m} infBr

vk being v = (v1, . . . , vm), belongs to Cb([s, T ] × R
d) ∩

C1,2((s, T ]× R
d) and solves the problem{

Dtz(t, x) ≤ (A(t)− λ0I)z(t, x), (t, x) ∈ (s,+∞)× R
d,

z(s, x) ≤ 0, x ∈ R
d.

Hence, Theorem 2.3 can be applied to A(t) − λ0I to deduce that z(t, x) ≤ 0 in
[s,+∞)×R

d or equivalently that 0 ≤ u ≤ eλ0(t−s)δ−1‖f‖∞v, which implies that u
belongs to C0(R

d;Rm). Now, if f is not nonnegative then we can split f = f+−f−

and, arguing as above separately for f+ and f−, we deduce that the solutions u±

of (2.2) with f being replaced by f± respectively, belong to C0(R
d;Rm) as well

as the solution u = u+ − u− of (2.2). In the general case, we can argue by
approximation. Indeed, let f ∈ C0(R

d;Rm) and (fn) be a sequence of Cc(R
d;Rm)

functions converging uniformly to f in R
d. Then, since G(t, s)fn converges to

G(t, s)f uniformly as n → +∞ for any t ≥ s we conclude also in this case. �
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Theorem 4.2. The following statements hold true.

(i) Under the assumptions of Theorem 3.11, the space Lp(Rd;Rm), 1 ≤ p < +∞,
is not preserved by G(t, s) for any (t, s) ∈ ΛI with s ≤ d2 and t ≥ d1.

(ii) Let qkij ∈ C0,2([a, b]× R
d) and bki ∈ C0,1([a, b]× R

d), for any i, j, l = 1, . . . , d,

k = 1, . . . ,m and some [a, b] ⊂ I, and let κC : [a, b] × R
d → R be any

smooth function which bounds from above the quadratic form associated with
the matrix C. Further, suppose that

(4.1) Γ[a,b] := sup
[a,b]×Rd

(
2κC − min

k=1,...,m
divxγ

k
)
< +∞,

where γk := (bk1 −∑d
j=1 Djq

k
1j , . . . , b

k
m −∑d

j=1 Djq
k
mj), k = 1, . . . ,m. Then,

for any p ≥ 2 and (t, s) ∈ Λ[a,b], L
p(Rd;Rm) is invariant under G(t, s) and

(4.2) ‖G(t, s)f‖Lp(Rd;Rm) ≤ cp(t− s)‖f‖Lp(Rd;Rm),

where cp(r) = e[K(1−2/p)+Γ[a,b]/p]r and K is defined in (2.6).

(iii) Besides the assumptions in (ii), assume that qkij ∈ C
α/2,2+α
loc ([a, b]×R

d), bki ∈
C

α/2,1+α
loc ([a, b]× R

d), for any i, j = 1 . . . , d and k = 1, . . . ,m, and

(4.3) sup
[a,b]×Rd

( m∑
j=1

cjk +

d∑
i,j=1

Dijq
k
ij −

d∑
i=1

Dib
k
i

)
< +∞, k = 1, . . . ,m.

Then, estimate (4.2) can be extended to the case p ∈ [1, 2) taking cp(r) =

e[K
∗(2/p−1)+Γ[a,b](1−1/p)]r where K∗ ∈ R is such that ‖G∗(t, s)‖L(Cb(Rd;Rm)) ≤

eK
∗(t−s) and G∗(t, s) is the adjoint operator of G(t, s).

Proof. (i) Let us fix (t, s) ∈ ΛI with s ≤ d2 and t ≥ d1. To prove that
Lp(Rd;Rm) (p ∈ [1,+∞)) is not preserved by G(t, s), it suffices to consider the
characteristic function χBR

where R is such that
∑m

j=1 pij(t, s, x,R
d \BR) ≤ c0/2,

for any i = 1, . . . ,m, and c0 is defined in (3.7) (such a radius R exists thanks to the
compactness of G(t, s) and Proposition 3.7). Indeed, in this case, G(t, s)χBR

1l =
G(t, s)1l −G(t, s)(χRd\BR

1l) ≥ c0/2 in R
d and consequently it does not belong to

Lp(Rd;Rm) for any 1 ≤ p < ∞.
(ii) To begin with, we notice that it suffices to prove the claim for nonnegative

functions f belonging to Cc(R
d;Rm). Indeed, for a general f ∈ Cc(R

d;Rm) we
get the result simply writing f = f+ − f− and observing that |f±| ≤ |f |. The
case of an Lp(Rd;Rm)-function can be obtained by density. Moreover, we observe
that, if we prove (4.2) with p = 2, then, thanks to the estimate (2.6), the Riesz-
Thorin interpolation theorem yields estimate (4.2) for any p ≥ 2 with cp(t − s) =

[c2(t− s)]2/peK(t−s)(1−2/p) for any (t, s) ∈ Λ[a,b]. So, let us consider a nonnegative

function f ∈ Cc(R
d;Rm) and prove that

(4.4) ‖GD
R (t, s)f‖L2(BR;Rm) ≤ eΓ[a,b](t−s)‖f‖L2(Rd;Rm), (t, s) ∈ Λ[a,b],

where GD
R (t, s) denotes the evolution operator associated with A(t) in C(BR;R

m)
with homogeneous Dirichlet boundary conditions. Once (4.4) is proved, noticing
that GD

R (t, s)f converges pointwise to G(t, s)f as R → +∞, the Fatou lemma
yields (4.2) with p = 2.

So, let us prove (4.4). To simplify the notation we set uR(t, x) := (GD
R (t, s)f)(x)

for any (t, s) ∈ Λ[a,b] and x ∈ R
d. Using Hypothesis 2.1 (ii) and the integration by
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parts formula we get

d

dt
‖uR(t, ·)‖2L2(BR;Rm)

=2

m∑
k=1

∫
BR

uR,k(t, ·)(A(t)uR)k(t, ·)dx

=2

m∑
k=1

d∑
i,j=1

∫
BR

qkij(t, ·)uR,k(t, ·)DijuR,k(t, ·)dx

+ 2

m∑
k=1

d∑
i=1

∫
BR

bki (t, ·)uR,k(t, ·)DiuR,k(t, ·)dx+ 2

∫
BR

〈C(t, ·)uR(t, ·),uR(t, ·)〉dx

≤−
m∑

k=1

d∑
i,j=1

∫
BR

(Djq
k
ij(t, ·)− bki (t, ·))Di(uR,k(t, ·))2dx+ 2

∫
BR

κC(t, ·)|uR(t, ·)|2dx

=−
m∑

k=1

∫
BR

divxγ
k(t, ·)(uR,k(t, ·))2dx+ 2

∫
BR

κC(t, ·)|uR(t, ·)|2dx

≤Γ[a,b]

∫
BR

|uR(t, ·)|2dx.

Consequently, ‖uR(t, ·)‖2L2(BR;Rm) ≤ eΓ[a,b](t−s)‖f‖2L2(BR;Rm), which gives the claim.

(iii) The additional assumptions in the statement allows us to apply Theo-
rem 2.4 to the adjoint operator A∗(t). This implies that the adjoint evolution
operator {G∗(t, s)}t≥s∈I is well defined in Cb(R

d;Rm) and satisfies the estimate

‖G∗(t, s)‖L(Cb(Rd;Rm)) ≤ eK
∗(t−s) for any t ≥ s ∈ I and some positive constant K∗.

Moreover, the arguments in the proof of property (ii) show that
(4.5)

‖G∗(t, s)‖L(Lq(Rd;Rm)) ≤ e[K
∗(1−2/q)+Γ[a,b]/q](t−s), (t, s) ∈ Λ[a,b], q ≥ 2.

To complete the proof, it suffices to recall that

‖G(t, s)f‖Lp(Rd;Rm)

=sup

{∫
Rd

〈f ,G∗(t, s)g〉dx : g ∈ Cc(R
d;Rm) and ‖g‖Lp′ (Rd;Rm) ≤ 1

}
for any f ∈ Lp(Rd;Rm) (p ∈ [1, 2)) and use (4.5). �

Finally, we conclude this section investigating on the action of G(t, s) over
the space C1

b (R
d;Rm). Theorem 2.4 states that the evolution operator maps the

space Cb(R
d;Rm) into Cb(R

d;Rm) ∩C1(Rd;Rm), but in general, JxG(t, s)f is not
bounded whenever f belongs to C1

b (R
d;Rm). In the following Theorem 4.4 we

prove an uniform gradient estimate which answers to the question above.

Hypotheses 4.3. (i) The coefficients qkij , b
k
i and cij belong to C

α/2,1+α
loc (I ×

R
d) for any i, j = 1, . . . , d and k = 1, . . . ,m;

(ii) there exist a positive constant c, (m + 2)-functions rk : I × R
d → R (k =

1, . . . ,m) and ρi : I × R
d → (0,+∞), (i = 0, 1) such that

|∇xq
k
ij | ≤ cμk, 〈Jxbkξ, ξ〉 ≤ rk|ξ|2, |chk| ≤ ω0ρ0, |∇xch′k′ | ≤ ω1ρ1

(4.6)
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in I×R
d for any i, j = 1, . . . , d, h, h′, k, k′ = 1, . . . ,m, with h �= k. In addition

there exist two positive constants αk,J and γk,J such that
(4.7)

σk,J := sup
J×Rd

{(
d2c2

4
− αk,J

)
μk + rk + ckk + γk,J(ω0ρ

2
0 + ω1ρ

2
1)

}
< +∞

for any bounded interval J ⊂ I.

Theorem 4.4. Assume that Hypotheses 4.3 are satisfied. Then, for any f ∈
C1

b (R
d;Rm) and T > s, the map (s, T )×R

d 
 (t, x) → |Jx(G(t, s)f)(x)| is bounded
and satisfies the estimate

(4.8) ‖|JxG(t, s)f |‖∞ ≤ c̃s,T ‖f‖C1
b (R

d;Rm), t ∈ (s, T ),

for some positive constant c̃ depending on s, T,m, μk (see Hypothesis 2.1(ii)) and
σk,(s,T ) (k = 1, . . . ,m).

Proof. Let f and T be as in the statement and set J = (s, T ). We prove (4.8)
with G(t, s) being replaced by GN

n (t, s), i.e., the evolution operator associated with
A in Cb(Bn;R

m) with homogeneous Neumann boundary conditions. Then the
claim will follow letting n → +∞ according to Remark 2.5.

For every k = 1, . . . ,m, t ∈ J , x ∈ Bn, we set vn,k(t, x) := αk,J |un(t, x)|2 +
|∇xun,k(t, x)|2, where un,k denotes the k-th component of GN

n (·, s)f . A straight-
forward computation reveals that 〈∇xvn,k, ν〉 ≤ 0 on ∂Bn. Indeed, taking into
account the convexity of Bn and the fact that un,k satisfies homogeneous Neumann
boundary conditions on J × ∂Bn we deduce that

〈∇xvn,k, ν〉 =2〈∇xun,k, ν〉un,k + 2〈D2
xun,k∇xun,k, ν〉

=2 [〈∇x〈∇xun,k, ν〉,∇xun,k〉 − 〈Jν∇xun,k,∇xun,k〉] ≤ 0

on J × ∂Bn. In addition, vn,k is a classical solution to the differential equation

Dtvn,k −Akvn,k = 2
∑6

i=1 ψi in J ×Bn where Ak is defined in (2.1) and

6∑
i=1

ψi :=

d∑
i,j=1

〈∇xq
k
ij ,∇xun,k〉Dijun,k + 〈Jxbk∇xun,k,∇xun,k〉

+

m∑
j=1

〈∇xckj ,∇xun,k〉un,j +

m∑
j=1

ckj〈∇xun,k,∇xun,j〉

− αk,J〈Qk∇xun,k,∇xun,k〉 −
d∑

i,j=1

qkij〈∇xDiun,k,∇xDjun,k〉

in (s, T )×R
d. Using the Cauchy-Schwartz inequality, estimates (4.6) and Hypoth-

esis 2.1(ii) we can estimate the terms in ψi (i = 1, . . . , 6) as follows:

ψ1 ≤ dcμk|∇xun,k||D2
xun,k| ≤ dcμk

(
ε|D2

xun,k|2 + 1

4ε
|∇xun,k|2

)
,

ψ2 ≤ rk|∇xun,k|2,

ψ3 ≤ √
mω1ρ1|∇xun,k||un| ≤ ε1ρ

2
1|∇xun,k|2 + m

4ε1
ω2
1 |un|2,

ψ4 ≤ ckk|∇xun,k|2 + ω0ρ0|∇xun,k||Jxun| ≤ (ckk + ε2ρ
2
0)|∇xun,k|2 + m

4ε2
ω2
0 |Jxun|,
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ψ5 + ψ6 ≤ −μk(αk,J |∇xun,k|2 + |D2
xun,k|2).

Hence, we deduce that

6∑
i=1

ψi ≤μk(dCε− 1)|D2
xun,k|2 +

(
dc

4ε
μk+rk+ε1ρ

2
1+ε2ρ

2
0+ckk−αk,Jμk

)
|∇xun,k|2

+
m

4ε1
ω2
1 |un|2 + m

4ε2
ω2
0 |Jxun|2.

Choosing ε = (dC)−1, ε1 = ε2 = γk and using (4.7) we conclude that

6∑
i=1

ψi ≤ σk,Jvn,k +
m

4γk
(ω2

0 ∨ ω2
1)(|un|2 + |Jxun|2).

A variant of the classical maximum principle shows that

vn,k(t, ·) ≤G̃N
n,k(t, s)(αk,J |fk|2 + |∇fk|2)

+
m

4γk
(ω2

0 ∨ ω2
1)

∫ t

s

G̃N
n,k(t, r)(|un(r, ·)|2 + |Jxun(r, ·)|2)dr

for any t ∈ J , where G̃N
n,k(t, s) denotes the evolution operator associated with the

operator Ak + σk,J in C(Bn) with homogeneous Neumann boundary conditions.

Taking into account that ‖G̃N
n,k(t, s)‖L(C(Bn))

≤ eσk,J (t−s) for any t > s ∈ I, we
can estimate

‖∇xun,k(t, ·)‖2∞ ≤eσk,J (t−s)(αk,J‖fk‖2∞ + ‖∇fk‖2∞)

+
m

4γk
(ω2

0 ∨ ω2
1)

∫ t

s

eσk,J (t−r)(‖un(r, ·)‖2∞ + ‖Jxun(r, ·)‖2∞)dr

≤ec
+
0,J (t−s)

(
‖∇fk‖2∞+c1,J(t− s)‖f‖2∞+c1,J

∫ t

s

‖Jxun(r, ·)‖2∞dr

)
,

for any t ∈ J , where c0,J = max
k=1,...,m

σk,J and c1 =
(
4 min
k=1,...,m

γk,J

)−1

(ω2
1 ∨ ω2

2).

Summing over k from 1 to m we deduce that

‖Jxun(t, ·)‖2∞ ≤ c

(
‖Jf‖2∞ + ‖f‖2∞ +

∫ t

s

‖Jxun(r, ·)‖2∞dr

)
, t ∈ J,

and c is a positive constant depending on s, T , m, ω0, ω1, γk (k = 1, . . . , d) and c0.
Applying Gronwall lemma, we conclude the proof. �

5. Invariant measures

In this section we prove the existence of evolution systems of invariant measures
associated with G(t, s), i.e., families of positive and finite Borel measures over Rd,
{μi,r : r ∈ I, i = 1, . . . ,m} such that

(5.1)

m∑
i=1

∫
Rd

(G(t, s)f)idμi,t =

m∑
i=1

∫
Rd

fidμi,s

for any f ∈ Cb(R
d;Rm) and any I 
 s < t. To this aim, the results in Section 3 and

in particular Theorem 3.8 are crucial. Here we assume that Hypotheses 2.1(i)-(iii)
and 2.7 are satisfied.
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Proposition 5.1. Let {μi,r : r ∈ I, i = 1, . . . ,m} be a family of nonnegative
and finite Borel measures which satisfy condition (5.1). Then, all the measures of
the family are either trivial or equivalent to the Lebesgue measure. As a byprod-
uct, formula (5.1) can be extended to the set of all the bounded Borel measurable
functions.

Proof. We assume that the measures of the family are not all the trivial
measure. Thus, we can fix i ∈ {1, . . . ,m} and r ∈ I such that μi,r(R

d) > 0. To
improve the readability, we split the proof into two steps.

Step 1. Here, we prove that the measures of the family are all positive. We
begin by fixing j ∈ {1, . . . ,m}, s ∈ I smaller than r. Writing formula (5.1) with
f = ej gives

(5.2) μj,s(R
d) =

∫
Rd

dμj,s =

m∑
k=1

∫
Rd

(G(r, s)ej)kdμk,r ≥
∫
Rd

(G(r, s)ej)idμi,r.

Since the function G(r, s)ej is strictly positive in R
d, thanks to Proposition 2.8,

and μi,r is a positive measure, it follows immediately that the last side of (5.2) is
positive as well. Hence, μj,s(R

d) is positive as it has been claimed.
Next, we fix s1 < r and use again formula (5.1) to write

m∑
k=1

∫
Rd

(G(2r, s1)ej)kdμk,2r = μj,s1(R
d) > 0.

Since (G(2r, s1)ej)k > 0 in R
d for any k ∈ {1, . . . ,m}, there should exist an index

k0 such that μk0,2r(R
d) > 0. Hence, the same argument used above with (k0, 2r)

replacing (i, r) shows that μj,s is a positive measure for any s < 2r. Iterating this
argument, we can prove that all the measures of the family are positive.

Step 2. To prove that the measures μj,t (j = 1, . . . ,m, t ∈ I) are equivalent
to the Lebesgue measure, we need to extend the validity of (5.1) to the case when
f = χAej (j = 1, . . . ,m) and A is a Borel subset of Rd. For this purpose, we begin
by assuming that A is an open set and denote by (θn) a sequence of continuous
functions converging to χA pointwise in R

d and such that 0 ≤ θn ≤ 1 for any n ∈ N

(see Lemma 7.3). By the last part of Theorem 2.6, we know that G(t, s)(ϑnej)
converges to G(t, s)ej as n → +∞, for any I 
 s < t, and ‖G(t, s)(ϑnej)‖∞ ≤ 1.
Therefore, writing (5.1) with f = ϑnej and letting n tend to +∞, we conclude that

m∑
k=1

∫
Rd

(G(t, s)(χAej))kdμk,t = μj,s(A).

We now observe that the function νt, defined by

νt(A) =

m∑
k=1

∫
Rd

(G(t, s)(χAej))kdμk,t

for any Borel set A, is a nonnegative measure since G(t, s)(χAej) ≥ 0 for any Borel
set A. Moreover, it agrees with μj,s on the open sets of Rd, which generate the
σ-algebra of all the Borel subsets of Rd. Hence, μj,s and νt are actually the same
measure and it follows that

m∑
k=1

∫
Rd

(G(t, s)(χAej))kdμk,t = μj,s(A), I 
 s < t, j = 1, . . . ,m,
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for any Borel set A, as it has been claimed. From this formula the equivalence of the
Lebsegue measure and each measure μj,s follows. Indeed, since the measures μk,t

and μj,s are positive and the function G(t, s)(χAej) is nonnegative, it easy to infer
that μj,s(A) = 0 if and only if (G(t, s)(χAej))k = 0 in R

d for any k = 1, . . . ,m. But,
since each measure pkh(s + 1, s, x, dy) is positive and equivalent to the Lebesgue
measure (see again Proposition 2.8), this is the case if and only if A has zero
Lebesgue measure.

To complete the proof, it suffices to observe that for any bounded Borel measur-
able function f there exists a sequence (fn) of bounded and continuous functions
converging to f almost everywhere (with respect to the Lebesgue measure and,
hence, with respect to each measure μj,t of the family) as n tends to +∞. Clearly,

lim
n→+∞

m∑
k=1

∫
Rd

fn,kdμk,s =

m∑
k=1

∫
Rd

fkdμk,s

and the sequence (G(t, s)fn) is bounded in Cb(R
d) and converges to G(t, s)f point-

wise in R
d. Thus, writing (5.1) with f being replaced by fn and letting n tend to

+∞, we extend the validity of such a formula to f ∈ Bb(R
d;Rm). �

Lemma 5.2. The following properties hold true:

(i) Under Hypotheses 2.1 and 3.1, if there exist j ∈ {1, . . . ,m} and a positive
function g ∈ Cb(R

d) ∩ C2(Rd) such that (Aj(t)g)(x) + cjj(t, x)g(x) ≥ 0 for
any t ∈ I and x ∈ R

d, then (G(·, s)gej)j ≥ gj in (s,+∞)× R
d;

(ii) Under Hypotheses 2.1, assume further that
∑m

j=1 cij ≤ 0 on R
d for every i =

1, . . . ,m and that there exist a positive function g ∈ Cb(R
d;Rm)∩C2(Rd;Rm)

such that A(t)g ≥ 0 in R
d for any t ∈ I. Then, G(t, s)g ≥ g in R

d for any
t > s ∈ I.

Proof. (i) A direct computation reveals that the function vj := (G(·, s)gej)j−
g belongs to C1,2((s,+∞)× R

d) ∩ C([s,+∞)× R
d) and solves the problem{

Dtvj(t, x) ≥ (Aj(t)vj)(x) + cjj(t, x)vj(t, x), (t, x) ∈ (s,+∞)× R
d,

vj(s, x) = 0, x ∈ R
d.

Observing that Hypothesis 3.1 yields the existence of a Lyapunov function for
the operator Aj (hence for Aj + cjj) and invoking a generalization of the classical
maximum principle (see [5, Proposition 2.2]) we deduce that vj ≥ 0 in (s,+∞)×R

d

and we are done.
(ii) The claim can be obtained immediately just applying the maximum principle
in Proposition 2.3 to the function v = G(·, s)g − g. �

Theorem 5.3. Under Hypotheses 3.1, 3.3, if cij ≥ 0 for every i, j ∈ {1, . . . ,m},
with i �= j and the hypotheses of Lemma 5.2(i) or (ii) hold true, then there exists an
evolution system of measures associated with the evolution operator G(t, s). Each
measure of this system is positive and equivalent to the Lebesgue one.

Proof. We fix j ∈ {1, . . . ,m}, x0 ∈ R
d, n ∈ N and, for any r ∈ N with r > n,

we consider the family of measures {pr,ni : r > n, i = 1, . . . ,m} defined by

pr,ji,n(A) =
1

r − n

∫ r

n

pji(τ, n, x0, A)dτ, A ∈ B(Rd).
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By Corollary 3.7, each family {pr,ji,n : r > n} is tight. Therefore, we can invoke

a generalization of Prokhorov’s theorem (see e.g., [8, Theorem 8.6.2]) to infer that,

up to a subsequence, {pr,ji,n : r > n} weakly∗ converges to some measure μj
i,n as

r → +∞, i.e.,

lim
r→+∞

1

r − n

∫ r

n

(G(τ, n)(fei))j(x0)dτ = lim
r→+∞

∫
Rd

fdpr,ji,n =

∫
Rd

fdμj
i,n

for any f ∈ Cb(R
d).

By a diagonal argument, we can extract an increasing sequence (rk) of integers

such that prk,ji,n weakly∗ converges to μj
i,n as k tends to +∞, for each n ∈ N. As a

byproduct, we can infer that

lim
k→+∞

1

rk − n

∫ rk

n

(G(τ, n)f)j(x0)dτ =

m∑
i=1

∫
Rd

fidμ
j
i,n, f ∈ Cb(R

d;Rm).

(5.3)

Writing formula (5.3) with f being replaced by gel (resp. g), if the assumptions of

Lemma 5.2(i) (resp. (ii)) are satisfied, yields immediately that μj
l,n is not the trivial

measure. Indeed in the first case lim infk→+∞(rk−n)−1
∫ rk
n

(G(τ, n)(gel))j(x0)dτ >

0 and in the second one lim infk→+∞(rk − n)−1
∫ rk
n

(G(τ, n)g)j(x0)dτ > 0 for any

l = 1, . . . ,m. Moreover, for any f ∈ Cb(R
d;Rm) and h, n ∈ N with h > n we can

write
m∑
i=1

∫
Rd

(G(h, n)f)idμ
j
i,h = lim

k→+∞
1

rk − h

∫ rk

h

(G(τ, h)G(h, n)f)j(x0)dτ

= lim
k→+∞

1

rk − h

∫ rk

h

(G(τ, n)f)j(x0)dτ

= lim
k→+∞

1

rk − n

∫ rk

n

(G(τ, n)f)j(x0)dτ

− lim
k→+∞

1

rk − n

∫ h

n

(G(τ, n)f)j(x0)dτ

+ lim
k→+∞

h− n

(rk − h)(rk − n)

∫ rk

h

(G(τ, n)f)j(x0)dτ

=

m∑
i=1

∫
Rd

fidμ
j
i,n.(5.4)

Now, we define the measures μj
i,s also for non integer values of s. For this,

purpose, we set

μj
i,s(A) =

m∑
k=1

∫
Rd

(G(n, s)(χAei))kdμ
j
k,n, A ∈ B(Rd),

where n is any integer larger than s. It is straightforward to check that μj
i,s is a

nonnegative measure and that∫
Rd

fdμj
i,s =

m∑
k=1

∫
Rd

(G(n, s)(fei))kdμ
j
k,n
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for any f ∈ Cb(R
d), so that

m∑
i=1

∫
Rd

fidμ
j
i,s =

m∑
k=1

∫
Rd

(G(n, s)f)kdμ
j
k,n, f ∈ Cb(R

d;Rm).

Note that the above definition is independent of the choice of n > s. Indeed, if p is
another integer larger than s (to fix the ideas we suppose that p > n) then splitting
G(p, s)(χAei) = G(p, n)G(n, s)(χAei) and using (5.4), we conclude that

m∑
k=1

∫
Rd

(G(p, s)(χAei))kdμ
j
k,p =

m∑
k=1

∫
Rd

(G(n, s)(χAei))kdμ
j
k,n,

which shows that the measure μj
i,s is well defined.

To prove the invariance of the system {μj
i,s : s ∈ I, i = 1, . . . ,m}, we fix

t > s ∈ I, n > t and observe that
m∑

k=1

∫
Rd

fkdμ
j
k,s =

m∑
k=1

∫
Rd

(G(n, s)f)kdμ
j
k,n =

m∑
k=1

∫
Rd

(G(n, t)G(t, s)f)kdμ
j
k,n

=

m∑
k=1

∫
Rd

(G(t, s)f)kdμ
j
k,t

for any f ∈ Cb(R
d;Rm).

The equivalence of each measure μj
i,s with respect to the Lebesgue measure and

its positivity are immediate consequence of Proposition 5.1. Indeed it suffices to
observe that the evolution system of measures {μj

i,s : i = 1, . . . ,m, s ∈ I} contains
at least a non trivial measure. �

5.1. The evolution operator G(t, s) in Lp-spaces. In this subsection,
we prove that the evolution operator G(t, s) can be extended, with a bounded
semigroup in the Lp-spaces related to evolution system of measures and, in the
autonomous case, assuming compactness in Cb(R

d;Rm) we prove compactness in
these Lp-spaces too.

Here, we consider {μi,t : t ∈ I, i = 1, . . . ,m} which is any evolution system
of measures associated with G(t, s). Moreover, for any p ∈ [1,+∞), we write
Lp
μt
(Rd;Rm) to denote the set

⊗m
i=1 L

p
μi,t

(Rd), which we endow with the natural

norm f �→ (∑m
i=1

∫
Rd |fi|pdμi,t

)1/p
=: ‖f‖Lp

μt
. For p = ∞, the space L∞μt

(Rd;Rm)

denotes the set of all μt-essentially bounded functions f with norm ‖f‖L∞μt
(Rd;Rm) =

maxk=1,...,m esssupx∈Rd |fk(x)|. Note that, in view of Proposition 5.1, the measures
μi,t (t ∈ I and i = 1, . . . ,m) are all equivalent to the Lebesgue measure. Thus, the
Lebesgue space L∞(Rd;Rm) equals to L∞μt

(Rd;Rm) for any t ∈ I.

Proposition 5.4. Each G(t, s) can be extended with a bounded operator map-
ping Lp

μs
(Rd;Rm) into Lp

μt
(Rd;Rm) for any 1 ≤ p < +∞ which satisfies the esti-

mate

‖G(t, s)‖L(Lp
μs (R

d;Rm),Lp
μt

(Rd;Rm)) ≤ (2eK(t−s))
p−1
p , t > s,(5.5)

for any p ∈ [1,+∞), where K is defined in (2.6).

Proof. Since ‖G(t, s)ek‖∞ ≤ eK(t−s), it follows that pik(t, s, x,R
d) ≤ eK(t−s)

for any i, k = 1, . . . ,m, t > s ∈ I and x ∈ R
d. Thus, the Jensen inequality and
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formula (2.10) yield

|(G(t, s)f)i(x)|p ≤2p−1
m∑

k=1

∣∣∣∣∫
Rd

fk(y)pik(t, s, x, dy)

∣∣∣∣p
≤2p−1

m∑
k=1

[pik(t, s, x,R
d)]p−1

∫
Rd

|fk(y)|p pik(t, s, x, dy)

≤2p−1eK(p−1)(t−s)(G(t, s)(|f1|p, . . . , |fm|p))i(x)
for any t > s, x ∈ R

d, i = 1, . . . ,m, f ∈ Cb(R
d;Rm) and p ∈ [1,+∞). Moreover,

from the invariance property (5.1), we deduce that
m∑
i=1

∫
Rd

|(G(t, s)f)i|pdμi,t ≤2p−1eK(p−1)(t−s)
m∑
i=1

∫
Rd

(G(t, s)(|f1|p, . . . , |fm|p))idμi,t

=2p−1eK(p−1)(t−s)
m∑
i=1

∫
Rd

|fi|pdμi,s

for any t > s and f ∈ Cb(R
d;Rm). Since the measures μi,t (i = 1, . . . ,m, t ∈ I)

are finite Borel measures, the space Cb(R
d;Rm) is dense in Lp

μt
(Rd;Rm) for any

p ∈ [1,+∞) and t ∈ I (see [1, Remark 1.46]), hence, from the previous chain
of inequalities we easily deduce that G(t, s) extends to a linear bounded operator
from Lp

μs
(Rd;Rm) into Lp

μt
(Rd;Rm) and formula (5.5) follows. The evolution prop-

erty easily follows. Hence, G(t, s) is an evolution operator from Lp
μs
(Rd;Rm) into

Lp
μt
(Rd;Rm). �

Remark 5.5. In the autonomous case, the evolution operatorG(t, s) is replaced
by a semigroup T (t) and the evolution system of measures {μi,t : i = 1, . . . ,m, t ∈
I} is replaced by a family of measures not depending on the parameter t denoted
by {μi : i = 1, . . . ,m}. In this case the semigroup T (t) maps Lp

μ(R
d;Rm) into itself

and ‖T (t)‖L(Lp
μ(Rd;Rm)) ≤ (2eKt)

p−1
p , for any t > 0 and p ∈ [1,+∞). In addition,

T (t) turns out to be a strongly continuous semigroup in Lp
μ(R

d;Rm). Indeed, for

any f ∈ Cb(R
d;Rm), T (t)f converges locally uniformly to f as t → 0+. Hence,

estimate (2.6), Proposition 5.1 and the dominated convergence theorem allow us
to conclude that ‖T (t)f − f‖Lp

μ(Rd;Rm) vanishes as t → 0+. For f ∈ Lp
μ(R

d;Rm)

we can get the same result using the density of Cb(R
d;Rm) in Lp

μ(R
d;Rm) and the

boundedness of the function t �→ ‖T (t)‖L(Lp
μ(Rd;Rm)) in (0, 1).

Now, we give a sufficient condition in order that the evolution operator G(t, s)
is compact from Lp

μs
(Rd;Rm) into Lp

μt
(Rd;Rm).

Theorem 5.6. Assume that G(t0, s) is compact in Cb(R
d;Rm) for some I 


s < t0. Then, G(t0, s)) is compact from Lp
μs
(Rd;Rm) into Lp

μt
(Rd;Rm) for any

p > 1.

Proof. Let us fix t0 > s ∈ I and assume thatG(t0, s) is compact in Cb(R
d;Rm).

First of all, we show that G(t0, s) is compact in L∞(Rd;Rm) = L∞μs
(Rd;Rm) for

any s ∈ I, where the equality follows from Proposition 5.1. Since the evolution
operator is strong Feller, G(t0, s) maps L∞(Rd;Rm) into Cb(R

d;Rm). Moreover,
by the semigroup law and the compactness in Cb(R

d;Rm), G(t0, s) turns out to be
compact from L∞(Rd;Rm) into Cb(R

d;Rm) hence from L∞(Rd;Rm) into itself.
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Now, let U be the unit ball in L∞(Rd;Rm), set Kt0,s := G(t0, s)(U) and fix
ε > 0. Thanks to the compactness of G(t0, s) we can determine simple vector-

valued functions {ζj}j=1,...,k, with ζj =
∑n

i=1 c
j
iχAi for some cji ∈ R

m, n ∈ N,
where ∪n

i=1Ai = R
d, such that the family {ζ1, . . . , ζk} is an ε-net for Kt0,s, i.e.,

Kt0,s ⊂ ⋃k
i=1 Bε(ζi). Moreover, P t

εζi = ζi for any i = 1, . . . , k and t ∈ I, where

(P t
εf)� =

n∑
i=1

(
1

μ�,t(Ai)

∫
Ai

f�dμ�,t

)
χAi ,  = 1, . . . ,m, t ∈ I.

Note that

(5.6) ‖P t0
ε G(t0, s)−G(t0, s)‖L(L∞(Rd;Rm)) ≤ 2ε.

Indeed, fix f ∈ L∞(Rd;Rm) with ‖f‖∞ ≤ 1. Then, there exists j ∈ {1, . . . , k} such
that G(t0, s)f ∈ Bε(ζj). Hence,

‖P t0
ε G(t0, s)f −G(t0, s)f‖∞ ≤ ‖P t0

ε (G(t0, s)f − ζj)‖∞ + ‖ζj −G(t0, s)f‖∞ ≤ 2ε.

On the other hand, since P t0
ε is a contraction in Bb(R

d;Rm), it follows that

‖P t0
ε G(t0, s)−G(t0, s)‖L(L1

μs
(Rd;Rm);L1

μt0
(Rd;Rm))

≤2‖G(t0, s)‖L(L1
μs

(Rd;Rm);L1
μt0

(Rd;Rm)) ≤ 2.(5.7)

Thus, estimates (5.6), (5.7) and the Riesz-Thorin interpolation theorem yield that

(5.8) ‖P t0
ε G(t0, s)−G(t0, s)‖L(Lp

μs (R
d;Rm);Lp

μt0
(Rd;Rm)) ≤ 2ε1−1/p,

for any 1 < p < +∞. Letting ε → 0 in estimate (5.8) yields the claim since G(t0, s)
can be approximated by the operator P t0

ε G(t0, s) which has range finite. �

6. Examples

In this section we provide some examples of operators which satisfy our as-
sumptions and to which our results can be applied.

Example 6.1. Let A be as in (2.1) with

qkij(t, x) := ωk
ij(t)(1 + |x|2)hk

ij , bki (t, x) := −γk
i (t)xi(1 + |x|2)�ki

and

chk(t, x) := dhk(t)(1 + |x|2)σhk

for any i, j = 1, . . . , d and h, k = 1, . . . ,m. Let us assume that

Hypotheses 6.2. (i) for any i, j = 1, . . . , d and h, k = 1, . . . ,m, the func-

tions ωk
ij , γ

k
i and dhk belong to C

α/2
loc (I), ωk

ij = ωk
ji, h

k
ij = hk

ji, the coefficients

hk
ij , 

k
i , σhk are nonnegative and infI γ

k
i > 0;

(ii) the functions dij are positive for i �= j, negative for i = j and σij < σii for
any i �= j;

(iii) for any k = 1, . . . ,m, mini=1,...,d h
k
ii ≥ maxj �=i h

k
ij and

νk := inf
I

(
min

i=1,...,d
ωk
ii(t)− max

i=1,...,d

(∑
j �=i

(ωk
ij(t))

2
) 1

2

)
> 0;

(iv) 1 + maxi=1,...,d{σkk, 
k
i } > maxi=1,...,d h

k
ii, for any k = 1, . . . ,m.
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Under Hypotheses 6.2, all the assumptions in Theorem 2.4 are satisfied hence
it can be applied. To check Hypothesis 2.1(ii) we can write

〈Qk(t, x)ζ, ζ〉 =
d∑

i=1

ωk
ii(t)(1 + |x|2)hk

iiζ2i +
∑
j �=i

ωk
ij(t)(1 + |x|2)hk

ijζiζj

≥
(

min
i=1,...,d

(ωk
ii)(1 + |x|2)mini h

k
ii

− max
i=1,...,d

(∑
j �=i

(ωk
ij)

2

) 1
2

(1 + |x|2)maxi �=j hk
ij

)
|ζ|2

≥(1 + |x|2)maxi �=j hk
ij

(
min

i=1,...,d
ωk
ii(t)− max

i=1,...,d

(∑
j �=i

(ωk
ij(t))

2
) 1

2

)
|ζ|2

for every ζ ∈ R
d, and Hypothesis 6.2(iii) guarantees that the infimum of μk in I×R

d

is positive for any k = 1, . . . ,m. Clearly Hypotheses 2.1(iii) and (iv) are immediate
consequences of Hypothesis 6.2(ii). Choosing ϕ(x) = ϕ(x)1l := (1 + |x|2)1l, for
every x ∈ R

d, we get

(A(t)ϕ1l)k(x) = 2

d∑
i=1

ωk
ii(t)(1 + |x|2)hk

ii − 2

d∑
i=1

γk
i (t)x

2
i (1 + |x|2)�ki

+

m∑
j=1

dkj(t)(1 + |x|2)σkj+1

for every x ∈ R
d and from Hypothesis 6.2(iv) we can prove that there exists two

positive constant ak, ck such that (A(t)ϕ1l)k ≤ ak−ckϕ, thus Hypothesis 3.3 (hence
Hypothesis 2.1(iv)) is satisfied too. In addition, since for any h �= k the functions
chk are nonnegative, the evolution operator G(t, s) associated with A(t) is well-
defined in L(Cb(R

d;Rm)) and it is positive as stated in Proposition 2.8.
Now, we are interested in finding conditions on the coefficients of A(t) which

ensures compactness of G(t, s) in Cb(R
d;Rm) as obtained in Theorems 3.8 and 3.11.

To this aim, besides Hypotheses 6.2(i)-(iii) we assume that maxi=1,...,d h
k
ii < 1 +

maxi=1,...,d 
k
i for any k = 1, . . . ,m and that

∑m
i=1 dki(t) ≤ 0 for any k = 1, . . . ,m.

In this case Hypothesis 3.1(i) is satisfied with ψk = ϕ for any k = 1, . . . ,m. In
addition, being

∑m
i=1 cki(t, x) ≤ (1 + |x|2)σkk

∑m
i=1 dki(t) ≤ 0, Theorem 3.8 can be

applied.
On the other hand, if we assume that τk := maxi=1,...,d{σkk, 

k
i } > 0 then Hypoth-

esis 3.10(i) is satisfied with ϕ(x) = 1 + |x|2 and hk(x) = ck1x
1+τk − ck2 for some

positive constants cki (i = 1, 2). Now we claim that if

(6.1) max
i=1,...,d

ki > 1 + max
i,j=1,...,d

{σkk, h
k
ij − 2}, k = 1, . . . ,m,

then the functions wk(x) = 1 + 1
1+|x|2 , (k = 1, . . . ,m) are such that Hypothesis

3.10(ii) is satisfied for any μ ∈ R, hence Theorem 3.11 can be applied. Indeed we
can write

(Ak(t)wk)(x) + ckk(t, x)wk(x) =− 2

d∑
i=1

ωk
ii(t)(1 + |x|2)hk

ii−2
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+ 2

d∑
i=1

γk
i (t)x

2
i (1 + |x|2)�ki−2

+ 8
∑
j �=i

ωk
ij(t)xixj(1 + |x|2)hk

ij−3

+ dkk(t)(1 + |x|2)σkk

(
1 +

1

1 + |x|2
)
.(6.2)

Now, if (6.1) is satisfied, the leading part in the right-hand side of (6.2) is given
by the term containing the drift coefficients which, as it is easily seen, blows up at
infinity. Thus it is clear that we can find R > 0 such that Akwk + ckkwk − μwk

is positive in I × (Rd \ BR) for any μ ∈ R. Consequently, the assumption (6.1)
is also a sufficient condition in order that neither C0(R

d;Rm), nor Lp(Rd;Rm)
(1 ≤ p < +∞) are preserved by the action of G(t, s) (see Theorems 4.1 and 4.2(i)).

Now, we are interested in finding conditions in order that the space C0(R
d;Rm)

is preserved by G(t, s). To this aim, we prove that assuming

(6.3) max
i=1,...,d

{hk
ii − 1, σkk} > max

i=1,...,d

{
max

j=1,...,d
hk
ij − 1, ki ,max

j �=k
σkj

}
,

for any k = 1, . . . ,m, then we can find λ0 > 0 and [a, b] ⊂ I such that the function
v(x) = 1

1+|x|21l satisfies λ0v −A(t)v ≥ 0 in [a, b] × R
d. Indeed, a straightforward

computation shows that

λ0vk(x)−((A(t)v)(x))k = λ0
1

1 + |x|2 + 2

d∑
i=1

ωk
ii(t)(1 + |x|2)hk

ii−2

− 8

d∑
i,j=1

ωk
ij(t)xixj(1 + |x|2)hk

ii−3−2

d∑
i=1

γk
i x

2
i (1 + |x|2)�ki−2

−
m∑
j=1

dkj(t)(1 + |x|2)σkj−1

for any k = 1, . . . ,m and (t, x) ∈ I × R
d. Now, arguing as before, if (6.3) is

satisfied the function λ0vk(x)− ((A(t)v)(x))k tends to +∞ as |x| → +∞ uniformly
with respect to t ∈ [a, b], for any [a, b] ⊂ I. Hence we can find λ0 > 0 such that
λ0v −A(t)v ≥ 0 in [a, b]× R

d.
In order to deduce the invariance of Lp(Rd;Rm), let us compute κC which

is a function which bounds from above the quadratic form associated with C in
[a, b]× R

d. We can write

〈C(t, x)ζ, ζ〉 =〈diagC(t, x)ζ, ζ〉+ 〈(C(t, x)− diagC(t, x))ζ, ζ〉
≤ − min

i=1,...,m
|cii(t, x)||ζ|2 + ΛD(t)(1 + |x|2)maxi �=j σij

≤− min
i=1,...,m

|dii(t)|(1 + |x|2)mini=1,...,m σii + ΛD(t)(1 + |x|2)maxi �=j σij

where ΛD(t) is any positive function which bounds from above the quadratic
form associated with the matrix ((1 − δhk)dhk(t))h,k. Hence, we deduce that
〈C(t, x)ζ, ζ〉 ≤ κC(t, x)|ζ|2 for any (t, x) ∈ [a, b]× R

d where

κC(t, x) = −
(

min
i=1,...,m

|dii(t)|
)
(1 + |x|2)mini=1,...,m σii + ΛD(t)(1 + |x|2)maxi �=j σij ,
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for any t ∈ [a, b] and x ∈ R
d. Moreover, since

divγk(t, x) = −
d∑

i=1

(
γk
i (t)(1 + |x|2)�ki + 2ki γ

k
i (t)x

2
i (1 + |x|2)�ki−1

+ 2hk
iiω

k
ii(t)(1 + |x|2)hk

ii−1

+ 4

d∑
j=1

hk
ij(h

k
ij − 1)ωk

ij(t)xjxi(1 + |x|2)hk
ij−2

)
,

we deduce that Γ[a,b] is finite (see (4.1)) if, for example, σii > maxs,j,k{ks , hk
sj − 1}

for any i = 1, . . . ,m. In this case also estimate (4.3) is satisfied, hence Theorem
4.2(ii) and (iii) can be applied. Consequently the space Lp(Rd;Rm), p ≥ 1 turns
out to be invariant under G(t, s).

It is quite easy to see that the functions μk, rk, ρ0 and ρ1 defined in Hypotheses
4.3 are such that

μk(t, x) � |x|2mini hii , rk(t, x) � |x|2mini �
k
i , ckk(t, x) � |x|2σkk

and

ρ0(t, x) � |x|2maxh �=k σhk , ρ1(t, x) � |x|2maxh,k σhk−1

as |x| → +∞ for any t ∈ J , J ⊂ I bounded. Thus, taking account of the sign
of each term in the definition of σk,J in (4.7) we conclude that σk,J is bounded in
J × R

d if, for instance
(6.4)

max
{

min
i=1,...,d

ki , σkk

}
> max

{
2max

i �=k
σki, 2σkk − 1, min

i=1,...,d
hk
ii

}
, k = 1, . . . ,m.

Assumption (6.4) allows to apply Theorem 4.4 to conclude that C1
b (R

d;Rm) is
invariant under G(t, s).

To conclude, we provide some conditions in order that the results in Section 5
can be applied. Besides Hypotheses 6.2(i)-(iii) we assume that maxi=1,...,d h

k
ii < 1+

maxi=1,...,d 
k
i for any k = 1, . . . ,m and that

∑m
i=1 dki(t) ≤ 0 for any k = 1, . . . ,m.

In this case Hypotheses 2.1, 3.1 and 3.3 are satisfied. If, in addition there exists
j ∈ {1, . . . ,m} such that

max
i=1,...,d

ji > max
i �=k

{σjj , h
j
ik − 1},

then we can find K > 0 such that the function g : Rd → R, defined by g(x) =
1

1+|x|2 − K for any x ∈ R
d, is such that all the hypotheses in Lemma 5.2(i) are

satisfied and Theorem 5.3 can be applied.
On the other hand, under Hypotheses 6.2(i), (iii), if σij = σ for any i, j =

1, . . . ,m, dij > 0 for any i �= j,
∑m

j=1 dij(t) = 0 for any t ∈ I, i = 1, . . . ,m, and

maxi=1,...,d h
k
ii < 1 + maxi=1,...,d 

k
i for any k = 1, . . . ,m then Hypotheses 2.1, 3.1

and 3.3 are satisfied as well as that in Lemma 5.2(ii) are satisfied. Indeed in this
case the function g = 1l is such that A(t)g ≡ 0 in R

d for any t ∈ I and consequently
Theorem 5.3 holds true also in this latter case.

7. Appendix

Here, we recall some apriori estimates used in the paper, whose proofs can be
obtained arguing exactly as in [2], and a classical approximation result.
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Proposition 7.1. Let Ω ⊂ R
d be an open set, T > s ∈ I and u ∈ Cb([s, T ]×

Ω;Rm) ∩ C1,2((s, T ) × Ω;Rm) satisfy the equation Dtu = Au + g in (s, T ) × Ω
for some g ∈ Cα/2,α((s, T ) × Ω;Rm). Further, assume that the function t �→
(t − s)‖u(t, ·)‖C2

b (Ω;Rm) is bounded in (s, T ). Then, for any R1 > 0 and x0 ∈ Ω,

such that DR1
(x0) � Ω, there exists a positive constant K0 = K0(R1, λ0, s, T ) such

that, for any t ∈ (s, T ),

(t− s)‖D2
xu(t, ·)‖L∞(DR1

(x0);Rm) +
√
t− s ‖Jxu(t, ·)‖L∞(DR1

(x0);Rm)

≤K0(‖u‖Cb([s,T ]×Ω;Rm) + ‖g‖Cα/2,α((s,T )×Ω;Rm)).(7.1)

Theorem 7.2 (Interior estimates). Let T > s ∈ I and let u ∈ C1+α/2,2+α((s, T ]×
R

d;Rm) satisfy, in (s, T ] × R
d the equation Dtu = Au + g for some g belonging

to C
α/2,α
loc ((s, T ] × R

d;Rm). Then for every r1, r2 ∈ (s, T ), with r1 < r2, and any
pair of bounded sets Ω1 and Ω2 such that Ω1 � Ω2, there exists a positive constant
c, depending on Ω1, Ω2, r1, r2, T and s, such that
(7.2)
‖u‖C1+α/2,2+α((r2,T )×Ω1;Rm) ≤ c(‖u‖Cb((r1,T )×Ω2;Rm) + ‖g‖Cα/2,α((r1,T )×Ω2;Rm)).

Lemma 7.3. The characteristic function of any open subset of Rd is the point-
wise limit in R

d of a sequence (ϑn) ⊂ Cb(R
d) such that 0 ≤ ϑn ≤ 1 in R

d for any
n ∈ N.

Proof. We fix an open set Ω and, for any n ∈ N, we denote by φn ∈
Cb([0,+∞)) any function such that φn(s) = 1, if s ≥ 1/n, φn(s) = 0, if s ∈
[0, (2n)−1] and 0 ≤ φn(s) ≤ 1 otherwise. Next, we set

ϑn(x) = φn(d(x,R
d \ Ω)), x ∈ R

d,

where d(x,Rd \ Ω) denotes the distance of x from R
d \ Ω. As it is immediately

seen, each function ϑn vanishes on R
d \ Ω. On the other hand, if x ∈ Ω, then

d(x,Rd \Ω) > 0. Therefore, if n ∈ N is such that nd(x,Rd \Ω) ≥ 1, then ϑn(x) = 1.
As a byproduct, limn→+∞ ϑn(x) = 1. Since, by the choice of the sequence (φn) it
holds that 0 ≤ ϑn ≤ 1 in R

d, (ϑn) is the sequence we are looking for. �
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