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Almost sure existence of global weak solutions to the
Boussinesq equations
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Abstract. In this paper, we show that after a suitable randomization of the

initial data in the negative order Sobolev spaces H−α with 0 < α < 1/2, there
exist almost sure global weak solutions to the Boussinesq equations in Rd and

Td, when d = 2, 3. Furthermore, we prove that the global weak solutions are

unique in dimension two.
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1. Introduction

In this paper, we address the almost sure existence of global weak solutions to

the Boussinesq equations in the whole space Rd and the tori Td for d = 2, 3,

ut −∆u+ u · ∇u+∇π = ρe3,(1.1)

ρt −∆ρ+ u · ∇ρ = 0,(1.2)

∇ · u = 0.(1.3)

Here, u is the velocity and ρ represents the density or temperature of the fluid

which depends on the physical context. π denotes the pressure and e3 = (0, 0, 1)T .

The Boussinesq system is an important physical model arising particularly in two

situations. It is a model for the inhomogeneous Navier–Stokes system [3, 4], which

is derived from the full compressible Navier—Stokes system under the low Mach

assumption. Under this scenario, u represents the velocity while ρ represents the

variation of the density. In the second context, the Boussinesq system is also related

to the Rayleigh–Bénard problem, in which case ρ represents the temperature. Let

us recall the scaling symmetry for the Boussinesq system

u(x, t)→ uλ(x, t) := λu(λx, λ2t),

ρ(x, t)→ ρλ(x, t) := λ3ρ(λx, λ2t),

where λ > 0. If (u, ρ) satisfies the Boussinesq system (1.1)–(1.3), then (uλ, ρλ) is

also a solution of the Boussinesq system (1.1)–(1.3). Under such scaling for the

Boussinesq system, we have ‖uλ(x, 0)‖Ḣsc = ‖u(x, 0)‖Ḣsc for sc = d
2 − 1, so Ḣsc is

a scaling critical space for u. We recall that the exponents s are called critical if

s = sc , sub-critical if s > sc, and super-critical if s < sc.

Data in Ḣs with s < sc (super-critical regime) is rougher than the data of crit-

ical regularity with respect to the scaling symmetry. Intuitively, scaling is ’against

well-posedness’ in this case. Ill-posedness in some cases can be circumvented by

an appropriate probabilistic method in some probability space of initial data, i.e.,

one may hope to establish almost sure local well-posedness with respect to certain

probability random data space. This random data approach to well-posedness first

appeared in the paper [6] of Bourgain when he studied the invariance of Gibbs

measures associated to NLS on tori (T and T2). Later, Burq and Tzvetkov [7, 8]

obtained well-posedness results with random data in the context of the cubic non-

linear wave equation (NLW) on a 3D compact Riemannian manifold. The random

data approach to well-posedness has also been pursued by many authors and ap-

plied to various dispersive equations and fluid models in different contexts. In

the context of the incompressible Navier–Stokes equations, almost sure local well-

posedness and in some instances almost sure global existence results in the context

of the Navier–Stokes equations include: [9, 17, 22, 21].
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Recently, Nahmod, Pavlović, and Staffilani [17] gave the first construction of

almost sure global weak solutions for the Navier–Stokes equations with initial data

in H−α(Td), where 0 < α < 1/2 for d = 2 and 0 < α < 1/4 for d = 3 in the

probabilistic point of view. By suitably randomizing the initial data, doing the

energy estimates with the random data perturbations, they proved both existence

and uniquness for dimension two and the existence results for dimension three on

the torus. Their constructions can be understood as a probabilitical analogue of the

global existence construction of the classic Leray weak solutions. In the context of

the Navier–Stokes equations, the local in time well posedness for randomized initial

data in L2(T3) was proven by Zhang and Fang [23] and by Deng and Cui [9] using

similar approach under the mild formulations. In [17], by suitably randomizing the

initial data u0, the authors singled out the linear evolution et∆uω0 and the difference

equation for w was identified, where they showed that the energy of w is conserved.

Later, J. Wang and K. Wang in [21] extended the global existence results from the

periodic domain to Rd, for d = 2, 3, and improved the range of the parameter of the

negative order Sobolev spaces from 0 < α < 1/4 to 0 < α < 1/2 for d = 3. By using

the approach in [17], Du and Zhang in [10] proved the almost sure global existence

of weak solutions for the MHD equations in Td and Rd, for d = 2, 3, where a uniform

bound for the energy of the nonlinear part of the solutions was also obtained.

In recent years, there has been extensive research on the Boussinesq equations.

People have been studying the persistence of regularity and global existence since

the seminal work of Chae [2] and of Hou and Li [12], who proved the global ex-

istence of a unique solution. In [15], Larios et al established global existence and

uniqueness in the low regularity space H1 × L2. Kukavica and the first author of

this paper addressed the persistence of regularity in W s,q ×W s,q for the 2D frac-

tional Boussinesq equations in [13] and the long time behavior of solutions in [14].

For other global results of solutions, see [1, 5, 11, 15, 16, 18, 19, 20]; however,

the analogous almost sure existence of global weak solutions is less studied. In fact,

to the best knowledge of the authors, these are the first results addressing global

existence in the random data setting.

In this paper, we first introduce basic notation together with definitions of

randomization. Then, we prove the global existence and uniqueness for the almost-

sure weak solutions in 2D and the existence for 3D. The paper is organized as

follows. In Section 2, we state our key lemmas and the main results. Section 3

contains a lemma on the estimates in terms of random data. Section 4 contains the

energy estimates. In section 5, we construct the weak solutions and we prove that

the solutions are unique in 2D in section 6. We finish the proof in section 7.
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2. Notation and the main results

In this section, we introduce basic notations and state our main results. We

first define the Leray projector P

P = I +∇(−∆)−1∇·

to be a bounded operator into divergence-free vector fields. The Leray projector P
may also be defined via the Fourier transform

(̂Pu)j(ξ) =

(
δjk −

ξjξk
|ξ|2

)
ûk(ξ), j = 1, 2, 3.

We apply the Leray projector to the equation (1.1) and the pressure π vanishes.

Then we have

ut −∆u+ P∇ · (u⊗ u) = P(ρe3).

We now define

H = the closure of {u ∈ C∞ : ∇ · u = 0} in L2

and

V = the closure of {u ∈ C∞ : ∇ · u = 0} in H1.

We next introduce the construction of random initial data in the whole space Rd

for d ≥ 1, which was first introduced by Burq and Tzvetkov [7]. In Rd, we divide

the frequency space by using the Wiener decomposition. For n ∈ Zd, let Qn be the

unit cube Qn = n+ (− 1
2 ,

1
2 ]d. Then we have

Rd =
⋃
n

Qn.

Note that Qn ∩ Qm = ∅ if m 6= n and
∑
n χQn(ξ) = 1. Hence, we have the

decomposition

f(x) =
∑
n∈Zd

F−1(χQn f̂).

Define a nonnegative and even smooth function φ such that φ(ξ) = 1 for ξ ∈
(− 1

2 ,
1
2 )d and φ(ξ) = 0 for ξ ∈ ([−1, 1]d)c, and let

ϕ(ξ) =
φ(ξ)∑

n φ(ξ − n)
.

Note that
∑
n ϕ(ξ − n) = 1. Define

ϕ(D − n)f =

∫
Rd
f̂(ξ)ϕ(ξ − n)ei2πx·ξ dξ,

where

D =
√
−∆.

Then f has a smooth version for the Wiener decomposition:

f(x) =
∑
n∈Zd

ϕ(D − n)f.
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For any real-valued function f , we obtain

ϕ(D + n)f = ϕ(D − n)f

and
∑
n ϕ(D − n)f is also a real-valued function. In the Td case, the frequencies

of functions are in Zd, so we can divide the frequency space into the integer points.

To keep the consistence of the notations, we denote the decomposition operator

φ(D − n)f = f̂(n)ei2πx·n.

For simplicity, we will skip the T or Rd in the spacial function spaces in the

following context (e.g. L2 means L2(Td) or L2(Rd)). We will specify them when

it is necessary. We now introduce the randomization of elements in negative order

Sobolev spaces Ḣ−α.

Definition 2.1. Let (ln(ω))n∈Zd be a sequence of real, 0-mean, independent

random variables on a probability space (Ω, A, p) with associated sequence of dis-

tributions (µn)n∈Zd so that there exists c > 0, for all γ ∈ R and for all n ∈ Zd we

have that

(2.1)

∣∣∣∣∫ ∞
−∞

eγx dµn(x)

∣∣∣∣ ≤ ecγ2

.

For f ∈ Ḣ−α(Rd) or f ∈ H−α(Td), we define the map from (Ω, A) to H−α by

ω → fω

where

(2.2) fω =
∑
n∈Zd

ln(ω)φ(D − n)f,

where φ(D − n)f is defined as before. We call such a map randomization.

To state the main theorems (Theorem 2.1 and Theorem 2.2), we introduce the

following definition:

Definition 2.2. For T > 0 and d = 2, 3, let u0, ρ0 ∈ Ḣ−α(Rd) or H−α(Td) and

∇ · u0 = 0. We say (u, ρ) is a weak solution of the initial value problem (1.1)-(1.3)

with initial datum (u0, ρ0), if

• u, ρ ∈ L2
loc([0, T ]; Ḣ1)∩L∞loc([0, T ];L2)∩Cw([0, T ]; Ḣ−α) satisfying du

dt ,
dρ
dt ∈

L2([0, T ];H−1
loc );

• the map t ∈ (0, T ) 7→ u(t, ·) and ρ(t, ·) are continuous from (0, T ) to

Ḣ−α(Rd) or H−α(Td) and limt→0+(u(t, ·), ρ(t, ·)) = (u0, ρ0);

• for all ζ, η in Schwartz space with ∇ · ζ = 0, we have

〈ut −∆u+ P∇ · (u⊗ u)− ρe3, ζ〉 = 0,

and

〈ρt −∆ρ+ u · ∇ρ, η〉 = 0.
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The following are the main results of this paper.

Theorem 2.1 (Existence and uniqueness in 2D). Fix T > 0, 0 < α ≤ 1/2. Let

u0, ρ0 ∈ Ḣ−α(R2) or H−α(T2) and ∇ · u0 = 0. We further suppose u0 and ρ0 are

mean zero in the periodic case. Then there exists a set Σ ⊆ Ω of probability 1 such

that for any ω ∈ Σ the initial value problem (1.1)− (1.3) with datum (uω0 , ρ
ω
0 ) has

a unique global weak solution in the sense of Definition 2.2 of the form

u = gω1 + v,

ρ = gω2 + θ,

and

v, θ ∈ L∞([0, T ];L2) ∩ L2([0, T ]; Ḣ1),

where (uω0 , ρ
ω
0 ) are random initial datum in the sense of Definition 2.1, gω1 = et∆uω0

and gω2 = et∆ρω0 .

Theorem 2.2 (Existence in 3D). Fix T > 0, 0 < α ≤ 1/2. Let u0, ρ0 ∈
Ḣ−α(R3) or H−α(T3) and ∇ ·u0 = 0. We further suppose u0 and ρ0 are mean zero

in the periodic case. Then there exists a set Σ ⊆ Ω of probability 1 such that for

any ω ∈ Σ the initial value problem (1.1)− (1.3) with datum (uω0 , ρ
ω
0 ) has a global

weak solution in the sense of Definition 2.2 of the form

u = gω1 + v,

ρ = gω2 + θ,

and

v, θ ∈ L∞([0, T ];L2) ∩ L2([0, T ]; Ḣ1),

where (uω0 , ρ
ω
0 ) are random initial datum in the sense of Definition 2.1, gω1 = et∆uω0

and gω2 = et∆ρω0 .

Note that in fact the later construction will show u, ρ ∈ L∞([δ0, T ];L2) ∩
L2([δ0, T ]; Ḣ1) for some small time δ0.

3. A priori estimates on the random data

We now introduce the deterministic estimates for the random initial data and

probabilistic estimates for the heat kernel in terms of random data. The following

lemma is a standard large deviation property (see Lemma 3.1 in [7]) and it will be

used to analyze the heat flow on the randomized data.

Lemma 3.1 (Lemma 3.1 in [7]). Let (lr(ω))
∞
r=1 be a sequence of real, 0-mean,

independent random variables on a probability space (Ω, A,P) with associated se-

quence of distributions (µr)
∞
r=1. Assume that there exists c > 0 such that ∀γ ∈ R,
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∀r ≥ 1 we have ∣∣∣∣∫ ∞
−∞

eγx dµr(x)

∣∣∣∣ ≤ ecγ2

.

Then there exists α > 0 such that for every λ > 0, every sequence (ar)
∞
r=1 ∈ `2 of

real numbers,

P

(
ω :

∣∣∣∣∣
∞∑
r=1

arlr(ω)

∣∣∣∣∣ > λ

)
≤ C exp

(
− αλ2

‖ar‖2`2r

)
.

As a consequence, for every q ≥ 2 and (a2
r)
∞
r=1 ∈ `2,∥∥∥∥∥

∞∑
r=1

arlr(ω)

∥∥∥∥∥
Lq(Ω)

≤ C√q ‖ar‖`2r .

We next recall another classical result for a sequence of real, mean-0, indepen-

dent random variables.

Lemma 3.2. Let {ln(ω)}n∈Zd be a sequence of real, mean-0, independent ran-

dom variables satisfy Definition 2.1 on a probability space (Ω, A,P). Then given

ε, δ > 0, there exists a subset Ωδ ⊂ Ω satisfying P(Ωcδ) . e−
1
δε , such that for all

ω ∈ Ωδ

|ln(ω)| . 1

δε
log(〈n〉+ 1)

where 〈n〉 =
√
|n|2 + 1.

Proof. For each n and a small ε > 0, we have a constant C,

Ee|ln(ω)| ≤ C.

Set M = 1
δε , and then we have

E
∣∣∣∣e|ln(ω)|

eM

∣∣∣∣ ≤ Ce− 1
δε

Then we obtain,

Ce−
1
δε > E

∣∣∣∣e|ln(ω)|

eM

∣∣∣∣ ≥ ∑
j∈Zd

P(e|lj(ω)| ≥ eM 〈j〉d) =
∑
j∈Zd

P(|lj(ω)| ≥ 1

δε
+ d log〈j〉).

Excluding Ωcδ := ∪j{|lj(ω)| ≥ 1
δε + d log〈j〉} from Ω, for all ω ∈ Ωδ, we have

|ln(ω)| ≤ 1

δε
+ d log〈n〉 . 1

δε
log(〈n〉+ 1), for n ∈ Zd.

with P(Ωcδ) < Ce−
1
δε . �

Remark 3.3. For given ε > 0 and arbitrary small γ > 0, it is easy to check the

fact that

P(‖fω‖H−α−γ >
1

δε
‖f‖H−α) . e

1
δε

which implies almost surely fω ∈ H−α−γ for arbitrary small γ > 0.
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Lemma 3.4. For 0 < α < 1 and k ∈ N. Given ε > 0 and arbitrary small γ > 0.

If f ∈ Ḣ−α(Rd) or f ∈ H−α(Td) of mean zero. Suppose fω is defined as (2.2), then

there exists a subset Ωδ ⊂ Ω satisfying P(Ωcδ) . e
− 1
δε , for all ω ∈ Ωδ we obtain that

(3.1) ‖∇ket∆fω‖L2 ≤ 1

δε
(1 + t−

α+γ+k
2 )‖f‖Ḣ−α

and

(3.2) ‖∇ket∆fω‖L∞ ≤
1

δε
max{t− 1

2 , t
−(k+α+γ+d/2)

2 }‖f‖Ḣ−α .

Proof. Based on the deterministic properties of heat kernel (see Lemma 3.1

in [17]), we have

(3.3) ‖∇ket∆fω‖L2 ≤ (1 + t−
α+k

2 )‖fω‖Ḣ−α−γ

and

(3.4) ‖∇ket∆fω‖L∞ ≤ max{t− 1
2 , t

−(k+α+d/2)
2 }‖fω‖Ḣ−α−γ .

Applying Remark 3.3 into (3.3) and (3.4), we have (3.1) and (3.2) after excluding

a subset of probability . e−
1
δε . �

Remark 3.5. Given f ∈ H−α(Td) of mean zero, ‖f‖H−α(Td) is comparable to

(
∑
k∈Zd,k 6=0 |k|−α|f̂(k)|2)1/2 = ‖f‖Ḣ−α(Td), since f̂(0) = 0. So in the periodic case,

it is equivalent to use H−α and Ḣ−α when the functions are mean zero.

We use the deterministic properties of heat kernel but we still leave the linear

evolution et∆fω(t) unbounded when t is near zero. This is also the reason why we

can not construct the weak solution of negative regularity deterministically. In the

following lemma, we exploit the randomness in the data fω and then we bound the

linear evolution et∆fω(t) in the small interval around zero in the Lp sense.

Lemma 3.6. For p, q ≥ 2, 0 < α < 1 with αp ≤ 2 and δ > 0. Given some

ε < 1
p −

α
2 , set

Eδ,p,q = {ω ∈ Ω : ‖et∆fω‖Lp([0,δ′],Lq) > (δ′)
1
p−

α
2−ε‖f‖H−α , ∀δ′ ∈ (0, δ]}.

Then we have

P(Eδ,p,q) . e
− 1
δε .

Proof. By Minkowski’s inequality and large deviation property (Lemma 3.1),

for r ≥ p, q we can have the following bound (see Lemma 2.4 in [21])

(3.5) (E‖et∆fω‖rLp([0,δ′],Lq))
1/r ≤ Cp,q

√
r(δ′)

1
p−

α
2 ‖f‖H−α .

By Chebyshev’s inequality, we have

P(‖et∆fω‖Lp([0,δ′],Lq) > λ) ≤ Crp,qλ−rr
r
2 (δ′)

r
p−

rα
2 ‖f‖rH−α
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for any r ≥ p, q. When λ/
(

(δ′)
r
p−

rα
2 ‖f‖rH−α

)
≥ e2, we select

r =
λ

(δ′)
r
p−

rα
2 ‖f‖rH−α

.

By r−
r
2 ≤ e−r2 when r ≥ e2, we have

P(‖et∆fω‖Lp([0,δ′],Lq) > λ) .p,q exp

− λ2(
(δ′)

r
p−

rα
2 ‖f‖rH−α

)2

 .

When λ/
(

(δ′)
r
p−

rα
2 ‖f‖rH−α

)
< e2, we select r = max{p, q} (WLOG suppose r = p).

It is easy to check that Crp,qλ
−pp

p
2 (δ′)1− pα2 ‖f‖pH−α .p,q exp

(
− λ2(

(δ′)
r
p
− rα

2 ‖f‖r
H−α

)2

)
.

So we have

P(‖et∆fω‖Lp([0,δ′],Lq) > λ) .p,q exp

− λ2(
(δ′)

r
p−

rα
2 ‖f‖rH−α

)2

 .

By choosing λ = (δ′)
1
p−

α
2−ε‖f‖H−α , we prove

P(Eδ,δ′,p,q) . e
− 1

(δ′)2ε ,

where

Eδ,δ′,p,q = {ω ∈ Ω : ‖et∆fω‖Lp([0,δ′],Lq) > (δ′/2)
1
p−

α
2−ε‖f‖H−α , where δ′ ∈ (0, δ]}.

By choosing δ′ = δ, δ2 ,
δ
4 ,

δ
8 , ..., we have P(∪∞j=1Eδ,2−jδ,p,q) ≤

∑∞
j=1 P(Eδ,2−jδ,p,q) .

e−
1
δε . It is easy to check Eδ,p,q ⊂ ∪∞j=1Eδ,2−jδ,p,q yielding (3.5). �

4. Energy estimates for the Boussinesq system

In this section, we give energy estimates for the difference equations. We will

use these a priori estimates to construct global weak solutions. First, we set

u = g1 + v,

ρ = g2 + θ,

where g1 and g2 are two functions satisfying some specific conditions (in the fol-

lowing Theorem 4.1). It is equivalent to consider the new perturbed Boussinesq

system

vt −∆v + P∇ · ((g1 + v)⊗ (g1 + v)) = P((g2 + θ)e3),(4.1)

θt −∆θ +∇ · ((g1 + v)(g2 + θ)) = 0,(4.2)

∇ · v = 0.(4.3)
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Now we define the energy for v and θ, respectively.

E1(v, t) = ‖v‖2L2 +

∫ t

0

‖∇v‖2L2 ds

and

E2(θ, t) = ‖θ‖2L2 +

∫ t

0

‖∇θ‖2L2 ds.

The following theorem establishes energy bounds which will be used in constructing

global weak solutions. The proofs of the whole space and the periodic space are

similar, so we only present the proof of the whole space. Denote that f = (u0, ρ0)

and ‖f‖Ḣ−α = ‖u0‖Ḣ−α + ‖ρ0‖Ḣ−α .

Theorem 4.1. For any fixed number T > 0 and α ∈ (0, 1
2 ) and for any δ > 0

which is small enough. Given 0 < ε < 1
4 −

α
2 and γ > 0 which is an arbitrarily small

positive number. Consider functions g1 and g2 satisfying the following properties,

for i = 1, 2 and k = 0, 1

(4.4) ‖∇kgi‖L2 ≤ 1

δε
(1 + t−

α+γ+k
2 )‖f‖Ḣ−α ,

and

(4.5) ‖gi‖L4([0,δ],L4) + ‖gi‖L4([0,δ],L4+ ) ≤ δ
1
4−

α
2−ε‖f‖Ḣ−α , when d = 2

where 1
4+ = 1

4 − γ and

(4.6) ‖gi‖L3([0,δ],L9) + ‖gi‖L4([0,δ],L4) ≤ δ
1
4−

α
2−ε‖f‖Ḣ−α , when d = 3.

Suppose v, θ ∈ L∞([0, T ];L2) ∩ L2([0, T ]; Ḣ1) is a solution of (4.1)-(4.3), then for

all t ∈ [0, T ], we have

(4.7) E1(v, t) + E2(θ, t) ≤ C(T, α, δ, ‖f‖Ḣ−α).

Furthermore for any bounded domain B with smooth boundary in Rd (d=2, 3), we

have

(4.8) ‖∂tv‖L2([0,T ],H−1(B)) + ‖∂tθ‖L2([0,T ],H−1(B)) .B C(T, α, δ, ‖f‖Ḣ−α).

Proof of Theorem 4.1. We will prove this theorem by separating into two

cases t ∈ [0, δ] and t ∈ [δ, T ].

Case 1: t ∈ [0, δ]. First, by multiplying by v and integrating the resulting equation

for t ∈ [0, δ] we obtain the following equation:

E1(v, t) = −
∫ t

0

∫
v · P∇ · (g1 ⊗ g1) dxds−

∫ t

0

∫
v · P∇ · (g1 ⊗ v) dxds

−
∫ t

0

∫
v · P∇ · (v ⊗ g1) dxds−

∫ t

0

∫
v · P∇ · (v ⊗ v) dxds

−
∫ t

0

∫
v · P(g2 + θ)e3 dxds =

5∑
i=1

Ii.
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By the divergence-free condition on v and g1, we have

I3 = I4 = 0.

Indeed, since v is divergence-free, we have∫
v · P∇ · (v ⊗ v) dx =

1

2

∫
v · P∇|v|2 dx = 0.

Therefore, it remains to estimate I1, I2 and I5. For I1, by Hölder inequality, the

definition of E1 and (4.5) (4.6), we have

I1 . ‖∇v‖L2([0,t],L2)‖g1‖2L4([0,t],L4) . δ
1
2−α−2ε‖f‖2

Ḣ−α
E1(t)

1
2 .

For I2, when d = 2, by Hölder inequality, (4.5) and the definition of E1, we have

that

I2 .‖∇v‖L2([0,t],L2)‖g1‖L4([0,t],L4+ )‖v‖L4([0,t],L4− )

.δ
1
4−

α
2−ε‖f‖Ḣ−αE1(t)

1
2 ‖v‖L4([0,t],L4− ),

(4.9)

where 1
4− = 1

4 + γ. For ‖v‖L4([0,t],L4− ), by Lp interpolation theory and Sobolev

inequality, we have

‖v‖L4([0,t],L4− ) .
(
‖v‖L∞([0,t],L2)

) 1
2

(
‖v‖L2([0,t],L∞− )

) 1
2

.

(
sup

0≤s≤t
E1(s)

) 1
4 (
‖v‖L2([0,t],H1)

) 1
2

.

(
sup

0≤s≤t
E1(s)

) 1
4 (
‖v‖L2([0,t],L2) + ‖∇v‖L2([0,t],L2)

) 1
2

.

(
sup

0≤s≤t
E1(s)

) 1
4
(
t1/2 sup

0≤s≤t
E1(s)

1
2 + E1(t)

1
2

) 1
2

,

(4.10)

where 1
∞− = γ/2. Combining (4.9) and (4.10), and taking t = δ, we have that for

δ < 1

(4.11) I2 . δ
1
4−

α
2−ε‖f‖Ḣ−α sup

0≤s≤δ
E1(s).

For I2, when d = 3, by Hölder inequality, (4.6) and the definition of E1, we have

that

I2 .‖∇v‖L2([0,t],L2)‖g1‖L3([0,t],L9)‖v‖L6([0,t],L
18
7 )

.δ
1
4−

α
2−ε‖f‖ḢαE1(t)

1
2 ‖v‖

L6([0,t],L
18
7 )
.

(4.12)

Based on the interpolation theory and Sobolev inequality, we have

(4.13) ‖v‖
L6([0,t],L

18
7 )
. ‖v‖

2
3

L∞([0,t],L2)‖v‖
1
3

L2([0,t],Ḣ1)
. sup

0≤s≤δ
E1(s)

1
2 .
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Hence when d = 3, we have the same bound of I2 as (4.11). For I5, by Cauchy

inequality and (4.4) we have that

I5 . ‖v‖L∞([0,t],L2)

(
t‖θ‖L∞([0,t],L2) + ‖g2‖L1([0,t],L2)

)
. δ sup

0≤s≤δ
E1(s)1/2 sup

0≤s≤δ
E2(s)1/2 + δ1−α+γ

2 −ε sup
0≤s≤δ

E1(s)
1
2 .

(4.14)

For the estimate of E2, first, we multiply by θ and integrate the resulting equation

E2(θ, t) = −
∫ t

0

∫
(∇θ) · (g1g2 + g1θ + vg2 + vθ) dxds

= −
∫ t

0

∫
(∇θ) · (g1g2)−

∫ t

0

∫
(∇θ) · (vg2) dxds = J1 + J2,

where we use the fact that both v and g1 are divergence-free. For J1, we apply

Hölder’s inequality obtaining

J1 ≤ ‖∇θ‖L2([0,t],L2)‖g1‖L4([0,t],L4)‖g2‖L4([0,t],L4) . δ
1
2−α−2ε‖f‖2

Ḣ−α
E2(t)

1
2 .

For J2, when d = 2, applying Hölder’s inequality, (4.5) and (4.10) we have

J2 .‖∇θ‖L2([0,t],L2)‖g2‖L4([0,t],L4+ )‖v‖L4([0,t],L4− )

.δ
1
4−

α
2−ε‖f‖Ḣ−α sup

0≤s≤δ
E1(s)

1
2 sup

0≤s≤δ
E2(s)

1
2 .

For J2, when d = 3, applying Hölder’s inequality, (4.6) and (4.14) we have

J2 .‖∇θ‖L2([0,t],L2)‖g2‖L3([0,t],L9)‖v‖L6([0,t],L
18
7 )

.δ
1
4−

α
2−ε‖f‖Ḣ−α sup

0≤s≤δ
E1(s)

1
2 sup

0≤s≤δ
E2(s)

1
2 .

Summarizing
∑5
i=1 Ii and

∑2
i=1 Ji, when t ∈ [0, δ] we have the following bound

sup
0≤s≤δ

(E1(s) + E2(s)) .δ
1
2−α−2ε‖f‖2

Ḣα

(
sup

0≤s≤δ
E1(s)

1
2 + E2(s)

1
2

)
+ δ

1
4−

α
2−ε‖f‖Ḣ−α sup

0≤s≤δ
E1(s) + δ

1
2−α−2ε‖f‖2

Ḣ−α
E2(t)

1
2

+ δ sup
0≤s≤δ

E1(s)1/2 sup
0≤s≤δ

E2(s)1/2 + δ1−α+γ
2 −ε sup

0≤s≤δ
E1(s)

1
2

+ δ
1
4−

α
2−ε‖f‖Ḣ−α sup

0≤s≤δ
E1(s)

1
2 sup

0≤s≤δ
E2(s)

1
2 .

(4.15)

Since α < 1
2 − 2ε, we could choose δ is small enough such that δ1−α+γ

2 −ε � 1 and

δ
1
4−

α
2−ε‖f‖Ḣ−α � 1. Then the continuity argument with (4.15) helps us obtain

that

sup
0≤s≤δ

(E1(s) + E2(s)) ≤ C(α, ‖f‖Ḣ−α).
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Next we will consider the estimate of ‖∂tv‖L2([0,δ],H−1(B)) + ‖∂tθ‖L2([0,δ],H−1(B)).

By the equation (4.1) we have

‖∂tv‖L2([0,δ],H−1(B)) ≤‖v‖L2([0,δ],H1(B)) + ‖P∇ · (g1 ⊗ g1)‖L2([0,δ],H−1(B))

+‖P∇ · (g1 ⊗ v)‖L2([0,δ],H−1(B)) + ‖P∇ · (v ⊗ g1)‖L2([0,δ],H−1(B))

+‖P∇ · (v ⊗ v)‖L2([0,δ],H−1(B)) + ‖P(g2 + θ)e3‖L2([0,δ],H−1(B)).

(4.16)

By the definition of the energy, we have ‖v‖L2([0,δ],H1(B)) ≤ E
1
2
1 (δ). For the remain-

ing terms in (4.16), using the similar estimates for terms from I1 to I5, and hence

for d = 2 we have

‖∂tv‖L2([0,δ],H−1(B)) ≤ E
1
2
1 (δ) + ‖g1‖2L4([0,δ],L4) + 2‖g1‖L4([0,δ],L4+ )‖v‖L4([0,δ],L4− )

+‖v‖2L4([0,δ],L4) + ‖θ + g2‖L2([0,δ],H−1(B))

.BE
1
2
1 (δ) + δ

1
2−α−2ε‖f‖2

Ḣ−α
+ δ

1
4−

α
2−ε‖f‖Ḣ−α sup

0≤s≤δ
E

1
2
1 (s)

+ sup
0≤s≤δ

E1(s) + sup
0≤s≤δ

E
1
2
2 (s) + δ

1−α−γ−ε
2

. C(α, ‖f‖Ḣ−α),

(4.17)

where L4
tL

4
x norm of v is bounded by a interpolation of L∞t L

2
x and L2

t Ḣ
1 norms of

v which are in E1. Similar for d=3 we have

‖∂tv‖L2([0,δ],H−1(B)) ≤ E
1
2
1 (δ) + ‖g1‖2L4([0,δ],L4) + 2‖g1‖L3([0,δ],L9)‖v‖L6([0,δ],L

18
7 )

+‖v‖2L4([0,δ],L4) + ‖θ + g2‖L2([0,δ],H−1(B))

.BE
1
2
1 (δ) + δ

1
2−α−2ε‖f‖2

Ḣ−α
+ δ

1
4−

α
2−ε‖f‖Ḣ−α sup

0≤s≤δ
E

1
2
1 (s)

+ sup
0≤s≤δ

E1(s) + sup
0≤s≤δ

E
1
2
2 (s) + δ

1−α−γ−ε
2

. C(α, ‖f‖Ḣ−α).

(4.18)

By the equation (4.2) we have

‖∂tθ‖L2([0,δ],H−1(B)) ≤ ‖θ‖L2([0,δ],H1(B)) + ‖g1g2‖L2([0,δ],H−1(B))

+‖g1θ‖L2([0,δ],H−1(B)) + ‖vg2‖L2([0,δ],H−1(B))

+‖vθ‖L2([0,δ],H−1(B)).

(4.19)

By the definition of the energy, we have ‖θ‖L2([0,δ],H1(B)) ≤ E
1
2
2 (δ). For the remain-

ing terms in (4.16), using the similar estimates for terms J1 and J2, and hence we
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have

‖∂tθ‖L2([0,δ],H−1(B)) ≤ E
1
2
2 (δ) + δ

1
2−α−2ε‖f‖2

Ḣ−α
+ ‖v‖L4([0,δ],L4)‖θ‖L4([0,δ],L4)

+δ
1
4−

α
2−2ε‖f‖Ḣ−α( sup

0≤s≤δ
E

1
2
1 (s) + sup

0≤s≤δ
E

1
2
2 (s))

.C(α, ‖f‖Ḣ−α)

(4.20)

where L4
tL

4
x norm of v and θ are bounded by a interpolation of L∞t L

2
x and L2

t Ḣ
1

norms of v and θ which are in E1 and E2.

Case 2: t ∈ [δ, T ]. The previous energy of (v, θ) is bounded at t = δ which gives

‖v(δ)‖L2 and ‖θ(δ)‖L2 are bounded by C(α, ‖f‖Ḣ−α). Back to (u, ρ) which is the

solution of (1.1)-(1.3), we know that

‖u(δ)‖L2 ≤ ‖v(δ)‖L2 + ‖g1(δ)‖L2 . E1(δ)
1
2 + δ−

α+γ−ε
2 ‖f‖Ḣ−α ≤ C(α, δ, ‖f‖Ḣ−α)

and

‖ρ(δ)‖L2 ≤ ‖θ(δ)‖L2 + ‖g2(δ)‖L2 . E2(δ)
1
2 + δ−

α+γ−ε
2 ‖f‖Ḣ−α ≤ C(α, δ, ‖f‖Ḣ−α).

By the property of classical L2 weak solution of (u, ρ), we have that for t ∈ [δ, T ]

(4.21) E1(u, t) + E2(ρ, t) ≤ C(T, α, δ, ‖f‖Ḣ−α),

and

(4.22) ‖∂tv‖L2([δ,T ],H−1(B)) + ‖∂tθ‖L2([δ,T ],H−1(B)) .B C(T, α, δ, ‖f‖Ḣ−α).

Hence using (4.21), for the energy of (v, θ) we have that for t ∈ [δ, T ]

E1(v, t) + E2(θ, t) ≤ E1(g1, t) + E1(u, t) + E2(g2, t) + E2(ρ, t)

. E1(u, t) + E2(ρ, t) + δ−
α+γ+2ε

2 ‖f‖Ḣ−α + tδ−
α+γ+1+2ε

2 ‖f‖Ḣ−α
. C(T, α, δ, ‖f‖Ḣ−α).

Using (4.22) and (4.4), we have

‖∂tu‖L2([δ,T ],H−1(B)) + ‖∂tρ‖L2([δ,T ],H−1(B))

≤ ‖∂tv‖L2([δ,T ],H−1(B)) + ‖∂tθ‖L2([δ,T ],H−1(B)) + ‖g1‖L2([δ,T ],H1) + ‖g2‖L2([δ,T ],H1)

.BC(T, α, ‖f‖Ḣ−α) + (T − δ) 1
2 δ−

α+γ+1+2ε
2 ‖f‖Ḣ−α

≤ C(T, α, δ, ‖f‖Ḣ−α).

In the end, combining the two cases t ∈ [0, δ] and t ∈ [δ, T ], hence for all t ∈ [0, T ]

we prove (4.7) and (4.8). �
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5. Construction of the weak solutions to the difference equation of the

Boussinesq system

In this section, we shall construct weak solutions to the initial value problem

(1.1)–(1.3).

(5.1)


vt −∆v + P∇ · ((g1 + v)⊗ (g1 + v))− P((g2 + θ)e3) = 0,

θt −∆θ +∇ · ((g1 + v)(g2 + θ)) = 0,

∇ · v = 0, v(x, 0) = 0, θ(x, 0) = 0.

Theorem 5.1. Fix T > 0 and α ∈ (0, 1
2 ). Given 0 < ε < 1

4−
α
2 and γ > 0 can be

arbitrarily small. Consider functions g1 and g2 satisfying the following properties,

for i = 1, 2 and k = 0, 1

‖∇kgi‖L2 ≤ 1

δε
(1 + t−

α+k+γ
2 )‖f‖Ḣ−α

and

‖gi‖L4([0,δ],L4) + ‖gi‖L4([0,δ],L4+ ) ≤ δ
1
4−

α
2−ε‖f‖Ḣ−α , when d = 2

where 1
4+ = 1

4 − γ and

‖gi‖L3([0,δ],L9) + ‖gi‖L4([0,δ],L4) ≤ δ
1
4−

α
2−ε‖f‖Ḣ−α , when d = 3

when δ is small enough. Then there exists a weak solution (v, θ) in [0, T ] for the

initial value problem (5.1).

Proof. In the construction of weak solutions, we follow Galerkin approxima-

tions approach. We first construct the solutions (vM , θM ) (where M > 1) of finite

dimensional approximation equations as follows

(5.2)
vMt −∆vM + PMP∇ · ((PMg1 + vM )⊗ (PMg1 + vM ))− PMP((PMg2 + θM )e3) = 0,

θMt −∆θM + PM∇ · ((PMg1 + vM )(PMg2 + θM )) = 0,

∇ · vM = 0, vM (x, 0) = 0, θM (x, 0) = 0.

Our plan is to obtain the local-in-time well-posedness of the finite approximation

equations via the fixed point argument in the space

Xτ = C([0, τ ], L2
x) ∩ L2([0, τ ], Ḣ1

x).

Define

Φ(vM , θM ) =

∫ t

0

∆vM dt−
∫ t

0

PMP∇ · ((PMg1 + vM )⊗ (PMg1 + vM ))

−PMP((PMg2 + θM )e3) dt

and

Ψ(vM , θM ) =

∫ t

0

∆θM dt− PM∇ · ((PMg1 + vM )(PMg2 + θM )) dt.
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It is easy to obtain the following estimates

‖Φ(vM , θM )‖L∞t L2
x([0,τ ]) .M

2τ‖vM‖L∞t L2
x

+M1+ d
2 τ‖vM‖2L∞t L2

x

+M1+ d
2 +τ1−α2 ‖vM‖L∞t L2

x
+Mτh(d)−2γλ2 + τ1−α2 λ

+ τ‖θM‖L∞t L2
x
.

‖Ψ(vM , θM )‖L∞t L2
x([0,τ ]) .M

2τ‖θM‖L∞t L2
x

+M1+ d
2 τ‖vM‖L∞t L2

x
‖θM‖L∞t L2

x

+M1+ d
2 +τ1−α2 (‖θM‖L∞t L2

x
+ ‖vM‖L∞t L2

x
)

+Mτh(d)−2γλ2 + τ1−α2 λ.

And

‖Φ(vM , θM )‖L2
t Ḣ

1
x([0,τ ]) .M

3τ
3
2 ‖vM‖L∞t L2

x
+M2+ d

2 τ
3
2 ‖vM‖2L∞t L2

x

+M2+ d
2 +τ−γ+θ(d)‖vM‖L∞t L2

x
+M2τρ(d)−2γλ2

+ τ1−α2 λ+ τ‖θM‖L∞t L2
x
.

‖Ψ(vM , θM )‖L2
t Ḣ

1
x([0,τ ]) .M

3τ
3
2 ‖θM‖L∞t L2

x
+M2+ d

2 τ
3
2 ‖vM‖L∞t L2

x
‖θM‖L∞t L2

x

+M2+ d
2 +τ−γ+θ(d)(‖θM‖L∞t L2

x
+ ‖vM‖L∞t L2

x
)

+M2τρ(d)−2γλ2 + τ1−α2 λ,

where λ = ‖f‖Ḣ−α . By taking τ = τ(M, ‖f‖Ḣ−α , α) small enough, we can make

sure that Ψ(vM , θM ) and Ψ(vM , θM ) are contraction mappings. Hence a fixed point

argument helps us hold the local well-posedness of (vM , θM ) in the [0, τ ].

Since PMgi satisfies the same assumptions as gi in Section 4, we can repeat

the proof of Theorem 4.1 and obtain the same energy bounds (4.7) and the bound

(4.8) for ∂tv and ∂tθ given in Theorem 4.1 for finite dimensional approximation

solutions (vM , θM ) uniformly in M . As a consequence we can use an iteration ar-

gument to advance this solution of (vM , θM ) up to time T . By applying a standard

compactness argument, together with the fact that PMgi strongly converges to gi

for i = 1, 2, we obtains a weak solution (v, θ) to (5.1) on [0, T ]. Since T is arbitrary

large, we obtain a global weak solution. �

6. Uniqueness in 2D

In this section, we give the proof of uniqueness of 2D global weak solutions.

Theorem 6.1. Suppose g1 and g2 satisfy the decay properties in Theorem 4.1.

Then, the weak solutions in L2([0, T ];V ) ∩ L∞([0, T ];H) are unique when d = 2.

Proof of Theorem 6.1. Suppose (v1, θ1) and (v2, θ2) are two solutions. Then,

set

w = v1 − v2

z = θ1 − θ2.
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Thus, we obtain the equation in terms of w and z

wt −∆w + P∇ · (g1 ⊗ w) + P∇ · (w ⊗ g1) + P∇ · (v1 ⊗ w) + P∇ · (w ⊗ v2) = P(ze3)

and

(6.1) zt −∆z + w · ∇g2 + w · ∇θ1 + g1 · ∇z + v1 · ∇z = 0.

Now we do the L2 energy estimates given w(0) = z(0) = 0. Take the L2 inner

product on (6.1) with w and we get that

1

2

d

dt
‖w‖2L2 + ‖∇w‖2L2 ≤ ‖w‖2L4‖∇v2‖L2 + ‖g1‖L4‖w‖L4‖∇w‖L2 + ‖z‖L2‖w‖L2

≤ ‖w‖2L4‖∇v2‖L2 +
1

2
‖g1‖2L4‖w‖2L4 +

1

2
‖∇w‖2L2

+
1

2
‖z‖2L2 +

1

2
‖w‖2L2 .

Therefore, we have

1

2

d

dt
‖w‖2L2 ≤ C(‖∇v2‖4L2 + ‖g1‖2L4)‖w‖2L4 +

1

2
‖z‖2L2 .

Next, we consider the energy estimates for z by using Holder’s inequality and La-

dyzhenskaya inequality

1

2

d

dt
‖z‖2L2 + ‖∇z‖2L2 =

∫
w · ∇zg2 dx−

∫
w · ∇θ1z dx

−
∫
g1 · ∇zz dx−

∫
v2 · ∇zz dx

=

∫
w · ∇zg2 dx−

∫
w · ∇θ1z dx

≤ ‖w‖L4‖∇z‖L2‖g2‖L4 + ‖w‖L4‖∇θ1‖L2‖z‖L4

≤ (
1

2
‖∇z‖2L2 +

1

2
‖w‖2L4‖g2‖2L4)

+ (‖w‖1/2L2 ‖∇w‖1/2L2 ‖∇θ1‖L2‖z‖1/2L2 ‖∇z‖1/2L2 )

= M1 +M2.

For M1,

M1 ≤
1

2
‖∇z‖2L2 + C‖w‖2L2‖g2‖4L4 +

1

3
‖∇w‖2L2 .

For M2,

M2 ≤ C‖∇θ1‖L2‖w‖L2‖z‖L2 + C‖∇w‖L2‖∇z‖L2

≤ C‖∇θ1‖2L2‖w‖2L2 + C‖z‖2L2 + C‖∇w‖2L2 +
1

3
‖∇z‖2L2 .

Combining the estimates above yields the uniqueness of the solutions by Gronwall

inequality. �
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7. Proof of main theorems

We find the solution (u, ρ) by

u = gω1 + v,

ρ = gω2 + θ,

where gω1 = et∆uω0 and gω2 = et∆ρω0 . Then we consider the corresponding system of

(v, θ): (4.1)-(4.3).

Proof of Theorem 2.1 and 2.2. In Theorem 4.1, Theorem 5.1 and Theo-

rem 6.1, we show that main theorems (Theorem 2.1) and (Theorem 2.2) are true

when gω1 and gω2 satisfy the following conditions for i = 1, 2:

(7.1) ‖∇kgωi ‖L2 ≤ 1

δε
(1 + t−

α+γ+k
2 )‖f‖Ḣ−α ,

and for all δ′ ≤ δ

(7.2) ‖gωi ‖L4([0,δ′],L4) + ‖gωi ‖L4([0,δ′],L4+ ) ≤ (δ′)
1
4−

α
2−ε‖f‖Ḣ−α , when d = 2,

where 1
4+ = 1

4 − γ and

(7.3) ‖gωi ‖L3([0,δ′],L9) + ‖gωi ‖L4([0,δ′],L4) ≤ (δ′)
1
4−

α
2−ε‖f‖Ḣ−α , when d = 3.

Define

Ω
(1)
δ = {ω ∈ Ω : gω1 , g

ω
2 satifies (7.1)}

and

Ω
(2)
δ = {ω ∈ Ω : gω1 , g

ω
2 satifies (7.2)&(7.3)}.

It is easy to see that for any 0 < δ1 < δ2, Ω
(1)
δ2
⊂ Ω

(1)
δ1

and Ω
(2)
δ2
⊂ Ω

(2)
δ1

. Suppose

ω ∈ Ωgood = (∪δ>0Ω
(1)
δ ) ∩ (∪δ>0Ω

(2)
δ ), for the initial data uω0 and ρω0 we can solve

the system (1.1)-(1.3) on [0, T ]. It remains to show P(Ωgood) = 1. First we have

P(Ωgood) = 1−P
(
∩δ>0(Ω

(1)
δ )c ∪ ∩δ>0(Ω

(2)
δ )c

)
.

By Lemma 3.4 and Lemma 3.6, we know that P((Ω
(1)
δ )c) . e−

1
δε and P((Ω

(2)
δ )c) . e−

1
δε

so we have

P
(
∩δ>0(Ω

(1)
δ )c ∪ ∩δ>0Ω

(2)
δ )c

)
≤ lim
δ→0

P((Ω
(1)
δ )c) + P((Ω

(2)
δ )c) . lim

δ→0
e−

1
δε = 0

which shows P(Ωgood) = 1. �
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