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ABSTRACT. The asymptotic behavior of solutions is a significant subject in the
theory of wave equations. In this paper we are concerned with the asymptotic
behavior of the unique global solution to the Cauchy problem for one-dimension
quasilinear wave equations with null conditions. By applying the small-data-
global-existence result and exploiting the strength of weights, we not only
provide sharper convergence from the quasilinear case to the linear case but
also study the rigidity aspect of the scattering problem for quasilinear waves.
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It is an important issue and has a long history to study the long time behavior
of solutions to nonlinear wave equations [3,23,24], which arise naturally in many
physical fields. For quasilinear wave equations in one space dimension, it is known

from [21,22, 28] that small data lead to global solutions if the null condition
satisfied. This paper is devoted to the further study of the asymptotic behavior
global solutions based on the small-data-global-existence result.

is
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The small-data-global-existence type results of nonlinear wave equations have

attracted considerable attention in the past four decades. The approach is to use t
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decay mechanism of linear waves and treat the nonlinear problem as a perturbation
of the linear case. It is well-known that d-dimension linear waves enjoy a uniform
decay rate (1 +t)*%. In space dimensions at least four, i.e., d > 4, this decay rate
is integrable in time and therefore small-data-global-existence type theorems hold
for generic quadratic nonlinearities [13]. By contrast, in lower space dimensions,
the slower decay rate fails to be integrable in time. In such a case, the nonlinear-
ity controls the behavior of the solution, which may result in the blow up of the
solution in finite time with the lifespan explicitly determined by the initial data;
see, for example, [9,16]. A bit later, Klainerman [14] introduced the celebrated
null condition on the nonlinearity to compensate for the slower decay rate. Based
on some special cancellations provided by this condition, Christodoulou [5] and
Klainerman [15] independently proved the small-data-global-existence results for
three-dimension quasilinear wave equations with null conditions. More precisely,
regarding methods of proof, Christodoulou adopted the conformal method while
Klainerman adopted the commuting vector field method. We point out that alter-
native energy estimates for the three dimensional case are given in [18,19] which use
less of the special structure and apply to a more general class of equations. Along
this line, Alinhac [2] found the small-data-global-existence result still hold for a
certain class of two-dimension quasilinear wave equations with a more restricted
type of null conditions. Then some thorough studies are made by Katayama [11]
and Zha [27] independently. As we have seen, the small data theory for quasilinear
wave equations in space dimensions at least two is rather classical, for which we also
refer the readers to [3,6,8,10,12,23-25] with references therein for more details.

It is worth mentioning that the proofs above are based on the decay mechanism
of linear waves. However, one-dimension linear waves do not decay. Nevertheless,
there is a new decay mechanism in one space dimension case that the interaction
of waves with different speeds will lead to the decay of nonlinear terms. To display
this mechanism, Luli, Yang and Yu [21] developed a kind of weighted energy esti-
mate with positive weights and thus proved the small-data-global-existence result
for one-dimension semilinear wave equations with null conditions. Their result in-
deed improves a former one of Nakamura [22] with limited decay information on
the solution, which is based on an integrated local energy estimate, i.e., a spacetime
integral with negative weights. Recently, Zha [28] has extended such result to the
small-data quasilinear setting and proved that the global solution is asymptotically
free in the energy sense. Here we refer the readers to Chapter 6 in [11] for sev-
eral definitions and examples. Other contributions to the asymptotic behavior of
solutions can be found in the works such as [1,4,7,8,12,20,26]. Among these
studies, Lindblad and Tao [20] proved that finite energy solutions to one-dimension
defocusing nonlinear wave equation enjoy an average L decay and thus behave dif-
ferently from linear solutions. We remark here that their result has been improved
by Wei and Yang [26]. Furthermore, Abbrescia and Wong [1] showed the global
stability of traveling wave solutions to one-kind of one-dimension variational and
scalar quasilinear wave equations with cubic nonlinearity satisfying null conditions,
based on L estimates. Later on, Cha and Shao [4] showed the global stability
of traveling wave solutions to any systems of quasilinear wave equations satisfying
null conditions. We point out that the result in [4] is much sharper then the cor-
responding one in [1]. It is natural to see from these results that the asymptotic
behavior of solutions has not been elucidated very much in the one-dimension case.
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The aim of the present paper is to further study the global-in-time behavior
of small-data smooth solutions from two standpoints. One is to provide sharper
convergence from quasilinear waves to linear waves (free waves), the other is to
prove the rigidity from infinity for quasilinear waves.

1.1. First sight of asymptotic behavior: compared with the linear
case. For this purpose, we first need to review several concepts. On R'*1, the null
coordinates (£,7n) are defined as

t+x t—x
1.1 = = .
(1.1) {=—5— 1= —
In the null coordinates, we have two null vector fields
(1.2) Ot =0¢ + 0y, Oy =0 — 0q.

For brevity, we denote u¢ = O¢u and u, = Oyu. In addition, we will use the weight
functions in a uniform manner, that is,

(1.3) (€ = (L+le+aP)®, m)=(1+n+aP)?,

where a € R is a constant to be determined in Section 4 and can be taken as
a = ag = 0 for now. We call a the position parameter which indeed tracks the
centers of traveling waves and has the similar flavor as the position parameter
in [17]. We remark here that the choice of weights will be essential to the proof of
asymptotic behavior.

Throughout this paper, we consider the Cauchy problem for the following one-

dimension system of quasilinear wave equations
(1.4) uen = Q(Ou, ?u)
’ = Ay (u, ug, up)uey + Az (u, ug, uy)uee + Ag(u, ug, uy)Uny + F(u, ug, uy)

with small initial data
(1.5) (u, ue)li=0 = (¢,9) € H*(R) x H*(R).

Here, u = u(t,x) : R — R™ is an unknown function, Ugy = Ut — Uz, A; -
R™ x R™ x R™ — R™*™ (§ = 1,2, 3) are given symmetric, smooth and matrix valued
functions, and F': R™ xR"™ x R™ — R™ is a given smooth and vector valued function.
We assume that the system (1.4) satisfies the null condition [4,14,28], i.e., it holds
near the origin in R™ x R™ x R™ that

(1.6) At (u, ug, un) = O(|ul + |ug| + [uy]),

(1.7) ) = O(Junl),

(1.8) Asz(u,ug, up) = O(Jugl),

(1.9) ) = O(Jug]|un]).

It implies that any polynomial on w in Ay, As, F is allowed. Under these conditions,

[28] proved that for all 0 < ¢ < 1, there exists a positive constant &g such that for
any 0 < e < gq, if

(

Ao (u, ug, uy
(
(

Fu,ug, uy

2

(1.10) > (!|<w>1+5ﬁiﬁx¢HLg<R) + H<w>1+5550¢HL3<R)) S8
=0
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then the system (1.4)-(1.5) admits a unique global solution u. Moreover, if us is the
unique global solution to the Cauchy problem for the linear wave equation

(1.11) Uten = 0
with initial data
(ug, ugy) |emo = (g, ) € H(R) x L*(R),

then the global solution w satisfies

(1.12) lim (H’u§ - UfEHL?E(R) + ||uy — uanLg(R)) =0.

t—o0

Inspired by the asymptotically free property (1.12), we expect to derive the
convergence from quasilinear waves to linear waves given the smoothness of data

(1.13) (u, ug)|s—0 = (¢,) € H*(R) x H*(R)
and
(1.14) (ug, ugg) =0 = (5, ¥¢) € H*(R) x H'(R)

respectively, and therefore improve the asymptotic behavior result for the unique
global solution u to the Cauchy problem (1.4) and (1.13). We will provide sharper
convergence from the quasilinear case to the linear case by making use of the full
strength of the weights. More precisely, our first main result is stated as follows:

THEOREM 1.1. Assume that the system (1.4) satisfies the null condition. Then
for all 0 < § < 1, there exists a positive constant g such that for any 0 < € < &g, if

(1.15) €000, 26) |y + (16000 (0, ~20) [ 3 sy <

then the Cauchy problem (1.4) and (1.13) admits a unique global solution w. More-
over, the unique global solution u to the Cauchy problem (1.4) and (1.13) satisfies

(1.16) )520 (H<§>1+6 (ue — uf§)HH£1(]R) + {1 (uy — ufn)HH;(R)) =0,

where ug is the unique global solution to the Cauchy problem (1.11) and (1.14).

REMARK 1.2. Actually, Theorem 1.1 can be regarded as an extension of The-
orem 1.1 in [28] due to the following two aspects:

(i) Tt is clear from (1.1), (1.2) and (1.5) that

ug(0,28) = ug(0,7) = ¥(x) + ¢'(z), un(0, —2n) = uy(0,2) = P(z) — ¢'(2).

Thus the condition (1.15) can also be replaced by the condition (1.10).
(if) Since () > 1 and (n) > 1 by (1.3), we have a direct consequence of (1.16) as

(1.17) lim (HU& - “%HH;(R) + [Jun = uf"HH;(R)) =0

t—o0

In particular, for zero order derivative, (1.17) coincides with the asymptotically
free property (1.12).

REMARK 1.3. In fact, preliminary lemmas in Section 2 ensure that Theorem 1.1
is independent of the choice of the position parameter a. Without loss of generality,
we can assume g = 0 in the proof of Theorem 1.1 so that we can construct the
global solution by exactly the same argument as in [28].
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1.2. Another perspective on asymptotic behavior: concerning the
rigidity aspect. We turn to define the scattering fields of the global solution u(t, z)
on infinities and discuss the energy spaces where they live. In what follows, ¥, :=
{(t,z)|t = to} for any to € R. We first note that a given point (0,29) €
determines uniquely a left-traveling line with £ being constant and a right-traveling
line with 7 being constant:

le={(t,9)[€ =520}, by ={(t:m)|[n=—320}.

Then we denote the sets of left-traveling lines and right-traveling lines towards
infinite time as

ng{lg|§€R, t—>oo}, C,,:{ln‘neR, t—)oo},

and call them the left infinity and the right infinity respectively. These infinities
can be regarded as Euclidean spaces with the corresponding coordinates as depicted
in Figure 1.

Ce

<

C,

Zo

X =Xq

FIGURE 1. Traveling lines and infinities

By virtue of symmetry, we only need consider the left-traveling line l¢. It
emanates from ¥ at the point (0, z¢), travels along the 0, = 0; — 0, direction and
hits C¢ at the point & = %xo with ¢ — oo. Thus, integrating (1.4) over the line
segment of l¢ between (0, z¢) and (¢, z¢ — t) leads us to

t
ue(t, xo —t) = ue(0,z9) + / Q(0u, 9*u)(s, xo — s)ds.
0

It is not surprising to expect that the above expression converges as t — oo and
generates the following explicit formula for the left scattering field on the infinity
C&:

(1.18)  we(o0;¢) = tlim ue (t,28 —t) = ue (0, 28) +/ Q(0u, 9*u)(s,2¢ — s)ds.

— 00 0

Analogously, we can define the right scattering field u,(co;n) on the infinity C, for

1. .
n= —5.130.

(1.19) uy(oc0;n) == tli)m ue (t, —2n+t) = u, (0, —277)—|—/ Q(Ou, 0*u) (s, —2n+s)ds.
> 0

More precisely, our second main result is stated as follows:
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THEOREM 1.4. Under the same assumptions as in Theorem 1.1, the scattering
fields given by (1.18) and (1.19) satisfy
lim (H 1+6 (ug(00; &) — ue(t,26 —

t—o00 )||H§1(R)

(1.20)

+ H 1+5 Un(OO;n) - un(ta —2n+1)) =0.

HH;(R))
Moreover, if the scattering fields vanish at infinities, i.e., ug(00;€) =0 on Ce and

uy(00;n) = 0 on C,, then the solution itself vanishes identically, i.e., u(t,z) =0 on
RH—I .

REMARK 1.5. First of all, (1.20) tells us that the large-time traveling waves
converges to the scattering fields in the corresponding weighted Sobolev spaces,
which is equivalent to the statement that the scattering fields are well defined in
the weighted Sobolev spaces based on real analysis. Secondly, since the scattering
fields are indeed the waves detected by far-away observers, the moreover part of
Theorem 1.4 has the following physical intuition: if no waves are detected by far-
away observers, then there are no waves at all emanating from the initial time slice.
This conclusion reflects the rigidity from infinity for quasilinear waves in the sense
of uniqueness, and can also be viewed as a model for the results in Li and Yu [17],
where the rigidity from infinity has been proved for nonlinear Alfvén waves governed
by the MHD system.

REMARK 1.6. Since the position parameter a tracks the centers of left-traveling
waves and right-traveling waves, the choice of a will play a fundamental role in the
proof for the rigidity part.

An outline of this paper is as follows. In Section 2, we present necessary results
for the proof of asymptotic behavior. The proof of Theorem 1.1 is presented in
Section 3, while the proof of Theorem 1.4 is given in Section 4. The key idea is
to describe the pointwise convergence by the weighted L? convergence for techni-
cal convenience of weighted energies. In particular, we deal with the higher order
derivatives based on carefully using the quasilinear null structure and the null co-
ordinates.

2. Preliminary estimates and global existence

2.1. Weighted energies and basic estimates. To begin with, it is easy to
get the following lemma by straightforward calculation.

LEMMA 2.1. Assume A1 = A1 (u, ug, uy), Ao = Ao(u, ug, uy), Az = As(u, ug, uy)
and F = F(u, ug,uy) satisfy (1.6), (1.7), (1.8), and (1.9), respectively, and
[ul + Jug| + [un| + |uge| + [ugn| + [upy| < v
Then it holds that
|0 Ar| < Clug| + |ugel + [ueq]),
|0nAs] < Clun| + Jugy| + lugn)),
|0 As| < C(luy| + [uen]),
|0y A2| < C(
|0 As| < C(

|un| + |u6n| + |u7]77‘)7
lug| + luge| + |ugy|),
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0,45 < C

(lue| + luenl),
|0 | < Cluglug| + [uelluen| + [un||ueel),
|00 F'| < Clugl|un| + |uelfuny| + [un|luey|),

where C = C(v) is a constant depending on v.

N IN

We turn to follow [21,28] to use the following weighted energies

E(u(t)) = |46 ue 72 my + ()

u t)) _ H 1+

1

+6“nHL§(R) )

1+6u5n HL%(R)

6“§§HL3(R) +4¢)
+ H<7I>1+6“£n||2Lg(R) + H<77>1+6u'1’7||2Li(R) ’
u(t)) = [ ueee |72 s + 16 eenll e

+ H<n>1+6u§nnHii(R) + H<77>1+6“7m77H2Lg(R) ’

) = H(QHﬁuﬁnnHig(R) + H<77>1+5u5577{|i§(]1§)’
and the following space-time weighted energies

)= [0 5@ e+ 1007 0 Pl
/ /) 1+5u55HL2(R ds +/ ) =% () e g s

/ AT Y N [N
/ 1) =546 ugee [0 s +/ )= () P uges |72 sy s
" / ||<s>*7<n>l+6uw|lm oo || ||<s>*if<n>1*%nnl|iz<wd8’
/ 1) 1+6“€WWHL2(R)dS+/ 67 0 el

We also denote
E(u(t)) = E1(u(t)) + E2(u(?)) + E3(u(?)),
E(u(t)) = E1(u(t)) + E2(ult)) + Es(ult)).

We now present some technical facts concerning the weight functions, the proof
of which is based on direct computation.

LEMMA 2.2. We have the following inequalities:

1) 000 <o o () o) <o e,
@2 [om) T <cm o (97 F o)) | < o@ T o)

As an application, we obtain the following pointwise estimates. Though similar
estimates have been given in [28], we will present a more detailed proof here since
they provide great convenience for the following study of the asymptotic behavior
of solutions.
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LEMMA 2.3. Let u be a smooth function with sufficient decay at the spatial
infinity. Then we have

ull ey < C (Ex(u(t)))?
106) e | e gy + 110) w12y < C (Ea(ult)))? + C (Es(u(t)))?
||<5>1+6u66||Lge(R) + ||<§>1+5U6n||Lge(R)

I Pugn e ) + 1) gyl e z) < C (B(u(?)))

N
+
Q
/N
&1
w
<
=
~
~—
N—
[ME

()= =) ug o + (1) ER0 ) 0ue oo

< C(Ex(ult))? + C (Ea(u(t))? |

)™ () el e + 1072 () P ug| o
+ || -5 <77>1+5“£n||Lngo + ||<f>717<77>1+5unn||Lngo

1

<CE)* +C (&)’

ProOF. For the first inequality, according to the fundamental theorem of cal-
culus and (1.2), we have

”uHL;o(]R) < Huz”L;(R) < Huﬁ”L}E(R) =+ ”unHL;(R)-

Then Holder inequality gives
[l Lo ) < H<£>7175HL§(]R) ||<§>1+5U§HL§(]R) + H<n>7175“L§(]R) ||<77>1+6“77HL§(R)

€ (1146 uell o gy + 10l sy
< C(Br(u(t))? .

For the second inequality, by the Sobolev embedding H!(R) — L>*(R), we

derive
| (€)' ug I L (R)

N

<O ey gy = CIME el L gy + C 1|0 (€)' ue) | 2 sy
(2.1)

< O ue Lo gy + C I e 2

(1.2)

< C H<’5>1+6“€HL5(R) +C H<5>1+6“55HL3(R) +C H<5>1+6“£WHL3(R)

< C(Br(ult)? + C (Ba(u(t)))? .
By the symmetry, we also have

1) 21|y < € (Ea (u®))* + C (Ea(u(®)))

Thus the second inequality is proved.
For the third inequality, using the same manner, we can derive

Nl

166) el o gy < C (Balult)? + C (Ea(u(t)))?

1) |y < C (Balu(®))® + C (Bo(u(®))* +C (Bs(u(t)) "
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N
+
Q
/~
&)
w
g
=
=
=

1) P rue| ey < € (Ba(u(®))® + C (Bs(u(®)))
1) |y < C (Ba(ult)® + C (Bs(u(t))?

which implies the third inequality.
For the last two inequalities, the Sobolev inequality on R gives

N|=

[ %<5>1+5 S -
<clm—#e 1*“%\ sz O (0~ F 0 o)
e [on =% ) +%u s\ pape TC [0 =% 9t L2z
el e, vt el ,,
+CH ERGR fn‘ Lo
< C(E(u()? +C (Ex(u(1)))?
and similarly,
H(é)f%ww‘s% b <O (& (u(t)? + C (Ex(u(t))?
() |, < CELu0) +C (Esu0))?
0O |, < ClEO) +O )} + (Ewn)
()5 () Foug, b < C(E(u(t)? + C (& (u(t))? + (%(U(t)))% ;
(€~ () oy, b < C(E(u(t)? + C (E3(u(t)))? .

Therefore we obtain the last two inequalities. This completes the proof of the
lemma. (]

We point out that Evg(u(t)) and &E;(u(t)) are considered separately from the total
energies, since they are not compatible with the null structure of the quasilinear
part. The following lemma is the key point to treat the quasilinear part, where we
refer the reader to Lemma 2.4 in [28] for the proof.

LEMMA 2.4. Let u be a solution to the system (1.4) satisfying null conditions

(1.6)-(1.9). Assume that sup E(u(s)) is sufficiently small. Then we have
0<s<t

sup Es(u(s)) < C sup E(u(s))

0<s<t 0<s<t
and
Es(u(t)) < CE(u(t)).

Based on the definition of energies and the previous lemmas, we can conclude
all the required L? estimates and pointwise estimates as follows:
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LEMMA 2.5. Let u be a solution to the system (1.4) satisfying null conditions

(1.6)-(1.9). Assume that sup E(u(s)) is sufficiently small. Then we have

0<s<t

H<5>1+6“€HL§(R) + H<£>1+5u55HL§(R) + H<£>1+6u5WHL§(R)

1496 146 1496

Y ugee| Lo gy + 1) ueenl] 1o gy + 146 enn | 2 s

+ ||<77>1+5UWHL§(]R) + H<77>1+6u577”L§(]R) + H<77>1+6u’777HL§(R)

+ ||<77>1+5“£E77HL§(R) + ||<77>1+6“§?7?7HL§(R) + ||<77>1+6u’7’7’7||Li(R)

< C(B®)?

||<€>1+5u'5HL°°L2 +]|(¢ 1+6“££”L30L§ + ||<5>1+6”§77”L30L§

+ H<§>1+6u55§HL§°L§ + H §>1+6“££77HL30L§ + H<€>1+6u57777“L3CL§
T H<77>1+5UWHL50L§ T H<77>1+5u577HL§°L§ T H<77>1+5“nﬁHLgoLg

+ ||<77>1+5u§§77||L§°L§ + ||<77>1+6U§nn||Lchg + ||<77>1+6u’7’777||L§°L§

<cwum»#

for- 0, o ] 5,
<m**@”%@BB+H>*¥@”%mL%2
+ || e |+ [ |,
+ <§>_%<n>l+6un L2L2 + H<§>_%§<n>1+6u£" L2L2
@ ) |+ €7 F 0 |
+ [ ) ey [ o |

<C(E@m)*?,

HUHL;o(R) + H<§>1+5“£HL;°(]R) + H(QHJU&HL?(R) + H<€>1+5U’f77||Lg°(R)
+ ||<77>1+5u77HL§;°(]R) + H<”>1+6U£n||L;o(R) + ||<77>1+6unn||Lgc(R)

< C(B(u(t)*,

lell e e + 1€ P ttel o e + 14 gl o e + 1)t
+ ||<77>1+6u77HL§°Lg° + H<77>1+6“§77HL30L;<> + H<n>1+6u7777”Lg°L;°

< C(B(u(t)?,

146

Wm“T@H%gmm
+ € ) *ou

<O (Eu(t)? .

146
2

<§ 1+5

146

+{[(€)7F () ugy

L2Lge H

H £)1+9y

+ ||

L2Lee LngO

1+

+W@“TWH%W

L2Lge

L2Lge
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2.2. Global existence of solution. To end up this section, we restate the
small-data-global-existence result for the Cauchy problem (1.4)-(1.5) by the fol-
lowing bootstrap argument, and refer readers to Page 10-17 in [28] for a rigorous
proof.

LEMMA 2.6. Assume that w is a solution to the Cauchy problem (1.4)-(1.5).
Then there exist positive constants g and A such that

(2.3) sup E(u(s)) + E(u(t)) < A%,

0<s<t
under the assumption

(2.4) sup E(u(s)) 4+ E(u(t)) < 4A%%,

0<s<t

where 0 < € < gg.

REMARK 2.7. The global existence of solution to the Cauchy problem (1.4)-
(1.5) is an immediate consequence of Lemma 2.6. In fact, since the constants g
and A are independent of the lifespan [0,¢], then the assumption (2.4) will never
be saturated so that we can always continue ¢ to oo, which implies the small-data-
global-existence result as the first part of Theorem 1.1.

3. The first perspective on asymptotic behavior

This section is devoted to the proof of Theorem 1.1. It remains to prove (1.16)
based on (2.3). Based on the symmetry, it suffices to prove

(3.1) lim H<§>H5 (ue — “%)HH%(R) =0.

t—o0

In view of (1.1) and (1.11), we notice that
ue(t,x) = ue(t,26 —t),  ure(t, ) = upe(t, 28 — 1) = upe(0,26).

Therefore, in order to show (3.1), we only need to show

(e)1+e /O - Q(9u, 9*u)ds

< 00.
H}(R)

The proof is divided into two steps. The first step deals with the case of zero order
derivative. The second step deals with the case of first order derivative. We remark
here that owing to (1.1), we will make full use of the following four coordinates on

R (t,2), (¢.€), (t.n) and (€,n).
3.1. The first step of proof. We show that

(&)1 /0 ~ Q0w 9*u)ds

< 0.
L%(R)

(3.2)

In other words, it suffices to show

I:= /R /0OO Q(du, 9*u)ds

By changing coordinates and using Holder inequality, we can bound I as follows:

2
I< C/ /Q(au, &u)dn
R IJR

2
(€20 d¢ < oo.

<§>2+26d§
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<o [ ([atoa) ([ mlo0uamofa) €2

<C (e

R1+1

<C (e

R1+1

LEMMA 3.1. It holds that

(3.3)

0% (€)1 +0Q(0u, 0%w)
PRrOOF. According to (1.4), we have

o) 5 (© 0 (0w, 0%u)

24251 Q(u, 0%w) | dnde

220 |Q(du, 82u)‘2 dxds.

< +00.
L2L2

L2132
<l @ A+ |0 F O Az,
' 1z ) s
(3.4) + H §>1+6A5Unn o + H<n>if<§>1+6F Lera
I3 Is

We now estimate these four terms by using null conditions (1.6)-(1.

equality and Lemma 2.5.

9), Holder in-

T < C () 5@ (ful + el + g uen |,
<cmﬁww%%g@‘wwy@wwwg@
+C’H §>1+6U Ugn 212
<C «»L¥<@1+%%n o
+C||m = () ue page 10 el e o
+CH ) ug, 202 H<T’>1+6u"||L§°L$°
<’ QH%&ngEww»%+cwwm»ﬂEwm»%
I, < Cl|<n >+5U7IU55HL§L§

Ol 5 () e | g | )

C (E(u(t)))? (B(u(t)))? ,
h<mu>ﬂ> Pugtiny| 2,2
<muwfwmwm@
u<m<<uﬁ,
CH 142 >1+5

UEUWHL%?

1+5U7IHL§°L§;°

Ha“nnHLgoLgo
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< Ol 21l |0
< O (E(®)* (B(u(n)? -
Combining these estimates with (3.4) and (2.3), we derive
605 (€0 Q0u, 0%u)|

L2L2
<0 s>1+6ug !W (E(u(t))? + C (E(u(t)))? (E(u(t)))*
(35)  <CA|[) O ug, |, , oA

It is clear to see from (1.4) and (3.5) that

146

R

e = H HHQ0u, 0%)

< CAe H §>1+6u§n‘

LILZ

Lo + CA%2,

If ¢ is sufficiently small, then we have

H 1+5 < CA2%2,
L2r2

“577’
Together with (3.5), we thus obtain

[ @ Q@) , <o’ <o
The proof of the lemma is now complete. O

In view of (3.3) and Lemma 3.1, we conclude that
I<co.

Thus we have proved (3.2).

3.2. The second step of proof. We show that

(3.6) O (<g>1+5 / Qo 82u)ds> < 0.
0 L2(R)

By virtue of (1.3), it suffices to show that

(3.7) €)1+, / Qou,Pu)ds| < oo,
0 L2(R)

that is,

2
<€>2+26d§ < 0.

J ::/]R O¢ /000 Q(0u, 0*u)ds

According to definition of derivative, Fatou’s lemma and the fundamental the-
orem of calculus, we get
2

9 82 h) — - 0 782 ) -
/ ]HO/ Q(0u, 5,2(§+h) ;) Q(0u, 0%u)(s,2¢ S)dS ()42 dg
(Ou, 0%u)(s,2 h) — ou, H? 2¢ _ 2
A%% / Q(9u, 9*u)(s,2(£ + h) 2) Q(0u, 0%u)(s,2¢ S)dS ()42 e
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oo 2
lim inf Q(Ou, 0%u)(s,2(§ + h) — 2) — Q(Ou, 0%u)(s, 26 — ) ds‘ ()47 ge
2
Clim inf (Ou, 0%u) (5,2(¢ + Oh) — 5) dfds| (€)***°d¢
(3.8)
2
Ch}rzn 1(r)1f |8§Q(8u, d%u)(s,2(€ + 6h) — 5)| ds| (&) de do.

J’

In J’, we note that 6 and h do not depend on £. By change of variable £ — S:
& 4 6h, we obtain

J’g/}R
:/]R /OOO |0:Q (O, 0%u)(s, 26 — )| ds

By changing coordinates and using Holder inequality, we can bound J’ as fol-

lows:
2
J' < C’/ ‘/ |0 Q(Ou, 9°w)| dn

<c/ < / ~(+9) dn) ( / <n>1+6|35Q(3u,3QU)|2d77) ()220 dg

<O (O |0,Q(0u, 0%u)| dndg

R1+1

(3.9) < C’/ (n)1Ho ()220 0:Q(0, 32u)‘2 dxds.
R1+1

o 2
| om0t 22— o] as| @2
0

2
&)+ de.

£> 2+25d£

LEMMA 3.2. It holds that
0% (€ +00eQ(0u, 0u)

< 00.
LILZ

PROOF. According to (1.4), we have
65’&5,7 = 8§Q(8u, 82’&)
= O (Ax(u, ug, up)ugy + Az (u, ug, uy Juge + Az (U, ug, tn)uny + F(u, ug, uy))
= OcArugy + A10cugy + Og Aotge + A0 uge + Oc Azt + A3Ogtyy, + O F
(3.10)
= Avugen + Augee + Agugny + O Arugy + Og Aguge + Og Agtiny + O F.
It follows that

05 ()10 0:Q(0u, 0%u)

L2LZ

146
[ (1 Ay

1495 ‘
L2L2

< H (m) = <§>1+5A1U§5n‘

L2r2

J1 J2
[ (e o0 Arug|

J3 J4

146

o [ 46 A

L2r2 L2r2
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146
+ [ @ vt |+ [ @ B,
J5 J6
146
(3.11) + H 52 ()19 F‘ e
Jz

By using null conditions (1.6)-(1.9), Holder inequality and Lemma 2.5, we can
estimate the first three terms as follows:

L<C@fwaWMwawm%4mm
<¢ <n>i<§>1+6uu557" ez H €>1+6u5u55”‘ 2L
el (A GRa
<ofm T @ ucen|,  Ioler
+C <n>‘#<£>l”us L2n H<77>1+6u557lHLg°L§
+C <77>_#<5>1+6U55n‘ 1213 H<77>1+5U7IHL§3°L;{°
<O 0 g |, B +0 ) (Buo)?
J2 <O ||(m) F(€) o uyueee per2

<77>1+6“77 HL?"L?

<O e ueee| ., |

< C(E(u(t)? (B(u(t)))?

J3 <C <77>T<§>1+6U€“£m7’

L3LE
1

< O~ 0w

< C(E)® (B(ult)))? .

By using Holder inequality, Lemma 2.1 and Lemma 2.5, we can bound the last four
terms as follows:

H<77>1+6u§7777HL§°L§

LILg

1+

Ja <O |(m) () (Jug| + uge| + [uen|)uen

L212

x

<0 @ ueue |, +C a5 o uceue

L2L2
+C ()72 () Pugnuey,

< C||m = () ug

L2L2

L2L2

202 || 1+5UEWHL30L30

146

+C ()~ (& u 55‘

e GRS

>1+6

<’7 uEﬂHLg@L;O

L2L2

L2r2 | <77>1+5“57IHL30L30
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<O (E()? (Bu())?

Js < O [y 5407 (Jug) + fues|) uee

L3LZ

< CH<77>i<§>1+6unu§£ 1ara H ) O Pugeugy r2r2

< CH(UY%&(&)H‘;U& Lare KRR | P
O™ 0 e, o0 el

< C (E(u(t))? (B(u(t))?,

Jo < C |[{m) 5 (el + luee + luenun |,

<Ol F e+ ucun| o+ O i € e,
+ O Puggu|

<C <n>’135< oy L2L2|| 1+6U"”Hl@°L§
+CH ERGRET Ler2 Ko | P
+—C7H <§>1+5“€n L3L3|Kn>l+§uﬂnHLg°L§

C (E(u(®))? (B(u(t)))? ,

+3
J7 < CH) (€)' (Juel | + uelluey| + |uy|lueel)|[ 12,2

< CW| > <§ UE“WHLsz +'CW} 1+5 f>1+6“€“£nHL§L§
+Cl[(m) 125( >1+5“n“€€HL§Lg
< N M el )+

+Cll(m)~ 5<f>1+5ug||LngH<n>1+5ugn||L§oLgo
+ O~ F ) el oo [l 0 |
< C (E(u(t))? (B(u(t))? .

Combining these estimates with (3.11) and (2.3), we derive

)% (€)' 06Q(0u, %)

L2r2
<0t F @ uge| . (Bulo)? + @)} B}
(312) < CAe H §->1-&-6u§£77 Lope + CA252.

According to (3.10) and (3.12), we get

) % () ) 0cug,

Heen r2r2 H

L2r2
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= || 5 (€70 (0u, 6|

S CAe H<’7>#<€>1+‘5us£n‘

L2LZ

Lo + CA%2.

Provided ¢ is sufficiently small, then we derive
146
[ () +ouee,
Together with (3.12), we thus obtain
10 146 2 2.2
H<n> 5 (6)199:Q(9u, “)HLng < CA%2? < 0.

< CA%E2.
L2132

It is now obvious that the lemma holds. O

In view of (3.9) and Lemma 3.2, we conclude that
J < .
As an immediate consequence of (3.8), we have
J < oo.
Thus we have proved (3.7) and hence (3.6). To sum up, we obtain (3.1).
The proof of Theorem 1.1 is now complete.
4. The second perspective on asymptotic behavior

Our task reduces to prove Theorem 1.4 based on (2.4).

4.1. The proof of (1.20). We shall adopt the same procedure as in the proof
of Theorem 1.1. By the symmetry consideration, it suffices to prove that

Jim (464 (g (00;€) — ue(t, 26 = )|y ) = 0-

According to (1.18), it suffices to prove that

lim |[(¢€)!F° /OO Q(Ou, 0*u)ds = 0.
¢

H(R)

Using a similar argument as in the last section, we only need to prove the following
(4.1) and (4.2).
Firstly, we show that

(4.1) lim H<§>1+5/ Q(0u, 9*u)ds =0.
t—o0 t Lg(R)
In fact, consider
o) 2
K := / / Q(Ou, D*u)ds| (£)*+20de.
R |J¢

In the sequel, X, represents the characteristic function defined on R*** with s > t.
By changing coordinates and using Holder inequality, we can bound K as follows:

2
k<c [
R

<£>2+25d§
<cf ( / <n>‘(1+5)dn) ( JRURCER Xs>t(§,n)dn) (€ de

/R Q(Ou, %) - X oo €, )l
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<C ()22 |Q(u, 9*u) | - Xy (€, m)dndE

R1+1
_ - 1468 / ¢\ 2426 2 12
= C/t /R<77> €) |Q(8u,8 u)| dxds.

which is finite by Lemma 3.3. Thus, K decays to zero as ¢ — oo, which implies

(4.1).
Secondly, we turn to prove
o0
(4.2) 1m1W@H%g/ Q(0u, 9*u)ds = 0.
t— o0 ¢ LE (R)

In the same manner, we only need show that the following integral

e} 2
L:= [ |0 / Q(Ou, D*u)ds| (€)>T2d¢
R t

is finite. Analogous to the simplification from J to J’ in the previous section, it
2

suffices to consider
e / / D:Q(Du, Pu)ds| (€)>+20de.
R|Jt

We then proceed by the same method as employed in K above:

C/ (/ (Hd)d??) (/R<77>1+5]3;5Q(8u, 82u)|2 . stt(g’n)dn> (€)2+25d¢
<o [T [ Qo deds.

We have already seen in the proof of Lemma 3.9 that this integral is finite. As a
consequence, L decays to zero as t — oo, which yields (4.2).
Up to now, (1.20) is evident from what we have proved.

4.2. The proof of the rigidity part. We now assume that the scattering
fields vanish at infinities, i.e.,

ug(00) =0 on C¢, uy(o0) =0 on C,.

Let 0 < € < g be an arbitrarily given small positive constant. By (1.20), there
exists a t. > 0 such that

H 1+5u£ (t.,26 — HHl(R) + H 1+5 (t57—277+t5)||H}7(R) <e.

We are now in a position to study the position parameter a. At initial slice
>, the position parameter ay = 0 is given so that we have constructed the solution
u(t,z). At time slice 3;_, if we take a = % as the new position parameter and
regard u(te, z) as the initial data for the Cauchy problem (1.4)-(1.5), then we can
solve the equations backwards in time as follows on account that Theorem 1.1 is
independent of the position parameter a.

According to the proof of Theorem 1.1, we conclude that at time slice ¥, there
holds

14€) (€)' 0ug(0,2¢) HHl r) T [[n) )10y (0, _277)“1{,17(11@) <C%Ae.
Since € is arbitrary, we arrive at the conclusion that
|| <€>1+6UE (O, 25) ||H£1 (R) + H <77>1+6Un (Oa *277)HH71, (R) 0.
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This implies that the left-traveling waves and the right-traveling waves vanish iden-
tically. Therefore, the solution itself vanishes identically, i.e., u(t,z) = 0 on R**1.

The proof of Theorem 1.4 is now complete.
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