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Abstract. The introduction of the Landau-Ginzburg free energy provides a

framework to generalize the diffusion beyond the classical fickian approach.
The analysis shows the existence and uniqueness of solutions with a priori

bounds and making use of the Fixed Point Theorem to a suitable abstract
evolution. Asymptotic solutions are provided with the Hamilton-Jacobi oper-

ator and a positivity condition is formulated based on an asymptotic positive

kernel. Further, the positive region is characterized and a precise assessment is
provided. Afterwards, the problem is analyzed in the Travelling Waves domain

to show the phenomena of waves synchronization and to provide linear mani-

folds in the proximity of the critical points. Finally, numerical TW profiles are
obtained and the amplitude of a positive region in the TW domain is provided

as a function of the TW-speed.
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1. Problem description and objectives

The classical order two diffusion typically comes from a Fick law in which
the gradient of a substance provokes a flux or a movement. Other approaches,
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based on random walk, have been followed ([5] together with references there).
In addition and to consider a further precise definition of diffusion, it is possible
to admit the Landau-Ginzburg (LG) energy concept [3], [6]. In [3], the authors
obtained an expression to the LG energy to model the spatial patter formation in
non-homogeneous diffusion. In the same study, they proved that the LG energy
depends on the gradient of a concentration, i.e. 1

2k(∇u)2. Considering such LG
energy expression together with an appropriate potential, the authors end in a
degenerate diffusion involving a order four spatial derivative [3].

Reaction-diffusion models were formally introduced by Fisher [2] and Kol-
mogorov, Petrovskii and Piskunov [4] to study the interacction of genes and the
behaviour of flames in combustion theory respectively. The approach followed by
the cited authors was based on a fickian diffusion and a non-linear reaction term
f(u) = u(1 − u). The problem was tracked with Travelling Waves (TW) solutions
to understand the behaviour of diffusion acting along a wave tip and a front. The
authors introduced the concept of TW solutions to understand the propagation fea-
tures of each specie involved. The Fisher - KPP model has been widely applied in
different scenarios and with remarkable success, see for example [9], [7] and [11].
The model has been studied with fractional operators [12], high order [24] and with
a p-Laplacian Porous Medium Equation [8].

As an alternative to the free energy approach, the fourth order operators may
be understood as a perturbation to an order two diffusion. In [13] and [19], the
Fisher-Kolmogorov order two equation was extended with a fourth order operator
to model the observed instabilities near degenerate points. Furthermore, in [20]
and [21], it is shown the existence of oscillatory spatial patterns for the mentioned
Extended Fisher-Kolmogorov equation.

The invaded-invasive interaction has been source of research in biomathematics
recently. In [10], the system derived was intended to describe the haptotactic cell
invasion in a model for melanoma. In addition, [14] examines the spectral stability
of TW for the haptotaxis model studied in cancer invasion. The model has been
analyzed making use of Evans function to a linearised operator. In these cited cases,
the proposed models introduced a general diffusion to predict the invasive-invaded
dynamic induced by the haptotactic evolution. Nonetheless, the involved spatial
derivatives are of order two and monotony properties in the operator apply for
positive solutions.

To derive the reaction-absorption dynamic in an invasive-invaded interaction,
consider the definition of biological invasion provided by the Convention of Biolog-
ical Diversity (p. 1, Ch. 1 [1]) ”...those alien species which threaten ecosystems,
habitats or species”. Hence, let consider u as the invasive specie and v the invaded.
If the quantity of invaded is high, the temporal increasing rate in the invaded (ut)
shall be high, otherwise the invasion will not succeed. As the invasive specie prolif-
erates over time, there shall be a limit in its concentration. In addition, the invaded
specie evolution shall be decreasing with a rate absolutely higher for increasing val-
ues of the invasive u. The proposed invasive-invaded system aims to characterize
the behaviour of solutions induced by the non-homogeneous diffusion in the prox-
imity of the equilibrium at u = 1 and v = 0. The degenerate diffusion is considered
to be of fourth order to account for instabilities close the equilibrium points. This
permits to model accurately the centre space manifolds (in the sense of oscillatory)
arising as perturbations when the species reach the stationary solutions. In the
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same manner, it is possible to think on a global population energy related with the
species random walk in the media that depends on the gradient of each particular
species. Indeed, the species will provide further movement in areas of higher spacial
gradient as those zones are easier for species to prosper and expand. Following this
philosophy the diffusion ends in a four order operator [3]. Consequently, the model
reads:

(1.1)
ut = −∆2u+ v(1− u),

vt = −∆2v − uv,
u0(x), v0(x) ∈ L1

loc(R) ∩ L∞(R) ∩Hn(R),

typically, n = 4. Note that the minus sign in the bi-laplacian term (−∆2) is set
to account for an asymptotic stable kernel as it will become apparent during the
analysis.

2. A priori assessments on Regularity, Existence and Uniqueness

Consider the following norm:

(2.1) ‖u‖ρ =

∫
R

ρ(z)

4∑
k=0

|Dku(z)|dz,

where D = d
dz , u ∈ H4

ρ(R) ⊂ L1
ρ(R) ⊂ L1(R) and the weight ρ is defined as (see

[24]):

(2.2) ρ(z) = ea0|z|
4
3 ,

a0 > 0 is a small constant.

Lemma 2.1. The functional space of u ∈ H4
ρ(R) ⊂ L1

ρ(R) ⊂ L1(R) with norm
‖u‖ρ is a Banach space.

Proof. Given two functions u, v ∈ H4
ρ ⊂ L1

ρ ⊂ L1:

‖u+ v‖ρ =

∫
R

ρ(z)

4∑
k=0

|Dk(u+ v)(z)|dz ≤
∫
R

ρ(z)

4∑
k=0

[|Dk(u)(z)|+ |Dk(v)(z)|]dz

=

∫
R

ρ(z)

4∑
k=0

|Dk(u)(z)|dz +

∫
R

ρ(z)

4∑
k=0

|Dk(v)(z)|dz = ‖u‖ρ + ‖v‖ρ.

(2.3)

To show completeness, define a sequence {un(z) : n ∈ N} ∈ H4
ρ . Fix ε ≥ 0 and

consider that the defined sequence is Cauchy under the norm ‖·‖ρ. There exists
ν ∈ N such that for every n,m > ν, ‖un − um‖ρ ≤ ε. The convergence is shown as
follows:

|un(z)− um(z)| = |(un − um)(z)| ≤ |un − um||z| ≤
4∑
k=0

|Dk(un − um)(z)||z|

≤ ρ(z)

4∑
k=0

|Dk(un − um)(z)||z| ≤
∫
R

ρ(z)

4∑
k=0

|Dk(un − um)(z)|dz|z|

= ‖un − um‖ρ|z| ≤ ε|z|.

(2.4)
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The function ρ(z) ≥ 1, then for any arbitrary ε→ 0:

(2.5) |un(z)− um(z)| → 0.

�

2.1. A priori bounds. Define L = −∆2 the spatial operator and consider the
problem ut = Lu for the invasive specie. Note that similarly occurs of the invaded
v. Consider in this case u0(x) ∈ L1(R) ∩ L∞(R) ∩ Hn(R). The following lemma
holds.

Lemma 2.2. Given u0 ∈ L1(RN ), then:

(2.6) ‖u‖L1 ≤ ‖u0‖L1 .

Given n ∈ R+ and u0 ∈ Hn(RN ) ∩ L1(RN ):

(2.7) ‖u‖Hn ≤ ‖u0‖Hn ,
and

(2.8) ‖u‖Hn ≤ ‖u0‖L1 , for t ≥ n

2
.

In addition,

(2.9) ‖u‖ρ ≤ κ‖u‖Hn ≤ κ‖u0‖Hn , κ = 4 max{D1u,D2u,D3u,D4u}

Proof. The solution to the problem ut = Lu reads:

(2.10) u(x, t) = etLu0(x),

and making use of the Fourier transformation:

(2.11) û(ω, t) = et(−ω
4) û0(ω).

Now:

(2.12) ‖u‖L1 =

∫ ∞
−∞
|e−tω

4

| |û0(ω)|dω ≤ sup
ω∈R

(e−ω
4t)

∫ ∞
−∞
|û0(ω)|dω = ‖u0‖L1 .

Then, ‖u‖L1 ≤ ‖u0‖L1 , as intended to show. Assume now the following weighted
norm in a Sobolev space for n ∈ R+ and 0 ≤ t <∞:

(2.13) ‖u‖Hn =

∫ ∞
−∞

enω
2

|û(ω, t)|dω,

where the weight enω
2

satisfies the Ap-condition (p = 1) [18]. Then:

‖u‖Hn =

∫ ∞
−∞

enω
2

|û(ω, t)|dω =

∫ ∞
−∞

enω
2

|et(−ω
4)| |û0(ω)|dω

≤ sup
ω∈R

(e−ω
4t)

∫ ∞
−∞

enω
2

|û0(ω)|dω = ‖u0‖Hn .
(2.14)

Assuming now u0 ∈ L1(RN ):

(2.15) ‖u‖Hn =

∫ ∞
−∞

enω
2

|û(ω, t)|dω ≤ sup
ω∈R

(enω
2

e−ω
4t)

∫ ∞
−∞
|û0(ω)|dω.

An elementary assessment leads to:

(2.16) ‖u‖Hn ≤
( n

2t

)1/2

‖u0‖L1 ,
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so that

(2.17) ‖u‖Hn ≤ ‖u0‖L1 ,

for t ≥ n
2 , as intended to show. Finally:

‖u‖ρ =

∫
R

ρ(z)

4∑
k=0

|Dku(z)|dz ≤
∫
R

enz
2

4∑
k=0

|Dku(z)|dz

≤ κ
∫
R

enz
2

|u(z)|dz ≤ κ‖u‖Hn ,(2.18)

being κ = 4 max{D1u,D2u,D3u,D4u}.

To be highlighted that the obtained bounds apply similarly for v.
�

Now. the single parameter (t) representation for the homogeneous equation
ut = −∆2u is as follows (́ıdem for v):

(2.19) g(x, t) = e−∆2t.

The operator −∆2 is an infinitesimal generator of a strongly continuous semi-group
for t > 0. Hence, the following abstract evolution holds:

(2.20) u(t) = e−∆2tu0 +

∫ t

0

[
e−∆2(t−s)v(s)(1− u(s))

]
ds.

(2.21) v(t) = e−∆2tv0 −
∫ t

0

[
e−∆2(t−s)v(s)u(s)

]
ds.

In the transformed domain, the homogeneous ut = −∆2u with u(x, 0) = δ(x)
solution is:

(2.22) ũ(t) = e−ω
4tũ0.

Similarly ṽ(t) = e−ω
4tṽ0. Then, the kernel is obtained as:

(2.23) g(x, t) = F−1(e−ω
4t) =

1

2π

∫
R

e−ω
4t−iωxdω =

∫
R

e−ω
4tcos(ωx)dω,

which exists upon integration with ω in R. Then (2.20) and (2.21) can be rewritten
in terms of the existing kernel. To this end, consider the following operators in
H4
ρ(R):

(2.24) Tu0,t : H4
ρ(R)→ H4

ρ(R); Gv0,t : H4
ρ(R)→ H4

ρ(R)

defined as:

(2.25) Tu0,t(u) = g(x, t) ∗ u0(x) +

∫ t

0

g(x, t− s) ∗ v(x, s)(1− u(x, s))ds,

(2.26) Gv0,t(u) = g(x, t) ∗ v0(x)−
∫ t

0

g(x, t− s) ∗ v(x, s)u(x, s)ds,

so that the following lemma holds.

Lemma 2.3. The single parameter (t) operators Tu0,t and Gv0,t are bounded in
H4
ρ(R) with the norm (2.1).
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Proof. Previous to start the formal proof, the following inequality is shown
for u (́ıdem for v):

(2.27) b0‖u0‖ρ ≤ ‖u‖ρ.

To this end:

‖u‖ρ =

∫
R
ρ(ω)

4∑
k=0

|Dkû(ω)|dω =

∫
R
ρ(ω)

4∑
k=0

|Dk
[
e−ω

4t û0

]
|dω

≥
∫
R
ρ(ω)

4∑
k=0

|Dk
[
e−ω

4t
]
|

4∑
k=0

|Dkû0|dω ≥ b0
∫
R
ρ(ω)

4∑
k=0

|Dkû0|dω = b0‖u0‖ρ

(2.28)

where

(2.29) b0 = inf
ω∈Br

{
4∑
k=0

|Dk
[
e−ω

4t
]
|} > 0

and sufficiently small in Br = {ω, |ω| < r}, for r > 0.
Considering the operator Tu0,t:

‖Tu0,t(u)‖ρ = ‖Tu0,t‖ρ ‖u‖ρ ≤ ‖g‖ρ ‖u0‖ρ +

∫ t

0

‖g‖ρ ‖v‖ρ ‖1− u‖ρds

≤
[
‖g‖ρ

1

b0
+

∫ t

0

‖g‖ρ b0κ‖u0‖Hnds
]
‖u‖ρ,

(2.30)

where, it has been considered ‖v‖ρ ≤ ‖u‖ρ for t > τ > 0. Then:

(2.31) ‖Tu0,t‖ρ ≤ ‖g‖ρ
1

b0
+

∫ t

0

‖g‖ρ b0κ‖u0‖Hnds

which is bounded for each value t > 0 given the bound properties in Lemma 2.2.
Operating analogously for Gv0,t:

(2.32)

‖Gv0,t(u)‖ρ = ‖Gv0,t‖ρ ‖v‖ρ ≤ ‖g‖ρ ‖v0‖ρ −
∫ t

0

‖g‖ρ ‖u‖ρ‖v‖ρds ≤ ‖g‖ρ
1

b0
‖v‖ρ,

so that:

(2.33) ‖Gv0,t‖ρ ≤ ‖g‖ρ
1

b0

which is bounded for any value t > 0. �

2.2. Uniqueness. Given two vectors U, V ∈ R2 with components u1, u2; v1, v2 ∈
H4
ρ(R) respectively. The following weighted inner product is defined:

(2.34)

< U, V >ρ=

∫
R

ρ(z)

3∑
k=0

Dk(∇·U(z))Dk(∇ · V (z))dz+

∫
R

ρ(z)

2∑
k=1

2∑
j=1

uk(z)vj(z)dz,

where D = d
dz , ρ(z) is as per (2.20) and:

(2.35)
∇ · U(z) = max{∂u1

∂z ,
∂u2

∂z },

∇ · V (z) = max{∂v1∂z ,
∂v2
∂z }.
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The following weighted norm is defined accordingly:

(2.36) ‖U‖ρ =

∫
R

ρ(z)

3∑
k=0

|Dk(∇ · U(z))|2dz +

∫
R

ρ(z)

2∑
k=1

2∑
j=1

uk(z)uj(z)dz.

The uniqueness is shown on the basis that the mapping

(2.37) Tu0,v0,t : H4
ρ(R)×H4

ρ(R)→ H4
ρ(R)×H4

ρ(R)

defined as:
(2.38)

Tu0,v0,t(u, v) =

(
b(x, t) ∗ u0(x)
b(x, t) ∗ v0(x)

)
+

( ∫ t
0
b(x, t− s) ∗ v(x, s)(1− u(x, s))ds

−
∫ t

0
b(x, t− s) ∗ u(x, s)v(x, s)ds

)
,

has a unique fix point (u, v) = Tu0,v0,t(u, v). For the sake of simplicity, consider:

(2.39) N(U1) =

(
v1(1− u1)
−u1v1

)
, N(U2) =

(
v2(1− u2)
−u2v2

)
,

then

‖Tu0,v0,t(u, v)(U1)− Tu0,v0,t(u, v)(U2)‖ρ

≤
∫ t

0

‖
∫ s

t

b(x, t− s− r)[N(U1(t− s− r))−N(U2(t− s− r))]‖ρdrds

≤
∫ t

0

∫ s

t

‖b(x, t− s− r)[N(U1(t− s− r))−N(U2(t− s− r))]‖ρdrds

=

∫ t

0

∫ s

t

‖b(x, t− s− r)‖ρ‖N(U1(t− s− r))−N(U2(t− s− r))‖ρdrds

≤M
∫ t

0

∫ s

t

‖N(U1(t− s− r))−N(U2(t− s− r))‖ρdrds,

(2.40)

where M = sup{‖b(x, t− s− r)‖ρ ,∀t > 0} and independently of s, r. Now

‖N(U1)−N(U2)‖ρ =

∫
R

ρ(z)

3∑
k=0

|Dk(∇ · (N(U1)−N(U2))|2dz

+

∫
R

ρ(z)

2∑
k=1

2∑
j=1

(N(U1)−N(U2))k(N(U1)−N(U2))jdz,

(2.41)

so that

N(U1)−N(U2) =

(
v1(1− u1)− v2(1− u2)

u2v2 − u1v1

)
≤
(
Ku(u1 − u2)
Kv(v1 − v2)

)
≤ K

(
u1 − u2

v1 − v2

)
= K(U1 − U2),

(2.42)
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where Ku and Kv are the Lipschitz constant with respect to u and v and K =
max{Ku,Kv}. Now in (2.41)

‖N(U1)−N(U2)‖ρ =

∫
R

ρ(z)

3∑
k=0

|Dk(∇ ·K(U1 − U2)|2dz

+

∫
R

ρ(z)

2∑
k=1

2∑
j=1

K(U1 − U2)kK(U1 − U2)jdz.

(2.43)

Finally,
(2.44)

‖Tu0,v0,t(U1)−Tu0,v0,t(U2)‖ρ ≤MK2

∫ t

0

∫ s

t

‖U1−U2‖ρdsdr = MK2t(t−s)‖U1−U2‖ρ.

For any ball centered in t with radium proportional to t − s a finite MK2t(t − s)
holds. Hence, the uniqueness is shown in the limit with ‖U1 − U2‖ρ → 0 so that
there is a local unique fix point in the operator Tu0,v0,t given by U1.

2.3. Characterization of a local positive inner region. The objective
now is to find an inner spatial region (inner means |x| ∈ Br(t), where r(t) shall be
assessed) where solutions are positive. On the contrary, for |x| > r(t) any solution
to (1.1) is oscillatory. The following lemma holds:

Lemma 2.4. There exists a spatial inner region characterized by the ball Br(t)
such that for |x| << r(t) any solution to (1.1) exhibits a positive behaviour (i.e.
non-oscillatory). The value for r(t) is sharply assessed:

(2.45) r(t) = t1/4|ln t|,

for t→ 0+.

Proof. Let consider the following variable scaling [24]:

(2.46) z =
x

t1/4
; τ = ln t→ −∞ if t→ 0+.

The equation (1.1) expressed in the new variables with u(x, t) = w(z, τ) and
v(x, t) = y(z, τ) is:

(2.47) wτ =

(
B− 1

4
I

)
w + eτy(1− w),

where the operator B = −D4
z + 1

4zDz + 1
4I.

Consider the stationary solutions to:

(2.48)

(
B− 1

4
I

)
we = 0, we(∞) = 1, we(−∞) = 0.

Note that the pseudo-boundary conditions at −∞ and ∞ represent a step-like
Heaviside function connecting the two stationary solutions for the invaded specie
that departs from w = 0 and ends in w = 1 after the invasion occurs.

Any solution is expressed as:

(2.49) w(z, τ) = we(z) + α(z, τ).
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In the proximity of the stationary solution |α| << 1. Replacing this form of solution
into (2.47):

(2.50) ατ =

(
B− 1

4
I

)
α+ eτye(1− we).

Admit the following asymptotic separation of variables:

(2.51) α(z, τ) = φ(z)ψ(z),

and operating in (2.50):

(2.52)
ψ′

ψ
=

(
B− 1

4I
)
φ+ eτye(1− we) /ψ

φ
= K,

then:

(2.53) ψ(τ) = eτ ,

with K = 1 for the sake of simplicity.
A solution to φ(z) is obtained under the asymptotic condition we(∞) = 1, then:

(2.54)

(
B− 1

4
I

)
φ = φ.

The operator B possesses a discrete set of eigenfunctions in the space H4
ρ ⊂ L2

ρ [26],

therefore any spanned solution φ converges in H4
ρ . Hence, the searched solutions

are of the form:

(2.55) φ(z) = eγz,

replacing into (2.54) and making the balancing in each term:

(2.56) γ4 = −1,

provided that 1
4z << 1, or equivalently:

(2.57) t
1
4 ≥ 1

4
|x|.

This last expression shall be understood as the region of validity for the exponential
representation (2.55). Consider now the two main real roots in γ:

(2.58) φ+ = eγz, z → −∞ ; φ− = e−γz, z →∞,
so that:

(2.59) α(z, τ) = eτ (eγz + e−γz).

The solution (2.49) reads:

(2.60) w(z, τ) = we(z) + eτ (eγz + e−γz).

Returning to the original variables (x, t):

(2.61) u(x, t) = we

( x

t1/4

)
+ t(e

γ x

t1/4 + e
−γ x

t1/4 ).

The condition |α| << 1 means that whenever x→∞:

(2.62) |te−γ
x

t1/4 | << 1 ⇒ |x| >> t1/4 ln t.

Note that ln t < 0, then:

(2.63) |x| << t1/4|ln t| = r(t),
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which includes the validity region in (2.57), i.e.

(2.64) |x| < 4t1/4 << t1/4|ln t|

for t→ 0+. �

Finally, the same process can be repeated for any t = t0 > 0 with the simple
rescaling τ = ln(t − t0). Hence, given any t = t0 > 0, the inner region, where
positivity in the solution holds, is defined as:

(2.65) |x| << (t− t0)1/4|ln(t− t0)|.

A simple estimation can be obtained assuming that t ∼ 2t0 for t0 sufficiently small:

(2.66) |x| << t
1/4
0 |ln t0|.

3. Asymptotic solutions and evolution of a maximal profile

In the asymptotic approach, assume |v| < ε << 1 , ε > 0, so that v is a pertur-
bation parameter in (1.1), i. e.

(3.1) ut = −∆2u+ ε(1− u), u0(x) ∈ L1
loc(R) ∩ L∞(R) ∩Hn(R),

Consider, now, the non-linear scaling given by

(3.2) u = ew.

The oscillating character in the solutions induced by the homogeneous operator
{ ∂∂t + ∆2} leads to define w as a complex map: w : X × [0, T ]→ C.

Note that w satisfies a Hamilton-Jacobi equation [22] of the form:

(3.3) wt = H4

(
w,

∂w

∂x

)
+ P4

(
w,

∂iw

∂xi

)
, i = 2, 3, 4,

where

(3.4) H4(w) = −w2
xw

2
x + ε(1− ew),

and

P4(w) = −∆2w −∆(∇w · ∇w)− 2∇w · ∇∆w

−2(∇w · ∇w)∆w − 2∇w · ∇(∇w · ∇w)− (∆w)2.

Consider ψ is a sufficiently smooth function so that P4(ψ) is power order 3 and the
Hamilton-Jacobi operator is order 4. For a sufficiently large λ:

(3.5) |P4(λψ)| = Order(λ3) << |H4(λψ)| = Order(λ4).

Consequently and keeping the leading terms:

(3.6) wt = −w2
xw

2
x + ε(1− ew).

Note that (3.6) is a non-linear first order equation that admits a standard separation
of variables [22], indeed:

(3.7) w(x, t) = (T + t)−
1
3φ(x),

for T < t <∞. Upon substitution in (3.6) with t sufficiently large but keeping the

perturbation condition 0 < ε(T + t)
4
3 << 1, the following leading terms hold:

(3.8) − 1

3
φ = φ4

x,



AN INVASIVE-INVADED SPECIES DYNAMICS 267

so that, a solution is:

(3.9) φ(x) = 3

(
1

4
C(i)x

) 4
3

,

where C(i) = (−1)
1
4 . Then

(3.10) w(x, t) = 3t−
1
3

(
1

4
C(i)x

) 4
3

.

Finally and after considering the non-linear scaling (3.2), the solution profiles can
be compiled as:

(3.11) u(x, t) = e3t−
1
3 ( 1

4C(i)x)
4
3
,

Note the existence of oscillations in the leading front as per the complex number
C(i).

Similarly, consider the equation for the invaded v in (1.1). In the asymptotic
approach, the invasive u ∼ 1 while the invaded |v| < ε << 1 , ε > 0, so that:

(3.12) vt = −∆2v − ε ≤ −∆2v.

Hence, a maximal evolution holds in accordance with the homogeneous problem:

(3.13) vt = −∆2v, v0(x) ∈ L1
loc(R) ∩ L∞(R) ∩Hn(R)

Note that the intention is to assess the invaded behaviour in the proximity of the
critical point. Hence a Heaviside initial condition v0(x) = H(−x) is considered as
it satisfies |v| < ε << 1 , ε > 0 in the null tail.

The high order operator (−∆2) does not admit a comparison principle in general
due to the instabilities. Then, the intention is to make an asymptotic approach
to find a maximal positive and pure monotone evolution for which a comparison
principle holds. For this purpose, consider the self-similar scaling:

(3.14) b(x, t) = t−
1
4 etf(η), η =

x

t
1
4

.

Introducing the expression (3.14) into the equation (3.13), the following elliptic
ODE holds:

(3.15) − f4 +
1

4
f ′η +

1

4
f = 0;

∫
R

f(η)dη = 1.

Then, [23] :

(3.16) |f(η)| ≤ D0F (η), F (η) = ω1e
−d0|η|

4
3 > 0, ω1 =

(∫
R

e−d0|η|
α

dη

)−1

.

The normalizing constant ω1 guarantees that the maximal positive kernel F satisfies
the normalization condition in (3.15). The parameter D0 > 0 is the order deficiency
in the high order operator and shall be selected sufficiently large so that D0F (η) >
f(η). Figure 1 provides values for D0 and d0 to keep the maximal evolution of F .

The next step, in the characterization of the maximal kernel (F ), is to obtain
a suitable value for d0. For this purpose, consider an asymptotic approach for the
self-similar kernel elliptic ODE (3.15):

(3.17) η →∞; f → 0⇒ −f (4) +
1

4
η f ′ = 0.
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Figure 1. The maximal evolution for F is kept for D0 = 3 and
d0 = 0.5.

The maximal kernel F (η) behaves, asymptotically, as the solution f(η) but keeping
the global monotone properties. An assessment on d0 follows a WKB approxima-
tion. For this purpose consider the single parameter evolution:

(3.18) e−d0G(η), G(η) = η
4
3 .

Now, into (3.17):

−
(
d0

4

3

)4

η4/3e−d0η
4/3

+

(
d0

4

3

)3

e−d0η
4/3

+
2

3

(
4

3

)2

d3
0e
−d0η4/3

+ d3
0

16

27
e−d0η

4/3

− 1

4
ηd0

4

3
η1/3e−d0η

4/3

= 0.

(3.19)

Balancing the leading terms:

(3.20) −
(
d0

4

3

)4

− 1

4
d0 = 0, d0 = Re

(
−33

28

) 1
3

.

Once a value for d0 has been obtained, note that two kernels are available at this
point given by f and F :

(3.21) b(x, t) = t−
1
4 etf(y), B(x, t) = t−

1
4 etF (y), y =

x

t
1
4

.

The kernel B(x, t) represents the asymptotic evolution of the kernel b(x, t) and has
the positivity property that is lost when operating with the kernel b(x, t) due to the
oscillatory behaviour induced by the bi-laplacian term. The following lemma holds:

Lemma 3.1. Any solution under the maximal kernel B(x, t) is positive provided
the initial condition v0(x) ≥ 0. In addition, positivity holds provided vmed0 ≥ 0.
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Proof. The Duhamel‘s principle to (3.13) with the maximal kernel B(x, t)
reads:

(3.22) ṽ(t) = B(t) ∗ v0(x) =

∫
R

B(x− s, t) v0(s)ds,

where ṽ(t) is the maximal solution to the invaded as a result of the maximal order
preserving kernel B.

Making use of the condition
∫
R
B = 1 and the mean value theorem:

(3.23) ṽ(t) =

∫
R

B(x− s, t) v0(s)ds =

∫
R

v0(s)ds ≥ 0,

as intended to show. �

The following is a comparison lemma:

Lemma 3.2. Consider ṽ0(x) ∈ L1
loc(R) ∩ L∞(R) ∩Hn(R), with ṽ0(x) ≥ v0(x),

then ṽ(x, t) ≥ v(x, t).

Proof.

ṽ(t)− v(t) = B(t) ∗ ṽ0 − b(t) ∗ v0 ≥ B(t) ∗ ṽ0 − |b(t)| ∗ |v0|
≥ B(t) ∗ ṽ0 −B(t) ∗ |v0| = B(t)(ṽ0 − |v0|).

(3.24)

considering that ṽ0 ≥ |v0|:
(3.25) ṽ(t) ≥ v(t).

Consider the spatial variable x ∈ R and the boundary value problem in R+ × R+

with symmetric conditions at the border x = 0 towards x > 0:

(3.26) vx(0, t) = vxxx(0, t) = 0, t > 0.

The same conditions apply for ṽ. Then:

ṽ(x)− v(x) = B(x) ∗ ṽ0(t)− b(x) ∗ v0(t) ≥ B(x) ∗ ṽ0 − |b(x)| ∗ |v0|
≥ B(x) ∗ ṽ0 −B(x) ∗ |v0| = B(x)(ṽ0 − |v0|).

(3.27)

Then

(3.28) ṽ0 ≥ |v0| → ṽ(x) ≥ v(x).

To conclude on ṽ(x, t) ≥ v(x, t) as intended to proof.
�

4. Travelling Waves analysis

The problem (1.1) in the TW domain is obtained upon the change u(x, t) =
f(ξ), v(x, t) = g(ξ), ξ = x · nd − at ∈ R, being nd the TW-propagation direction, a
is the TW-speed and f : R→ (0,∞) is the TW profile, f ∈ L∞(R). Note that two
TW are equivalent under translation ξ → ξ + ξ0 and symmetry ξ → −ξ. Without
loss of generality, nd = (1, 0, ..., 0), then ξ = x− at ∈ R.

The problem (1.1) expressed in the TW variable reads:

(4.1)

−af ′ = −f (4) + g(1− f),
−ag′ = −g(4) − fg,

f, g ∈ L∞(R) ∩Hn(R),
f ′(ξ) > 0 , g′(ξ) < 0,
f(∞) = 1 , g(∞) = 0.
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Firstly, the intention is to determine the TW behaviour in the proximity of the
stationary condition f = 1, g = 0. For this purpose, consider:

(4.2)

f = f1 ; g = g1

f ′ = f ′1 = f2 ; g′ = g′1 = g2

f ′′ = f ′′1 = f ′2 = f3 ; g′′ = g′′1 = g′2 = g3

f (3) = f
(3)
1 = f ′′2 = f ′3 = f4 ; g(3) = g

(3)
1 = g′′2 = g′3 = g4

f (4) = f ′4 = af2 + f5(1− f1) ; g(4) = g′4 = ag2 − f5f1.

Then, the set (4.1) is expressed as:

(4.3)



f1

f2

f3

f4

g1

g2

g3

g4



′

=



f2

f3

f4

af2 + g1(1− f1)
g2

g3

g4

ag2 − g1f1


The following lemma holds

Lemma 4.1. The critical point f = 1, g = 0 is a degenerate node with:

• One null eigenvalue,
• Four negative real part eigenvalues,
• Three positive real parts eigenvalues,

For any a > 0. Equivalently, in the proximity of the critical point, there exist a
4-D stable family of solutions and a 4-D unstable family of solutions. In addition,
the eigenvalues form clusters for increasing values of the TW-speed leading to a
synchronization in the oscillating frequencies for the complex branch in the proximity
of the critical points.

Proof. Consider f1 − 1 = f̃1 , then, in the proximity of the critical point, the
linearization of (4.1) is as follows:

(4.4)



f̃1

f2

f3

f4

g1

g2

g3

g4



′

=



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
−ε a 0 0 −ε 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
−ε 0 0 0 −ε a 0 0





f̃1

f2

f3

f4

g1

g2

g3

g4


where 0 < ε = f5 << 1 represents the invaded specie introduced as a perturba-
tion. The computation of a general expression for the eigenvalues and associated
eigenvectors is complex in a general case. Then, consider ε sufficiently small, i.e.
ε = 0.001 so that a numerical code is employed for different values of a. Figures
2, 3 and 4 provide evidences on the eigenvalues behaviours. The null eigenvalue is
kept for any value of a keeping the 4D stable family of solution and the 4D unsta-
ble. Note that the increasing TW-speed makes the complex eigenvalues to cluster
in a single pair of complex conjugate with the same oscillating frequency for both
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Figure 2. Eigenvalues representation for a = 0.002 (up figure)
and a = 0.02 (down). Note that the null eigenvalue is kept, while
the eigenvalues with negative real part clusters with the eigenval-
ues with positive and negative imaginary part. In addition, the
eigenvalues with positive real part tends to null imaginary parts.

species. This phenomena is referred as synchronization. The branch of oscillating
patterns in the proximity of the critical points are synchronous and depend on the
initial conditions and the behaviour of the TW-front.

�

4.1. Geometric Perturbation Theory. Consider as M0 the 8-dimensional
manifold in (4.3) The singular geometric perturbation theory is employed in this
section to show the asymptotic behaviour of a perturbed manifold in the proximity
of the critical points and defined to make simpler the assessment of a TW analytical
profile.

The perturbed manifold Mε close to M0 is defined as:
(4.5)

Mε = {f1, .., f4, g1, .., g4 / g1 = ε ; f ′4 = af2+ε(1−f1) = af2−εf̃1 ; g′4 = ag2−g1f1},
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Figure 3. Eigenvalues representation for a = 0.2 (up figure) and
a = 2 (down). Note the eigenvalues clustering on the up figure. On
the down figure, the eigenvalues are clustered.

being f̃1 = f1 − 1. The intention is to use the Fenichel invariant manifold theorem
[15], [17] and [16]. For this purpose, M0 (4.3) shall be a normally hyperbolic mani-
fold, i. e. the eigenvalues of M0 in the proximity of the critical point, and transversal
to the tangent space, have non-zero real part. For this purpose, the eigenvector as-
sociated to the zero real part eigenvalue is computed (1, 0, 0, 0, ε, 0, 0, 0) tangent to
M0. Consequently, M0 is a hyperbolic manifold. The next intention is to show that
the manifold Mε is locally invariant under the associated flow. Hence and following
[16], for all R > 0, for all open interval J with (a + c) ∈ J and for any value of
i ∈ N, there exists a γ such that for ε ∈ (0, γ) the manifold Mε is invariant. Hence,
consider i ≥ 1 and the functions:

(4.6) φ1 = ε, φ2 = af2 + ε(1− f1), φ3 = ag2 − g1f1

which are Ci(BR(0)× I × [0, γ]) in the proximity of the critical point.
A value for R > 0 can be chosen considering that M0∩BR(0) is large enough so

as to study the complete TW evolution along the domain. Note that γ is assessed
based on computing the distance between flows in M0 and Mε. For this purpose, as-
sume that the flows are measurable a.e. in BR(0) with any standard norm including
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Figure 4. Eigenvalues representation for a = 20 (up figure) and
a = 200 (down). For increasing values of the TW speed, the eigen-
values clustering is kept.

(2.1):

(4.7) ‖φMε
2 − φM0

2 ‖ ≤ ε+ ‖g1‖‖1− f1‖ ≤ γ‖1− f1‖,

The distance between the manifolds keeps the normal hyperbolic condition in
the proximity of f1 ↗↘ 1 for γ ∈ [1,∞). In addition,

(4.8) ‖φMε
3 − φM0

3 ‖ ≤ ε‖f1‖+ ‖f1‖+ ‖g1‖‖1− f1‖ ≤ γ‖1− f1‖,

f1 ↗↘ 1 for γ ∈ [2,∞). For simplicity assume γ = 2 in (4.7) and (4.8).

Analogously, the following manifold Mδ close to M0 is defined:

(4.9) Mδ = {f1, .., f4, g1, .., g4 / 1− f1 = δ ; f ′4 = af2 + δg1 ; g′4 = ag2 − g1}.

The Fenichel invariant manifold is applied similarly as for Mε to show the invariant
properties under the flow in Mδ. To this end, consider the functions:

(4.10) φ′1 = δ, φ′2 = af2 + δg1, φ
′
3 = ag2 − g1

which are Ci(BR(0)× I × [0, δ]) in the proximity of the critical point.
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Figure 5. Eigenvalues representation for Mε with a = 0.02 (up
figure) and a = 2 (down). Note that the eigenvalues behaviour un-
der Mε is similar to that obtained for M0 in Figure 3 which permits
to validate the analysis done under the geometric perturbation the-
ory.

Note that γ is assessed based on the following flows measurable a.e. in BR(0):

(4.11) ‖φ′Mδ
2 − φ′M0

2 ‖ ≤ 2κ‖g1‖, ‖φ′Mδ
3 − φ′M0

3 ‖ ≤ κ‖g1‖,
M0 and Mδ are sufficiently close so as to keep the normal hyperbolity in the

proximity of the critical points for κ ∈ (0,∞).

To validate the assessment done, the set of eigenvalues for each of the associated
manifolds are provided in Figures 5 and 6 for different values of a.

5. Travelling Waves Profiles and Positivity

Analytical TW profiles can be obtained by operating under the flows in Mε and
Mδ with standard means and in the proximity of the equilibrium, i.e. ε ∼ δ ∼ 0.
Nonetheless, the methodology to determine TW profiles and a positivity region
is based on numerical exercises for which the Matlab software has been used, in
particular the function bvp4c. The numerical method used is based on an implicit
Runge-Kutta with an interpolant extension [25]. The collocation method requires
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Figure 6. Eigenvalues representation for Mδ with a = 2 (up fig-
ure) and a = 20 (down). Note that the eigenvalues behaviour under
Mδ is similar to that obtained for M0 in Figures 3 and 4 for in-
creasing values of a. Again, this behaviour validates the analysis
done under the geometric perturbation theory.

to specify the boundary conditions, in this case given by the stationary solutions
f = 1, g = 0. The number of nodes in the integration domain is 10000 and the
absolute error fixed at 10−6. The analysis has been done over a sufficiently large ξ
interval [−1000, 1000] to avoid the influence of the boundary conditions.

In the classical Fisher-KPP order two problem [4], one of the most remarkable
analysis consists on finding a minimal TW profile for which the TW follows a
monotone behaviour. This principle does not hold in the problem (1.1). The set of
oscillations induced by the high order operator requires a reformulation to find a
positive region of monotone behaviour. The objective now is to find an inner region
for each TW speed so that outside of this inner region, the oscillatory behavior is
given and positivity does not hold.

The TW profiles are provided for different TW-speed values (Figures 7 and 8).
An increase in the TW-speed leads to a decreasing positive amplitude. Consider
that the positivity region is given by the interval [0, ξ+]. Following an interpolation
exercise over the TW-speed interval [0, 0001; 100000], a power law has been obtained
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Figure 7. TW profiles for a = 0.002 (up figure) and a = 2 (down).
Note the oscillatory behaviour of both interacting species when
approaching the equilibrium state. The positivity of solutions is
given up to ξ+ = 4.451 (up figure) and ξ+ = 1.9502 (down).

to determine a relation between the TW-speed and the upper positive limit:

(5.1) ξ+ = 1.3003 a−0.198.

6. Conclusions

The existence of solutions to (1.1) has been shown based on solution bounds
together with the bounds for abstract evolution operators. Afterward, uniqueness
has been shown based on a suitable norm defined for a vector of solutions and
application of the Fixed Point Theorem. The main questions related with positivity
and a comparison principle have been answered with the assessment of a positive
inner region and an asymptotic positive kernel. Solutions for the invasive and
invaded species have been obtained in the proximity of the stationary based on the
Hamilton-Jacobi equation to show the existence of oscillations induced by the fourth
order diffusion. Finally, the problem (1.1) has been analyzed in the TW domain.
The eigenvalues evolution with the TW-speed reflects the phenomena named as
synchronization of species to account for the clustering of complex eigenvalues.
Two perturbed manifolds have been obtained to determine analytical profiles with
standard means. In addition, a numerical assessment has been provided to validate
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Figure 8. TW profiles for a = 20 (up figure) and a = 200 (down).
Note the oscillatory behaviour of both interacting species when
approaching the equilibrium state. The positivity of solutions is
given up to ξ+ = 0.894 (up figure) and ξ+ = 0.455 (down).

the Geometric Perturbation Theory applied and to determine sharp TW-profiles
together with a region of positivity.
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[13] Rottschäfer, V. and Doelman, A. (1998). On the transition from the Ginzburg-Landau equa-

tion to the extended Fisher-Kolmogorov equation. Physica D. 118. 261 - 292.
[14] Harley, K., Van Heijster, R., Marangell, R., Pettet, G., Roberts, T. and Wechselberger M.

Instability of Travelling Waves in a Model of Haptotaxis. (2019) Preprint.

[15] Fenichel N. (1971). Persistence and smoothness of invariant manifolds for flows, Indiana Univ.
Math. J. 21, pp 193-226.

[16] Jones C.K. (1995). Geometric singular perturbation theory in dynamical systems. Springer-

Verlag, Berĺın.
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