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Abstract. In this paper we study the viscous simpli�ed Bardina equation
on the two-dimensional closed manifold M which is embedded in R3. First,
we prove the existence and the uniqueness of the weak solutions and also the
existence of the global attractor for the equation on M . Then we establish the
upper and lower bounds of the Hausdor� and fractal dimensions of the global
attractor. We also prove the existence of an inertial manifold for the equation
on the two-dimensional sphere S2.
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1. Introduction

Since the existing mathematical theory is not su�cient to prove the global well-
posedness of the 3D Navier-Stokes equations (NSE), the dynamics of homogeneous
incompressible �uid �ows are not known so far. The mathematicians study these
dynamics by using the direct numerical simulation of NSE and consider the mean
characteristics of the �ow by averaging techniques in many practical applications
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(see for example [40, 41, 42]). This leads to the well-known closure problem i.e
the following Reynolds averaged NSE is not closed (see [5]).{

v̄t − ν∆v̄ +∇ · (v ⊗ v) = −∇p̄+ f̄ ,

∇ · v̄ = 0.
(1.1)

Here we can write

∇ · (v ⊗ v) = ∇ · (v̄ ⊗ v̄) +∇ · R(v, v),

withR(v, v) = v ⊗ v−v̄⊗v̄ is the Reynolds stress tensor. However, on the turbulence
modeling applications, one need to produce simpli�ed, reliable and computationally
realizable closure models. For this reason, in order to obtain the closure models
Bardina et al. [2] modi�ed the Reynolds stress tensor by

R(v, v) ' v̄ ⊗ v̄ − ¯̄v ⊗ ¯̄v.

After that, Layton and Lewandowski [23] considered a simpler form of the above
approximation of the Reynolds stress tensor

R(v, v) ' v̄ ⊗ v̄ − v̄ ⊗ v̄.
The modi�cation of Layton and Lewandowski leads to study the following sub-grid
scale turbulence model (or called simpli�ed Bardina equation)

ωt − ν∆ω +∇ · (ω ⊗ ω) = −∇q + f̄ ,

∇ · ω = 0,

ω(x, 0) = v̄0(x),

(1.2)

where (ω, q) is an approximation of (v̄, p̄). Following [23], the simpli�ed Bardina
equation is considered with the �ltering kernel associated with the Helmholtz oper-
ator (I − α2∆)−1. This means that if v is the un�ltered velocity and u = ω is the
smooth �ltered velocity then v = u− α2∆u and also keep that p = q − α2∆q, then
the equation(1.2) becomes

vt − ν∆v + (u · ∇)u = −∇p+ f,

∇u = ∇v = 0,

v = u− α2∆u,

u(x, 0) = uin(x),

(1.3)

where u and v are periodic with periodic box Ω = [0, 2πL]3.
The global existence and uniqueness of weak solutions of the equation (1.3)

with the periodic boundary conditions in three-dimension is established early by
Layton and Lewandowski [23] and then expanded to study by Titi et al [5]. In
detail, the last work has proven the global well-posedness for weaker initial condi-
tions than the �rst work, then considered the upper bound to the dimension of the
global attractor and given the relation between the modi�ed Bardina equation and
the modi�ed Euler equation. The existence of inertial manifold for the simpli�ed
Bardina equation is studied by Titi et al. in [18] in the two-dimension with peri-
odic boundary condition case. On the other hand, there are many works about the
other turbulence models such as the modi�ed-Leray-α and viscous Camassa-Holm
or Navier-Stokes-α on the same framework, see for example [6, 13, 19, 32, 33, 34].

The Navier-Stokes equation and the turbulence equations are studied on the
generalized compact Riemannian manifolds in the works of Ebin and Marsden [15],
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Skholler [44, 45] and Skholler et al. [40] via the geometry and the analysis of group
of di�eomorphisms. In the speci�c compact manifolds such as two-dimensional
sphere and square torus, the Navier-Stokes equation was studied in the works of Ilyin
[27, 28, 29, 30, 31] and developed recently by Ilyin, Laptev and Zelik [35, 36, 37].
In these works, they proved the well-posedness of the weak solution, then estimated
the upper bound of the Hausdor� and fractal dimensions of the global attractor.
For the turbulence equations Ilyin and Titi studied the attractor of the modi�ed-
Leray-α equation on the two-dimensional sphere and the square torus [33]. In
detail, they established the upper and lower bounds dependeding on the parameter
α for the Hausdor� and fractal dimensions of the global attractor. The method is
based on the vorticity scalar form of the equation (see also [31] for the Navier-Stokes
equation) and the theorem about the relation between the Lyapunov exponents and
the Hausdor� (fractal) dimension of attractor (see [7, 8, 50]). Another important
technique is used to estimate the attractor's dimensions that is the Lieb-Sobolev-
Thirring inequality (see [51]). It plays an important role to estimate the Lyapunov
exponents. The Sobolev-Lieb-Thirring inequality on manifolds is considered initially
by Teman et al. in [17], then it is improved by Ilyin et al. in the recent works
on the sphere and torus [36, 37]. Furthermore, by considering the Navier-Stokes
equation on the domain of sphere, Ilyin and Laptev [35] improved the Berezin-Li-
Yau inequality on the lower of the sum of the eigenvalues and therefore obtain the
upper of the dimension of attractor.

In the present paper we study the simpli�ed Bardina equation (1.3) on a two-
dimensional closed manifold. More precisely we study the existence and uniqueness
of the weak solutions, estimate of the Hausdor� and fractal dimension of attrac-
tor and the existence of the inertial manifold. Since on a two-dimensional closed
manifold there is Kodaira-Hodge decomposition of the space of smooth vector �elds
with the appearance of the harmonic functions, we need to add some dissipative
term to the original equation to obtain a dissipative system (see Section 2.2). Then
the global well-posedness will be done by the Garlekin approximation scheme and
note to control the norms of the harmonic functions. We develop the methods in
[31, 7, 8] to establish the upper bound of the Hausdor� and fractal dimensions of
the global attractor for (1.3) on the vorticity scalar form. Then we will develop the
methods in [26, 33, 38] to �nd the lower bound of the attractor's dimensions on the
two-dimensional torus. In particular, we construct a family of stationary solutions
arising from the family of Kolmogorov �ows and establish the lower bound for the
dimension of the unstable manifold around these stationary solutions. As a conse-
quence we obtain the lower bound of the global attractor's dimensions of (1.3). The
existence of the inertial manifold is proven by feature of the spectral of Laplacian
operator on two-dimensional sphere S2 and the estimates of the nonlinear parts via
the appearance of the parameter α.

This paper is organized as follows: Section 2 gives the setting of the simpli�ed
Bardina equations on the generalized two-dimensional closed manifolds M . Section
3 we establish the global well-posedness of the simpli�ed Bardina equation on M .
Section 4 we establish the upper bound of the Hausdor� and fractal dimensions of
the global attractor for the equation on S2 then on M , then we establish the lower
bound of the attractor's dimensions for the equation on the two-dimensional torus
T 2 = [0; 2π] × [0; 2π]. In Section 5 we prove the existence of an inertial manifold
for the equation on S2.
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2. Geometrical and analytical setting

2.1. Two-dimensional closed manifolds and functional spaces. Let M
be a 2-dimensional closed manifold embedded in R3. We denote by TM the set of
tangent vector �elds onM and by (TM)⊥ the set of normal vector �elds. Following
[27, 29, 30], we de�ne the two operators

Curln : TM → (TM)⊥ andCurl : (TM)⊥ → TM

in a neighbourhood of M in R3:

Definition 2.1. Let u be a smooth vector �eld on M with values in TM , and

let ~ψ be a smooth vector �eld on M with values in (TM)⊥, i.e. ~ψ = ψ~n, where
~n is the outward unit normal vector to M and ψ is a smooth scalar function. We

then identify the vector �eld ~ψ with the scalar function ψ. Let û and ψ̂ be smooth
extensions of u and ψ into a neighbourhood of M in R3 such that û|M = u and

ψ̂|M = ψ. For x ∈M and y ∈ R3, we de�ne

Curlnu(x) = (Curlû(y) · ~n(y))~n(y)|y=x,

Curl~ψ(x) = Curlψ(x) = Curlψ̂(y)|y=x,

where the operator Curl that appears on the right hand sides is the classical Curl
operator in R3.

The above de�nitions of Curlnu and Curlψ are independent of the choice of the
neighbourhood of M in R3. Moreover, the following formulas hold

(2.1) Curlnu = −~ndiv(~n× u), Curlψ = −~n×∇ψ,

(2.2) ∇uu = ∇|u|
2

2
− u× Curlnu,

(2.3) ∆u = ∇divu− CurlCurlnu,

where × is the outer vector product in R3, ∇ is the covariant derivative along the
vector �elds and ∆ = dδ + δd is the Hodge-Laplacian operator.

Let Lp(M) and Lp(TM) be the Lp-spaces of the scalar functions and the tangent
vector �elds on M respectively. Let Hp(M) and Hp(TM) be the corresponding
Sobolev spaces of scalar functions and vector �elds. The inner product on L2(M)
and L2(TM) are given by

〈u, v〉L2(M) =

∫
M

uv̄dM, foru, v ∈ L2(M),

〈u, v〉L2(TM) =

∫
M

u · v̄dM, foru, v ∈ L2(TM).

The following integration by parts formulas will be used frequently

〈∇h, v〉L2(TM) = −〈h,divv〉L2(M) ,〈
Curl~ψ, v

〉
L2(TM)

=
〈
~ψ,Curlnv

〉
L2(M)

.
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By using Kodaira-Hodge decomposition we have

C∞(TM) = {∇ψ : ψ ∈ C∞(M)} ⊕ {Curlψ : ψ ∈ C∞(M)} ⊕H1,

where H1 is the �nite-dimensional space of harmonic 1−forms. Putting

V = {Curlψ : ψ ∈ C∞(M)} , H = VL
2(TM)

, V = VH
1(TM)

,

endowed with the norms

‖u‖2H = 〈u, u〉 , ‖u‖2V = 〈Au, u〉 = 〈Curlnu,Curlnu〉 .

Since divu = 0, we have the Poincaré inequality

(2.4) ‖u‖H 6 λ
−1/2
1 (‖u‖V + ‖divu‖H) = λ

−1/2
1 ‖u‖V

where λ1 is the �rst eigenvalue of the Stokes operator A = CurlCurln (see the below
proposition). We know that

(2.5) ‖u‖H1(TM) = ‖u‖2L2(TM) + ‖divu‖2L2(M) + ‖Curlnu‖2L2(M) .

From the inequalities (2.4), (2.5) and since divu = 0 on V , the norms on H1 and
V are equivalent for all u ∈ V . In the rest of this paper, we denote ‖.‖L2 := |.|,
‖.‖V := ‖.‖ and ‖.‖H1 := ‖.‖1.

Let P : L2(TM) → H be the orthogonal projection i.e Helmholtz-Leray pro-
jection on H, and let A = −P∆ = −∆P = CurlCurln be the Stokes operator with
domain D(A) = H2(TM) ∩ V . Considering the linear Stokes problem

(2.6) Au+ gradp = f, divu = 0.

Taking the inner product of this equation with v ∈ V we get

〈Curlnu,Curlnu〉 = 〈f, u〉 ⇔ ‖u‖V = 〈f, u〉 .

By Lax-Milgram theorem, for each f ∈ H−1(TM) the weak solution of (2.6) exists
and in unique. Hence A : H1(TM) −→ H−1(TM) is a linear operator with compact
inverse. As a direct consequence, we �nd that problem (2.6) has an orthonormal
smooth eigenfunctions ωi (dense in H and V ) i.e

CurlCurlnωi = λiωi, divωi = 0.

The relations between the eigenfunctions ωi and the ones ψi of the scalar Laplacian
∆ = divgrad on M are

−∆ψi = λiψi, ωi = n× gradψi = −Curlψi.

We summarize the properties of the Stokes operator A in the following proposition

Proposition 2.2. The operator A = CurlCurln is unbounded, positive, self-
adjoint, symmetric in H with eigenvalues 0 < λ1 6 λ2 6 ... which is only accumu-
lation point +∞. Moreover, its eigenvalues correspond to an orthonormal basis in
H (which is also orthogonal in V ).
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2.2. The simpli�ed Bardina equations. In 1980 Bardina et al. [2] intro-
duced a particular sub-grid scalar model which was later simpli�ed by Layton and
Lewandowski [23] (therefore, we call this system by simpli�ed Bardina equation):

vt − ν∆v + (u · ∇)u+∇p = f,

∇ · v = ∇ · u = 0,

v = u− α2∆u,

u(0) = u0,

(2.7)

where the unknowns are the �uid velocity vector �eld v, the ��ltered� velocity
vector �eld u and the ��ltered� pressure scalar p. Besides, the constant ν > 0
is the kinematic viscosity coe�cient and f is the body force assumed to be time
independent. On a 2-dimension closed manifold M with u0 ∈ V ⊕ H1 and f ∈
H ⊕H1, by the equalities (2.1), (2.2) and (2.3) the simpli�ed Bardina equation can
be written as

vt + νCurlCurlnv + grad
u2

2
− u× Curlnu+∇p = f,

∇ · v = ∇ · u = 0,

v = u− α2∆u,

u(0) = u0.

(2.8)

Recall that P is an orthogonal projection on H namely Helmholtz projection. De-
note by Q the projection of L2(M) on the space of harmonic forms H1. Putting

f = f1 + f2, u(t) = u1(t) + u2(t), f1, u1(t) ∈ V, f2, u2(t) ∈ H1,

u0 = u10 + u20, u10 = P(u0) ∈ V, u20 = Q(u0) ∈ H1.

By applying the projection P + Q on the simpli�ed Bardina equation (2.8), we get

(2.9)
d

dt
(u1 + α2Au1) + νAu1 + P(Curlnu1 × u1 + Curlnu1 × u2) = f1,

(2.10)
d

dt
u2 + Q(Curlnu1 × u2) = f2

In order to Equations (2.9) and (2.10) become dissipative, some dissipative term
must be added to these equations for example σu. Therefore, we obtain
(2.11)
d

dt
(u1 + α2Au1) + νA(u1 + α2Au1) + P(Curlnu1 × u1 + Curlnu1 × u2) + σu1 = f1,

(2.12)
d

dt
u2 + Q(Curlnu1 × u2) + σu2 = f2.

These equations can be expressed in the simple form as

(2.13)
d

dt
(u+ α2Au) + νA(u+ α2Au) + B(u, u) + σu = f,

or
d

dt
v + νAv + B(u, u) + σu = f,

where

B(u, u) = (P + Q)(Curlnu× u).
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Definition 2.3. Let f ∈ H ⊕ H1 and u0 ∈ V ⊕ H1 and T > 0. A weak
solution of Equation (2.13) is u = u1 +u2 : u1 ∈ L2([0, T ], D(A))∩C([0, T ], V ) and

u2 ∈ C1([0, T ],H1) with
du1

dt
∈ L2([0, T ], H) and such that for each ω = ω1 + ω2 :

ω1 ∈ D(A) and ω2 ∈ H1:

(2.14) ∂t 〈v, w〉+ ν 〈Curlnv,Curlnw〉+ b(u, u, ω) + σ 〈u, ω〉 = 〈f, ω〉 ,

where b(u, u, ω) =
∫
M
〈B(u, u), ω〉 dM =

∫
M

Curlnu×u ·ωdM . Equation (2.14) can
be understood in the sense that for t0, t ∈ [0, T ], we have the intergral equation

〈v(t), ω〉 − 〈v(t0), ω〉+ ν

∫ t

t0

〈v(s), Aω〉 ds +

∫ t

t0

〈B(u(s), u(s)), ω〉 ds

+ σ

∫ t

t0

〈u(s), ω〉 ds =

∫ t

t0

〈f, ω〉 ds.

The bilinear operator b(u, u, ω) is generalized by trilinear form b(u, v, ω) on
H1(TM)3 in the following formula

b(u, v, ω) =

∫
M

∇uv · ωdM =

∫
M

uk∇kviωjgijdM

=
1

2

∫
M

(−u× v · Curlnω + Curlnu× v · ω − u× Curlnv · ω) dM,

where u, v, ω ∈ H1(TM).

Lemma 2.4. The trilinear for b(u, v, ω) has the following properties (see [27,
29, 30])

i) |b(u, v, ω)| 6 c ‖u‖1 ‖v‖1 ‖ω‖1.
ii) |b(u, u, v)| 6 c′|u| ‖u‖1 ‖v‖1 .
iii) If divu = 0 then b(u, v, v) = 0, b(u, v, ω) = −b(u, ω, v) and b(u, u,Au) = 0.

3. Solvability and the existence of global attractor

3.1. The existence and uniqueness of the weak solutions. We state and
prove the existence and uniqueness of the weak solution of Equation (2.13) in the
following theorem

Theorem 3.1. Let u0 ∈ V ⊕ H1 and f ∈ H ⊕ H1, then the equations (2.11)
and (2.12) i.e equation (2.13) posseses a unique weak solution u = u1 + u2: u1 ∈
L2([0, T ], D(A)) ∩ C([0, T ], V ) and u2 ∈ C1([0, T ],H1).

Proof. The proof of the theorem is according the Galerkin scheme and then
using Aubin's lemma. Recall that the orthonormal basis of H is {ωi}∞1 i.e the
eigenfunctions of the Stokes operator A = CurlCurln. Let {hj}n1 be an orthonormal

basis of the space of harmonic forms H1. Then we obtain that {ωi ⊕ hj}i=∞,j=ni=1,j=1 :=

{ζm}∞1 is an orthonormal basis of H⊕H1. The �nite dimensional Galerkin approx-
imation, based on this basis to the equation (2.13) is{

d
dt (um + α2Aum) + νA(um + α2Aum) + PmB(um, um) + σum = Pmf,

um(0) = Pmu(0),
(3.1)

where um := Pmu = um1 + um2 and Pmf = fm1 + fm2.
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Step 1. H1-estimates. Taking the scalar product in L2(TM) of (3.1) and
um, we get

1

2

d

dt
(|um|2 + α2 ‖um1‖2) + ν(‖um1‖2 + α2|Aum1|2) + σ(|um1|2 + |um2|2)

= | 〈Pmf, um〉 | = | 〈f, um〉 |
6 | 〈f1, um1〉 |H + | 〈f2, um2〉 |H1 .

By Cauchy-Schwarz inequality, we have

| 〈f1, um1〉 | 6 |A−1f1||Aum1|, |A−1/2f1| ‖um1‖
and by Young's inequality we have

| 〈f1, um1〉 | 6
|A−1f1|2

2να2
+
ν

2
α2|Aum1|2,

|A−1/2f1|2

2ν
+
ν

2
‖um1‖2 .

And we have clearly

| 〈f2, um2〉 |H1 6
1

2

(
|f2|2

σ
+ σ|um2|2

)
.

By putting L1 = min

{
|A−1f1|2

να2
,
|A−1/2f1|2

ν
,
|f2|2

σ

}
, and by using the above in-

equalities we obtain that

(3.2)
d

dt
(|um|2 +α2 ‖um1‖2)+ν(‖um1‖2 +α2|Aum1|2)+σ(2|um1|2 + |um2|2) 6 L1.

Combining |um1| 6 λ−1/2
1 ‖um1‖ and |Curlnum1| 6 λ−1/2

1 |Aum1|, we get
d

dt
(|um|2 + α2 ‖um1‖2) + νλ1(|um1|2 + α2 ‖um1‖2) + σ(2|um1|2 + |um2|2) 6 L1,

which gives (since Aum1 = Aum)

d

dt
(|um|2 + α2 ‖um‖2) + δ(|um|2 + α2 ‖um‖2) 6 L1,

where δ = min {νλ1, σ} . Using Gronwall's inequality we obtain that

|um|2 + α2 ‖um‖2 6 e−δt(|um0|2 + α2 ‖um0‖2) +
L1

δ
(1− e−δt)

6 |um0|2 + α2 ‖um0‖2 +
L1

δ
:= l1.(3.3)

Therefore, for 0 < T < +∞ and um0 := um(0) ∈ V ⊕ H1, we have um ∈
L∞([0, T ], V ⊕H1) where the bound is uniform in m.

Step 2. H2-estimates. Integrating inequality (3.2) over (t, t+ r), we get

ν

∫ t+r

t

(‖um1(s)‖2 + α2|Aum1(s)|2)ds 6 rL1 + |um(t)|2 + α2 ‖um1(t)‖2

6 rL1 + l1.(3.4)

Taking now the inner product of the Galerkin approximation (3.1) with Aum =
Aum1, and note that (see [30] Lemma 3.1)

(3.5) 〈Curlnum1 × um1, Aum1〉 = 〈Curlnum1 × u2, Aum1〉 = 0,

we get

1

2

d

dt
(‖um1‖2 +α2|Aum1|2)+ν(|Aum1|2 +α2|A3/2um1|2)+σ ‖um1‖2 6 | 〈f1, Aum1〉 |.
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Observe that
| 〈f1, Aum1〉 | 6 |A−1/2f1||A3/2um1|, |f1||Aum1|.

Using again Young's inequality we have

| 〈f1, Aum1〉 | 6
|A−1/2f1|2

2να2
+
ν

2
α2|A3/2um1|2,

|f1|2

2ν
+
ν

2
|Aum1|2.

Putting L2 = min

{
|A−1/2f1|2

να2
,
|f1|2

ν

}
, then we have

d

dt

(
‖um1‖2 + α2|Aum1|2

)
+ ν

(
|Aum1|2 + α2|A3/2um1|2

)
+ 2σ ‖um1‖2 6 L2.

Combining with |Aum1| 6 λ−1
1 |A3/2um1|2 (Poincaré inequality), we get

d

dt

(
‖um1‖2 + α2|Aum1|2

)
+ δ′(‖um1‖2 + α2|Aum1|2) 6 L2.

where δ′ = min {νλ1, 2σ}. Hence

(3.6)
d

dt

(
‖um1‖2 + α2|Aum1|2

)
6 L2.

Integrating the above inequality over (s, t) to obtain that

(3.7) ‖um1(t)‖2 + α2|Aum1(t)|2 6 ‖um1(s)‖2 + α2|Aum1(s)|2 + (t− s)L2,

continuting integrating over (0, t) and using (3.4) we obtain that

(3.8) t
(
‖um1(t)‖2 + α2|Aum1(t)|2

)
6

1

ν
(tL1 + l1) +

t2

2
L2,

for all t > 0. For t >
1

νλ1
, we integrate (3.6) over

(
t− 1

νλ1
, t

)
to establish

(3.9)
1

νλ1

(
‖um1(t)‖2 + α2|Aum1(t)|2

)
6

1

ν

(
1

νλ1
L1 + l1

)
+ L2

(
1

2νλ1

)2

.

The inequalities (3.8) and (3.9) yield that there exists a function l2(t) satisfying the
following conditions

i) For all t > 0 then l2(t) < +∞ and limt→+∞ l2(t) < +∞,
ii) If u10 ∈ V but u10 /∈ D(A), then limt→0+ l2(t) = +∞.

and
‖um1(t)‖2 + α2|Aum1(t)|2 6 l2(t), t > 0.

Remark 3.2. Inequality (3.7) yields that if u10 := u1(0) ∈ D(A), then um1(.)
is bounded uniformly in L∞([0, T ], D(A)) independently of m. On the other hand,
if u10 ∈ V but u10 /∈ D(A), then um1 ∈ L∞loc((0, T ], D(A)) ∩ L2([0, T ], D(A)).

Step 3. Estimates for
dvm
dt

and
dum
dt

. For each ω = ω1+ω2 where ω1 ∈ D(A)

and ω2 ∈ H1, we have

d

dt
〈vm, ω〉 = −ν 〈Avm1, ω1〉 − 〈PmB(um, um)), ω〉 − σ 〈um, ω〉+ 〈Pmf, ω〉 .

Since um1 is uniformly bounded with respect to m in L2([0, T ], D(A)), hence vm1 is
uniformly bounded in L2([0, T ], H), as a consequence Avm1 is uniformly bounded
in L2([0, T ], D(A)′). Now we observe that

| 〈Pmf, ω〉 | = | 〈f, Pmω〉 | 6 | 〈f1, ω1〉 |H + | 〈f2, ω2〉 |H1
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6 |A−1f1||Aω1|+ |f2||ω2| 6 λ−1
1 |f1||Aω1|+ |f2||ω2|.

By ii) of Lemma 2.4

| 〈PmB(um, um), ω〉 | 6 |b(um, um, ω)| 6 c′|um| ‖um‖1 ‖ω‖1
6 c′|um|(‖um1‖+ |um2|)(‖ω1‖+ |ω2|)
6 c′|um|(‖um1‖+ |um2|)

(
λ
−1/2
1 |Aω1|+ |ω2|

)
.

Moreover

| 〈um, ω〉 | 6 | 〈um1, ω1〉 |+ | 〈um2, ω2〉 |
6 |A−1um1||Aω1|+ |um2||ω2|
6 λ−1

1 |um1||Aω1|+ |um2||ω2|.

We therefore conclude

∥∥∥∥dvmdt
∥∥∥∥
L2([0,T ],(D(A)⊕H1)′)

and

∥∥∥∥dumdt
∥∥∥∥
L2([0,T ],H⊕H1)

are uni-

formly bounded with respect to m. By Aubin compactness theorem, there is a
subsequene um′(t) and a function u(t) such that

um′(t) −→ u(t)weakly inL2([0, T ], D(A)⊕H1),
um′(t) −→ u(t) strongly inL2([0, T ], V ⊕H1),
um′ −→ u inC([0, T ], H ⊕H1).

These are equivalent to

vm′(t) −→ v1(t)weakly inL2([0, T ], H ⊕H1),
vm′(t) −→ v1(t) strongly inL2([0, T ], (V ⊕H1)′),
vm′ −→ v1 inC([0, T ], (D(A)⊕H1)′).

Now relabel um′ (resp. vm′) by um (resp. vm). For ω = ω1 + ω2 where ω1 ∈ D(A)
and ω2 ∈ H1, we have

〈vm(t), ω〉 + ν

∫ t

t0

〈vm1(s), Aω1〉 ds+

∫ t

t0

〈B(um(s), um(s)), Pmω〉 ds

+σ

∫ t

t0

〈um(s), Pmω〉 ds = 〈vm(t0), ω〉+ 〈f, Pmω〉 (t− t0),

for all t0, t ∈ [0, T ]. Since the sequence vm(t) converges weakly in L2([0, T ], H⊕H1),
vm1(t) converges weakly in L2([0, T ], H) then

lim
m→∞

∫ t

t0

〈vm1(s), Aω1〉 ds =

∫ t

t0

〈v1(s), Aω1〉 ds,

and there is a subsequence of vm and relabel by vm which converges almost every-
where on [0, T ] to v(t) in (H ⊕H1)′ ' H ⊕H1. Therefore

〈vm(t), ω〉 −→ 〈v(t), ω〉 ,
〈vm(t0), ω〉 −→ 〈v(t0), ω〉 ,

almost everywhere for t, t0 ∈ [0, T ].

Now we treat the convergence of the nonlinear term
∫ t
t0
〈B(um(s), um(s)), Pmω〉 ds.

We have ∣∣∣∣∫ t

t0

〈B(um(s), um(s)), Pmω〉 − 〈B(u(s), u(s)), ω〉 ds
∣∣∣∣

6

∣∣∣∣∫ t

t0

〈B(um(s), um(s)), Pmω − ω〉 ds
∣∣∣∣ := IIm
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+

∣∣∣∣∫ t

t0

〈B(um(s)− u(s), um(s)), ω〉
∣∣∣∣ := IIIm

+

∣∣∣∣∫ t

t0

〈B(u(s), um(s)− u(s)), ω〉
∣∣∣∣ := IIIIm .

To estimate IIm, we observe that there exists a constant c′′ > 0 such that

| 〈B(um(s), um(s)), Pmω − ω〉 | 6 c′′ ‖um(s)‖1 ‖Pmω − ω‖L∞(TM) |um(s)|.

Applying Agmon inequality in 2-dimension: ‖ω‖L∞(TM) 6 C|ω|
1/2
L2(TM) ‖ω‖

1/2
H2(TM),

we get

| 〈B(um(s), um(s)), Pmω − ω〉 | 6 c′′C|um(s)| ‖um(s)‖1 |Pmω − ω|
1/2

×(|A(Pmω1 − ω1)|+ |Pmω2 − ω2|)1/2.

Therefore

IIm 6 c′′C

(∫ t

t0

|um(s)|2ds
)1/2(∫ t

t0

‖um(s)‖21 ds
)1/2

|Pmω − ω|1/2

×(|A(Pmω1 − ω1)|+ |Pmω2 − ω2|)1/2.

Since um is uniformly bounded in L∞([0, T ], V ⊕H1) and um is uniformly bounded
in L∞([0, T ], H⊕H1) independently of m (Step 1), we obtain that limm→∞ IIm = 0.

Similarly, Agmon inequality and Poincaré inequality yeild

‖ω‖L∞(TM) 6 C|ω|1/2L2(TM) ‖ω‖
1/2
H2(TM) 6 C(|ω1|+ |ω2|)1/2(|Aω1|+ |ω2|)1/2

6 C(λ−1
1 |Aω1|+ |ω2|)1/2(|Aω1|+ |ω2|)1/2,

then IIIm can be estimated as

IIIm 6 C

(∫ t

t0

|um(s)− u(s)|2ds
)1/2(∫ t

t0

‖um(s)‖21

)1/2

×(λ−1
1 |Aω1|+ |ω2|)1/2(|Aω1|+ |ω2|)1/2.

Combining with um → u strongly in L2([0, T ], V ⊕ H1) and the boundedness of
‖um‖1, we get limt→∞ IIIm = 0. By the same manner we also have limt→∞ IIIIm = 0.
Therefore,∫ t

t0

〈B(um(s), um(s)), Pmω〉 ds −→
∫ t

t0

〈B(u(s), u(s)), ω〉 ds asm→∞.

We conclude that for almost everywhere t0, t ∈ [0, T ] and every ω ∈ D(A)⊕H1:

〈v(t), ω〉 − 〈v(t0), ω〉 + ν

∫ t

t0

〈v1(s), Aω1〉 ds+

∫ t

t0

〈B(u(s), u(s)), ω〉 ds

+ σ

∫ t

t0

〈u(s), ω〉 ds =

∫ t

t0

〈f, ω〉 ds.

On the other hand, v1 ∈ L2([0, T ], H) and ω1 ∈ D(A), then we have∣∣∣∣∫ t

t0

〈v1(s), Aω1〉 ds
∣∣∣∣ 6 (∫ t

t0

|v1(s)|2ds
)1/2(∫ t

t0

|Aω1|2ds
)1/2

→ 0 as t→ t0.

And since u ∈ L∞([0, T ], V ⊕H1), then∣∣∣∣∫ t

t0

〈B(u(s), u(s)), ω〉 ds
∣∣∣∣
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6 |ω|L∞(TM)

(∫ t

t0

|u(s)|2ds
)1/2(∫ t

t0

∥∥u(s)
∥∥2

1
ds

)1/2

−→ 0 as t→ t0.

Therefore for t0, t ∈ [0, T ], 〈v(t), ω〉 −→ 〈v(t0), ω〉 as t→ t0 for every ω ∈ D(A)⊕H1.
Since D(A) ⊕H1 is dense in V ⊕H1 we have 〈v(t), ω〉 −→ 〈v(t0), ω〉 as t → t0 for
every ω ∈ V ⊕ H1 hence v ∈ C([0, T ], (V ⊕ H1)′) and u ∈ C([0, T ], V ⊕ H1). The
existence of the solution u for equation (2.13) holds. Finally, u2 ∈ C1([0, T ],H1)
is a general property of solutions of linear �nite-dimensional systems of di�erential
equations.

Step 4. Uniqueness. Now we prove the uniqueness of the solution of Equation
(2.13). Suppose that ω = ω1 + ω2 is another solution of (2.13). Putting z = u− ω,
hence z0 = 0 and

d

dt
(z+ω+α2A(z1+ω1))+νA(z1+ω1+α2A(z1+ω1))+B(z+ω, z+ω)+σ(z+ω) = f.

Subtracting this equation with

d

dt
(ω + α2Aω1) + νA(ω1 + α2Aω1) + B(ω, ω) + σω = f,

we obtain the variation form

d

dt
(z + α2Az1) + νA(z1 + α2Az1) + B(ω, z) + B(z, ω) + σz = 0.

Taking the scalar product in L2(TM) of the above equation and z

d

dt
(|z|2 + α2 ‖z1‖2) + 2ν(‖z1‖2 + α2|Az1|2) + 2b(z, ω, z) + σ|z|2 = 0.

Using ii) in Lemma 2.4, we get

d

dt
(|z|2 + α2 ‖z1‖2) + 2ν(‖z1‖2 + α2|Az1|2) + σ|z|2 = 2b(z, z, ω) 6 2c′|z| ‖z‖1 ‖ω‖1 .

Putting z(t) = eνtz̃(t), we obtain that

d

dt
(|z̃|2 +α2 ‖z̃1‖2)+2ν(|z̃|2 +‖z̃1‖2 +α2 ‖z̃1‖2 +α2|Az̃1|2)+σ|z̃|2 6 2c′|z̃| ‖z̃‖1 ‖ω‖1

hence

d

dt
(|z̃|2 + α2 ‖z̃1‖2) + 2ν ‖z̃‖21 6 2ν ‖z̃‖21 +

2c′

ν
|z̃|2 ‖ω‖21

which implies

d

dt
(|z̃|2 + α2 ‖z̃1‖2) 6

2c′

ν
(|z̃|2 + α2 ‖z̃1‖2) ‖ω‖21 .

Using Gronwall inequality, we can establish that

|z̃(t)|2 + α2 ‖z̃1(t)‖2 6
(
|z̃0|2 + α2 ‖z̃10‖2

)
exp

(∫ t

0

2c′

ν
‖ω(s)‖21 ds

)
.

Since z̃0 = 0, we obtain that z̃ = 0. The proof of uniqueness is completed. �
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3.2. The existence of global attractor. We recall the H1-estimates which
are obtained in the previous section

(3.10) |u(t)|2 + α2 ‖u(t)‖2 6 e−δt(|u0|2 + α2 ‖u0‖2) +
L1

δ
(1− e−δt).

Hence

lim sup
t→∞

(|u(t)|2 + α2‖u(t)‖2) 6 2
L1

δ
:= ρ2

0,

where L1 = min

{
|A−1f1|2

να2
,
|A−1/2f1|2

ν
,
|f2|2

σ

}
.

Now we have the H2-estimates as

(3.11) ‖u1(t)‖2 + α2|Au1|2 6 e−δ
′t(‖u10‖2 + α2|Au10|2) +

L2

δ′
(1− e−δt).

Hence

lim sup
t→∞

(‖u(t)‖2 + α2|Au(t)|2) 6
L2

δ′
:= ρ2

1.

If the space V ⊕H1 is equipped with the following scalar product

[u, v]V⊕H1 = 〈Curlnu,Curlnv〉+ 〈u, v〉
= 〈u, (A+ I)v〉 ,(3.12)

then after long enough time, u(t) enters a ball in V ⊕H1 with the radius squared:
ρ2 = ρ2

0 +ρ2
1. This means that the semigroup St generated by (2.13) acts on V ⊕H1,

it has an absorbing ball BV⊕H1(0) ⊂ V ⊕ H1 with the radius ρ. The existence of
absorbing ball BD(A)⊕H1(0) in D(A)⊕H1 is done in the same manner.

Now following Rellich lemma St : V ⊕H1 −→ D(A)⊕H1 b V ⊕H1, for t > 0,
is a compact semigroup from V into itself. Since S(t)BV⊕H1(0) ⊂ BV⊕H1(0), then

the set Cs := ∪t>sS(t)BV⊕H1(0)
V⊕H1

is nonempty and compact in V ⊕ H1. By
the monotonic property of Cs for s > 0 and by the �nite intersection property of
compact sets, the set

A = ∩s>0Cs ⊂ V ⊕H1

is a nonempty compact set, and also the unique global attractor in V ⊕H1.

4. Dimensions of global attractor

4.1. Fundamental theorem. Let H be an Hilbert space, X be a compact
set in H and St the nonlinear continuous semigroup generated by the evolution
equation

∂tu = F (u), u(0) = u0,

and suppose that
StX = X for t > 0.

The Hausdor� and fractal dimensions of X are estimated by using the uniform Lya-
punov exponents (see Theorem 3.3 in [51] for the origin case: St is uniformly dif-
ferentiable). The result was extended to the case of a uniformly quasi-di�erentiable
semigroup in [7, 8].

Definition 4.1. The semigroup St is uniformly quasi-di�erentiable on X for
each t if for all u, v ∈ X there exists a linear operator DSt(u) such that

‖St(u)− St(v)−DSt(u)(u− v)‖ 6 h(r) ‖u− v‖ ,
where ‖u− v‖ 6 r, h(r)→ 0 as r → 0 and supt∈[0, 1] supu∈X ‖DSt(u)‖L (H,H) <∞.



306 TRUONG XUAN PHAM

The following result is establised in [7] (see Theorem 2.1).

Theorem 4.2. We assume that the mapping u → Stu0 is uniformly quasi-
di�erentiable in H and its quasi-di�erential is a linear operator L(t, u0) : ζ ∈ H →
U(t) ∈ H, where U(t) is the solution of the �rst variation equation

(4.1) ∂tU = L (t, u0)U, U(0) = ζ.

We assume, in addition, that for a �xed t the operator L(t, u0) = DSt(u) is compact
and norm-continuous with respect to u ∈ X.

For N > 1, n ∈ N, we de�ne qN by

(4.2) qN = lim sup
t→∞

sup
u0∈X

sup
ζi∈H,‖ζi‖61,i=1,...,N

(
1

t

∫ t

0

TrL (τ, u0) ◦QN (τ)dτ

)
,

where QN (τ) is the orthogonal projection in H into Span
{
U1(τ)...UN (τ)

}
, and

U i(t) is the solution of (4.1) with U i(0) = ζi.
Suppose qN 6 f(N), where f is concave. The Hausdor� and fractal dimensions

of X have the same upper bound

dimH X 6 dimF X 6 N∗,

where N∗ > 1 is such that f(N∗) = 0.

The concave condition of f can be replaced by the condition that the quasi-
di�erential DSt(u) contracts N∗-dimensional volumes uniformly for u ∈ X (see
Theorem 2.1 [8]).

4.2. Estimate of the attractor's dimensions.

4.2.1. Upper bound. For simplicity we consider the simpli�ed Bardina equation

on the 2-sphere S2 which is a speci�c case of M with H1 =
{
~0
}
. First, we rewrite

the equation to a vorticity scalar form. Recall that the origin equation is

(ut − α2∆ut)− ν(∆u− α2∆2u) + (u · ∇)u+∇p = f.

Let u = −Curlψ. Then applying Curln to the above equation we obtain

(∆ψt − α2∆2ψt)− ν∆(∆ψ − α2∆2ψ) + (u · ∇)∆ψ = Curlnf,

where u = n×∇ψ.
Putting ϕ = Curlnu = ∆ψ we get

(4.3) (ϕt − α2∆ϕt)− ν∆(ϕ− α2∆ϕ) + u · ∇ϕ = Curlnf.

Hence

(4.4) ϕt − ν∆ϕ+ (I − α2∆)−1(u · ∇ϕ) = (I − α2∆)−1Curlnf.

We de�ne the bilinear operator J(a, b) as follows

J(a, b) = n×∇a · ∇b.
We have

u · ∇ϕ = J(ψ,ϕ) = J(∆−1ϕ,ϕ)

Therefore, Equation (4.4) becomes

(4.5) ϕt − ν∆ϕ+ (I − α2∆)−1J(∆−1ϕ,ϕ) = (I − α2∆)−1Curlnf.

Remark 4.3. The bilinear operator J(a, b) has the following properties∫
S2

J(a, b)dx =

∫
S2

J(a, b)bdx = 0 and

∫
S2

J(a, b)cdx =

∫
S2

J(b, c)adx.
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By multiplying (4.3) by ϕ in L2(S2) and by using (3.5) we obtain that

1

2

d

dt
(|ϕ|2 + α2|∇ϕ|2) + ν(|∇ϕ|2 + α2|∆ϕ|2) = 〈Curlnf1, ϕ〉 = 〈f,Curlnϕ〉 .

Therefore,

d

dt
(|ϕ|2 + α2|∇ϕ|2) + 2ν(|∇ϕ|2 + α2|∆ϕ|2) 6

|f |2

ν
+ ν|∇ϕ|2.

Using the Poincaré and Gronwall inequalities and integrating with respect to t yield

(4.6) lim sup
t→∞

|ϕ(t)|2 6 |f |
2

λ1ν2

and

(4.7) lim sup
t→∞

1

t

∫ t

0

|∇ϕ(τ)|2dτ 6 |f |
2

ν2
.

We consider the variational equation corresponding to (4.5):

Φt = ν∆Φ− (I − α2∆)−1J(∆−1Φ, ϕ)− (I − α2∆)−1J(∆−1ϕ,Φ) := L (t, ϕ0)Φ,

where Φ(0) = ζ.
It is standard to show that this equation has a unique solution denoted by

L(t, ϕ(0))ζ := Φ(t).

Using the general theorems in [1, 51] we can show that the semigroup St is uniformly
quasi-di�erentiable on the attractor A of the simpli�ed Bardina equation.

We now estimate the fractal dimension of the attractor.

Theorem 4.4. The Hausdor� and fractal dimension of the attractor A of the
simpli�ed Bardina equation are �nite and satisfy

(4.8) dimH A 6 dimF A 6 G2/3

(
(4 + εG)3

3π(1 + α2)3
(logG− 1

2
log

π

2
)

)1/3

and

dimH A 6 dimF A

6

(
12√

π(1 + α2)3

)2/3

G2/3

(
logG+

1

2
+ log

3
√

2√
π(1 + α2)3

)

)1/3

,(4.9)

where G =
|f |
ν2λ1

is the Grashof number and εG → 0, when G→∞.

Proof. Let

H = L2(S2) ∩
{
ϕ :

∫
S2

ϕdS2 = 0

}
and H1 = H1(S2) ∩H.

We de�ne a scalar product on H1 depending α by

(4.10) 〈〈ϕ,ϕ′〉〉α =
〈
ϕ, (I − α2∆)ϕ′

〉
.

Clearly, we have that

|ϕ|2 = ‖ϕ‖2α − α
2|∇ϕ|2 6 ‖ϕ‖2α − α

2λ1|ϕ|2.
Hence

|ϕ|2 6 1

1 + α2λ1
‖ϕ‖2α .



308 TRUONG XUAN PHAM

In the space QN (τ)(H) we take an orthonormal basis {θi}Ni=1 ⊂ H1 with respect to
(4.10).

Now we have

TrL (τ, ϕ0) ◦QN (τ) =

N∑
i=1

〈〈L (τ, ϕ0)θi, θi〉〉

= −ν
N∑
i=1

〈〈∆θi, θi〉〉

−
N∑
i=1

〈〈
(I + α2A)−1(J(∆−1θi, ϕ) + J(∆−1ϕ, θi)), θi

〉〉
= −ν

N∑
i=1

(|∇θi|2 + α2|∆θi|2)−
N∑
i=1

〈
J(∆−1θi, ϕ) + J(∆−1ϕ, θi), θi

〉
= −ν

N∑
i=1

(|∇θi|2 + α2|∆θi|2)−
N∑
i=1

〈
J(∆−1θi, ϕ), θi

〉
6 −ν

N∑
i=1

(|∇θi|2 + α2|∆θi|2)−
∫
M

N∑
i=1

θi(n×∇∆−1θi) · ∇ϕdx

6 −ν
N∑
i=1

(|∇θi|2 + α2|∆θi|2) +

∫
M

(
N∑
i=1

θ2
i

)1/2( N∑
i=1

|vi|2
)1/2

|∇ϕ|dx

6 −ν
N∑
i=1

(|∇θi|2 + α2|∆θi|2) + ‖ρ‖1/2∞

(
N∑
i=1

|θi|2
)1/2

|∇ϕ|

6 −ν
N∑
i=1

(|∇θi|2 + α2|∆θi|2) +
1

1 + α2λ1
‖ρ‖1/2∞

(
N∑
i=1

‖θi‖2α

)1/2

|∇ϕ|

6 −ν
N∑
i=1

(|∇θi|2 + α2|∆θi|2) +
1

1 + α2λ1
‖ρ‖1/2∞ N1/2|∇ϕ|,(4.11)

where

ρ(s) =

N∑
i=1

|vi(s)|2 =

n∑
i=1

|n×∇∆−1θi|2.

With the scalar product (4.10) the following estimate of the function ρ is valid (for
details see Appendix).

2
√
π(1 + α2λ1) ‖ρ‖1/2∞

6 (2 log(k + 1) + 1)1/2 +
√

2(k + 1)−1

(
λ−1

1

N∑
i=1

|∇θi|2
)1/2

6 (2 log(k + 1) + 1)1/2 +
√

2(k + 1)−1

(
λ−1

1

N∑
i=1

(|∇θi|2 + α2|∆θi|2)

)1/2

,(4.12)

where k is a positive integer.
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Since on the S2 the eigenvalues of ∆ are λn = n(n + 1) of multiplicity 2n + 1
for n = 1, 2, ..., we have

T (t, ϕ0) :=

N∑
i=1

(|∇θi|2 + α2|∆θi|2) >
N∑
i=1

λi >
λ1

4
N2.

Hence

N 6 2((λ1)−1T )1/2.

Equation (4.11) implies now,

TrL (τ, ϕ0) ◦QN (τ)

6 −νλ1(λ−1
1 T ) + π−1/2(1 + α2λ1)−3/2(λ−1

1 T )1/4|∇ϕ|2

×
(

(2 log(k + 1) + 1)1/2 +
√

2(k + 1)−1(λ−1
1 T )

)
.

If we take k = [λ−1
1 T ]− 1, then

(2 log(k + 1) + 1)1/2 +
√

2(k + 1)−1(λ−1
1 T ) 6 CN (log(λ−1

1 T ) + 1)1/2,

where

cN =

{
3 N > 1,√

2 + εN εN → 0, when N →∞.

Putting

N (t, ϕ0)2 :=
1

t

∫ t

0

λ−1
1 T (τ, ϕ0)dτ.

Since N 6 2((λ1)−1T )1/2, we have N > N
2 .

Therefore, we have

1

t
TrL (τ, ϕ0) ◦QN (τ)

6 −νλ1N 2 + π−1/2(1 + α2λ1)−3/2cN

×1

t

∫ t

0

(log(λ−1
1 T ) + 1)1/2(λ−1

1 T )1/4|∇ϕ(τ)|dτ

6 −νλ1N 2 + π−1/2(1 + α2λ1)−3/2cN

(
1

t

∫ t

0

(log(λ−1
1 T ) + 1)(λ−1

1 T )1/2dτ

)1/2

×
(

1

t

∫ t

0

|∇ϕ(τ)|2dτ
)1/2

6 −νλ1N 2 + π−1/2(1 + α2λ1)−3/2cN (logN 2 + 1)1/2N 1/2 |f |
ν

= νλ1N 2(−N 3/2 +K(2 logN + 1)1/2) := g(N ),

where K = π−1/2(1 + α2λ1)−3/2cNG, G = |f |
λ1ν2 and on the last inequality we have

used the inequality (4.7) and applied Jensen's inequality to the concave function
x 7→ x1/2(1 + log x), with x = λ−1

1 T > 1.
We have g(N ) > 0 if

N 3/2 6 K(2 logN + 1)1/2.

It is equivalent to

(4.13) 3 logN − log(2 logN + 1) 6 2 logK.
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Using a fact that

(4.14) log(2 logN + 1) < εK logN , where εK → 0, N →∞,

we obtain since (4.13) that

N 6 K2/3

(
4

3
+ εK

)
(logK)1/3.

Therefore, we can replace the function g by a concave function g′ such that g′(N ) >
g(N ) and g′(N ) = 0 if

N = K2/3

(
4

3
+ εK

)
(logK)1/3.

By using Theorem 4.2 and N < 2N we obtain that

dimH A 6 dimF A 6 G2/3

(
(4 + εG)3

3π(1 + α2λ1)3
(logG− 1

2
log

π

2
)

)1/3

,

where G =
|f |
ν2λ1

is the Grashof number and εG → 0, when G → ∞. The upper

bounds (4.8) holds.
If we replace (4.14) by

log(2 logN + 1) < log 2 + logN , N > 1,

then by the same way as above we can also obtain that

dimH A 6 dimF A

6

(
12√

π(1 + α2λ1)3

)2/3

G2/3

(
logG+

1

2
+ log

3
√

2√
π(1 + α2λ1)3

)

)1/3

.

The upper bound (4.9) holds.
�

Remark 4.5.
(i) As α tends to zero we get the same upper bound of the Haussdor� and fractal's
dimensions of the global attractor for the Navier-Stokes equation on S2.
(ii) On the two dimensional closed manifold M we can also prove an estimate that
likes (4.12) as (see Appendix)√

(1 + α2λ1) ‖ρ‖1/2∞

6 L

(2 log(k + 1) + 1)1/2 +
√
λ1(k + 1)−1

(
λ−1

1

N∑
i=1

|∇θi|2
)1/2

 .(4.15)

Therefore, if H1 =
{
~0
}
the same proof (without explicit constants, of course) gives

the estimate of the attractor dimension,

dimF A 6 c(
1

1 + α2λ1
)G2/3(logG+ 1)1/3

for the simpli�ed Bardina equation on a simply connected compact manifold or in
a simply connected bounded domain Ω,supplemented with boundary conditions u ·
n|∂Ω = 0,Curlnu|∂Ω = 0.
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Theorem 4.6. For the multiply connected manifold or domain M which has

H1 6=
{
~0
}
. Assume that the phase space is assumed to be orthogonal to the �nite

dimensional space of harmonic vector �elds. The attractor's dimensions of the
simpli�ed Bardina on M satisfy that

dimH AV⊕H1 6 dimF AV⊕H1 6 c(
1

1 + α2λ1
)G2/3(logG+ 1)1/3 + n,

where dimH1 = n.

Proof. On M we recall that the simpli�ed Bardina equation is

d

dt
(u1 + α2Au1) + νA(u1 + α2Au1) + P(Curlnu1 × u1 + Curlnu1 × u2) + σu1 = f1,

d

dt
u2 + Q(Curlnu1 × u2) + σu2 = f2.

Rewrite the �rst equation in the scalar form we get

d

dt
ϕ+νAϕ+ (I+α2A)−1P[(u1 +u2) ·∇ϕ] +σ(I+α2A)−1ϕ = (I+α2A)−1Curlnf1,

d

dt
u2 + Q(Curlnu1 × u2) + σu2 = f2,

where u = u1 + u2 and ϕ = Curlnu1.
The variational equations are

(δϕ)t = −νAδϕ+ (I + α2A)−1J(A−1δϕ, ϕ) + (I + α2A)−1J(A−1ϕ, δϕ)
−(I + α2A)−1P(δu2 · ∇ϕ+ u2 · ∇δϕ)− σδϕ,
(δu2)t = −Q(ϕ× δu2 + (δϕ)× u2)− σδu2.

In the matrix form, we put U =

[
δϕ
δu2

]
, then

Ut = −ν
[
A 0
0 0

]
U −

[
A11 A12

A21 A22

]
U,(4.16)

where

A11 = −(I + α2A)−1J(A−1∗, ϕ) + (I + α2A)−1J(A−1ϕ, ∗)
−(I + α2A)−1P(u2 · ∇∗)− σ∗,

A12 = (I + α2A)−1P(∗ · ∇ϕ),
A21 = −Q(∗ × u2), A22 = −Q(ϕ× ∗)− σ ∗ .

We de�ne the scalar product

〈〈(ϕ, u2), (ϕ′, u′2)〉〉 =
〈
ϕ, (I + α2A)ϕ

〉
+ 〈u2, u

′
2〉 .

We take {(θi, 0), (0, hj)} , i = 1, 2...N, j = 1, 2..., l be an orthonormal basic in H⊕
H1, where {θi}N1 are orthonormal in H with respect to the norm ‖θ‖2α = |θ|2 +

α2|∇θ|2 and {hi}l1 are orthonormal in H1.
Using the variational equation (4.16) and

〈Curlnu1 × hj , hj〉 = 0,

we can see that the harmonic �elds have no contribution on qN+n, then

dimF AV⊕H1(u) 6 dimF AH(ϕ) + n.
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By using (ii) Remark 4.5 we have

dimF AH(ϕ) 6 c(
1

1 + α2λ1
)G2/3(logG+ 1)1/3.

The proof is completed. �

4.2.2. Lower bound. In order to check the sharp upper bound of the attractor's
dimensions we will consider its lower bound. We known that if the Grashof number
G is arbitrarily large, then the corresponding attractor of the Navier-Stokes equation
on S2 has dimension 0 and reduces to the globally attractive stationary point (see
the examples in [39, 30]). We give a similar argument for the simpli�ed Bardina
equation on S2 in the following proposition.

Proposition 4.7. If G =
|f |
λ1ν2

<
32

3π
then dimA = 0.

Proof. Suppose that ϕ̄ = ∆ψ̄ is a stationary solution of (4.3). Taking the
scalar product of (4.3) with ϕ̄ we get

|∇ϕ̄|2 6 |f |
2

ν2
.

Let ϕ = ϕ̄ + ϕ′ be a solution of the evolution problem (4.3). Then ϕ′ satis�es the
following equation

(ϕ′t −α2∆ϕ′t)− ν(∆ϕ′ −α2∆ϕ′) + J(∆−1ϕ̄, ϕ′) + J(∆−1ϕ′, ϕ′) + J(∆−1ϕ′, ϕ̄) = 0.

Taking the scalar product with ϕ′ we obtain that

1

2

d

dt
(|ϕ′|2 + ν|∇ϕ′|2) + ν(|∇ϕ′|2 + α2|∆ϕ′|2) = −

∫
S2

J(∆−1ϕ′, ϕ̄)ϕ′dx

6
∫
S2

|∇∆−1ϕ′||∇ϕ̄||ϕ′|dx

6 ‖∇ϕ̄‖L2

∥∥∇∆−1ϕ′
∥∥
L4 ‖ϕ′‖L4

6
|f |
ν

∥∥∇∆−1ϕ′
∥∥
L4 ‖ϕ′‖L4(4.17)

Denote ‖.‖L2 = |.|, by Hölder's and Ladyzhenskaya's inequality we have

‖ϕ′‖L4 6 c1|ϕ′||∇ϕ′|, ϕ′ ∈ H1(S2) ∩H,

‖∇ψ′‖L4 6 c2|∇ψ′|1/2|∆ψ′|1/2, ψ′ ∈ H2(S2),

where c1, c2 6 (3π/32)1/2 (see [37] for improving of Ladyzhenskaya's inequality on
S2).

Combining the above inequalities with (4.17) yield

1

2

d

dt
(|ϕ′|2 + ν|∇ϕ′|2) +

(
ν − c1c2

|f |
λ1ν

)
|(∇ϕ′|2 + α2|∆ϕ′|2) 6 0.

Therefore, if G < 1/(c1c2) < 32/3π, then the stationary solution ϕ̄ is globally
exponentially attractive, and A = ϕ̄. �

Since a global attractor is a maximal strictly invariant compact set, it follows
that the attractor contains the unstable manifolds of stationary points, that is
the invariant manifolds along which the solutions convergence exponentially to the
stationary points as t tends to in�nity. Follows that Liu [26], Ilyin and Titi [33]
provided lower bounds of the attractor's dimensions for the Navier-Stokes equation
(the case α = 0) and the Navier-Stokes-alpha equation on the two-dimensional
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torus T 2 by constructing a family of stationary solutions arising from the family of
Kolmogorov �ows. In particular, they proved that

dimA > cG2/3.

In the recent paper, Ilyin and Zelik [38] develop the methods in [26, 33] to establish
the lower bound depending the damped coe�cient for the attractor's dimensions of
the damped 2D Euler-Bardina equation on T 2.

In the next, we will develop the method in [26, 33, 38] to establish the lower
bound for the attractor's dimension of the simpli�ed Bardina equation on T 2 =
[0; 2π]× [0; 2π]. Recall that the scalar vorticity form of the equation is

(ϕt − α2∆ϕt)− ν∆(ϕ− α2∆ϕ) + J(∆−1ϕ,ϕ) = Curlnf.

Putting ψ = ϕ− α2∆ϕ, then

(4.18) ψt − ν∆ψ + J((∆− α2∆2)−1ψ, (I − α2∆)−1ψ) = Curlnf.

We consider the following family of forces depending on the integer parameter
s:

f = fs =

{
f1 = 1√

2π
ν2λs2 sin sx2,

f2 = 0,

where we choose the parameter λ := λ(s) later. Then, we have

|f | = ν2λs2, G = λs2

and

(4.19) Curlnfs = Fs = − 1√
2π
ν2λs3 cos sx2, |Curlnf | = ν2λs3.

Corresponding to the family (4.19) is the family of stationary solutions

ψs = − 1√
2π
νλs cos sx2

of Equation (4.18) due to ψs depends only on x2, the nonlinear term vanishes

J((∆− α2∆2)−1ψs, (I − α2∆)−1ψs) = 0

and the equality −ν∆ψs = Fs is veri�ed directly.
We linearize (4.18) about the stationary solution (4.19) and consider the eigen-

value problem

Lsψ : = J((∆− α2∆2)−1ψs, (I − α2∆)−1ψ)
+J((∆− α2∆2)−1ψ, (I − α2∆)−1ψs)− ν∆ψ = −σψ.(4.20)

We use the orthonormal basis of trigonometric functions, which are the eigenfunc-
tions of the Laplacian on the two-dimensional torus,{

1√
2π

sin kx,
1√
2π

cos kx

}
, kx = k1x1 + k2x2,

k ∈ Z2
+ =

{
k ∈ Z2

0|k1 > 0, k2 > 0
}
∪
{
k ∈ Z2

0|k1 > 1, k2 6 0
}

and we rewrite ψ as a Fourier series

ψ =
1√
2π

∑
k∈Z2

+

ak cos kx+ bk sin kx.
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Plugging this into (4.20) and using the fact that J(a, b) = −J(b, a) we obtain that

λs√
2π(s2 + α2s4)

∑
k∈Z2

+

(
k2 − s2

k2 + α2k4

)
J(cos sx2, ak cos kx+ bk sin kx)+

+
∑
k∈Z2

+

(k2 + σ̂)(ak cos kx+ bk sin kx) = 0,(4.21)

where σ̂ = σ/ν.
We can calculate that

J(cos sx2, cos(k1x1 + k2x2)) = −k1s sin sx2 sin(k1x1 + k2x2)

=
k1s

2
(cos(k1x1 + (k2 + s)x2))− cos(k1x1 + (k2 − s)x2)

and

J(cos sx2, sin(k1x1 + k2x2)) = k1s sin sx2 cos(k1x1 + k2x2)

=
k1s

2
(sin(k1x1 + (k2 + s)x2))− sin(k1x1 + (k2 − s)x2).

Substituting these equalities into (4.21) and regroup the terms with cos(k1x1+k2x2),
we get the following equation for the coe�cients ak1,k2

−Λ(s)k1

(
k2

1 + (k2 + s)2 − s2

k2
1 + (k2 + s)2 + α2(k2

1 + (k2 + s)2)2

)
ak1k2+s

+Λ(s)k1

(
k2

1 + (k2 − s)2 − s2

k2
1 + (k2 − s)2 + α2(k2

1 + (k2 − s)2)2

)
ak1k2−s + (k2 + σ̂)ak1k2 = 0,

where

(4.22) Λ = Λ(s) :=
s2λ

2
√

2π(s2 + α2s4)
=

λ

2
√

2π(1 + α2s2)
.

Similarly the equation for bk1,k2 has also this form.
We put

ak1k2

(
k2 − s2

k2 + α2k4

)
=: ck1k2 .

and

k1 = t, k2 = sn+ r, and ct sn+r = en,

t = 1, 2, ..., r ∈ Z, rmin < r < rmax,

where the numbers rmin and rmax satisfy that rmax − rmin < s and will be speci�ed
below we obtain for each t and r the following three term recurrence relation:

(4.23) dnen + en−1 − en+1 = 0, n = 0,±1,±2, ...,

where

(4.24) dn =
(t2 + (sn+ r)2 + α2(t2 + (sn+ r)2)2)(t2 + (sn+ r)2 + σ̂)

Λt(t2 + (sn+ r)2 − s2)
.

We look for non-trivial decaying solutions {en} of (4.23) and (4.24). Each nontrivial
decaying solution with Re(σ̂) > 0 produces an unstable eigenfunction ψ of the
eigenvalue problem (4.20).
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Theorem 4.8. Given an integer s > 0 let a pair of integers t, r belong to a
bounded region A(δ) given by

t2 + r2 < s2/3, t2 + (−s+ r)2 > s2, t2 + (s+ r)2 > s2, t > δs,

rmin < r < rmax, rmin = −s/6, rmax = s/6, 0 < δ < 1/
√

3.(4.25)

For any Λ = λ
2
√

2π(1+α2s2)
> 0 there exists a unique real eigenvalue σ̂ = σ̂(Λ), which

increases monotonically as Λ→∞ and satis�es the following inequality

(4.26) c1(α, t, r, s)Λ < σ̂ < c2(α, t, r, s)Λ.

The unique Λ0 = Λ0(s) solving the equation

σ̂(Λ0) = 0

satisfes the two-sided estimates

1√
2
δ2s(1 + α2s2) < Λ <

55
√

5

63
√

2

s(1 + α2s2)

δ2
for α > 0,

1√
2
δ2s < Λ <

5

3
√

3

s

δ2
for α = 0.(4.27)

In the term of λ these inequalities are

2πδ2s(1 + α2s2)2 < λ <
110
√

5π

63

s(1 + α2s2)2

δ2
for α > 0,

2πδ2s < λ <
20π

3
√

6

s

δ2
for α = 0.

Proof. We observe that the following inequalities hold for any (t, r) satisfying
(4.25):

s2 6 t2 + (−s+ r)2 = dist((0, s), (t, r))2 6 dist((0, s), C)2 = (5/3)s2

s2 6 t2 + (s+ r)2 = dist((0,−s), (t, r))2 6 dist((0,−s), B)2 = (5/3)s2,(4.28)

where B = (
√

11s/6, s/6) and C = (
√

11s/6, −s/6).
In view of (4.25) for any real σ̂ satisfying σ̂ > −t2−r2 we have in the recurrence

relation (4.23) and (4.24) as

(4.29) dn > 0 for n 6= 0 and lim
|n|→∞

dn =∞.

The main tool in the analysis of (4.23) are continued fractions and a variant of
Pincherle's theorem saying that under condition (4.29) the recurrence relation (4.23)
has a decaying solution {en} with lim|n|→∞ en = 0 if and only if

(4.30) − d0 =
1

d−1 + 1
d−2+...

+
1

d1 + 1
d2+...

.

Now, we set

(4.31) f(σ̂) = −d0 =
(t2 + r2 + α2(t2 + r2)2)(t2 + r2 + σ̂)

Λt(s2 − t2 − r2)
,

(4.32) g(σ̂) =
1

d−1 + 1
d−2+...

+
1

d1 + 1
d2+...

.

The equation (4.31) leads to

f(−t2 − r2) = 0 and f(σ̂)→ 0 as σ̂ →∞.
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Combining (4.32) and (4.24) we have

g(σ̂) <
1

d−1
+

1

d1
and g(σ̂)→ 0 as σ̂ →∞.

Therefore, there exists a σ̂ > −t2 − r2 such that

(4.33) f(σ̂) = g(σ̂).

From elementary properties of continued fractions we deduce as in [26] that the σ̂
so obtained is unique and increases monotonically with Λ.

To establish (4.26) we deduce from (4.32) and (4.33) that

(4.34)
1

d−1 + 1
d−2

+
1

d1 + 1
d2

< f(σ̂) <
1

d−1
+

1

d1
.

Using the conditions t2 + (−s + r)2 > s2 and t2 + (s + r)2 > s2, we deduce from
(4.24) that

1

d±1
=

Λt

t2 + (s± r)2 + σ̂

t2 + (s± r)2 − s2

t2 + (s± r)2 + α2(t2 + (s± r)2)2

6
Λt

s2 + σ̂

1

1 + α2(t2 + (s± r)2)
6

Λt

s2 + σ̂

1

1 + α2s2
.(4.35)

Therefore, from the right-hand inequality in (4.34) it follows that

f(σ̂) =
(t2 + r2 + α2(t2 + r2)2)(t2 + r2 + σ̂)

Λt(s2 − t2 − r2)
<

1

d−1
+

1

d1
<

2Λt

s2 + σ̂

1

1 + α2s2
.

Hence

(t2 + r2 + σ̂)(s2 + σ̂) <
2Λ2t2(s2 − (t2 + r2))

(t2 + r2 + α2(t2 + r2)2)(1 + α2s2)

6
2Λ2t2s2

(t2 + α2t4)(1 + α2s2)
6

2Λ2δ−2s2

(1 + α2s2)2
,(4.36)

which gives the right-hand side inequality in (4.26):

σ̂ 6 c2(α, t, r, s)Λ as Λ→∞.
Morefuther, we set σ̂ = 0 in (4.36) and use the condition t2 + r2 > δ2s2, 0 < δ < 1
we get

δ2s4 <
2Λ2δ−2s2

(1 + α2s2)2
.

Therefore, we obtain the lower bound of Λ as in the left-hand side of (4.27):

1√
2
δ2s(1 + α2s2) < Λ.

From the left-hand side inequality in (4.34), where d−1, d1, d−2, d2, f > 0, we
see that

(4.37) fd1 +
f

d2
> 1 and fd−1 +

f

d−2
> 1.

We have

fd1 =
(t2 + r2 + α2(t2 + r2)2)(t2 + r2 + σ̂)

Λt(s2 − t2 − r2)

× t
2 + (s+ r)2 + σ̂

Λt

t2 + (s+ r)2 + α2(t2 + (s+ r)2)2

t2 + (s+ r)2 − s2
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fd−1 =
(t2 + r2 + α2(t2 + r2)2)(t2 + r2 + σ̂)

Λt(s2 − t2 − r2)

× t
2 + (s− r)2 + σ̂

Λt

t2 + (s− r)2 + α2(t2 + (s− r)2)2

t2 + (s− r)2 − s2
(4.38)

and

f

d2
=

(t2 + r2 + σ̂)

t2 + (2s+ r)2 + σ̂

(t2 + r2 + α2(t2 + r2)2)

(s2 − t2 − r2)

× t2 + (2s+ r)2 − s2

t2 + (2s+ r)2 + α2(t2 + (2s+ r)2)2

f

d−2
=

(t2 + r2 + σ̂)

t2 + (2s− r)2 + σ̂

(t2 + r2 + α2(t2 + r2)2)

(s2 − t2 − r2)

× t2 + (2s− r)2 − s2

t2 + (2s− r)2 + α2(t2 + (2s− r)2)2
(4.39)

The �rst factors in (4.39) are clearly less than one. It follows from (4.25) that
4sr 6 2s2/3 and |2s + r| > 11s/6. Therefore, we can control the right-hand sides
of (4.39) as

f

d2
=

(t2 + r2 + α2(t2 + r2)2)

(s2 − t2 − r2)

(t2 + (2s+ r)2 − s2)

(t2 + (2s+ r)2 + α2(t2 + (2s+ r)2)2)

<
(s2/3 + α2s4/9)4s2

2s2/3((11/6)2s2 + α2(11/6)4)s4
=

2(1 + α2s2/3)

(11/6)2 + α2s2(11/6)4
6

72

121
.

We would like to remark that if α = 0 we can improve this estimate by

f

d2
=

(t2 + r2)

(s2 − t2 − r2)

(t2 + (2s+ r)2 − s2)

(t2 + (2s+ r)2
<

t2 + r2

s2 − t2 − r2

<
s2/3

2s2/3
=

1

2
.

Along with (4.37) we have that fd1 > 49/121 for α > 0, which for r > 0 gives that

49

121
< fd1 =

(t2 + r2 + α2(t2 + r2)2)(t2 + r2 + σ̂)

Λt(s2 − t2 − r2)

× t
2 + (s+ r)2 + σ̂

Λt

t2 + (s+ r)2 + α2(t2 + (s+ r)2)2

t2 + (s+ r)2 − s2

<
(t2 + r2 + σ̂)(t2 + (s+ r)2 + σ̂)

Λ2t2
(s2/3 + α2s4/9)(5s2/3 + α2s425/9)

(2/3)s2t2

<
25

18

(t2 + r2 + σ̂)(t2 + (s+ r)2 + σ̂)

Λ2

(1 + α2s2)2

δ4s2
for α > 0.(4.40)

For α = 0 we can improve this estimate as

(4.41)
1

2
<

5

6

(t2 + r2 + σ̂)(t2 + (s+ r)2 + σ̂)

Λ2

1

δ4s2
.

Therefore, we obtain the left-hand side inequality in (4.26):

c1(α, t, r, s) 6 σ̂(Λ).

For r < 0 we use d−1 instead of d1.
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Now for r > 0, we set σ̂ = 0 in (4.40) and use the inequalities t2 + r2 <
s2/3, t2 + (s+ r)2 < (5/3)s2 to obtain the upper bound of λ as

Λ 6
55

21
√

2

(
(s2/3)(5s2/3)

)1/2 (1 + α2s2)

δ2s

=
55
√

5

63
√

2

s(1 + α2s2)

δ2
for α > 0.

For α = 0, using (4.41) we obtain that

Λ 6

√
10√
6

(
(s2/3)(5s2/3)

)1/2 1

δ2s
=

5
√

2

3
√

6

s

δ2
.

�

Since

Λ =
λ

2
√

2π(1 + α2s2)
,

we rewrite (4.27) in the term of λ(s) to see that for

λα>0 =
110
√

5π

63
sδ−2(1 + α2s2)2,

λα=0 =
20π

3
√

6
sδ−2,

each point in (t, r)-plane satisfying (4.25) produces an unstable (positive) eigenvalue
σ̂ > 0 of multiplicity two (the equation for the coe�cients bk is the same). Denoting
by d(s) the number of points of the integer lattice inside the region A(δ) we obviously
have

(4.42) d(s) := ]
{

(t, r) ∈ D(s) = Z2 ∩A(δ)
}
' a(δ)s2 as s→∞,

where a(δ)s2 = |A(δ)| is the area of the region A(δ). Therefore the dimension of
the unstable manifold around the stationary solution ψs is at least 2a(δ)s2 and we
obtain that

(4.43) dimA > 2d(s) ' 2a(δ)s2.

It is reasonable to consider two case:
The case α = 0.

We have

G = λα=0s
2 =

20π

3
√

6
s3δ−2

and writing the estimate (4.43) in terms of the Grashof number G we obtain

dimA > 2a(δ)s2 ' 2

(
3
√

6

20π

)2/3

a(δ)δ4/3G2/3

dimA > 2

(
3
√

6

20π

)2/3

( max
0<δ<1/

√
3
a(δ)δ4/3)G2/3 = 0, 006G2/3,

where max0<δ<1/
√

3 a(δ)δ4/3 = 0, 012. This is exact the same lower bound obtained

for the global attractor's dimensions of the Navier-Stokes equation (see [26, 33]).
The case α� 1.
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Here we can obtain the following lower bound for G ∼ (1/α)3. Let 0 < s < 1/α.
Then 1 + α2s2 < 2 and

G 6
440
√

5π

63
s3δ−2

and by the same way as above we obtain that

dimA > 2

(
63

440
√

5π

)2/3

( max
0<δ<1/

√
3
a(δ)δ4/3)G2/3 = 0, 0018G2/3.

In particular, setting s ' 1/α we can obtain in term of γ that

C1
1

α2
6 dimA 6 C2

1

α2

(
log

1

α

)1/3

.

5. Inertial manifold

The existence of an inertial manifold for the Navier-Stokes equations remains
an open problem sofar. The principal reason is the nonlinear part of these equations
that is very heavy to control. However, for the Bardina equations (or the orther tur-
bulence equations such as modi�ed-Leray-α), one can overcome this di�culty due
to the appearance of α which leads to control the nonlinear part of the equations.
Actually, in the case of the simpli�ed Bardina and modi�ed-Leray-α equations in
two-dimension with periodic boundary conditions, Titi et al. [18] proved the exis-
tence of inertial manifolds. Recently, the question is answered for modi�ed-Leray-α
equations in three-dimension by Kostiano [21] and by Li and Sun [24].

Beside, there are only two results about the existence of the inertial manifold on
the curve spaces such as circle and two-dimensional sphere establised by Vukadinovic
[53, 54] for the Smoluchowski equation. In this part, we prove the existence of an
inertial manifold for the simpli�ed Bardina model on the two-dimensional sphere
S2.

We recall the de�nition of the inertial manifold. Consider an evolution equation
on a Hilbert space H endowed with the inner product (., .), and the norm |.| of the
form

(5.1) ut +Au = F (u).

where A is a positive self-adjoint linear operator with compact inverse, and N : H →
H is a locally Lipschitz function. Since A−1 is compact, there exists a complete set
of eigenfunctions ωk for A,

Aωk = λkωk, k = 1, 2, ...

We arrange the eigenvalues of A in a nondecreasing sequence λ1 6 λ2 6 ... It is a
well-known fact that λk →∞ as k →∞.

Definition 5.1. (Inertial Manifold) Assume that the abstract equation (5.1)
has a solution operator S(t). An inertial manifoldM is a �nite-dimensional Lips-
chitz manifold which is positively invariant, i.e

S(t)M⊂M, t > 0.

and exponentially attracts all orbits of the �ow uniformly on any bounded set U ⊂ H
of initial data, i.e

dist(S(t)u0,M) 6 CUe
−µt, u0 ∈ U, t > 0.
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There are several methods for proving the existence of inertial manifolds. The
vast majority of them require some kind of Lipschitz continuity of the non-linearity
F and make use of a very restrictive spectral gap property of the linear operator A.

Theorem 5.2. Consider the abstract equation (5.1) we assume that the non-
linearity F is globally Lipschitz with Lipschitz constant L and the the spectral gap
condition λn+1−λn > 2L is satis�ed for some n. Then there exists an n-dimensional
inertial manifold over the base spanned by �rst n eigenvectors.

On the 2-sphere S2 we have the Hodge decomposition

C∞(TS2) =
{
∇ψ : ψ ∈ C∞(S2)

}
⊕
{

Curlψ : ψ ∈ C∞(S2)
}
.

By using the Helmholtz-Leray projection the simpli�ed Bardina equation takes the
form

(5.2) vt + νAv +B(u, u) = f,

where A = CurlCurln and B(u, u) = −P(u × Curlnu). We notice that we do not

need to add the dissipative term to the equation since H1 =
{
~0
}
.

The H1- and H2-estimates are more simpler than the ones in the generalized
2-dimensional closed manifolds obtained in Section 3.1. Indeed, we take the scalar
product in L2(TS2) of Equation (5.2) and u:

1

2

d

dt
(|u|2 + α2 ‖u‖2) + ν(‖u‖2 + α2|Au|2) 6 | 〈f, u〉 |.

By Cauchy-Schwarz inequality, we have

| 〈f, u〉 | 6 |A−1f ||Au|,

and by Young's inequality we have

| 〈f, u〉 | 6 |A
−1f |2

2να2
+
ν

2
α2|Au|2.

Therefore
d

dt
(|u|2 + α2 ‖u‖2) + ν(‖u‖2 + α2|Au|2) 6

|A−1f |2

να2
.

Using Poincaré's and Gronwall's inequalities we obtain the H1-estimate as follows

(5.3) |u(t)|2 + α2 ‖u(t)‖2 6 e−νλ1t(|u0|2 + α2 ‖u0‖2) +
|A−1f |2

ν2α2λ1
(1− e−νλ1t).

Taking now the inner product on L2(TS2) of Equation (5.2) with Au with noting
that 〈B(u, u), Au〉 = 0, we get

1

2

d

dt
(‖u‖2 + α2|Au|2) + ν(|Au|2 + α2|A3/2u|2) 6 | 〈f,Au〉 |.

Observe that by Cauchy-Schwarz and Young inequalities

| 〈f,Au〉 | 6 |A−1/2f ||A3/2u| 6 |A
−1/2f |2

2α2ν
+
α2ν

2
|A3/2u|2.

Therefore we have

d

dt

(
‖u‖2 + α2|Au|2

)
+ ν

(
|Au|2 + α2|A3/2u|2

)
6
|A−1/2f |2

α2ν
.
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By using Poincaré's and Gronwall's inequalities we obtain theH2-estimate as follows

(5.4) ‖u(t)‖2+α2|Au(t)|2 6 e−νλ1t(‖u(0)‖2+α2|Au(0)|2)+
|A−1/2f |2

ν2α2λ1
(1−e−νλ1t).

The H1-estimates (5.3) leads to

lim
t→∞

|u(t)| 6 1

2
ρ0 := [(1 + α2λ1)ν2α2λ1)]−1/2|A−1f |,

lim
t→∞

‖u(t)‖ 6 1

2
ρ1 := (ν2α4λ1)−1/2|A−1f |.

Therefore, the solution u(t), after long enough time, enters a ball in H, centered at
the origin, with radius ρ0. Also, u(t) enters a ball in V with radius ρ1.

The H2-estimates (5.4) leads to

lim
t→∞

sup ‖u(t)‖ 6 1

2
ρ̃1 := [(1 + α2λ1)ν2α2λ1]−1/2|A−1/2f |,

lim
t→∞

sup |Au(t)| 6 1

2
ρ2 := (ν2α4λ1)−1/2|A−1/2f |.

We deduce that ‖u(t)‖ 6 min {ρ1, ρ̃1} for t large enough. Also u(t) enters in the
ball with radius ρ2 in D(A) after long enough time.

Since v = u+ α2Au, we have

lim
t→∞

sup |v(t)| 6 lim
t→∞

sup |u(t)|+ α2|Au(t)| 6 ρ0 + α2ρ2

2
.

Then after large time, v(t) enters a ball in H of the radius ρ = ρ0 + α2ρ2. Note
that ρ0, ρ1, ρ̃1, ρ2 and ρ are equivalent to ν−1 asymptotically.

Denoting F (v) = −B((I + α2A)−1v, (I + α2A)−1v) + f = −B(u, u) + f , then
the Bardina equation (5.2) takes the form

(5.5)
d

dt
v + νAv = F (v) ∈ V ′, v(0) = v0.

The above estimates yield u(t) ∈ D(A) hence v(t) ∈ H for t > 0. Since we are
considering the large-time behavior of solutions, without loss of generality we can
assume v0 ∈ H. Let v1, v2 ∈ H then u1, u2 ∈ D(A), and we have

|Au| = |A(I + α2A)−1v| 6 1

α2
|v| for α > 0.

Using Hölder's inequality and Ladyzhenskaya's inequality

‖φ‖L4 6 c ‖φ‖1/2L2 ‖∇φ‖1/2L2 (c < 3π/32),

the non-linear part B(u, v) can be estimated as

|B(u, v)| 6 c|u|1/2 ‖u‖1/2 ‖v‖1/2 |Av|1/2.

Now using this estimate of B(u, v) and Poincaré inequality, we establish that

|F (v1)− F (v2)| = |B(u1, u1)−B(u2, u2)|
= |B(u1, u1 − u2) +B(u1 − u2, u2)|
6 c|u1|1/2 ‖u1‖1/2 ‖u1 − u2‖1/2 |Au1 −Au2|1/2

+c|u1 − u2|1/2 ‖u1 − u2‖1/2 ‖u2‖1/2 |Au2|1/2
6 cλ−1

1 (|Au1|+ |Au2|)|Au1 −Au2|
6 cλ−1

1 α−4(|v1|+ |v2|)|v1 − v2|.
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This yields that the nonlinear operator F is locally Lipschitz from H to H, i.e, for
v1, v2 in a small ball Bρ of H,

|F (v1)− F (v2)| 6 L|v1 − v2|,

where L = 2cρλ−1
1 α−4.

We construct a prepared equation of (5.5) as follows: let θ : R+ −→ [0, 1] with
θ(s) = 1 for 0 6 s 6 1, θ(s) = 0 for s > 2 and θ′(s) > 2 for s > 0. We de�ne
θρ(s) = θ(s/ρ) for s > 0 and the prepared equation of (5.5) is given by

(5.6)
dv

dt
+ νAv = θρ(|v|)(F (v) + f) := F(v).

For t su�ciently large, v(t) enters a ball in H with radius ρ, this leads to the
fact that Equations (5.5) and (5.6) have the same asymptotic behaviors in time,
and the same dynamics in the neighborhood of the global attractor. Furthermore
(5.6) has also an absorbing invariant ball in H. Indeed take the scalar product of
(5.6) with v, then for |v| > 2ρ we have

d

dt
|v|2 + 2νλ1|v|2 6

d

dt
|v|2 + 2ν ‖v‖2 = 0 for all t > 0,

since θρ(|v|) = 0 for |v| > 2ρ. It follows that, if |v0| > 2ρ, the orbit of the solution
to (5.6) will converge exponentially to the ball of radius 2ρ in H, while if |v0| 6 2ρ,
the solution does not leave this ball.

Theorem 5.3. The prepared equation (5.6) of the simpli�ed Bardina equation
has an n-dimensional inertial manifold M in H. Furthermore, the inertial mani-
foldM has the exponential tracking property (so called normally hyperbolic inertial
manifold), i.e: for any v0 ∈ H, there exists φ0 ∈M such that

|S(t)v0 − S(t)φ0| 6 Ce−µnt,

where µn >
λn+1 + λn

2
for some n and the constant C depends on |v0| and |φ0|.

Proof. The function F(v) = θρ(|v|)(F (v) + f) is globally Lipschitz from H to
H due to that F is locally Lipschitz and

|F(v1)−F(v2)| 6 L|v1 − v2|, where L = 2cρλ−1
1 α−4.

On the 2−sphere S2, the eigenvalues of A = CurlCurln can be calculated ex-
plicitly as λn = n(n + 1). Therefore we have the distance of the two successive
eigenvalues

lim
n→+∞

(λn+1 − λn) = lim
n→+∞

[(n+ 1)(n+ 2)− n(n+ 1)] = lim
n→+∞

2(n+ 1) = +∞.

Hence, there exists n large enough such that λn+1 − λn > 2L.
The non-linearity F of the prepared equation (5.6) is globally Lipschitz and the

operator A = CurlCurln on S2 satis�es the spectral gap condition. By applying
Theorem 5.2 we obtain the existence of the inertial manifoldM for (5.6).

The exponential tracking property of M holds by using Theorem 5.2 in [16]

and we can show that the number µn >
λn+1 + λn

2
from the formula of µn given

in Theorem 4.1 in [16]. �
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Appendix

We prove the estimate (4.12) of ‖ρ‖1/2∞ . Indeed, we known that for θ ∈ H3(S2)
and for any integer k > 0 the following inequality holds (see Lemma 4.3 in [30]).

(5.7) 2
√
π ‖∇θ‖∞ 6 |∆θ|(2 log(k + 1) + 1)1/2 + (k + 1)−1(2λ−1

1 )1/2|∇∆θ|,

where |.| denotes the norm in L2.

Let ξ1, ..., ξN ∈ R such that
∑N
i=1 ξ

2
i = 1. We have

N∑
i=1

ξivi = n×∇

(
∆−1

N∑
i=1

ξiθi

)
.

Using the inequality (5.7) we get that

2
√
π

∣∣∣∣∣
N∑
i=1

ξivi(s)

∣∣∣∣∣ 6 2
√
π

∥∥∥∥∥∇
(

∆−1
N∑
i=1

ξiθi

)∥∥∥∥∥
∞

6

∣∣∣∣∣
N∑
i=1

ξiθi

∣∣∣∣∣ (2 log(k + 1) + 1)1/2

+(k + 1)−1(2λ−1
1 )1/2

∣∣∣∣∣
N∑
i=1

ξi∇θi

∣∣∣∣∣ .
Since {θi}Ni=1 are orthonormal in H with the norm ‖.‖α, we have∣∣∣∣∣

N∑
i=1

ξiθi

∣∣∣∣∣
2

6
1

1 + α2λ1

∥∥∥∥∥
N∑
i=1

ξiθi

∥∥∥∥∥
2

α

=
1

1 + α2λ1

N∑
i=1

ξ2
i =

1

1 + α2λ1
.

Using the Cauchy inequality for the second term we obtain∣∣∣∣∣
N∑
i=1

ξivi(s)

∣∣∣∣∣
2

=

(
N∑
i=1

ξiv
1
i (s)

)2

+

(
N∑
i=1

ξiv
2
i (s)

)2

6
(2
√
π)−2

1 + α2λ1

(2 log(k + 1) + 1) + (k + 1)−1
√

2

(
λ−1

1

N∑
i=1

|∇θi|2
)1/2

2

:= c2,

where vi = v1
i + v2

i is some orthogonal decomposition of vi(s) at a point s.
By substituting

ξi =
v1
i(∑N

i=1(v1
i )2
)1/2

and then

ξi =
v2
i(∑N

i=1(v2
i )2
)1/2

in the above inequality, we therefore obtain that

ρ(s) =

N∑
i=1

|vi(s)|2 6 2c2

and the inequality (4.12) holds.
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On the generalized two dimensional closed manifold M we have that for v ∈
H2(TM) and for any integer k > 0 the following inequality holds (see [3]).

‖v‖∞ 6 l
(
‖v‖H1 (log((k + 1)2 + 1))1/2 + (k + 1)−1 ‖v‖H2

)
,

Putting v = Curlθ, where θ ∈ H3(M), then

‖∇θ‖∞ 6 L
(
|∆θ|(2 log(k + 1) + 1)1/2 + (k + 1)−1|∇∆θ|

)
,

By the same way as above we can obtain the inequality (4.15) as well as (4.12) as
follows √

(1 + α2λ1) ‖ρ‖1/2∞

6 L

(2 log(k + 1) + 1)1/2 +
√
λ1(k + 1)−1

(
λ−1

1

N∑
i=1

|∇θi|2
)1/2

 .
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