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Abstract. In this paper, we are concentrated on demonstrating the Liouville

type theorem for the stationary Magnetohydrodynamic equations in mixed-
norm Lebesgue spaces and weighted mixed-norm Lebesgue spaces. In particu-

lar, we show that, under some sufficient conditions in (weighted) mixed-norm

Lebesgue spaces, the solution of stationary MHDs are identically zero. Pre-
cisely, we investigate solutions of MHDs that may decay to zero in different

rates as |x| → ∞ in different directions. In un-mixed norm case, the result

recovers available results. With some additional geometric assumptions on
the supports of solutions in weighted mixed-norm Lebesgue spaces, this work

also provides several other important Liouville type theorems of solutions in

weighted mixed-norm Lebesgue spaces.
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1. Introduction

In this paper, we are concerned with the stationary Magnetohydrodynamic
equations(MHDs).

(1.1)


(u · ∇)u +∇p = (h · ∇)h + ∆u,∀x ∈ R3,

div u = 0,

(u · ∇)h− (h · ∇)u = ∆h,∀x ∈ R3,

div h = 0,

equipped with the uniform decay condition at spatial infinity,

(1.2) u(x)→ 0,h(x)→ 0 as |x| → ∞.

As per usual, u = (u1, u2, u3) is the velocity field of the fluid flows, h = (h1, h2, h3)
is the magnetic field, and p = p(x) is the pressure of the flows. We refer to the paper
[1] for the details on the mathematical and physical background of the equations.

Obviously, (u,h, p) with u = h = 0 and p = constant is a trivial solution to
(1.1)-(1.2). An important question is if there is other nontrivial solutions. This
uniqueness problem, or equivalently Liouville type problem is now hot issue in the
community of mathematical fluid mechanics. In general, it is customary to assume
the following finiteness of the Dirichlet integral

(1.3)

∫
R3

|∇u|2 + |∇h|2dx < +∞.

Note that if h = 0, then the system (MHDs) reduces to the usual stationary
Navier-Stokes system. In this paper, we study the Liouville type theorems for the
MHD system. The study is motivated by the similar Liouville problem for the
stationary Navier-Stokes equations, which is an active research area in the com-
munity of mathematical fluid mechanics [2, 6, 7, 11, 18, 20, 21]. Very recently,
several Liouville type theorems for 3D stationary Navier-Stokes equations are es-
tablished with the case the solutions are in (weighted) mixed-norm Lebesgue spaces
[18], which is completely new direction to study the uniqueness problem and use
(weighted) mixed-norm Lebesgue spaces to measure those kinds of solutions for
Navier-Stokes system.

Admittedly, there are also many developments on the Liouville type theorem
for the stationary incompressible MHD systems. In particular, Chae [3] gener-
alized Galdi’s result for the Navier-Stokes equations to the Hall-MHD and MHD
equations under the assumption (u,h) ∈ L 9

2
(R3) ∩ L∞(R3) with finite Dirich-

let integral. Another interesting result [19] presented that the condition (u,h) ∈
Lp(R3)∩BMO−1(R3), with p ∈ (2, 6] is sufficient to guarantee the triviality, which
is the first challenge without the requirements (∇u,∇h) ∈ L2(R3).There are other
numerous partial results and references therein proving the triviality of solution to
(1.1) under various sufficient conditions [4, 5, 10, 15, 16, 17, 21, 22].

Inspired by [18], we study the uniqueness problem and extend the mentioned
known results for MHD systems to (weighted) mixed-norm Lebesgue spaces. In
particular, we investigate solutions of the equations (1.1) that may decay to zero in
different rates as |x| → ∞ in different directions. We follow the spirit the work [14]
to use mixed-norm Lebesgue spaces to measure those kinds of such functions, see
also [8, 9]. For two given numbers q, r ∈ (1,∞), the mixed-norm Lebesgue space
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Lq,r(R3) is the space that is equipped with the following norm

(1.4) ‖f‖Lq,r(R3) =

(∫
R

(∫
R2

|f(x1, x2, x3))|qdx1dx2

) r
q

dx3

) 1
r

,

with f : R3 → R is a measurable function. When q = r, we just simply write
Lq(R3) = Lq,q(R3). In this paper, a function f ia said to be in Lq,loc(R3) if f ∈
Lq(U) for every compact set U ⊂ R3. In a similar way, we also write f ∈ H1

loc(R3)
if f ∈ H1(U) for every compact set U ⊂ R3.

For completeness, in R3 we define weak (distributional) solution of the Magne-
tohydrodynamic equations as follows.

Definition 1.1. A pair (u,h) ∈ [H1
σ(R3)]3 × [H1

σ(R3)]3 ([H1
σ(R3)]3 = {υ ∈

[H1(R3)]3 : divυ = 0}) is called H1
σ(R3)-weak solution to the MHDs (1.1) if (u,h)

verify (1.1) in the sense of distribution, i.e.∫
R3

∇ϕ : (u⊗ u)dx+

∫
R3

p · ∇ϕdx =

∫
R3

∇ϕ : (h⊗ h)dx+

∫
R3

∇ϕ : ∇udx,

and ∫
R3

∇ϕ : (h⊗ u)dx−
∫
R3

∇ϕ : (u⊗ h)dx =

∫
R3

∇ϕ : ∇hdx,

for all ϕ ∈ [C∞0 (R3)]3, where H1(R3) denotes the usual Sobolev space and the
pressure p is defined as

(1.5) p =

3∑
i,j=1

RiRj(uiuj − hihj),

in which Ri denotes the i-th Riesz transform.

The first result of this paper is the following Liouville theorem for solutions of
MHDs (1.1) in mixed-norm Lebesgue spaces.

Theorem 1.2. Let q, r ∈ [3,∞] be two numbers satisfying

(1.6)
2

q
+

1

r
≥ 2

3
.

Also, let (u,h) ∈ [H1
loc(R3)]3 be a weak solution of MHDs (1.1), and assume that

(u,h) ∈ [Lq,r(R3)]3, then u = h = 0 in R3.

Remark 1.3. It is very interesting to observe from (1.6) that either q or r can
be taken to be sufficiently large. Consequently, the solution (u,h) could decay to
zero sufficiently slow as |x| → ∞ and it may not be in neither L 9

2
(R3) nor L6(R3).

Therefore, Theorem 1.2 covers the cases that are not covered in the known work
such as [5, 15, 16, 19]. It may be also of great interest to find in below Remark 4.1
for a variant of Theorem 1.2 in weighted mixed-norm Lebesgue spaces. Note that
Theorem 1.2 holds for q = r = 9

2 and therefore it recovers the result established in

[3, 10, 22]. In the cases that q = r and q ∈ [3, 92 ], Theorem 1.2 also recovers the
recent results obtained in [21].

In some special cases where we have additional geometric assumptions on the
supports of solutions, the ranges of the numbers q and r in Theorem 1.2 are im-
proved significantly. Our next two results are Liouville type theorems for (1.1) in
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this spirit. To introduce the results, we need to introduce the weighted mixed-
norm Lebesgue spaces. For two given numbers q, r ∈ (1,∞), for two given weight
functions

w1 : R2 → R, w2 : R2 → R,
the measurable function f : R3 → R is said to be in the weighted mixed-norm
Lebesgue space Lq,r(R3, w) if

‖f‖Lq,r(R3,w) =

(∫
R

(∫
R2

|f(x1, x2, x3)|qw1(x1, x2)dx1dx2

) r
q

w2(x3)dx3

) 1
r

<∞,

where w(x) = w1(x1, x2)w2(x3) for a.e. x = (x1, x2, x3) ∈ R3. Our second result is
the following Liouville type theorem in weighted mixed-norm Lebesgue spaces for
solutions whose supports are in strips in R3.

Theorem 1.4. Let q ∈ [3, 6], r ∈ [3,∞), α = 6−q
3 be fixed numbers and let

w1(x′) = (1 + |x′|)−α, x′ = (x1, x2) ∈ R2

and w2(x3) = 1, x3 ∈ R. Also, let (u,h) ∈ [H1
loc(R3)]3 be a weak solution of (1.1),

and assume that (u,h) ∈ [Lq,r(R3, w)]3, and there exists R0 > 0 such that

supp(u,h) ⊂ R2 × [−R0, R0],

then u = h = 0.

Remark 1.5. Observe that Theorem 1.4 holds with q = r = 6. This re-
sult demonstrate a possibility that Liouville theorem for the MHDs (1.1) holds for
L6(R3)-solutions. See also a similar result in [19] in which the solutions are as-
sumed to be in (u,h) ∈ L6(R3) ∩BMO−1(R3).

The last result in this paper is a Liouville type theorem in weighted mixed-
norm Lebesgue spaces for solutions whose supports are in cylinders in R3. For this
purpose, for each R > 0, we denote the cylinder along the x3-axis in R3 of radius
R by

CR = B′R × R,
where B′R is the ball in R2 centered at the origin with radius R. Our result is the
following Liouville type theorem for solutions in weighted mixed-norm Lebesgue
spaces in R3.

Theorem 1.6. Let q, r ∈ [3,∞], α ∈ [0, 1) be fixed numbers and let w1(x′) =
1, x′ = (x1, x2) ∈ R2 and w2(x3) = (1 + |x3|)−α, x3 ∈ R. Also, let (u,h) ∈
[H1

loc(R3)]3 be a weak solution of (1.1), and assume that (u,h) ∈ [Lq,r(R3, w)]3,
and there exists R0 > 0 such that

supp(u,h) ⊂ CR0
,

then u = h = 0.

Remark 1.7. Note that Theorem 1.6 allow (u,h) to decay to zero in x3 at very
slow rate. More specially, let us define

ψ(x3) =

(∫
B′R0

|(u(x′, x3),h(x′, x3))|qdx′
) 1
q

.
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Assume that there exist N0 > 0 and β > 0 such that

|ψ(x3)| ≤ N0

(1 + |x3|)β
, ∀x3 ∈ R.

Then, with the choice of α ∈ (0, 1) and sufficiently close to 1 so that βr+α > 1, we
see that ψ ∈ Lr(R, w2) and therefore (u,h) ∈ Lq,r(R3, w). As β can be sufficiently
small, (u,h) /∈ L 9

2
and also (u,h) /∈ L6 .

Noting that in Theorem 1.2, we choose the mixed-norm with power in (x1, x2)
and in x3 only for convenience as Theorem 1.2 is in some sense consistent with
Theorem 1.4 and Theorem 1.6. Of course, Theorem 1.2 can be extended to case of
mixed-norm in three different variable directions, that is, Theorem 1.2 still holds
with (u,h) ∈ Lq1,q2,q3(R3) where q1, q2, q3 ∈ [3,∞) and

1

q1
+

1

q2
+

1

q3
≥ 2

3
,

where the mixed-norm spaces Lq1,q2,q3 is defined in the same way as in (1.4). Ob-
serving that in the case q = 6, Theorem 1.2 only hold with r = 3, while Theorem
1.4 and Theorem 1.6 hold for any r ∈ [3,∞) with additional conditions on the sup-
ports of solutions. When considering MHDs in R2 × [−R0, R0] with homogeneous
Dirichlet bounded condition on the boundary {x3 = −R0} ∪ {x3 = R0}, Theorem
1.6 is applicable. Similarly, Theorem 1.6 is also applicable for MHDs in CR0

.
The remaining part of the paper is organized as follows. In section 2, we

recall the definitions of Muckenhoupt classes of weights, and we introduce a lemma
on weighted mixed-norm estimates for the pressure p in (1.1), which is key of our
proofs. Then, we will show the complete proofs of Theorems 1.2,1.4,1.6 respectively
in Section 3-5. Our approach is based on the combination of the approach used in
[11, Theorem X.9.5] together with some new results on mixed-norm estimates and
weighted mixed-norm estimates.

We employ the letter C to denote by any constant that can be exactly computed
in terms of known quantities. The exact value denoted by C may therefore change
from line to line in a given computation.

2. Weights and Weighted Mixed-norm Estimates

In this paper we are going to quote some definitions and properties of Mucken-
houpt weights we need, which can be found in [12, 13]. Let us present some basic
facts about them now. For each q ∈ [1,∞), a non-negative measurable function
w : Rn → R ia said to be in the Muckenhoupt Aq(Rn)-class of weight if [w]Aq <∞
where

[w]Aq = sup
R>0,x0∈Rn

(
1

|BR(x0)|

∫
BR(x0)

w(x)dx

)(
1

|BR(x0)|

∫
BR(x0)

w(x)−
1
q−1 dx

)q−1
for q ∈ (1,∞), and

[w]A1
= sup
R>0,x0∈Rn

(
1

|BR(x0)|

∫
BR(x0)

w(x)dx

)
‖ 1

w
‖L∞(BR(x0)),

where BR(x0) demotes the ball in Rn of radius R and centered at x0 ∈ Rn. We
also recall that two given numbers q, r ∈ (1,∞), and for two weight functions

w1 : R2 → R and w2 : R→ R,
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the measurable function f : R3 → R ia said to be in the weighted mixed-norm
Lebesgue spaces Lq,r(R3, w) if

‖f‖Lq,r(R3,w) =

(∫
R

(∫
R2

|f(x1, x2, x3)|qw1(x′)dx1dx2

) r
q

w2(x3)dx3

) 1
r

<∞,

where x′ = (x1, x2), w(x) = w1(x′)w2(x3) for a.e. x = (x1, x2, x3) ∈ R3. In this
paper, at various contexts, with a given weight function w : R3 → R we also write
Lq(R3, w) for the usual weighted Lebasgue space whose norm is defined by

‖f‖Lq(R3,w) =

(∫
R3

|f(x)|qw(x)dx

) 1
q

.

We introduce the following lemma on weighted mixed-norm estimates for the
pressure p of the system (1.1), which is crucial for the proof of Theorem 1.4 and
1.6.

Lemma 2.1. Let q, r ∈ [2,∞) and M0 ≥ 1. Assume that (u,h) ∈ [Lq,r(R3, w)]3

with w(x) = w1(x′)w2(x3) for all a.e. x = (x′, x3) ∈ R2 × R, and for w1 ∈
A q

2
(R2), w2 ∈ A r

2
(R) with

[w1]A q
2
(R2) ≤M0, [w2]A r

2
(R) ≤M0.

Then, there exists N = N(q, r,M0) > 0 such that

‖p‖L q
2
, r
2
(R3,w) ≤ N(‖u‖2Lq,r(R3,w) + ‖h‖2Lq,r(R3,w)),

where p is defined as in (1.5).

Proof. We use the idea developed in [8] which makes use of the extrapolation
theory due to Rubio de Francia. Recall that

p =

3∑
i,j=1

RiRj(uiuj − hihj),

where Ri denotes the i-th Riesz transform. Recall also for each l ∈ (1,∞), M0 ≥
1 and each µ ∈ Al(R3) with [µ]Al(R3) ≤ M0 the map RiRj is bounded from

Ll(R3, µ)→ Ll(R3, µ) and (see [12], for example)

(2.1) ‖RiRj(f)‖Ll(R3,µ) ≤ N(l,M0)‖f‖Ll(R3,µ).

It is sufficient to show that the estimate (2.1) can be extended to the weighted
mixed-norm. In particular, we claim that for every q1, q2 ∈ (1,∞)

(2.2) ‖RiRj(f)‖Lq1,q2 (R3,µ) ≤ N(q1, q2,M0)‖f‖Lq1,q2 (R3,µ).

for µ(x) = µ1(x′)µ2(x3) with x = (x′, x3) ∈ R2 × R and

(2.3) [µ1]Aq1 ≤M0, [µ2]Aq2 ≤M0.

For this purpose, for a fixed µ1 ∈ Aq1(R2) as in (2.3), let us define

φ(x3) =

(∫
R2

|RiRj(f)(x′, x3)|q1µ1(x′)dx′
) 1
q1

ψ(x3) =

(∫
R2

|f(x′, x3)|q1µ1(x′)dx′
) 1
q1

, for a.e. x3 ∈ R.
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Let µ̃2 ∈ Aq1(R) be any weight and we denote

µ̃(x) = µ1(x′)µ̃2(x3), x = (x′, x3) ∈ R2 × R.

By inspection of µ̃ ∈ Aq1(R3). Therefore, it follows from (2.1) that

‖φ‖Lq1 (R,µ̃2) = ‖RiRj(f)‖Lq1 (R3,µ̃) ≤ N‖f‖Lq1 (R3,µ̃) = N‖ψ‖Lq1 (R,µ̃2).

Then, we could use the extrapolation theorem [8, Theorem 2.5] to infer that

‖φ‖Lq2 (R,µ2) ≤ N‖ψ‖Lq2 (R,µ2)

for every q2 ∈ (1,∞) and for µ2 ∈ Aq2(R), which implies (2.2) and completes the
proof of Lemma 2.1. �

To apply Lemma 2.1 in our proof of Theorem 1.4 and 1.6, we introduce the
following simple but important proposition. For a rigorous proof of this proposition
the reader is referred to [18].

Proposition 2.2. Let q ∈ (1,∞), α ∈ [0, n), and w(x) = (1 + |x|)−α for all
x ∈ Rn. Then, w ∈ Aq(Rn).

3. PROOF OF THEOREM 1.2

Adding the equation (1.1)1 and (1.1)3, (1.1)2 and (1.1)4 respectively, we obtain

(3.1)

{
T · ∇v −∆v = −∇p,
div v = 0.

Notice that it follows from Lemma 2.1 that p ∈ L q
2 ,
r
2
(R3, w). Observe also that

as (u,h) ∈ [H1
loc(R3)]3, we see that (u,h) ∈ [L6,loc(R3)]3 ⊂ [L3,loc(R3)]3 by the

Sobolev imbedding, (u,h) ∈ [C∞(R3)]3, namely, (v,T) ∈ [C∞(R3)]3. Therefore,
for ξ ∈ C∞0 (R3), we could use vξ as a test function in (3.1) for the system (1.1)
and obtain ∫

R3

|∇v|2ξdx =
1

2

∫
R3

|v|2 ·∆ξdx+
1

2

∫
R3

|v|2(T · ∇ξ)dx

+

∫
R3

p(v · ∇ξ)dx.(3.2)

Proof of Theorem 1.2. For each R > 0, we denote the cube in R3 centered
at the origin with radius R by

QR = [−R,R]3.

Introduce φ ∈ C∞0 (R3) be a standard cut-off function such that

φ(x) = φ(|x|) =

{
1, |x| < 1/2,

0, |x| > 1,

and 0 ≤ φ ≤ 1 for 1/2 < |x| < 1. Without of loss of generality, we may assume
that φ(|x|) is a monotonic decreasing in [0,+∞). Then, for each R > 0, we define
φR(x) = φ(|x|/R), then the support of ∇φR(x) is contained in QR\QR/2 and satisfy

(3.3) |∇φR| ≤
C

R
and |∇2φR| ≤

C

R2
in R3.
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Into (3.2) we substitute ξ = φR, we are led to∫
QR/2

|∇ ⊗ v|2dx ≤ 1

2

∫
QR\QR/2

|v|2|∆φR|dx+

+
1

2

∫
QR\QR/2

|v|2|T||∇φR|dx

+

∫
QR\QR/2

|p||v||∇φR|dx

= I1 + I2 + I3.(3.4)

The rest of proof is to control these terms. To control I1, we choose q1, r1 ∈ (1,∞)
that satisfy

(3.5)
2

q
+

1

q1
= 1 and

2

r
+

1

r1
= 1.

Then, we use Hölder’s inequality with the exponents q
2 and q1 for the integration in

x′ = (x1, x2)-variable, and then use Hölder’s inequality with the exponents r
2 and

r1 for the integration in x3-variable. From these calculation, we deduce that

I1 ≤ 1

2
‖∆φR‖Lq1,r1 (QR\QR/2)‖v‖

2
Lq,r(QR\QR/2) ≤ CR

2
q1

+ 1
r1
−2‖v‖2Lq,r(QR\QR/2)

= CR1−2( 2
q+

1
r )‖v‖2Lq,r(QR\QR/2).

Where in the second step in the above calculation, we used the second estimates
in (3.3). By our assumption, we see that 1 − 2( 2

q + 1
r ) < 0. From this, and since

(u,h) ∈ [Lq,r(R3, w)]3, that is, (v,T) ∈ [Lq,r(R3, w)]3 we can infer from the last
estimate that

lim
R→∞

I1 = 0.

Next, we control I2. As q, r ∈ [3,∞), we can choose the numbers q2, r2 ∈ [1,∞)
such that

(3.6)
2

q
+

1

q
+

1

q2
= 1 and

2

r
+

1

r
+

1

r2
= 1.

If q2 <∞ and r2 <∞, as in the previous step of controlling I1, once more applying
Hölder’s inequality, we are left with

I2 ≤ C‖∇φR‖Lq2,r2 (QR\QR/2)‖v‖
2
Lq,r(QR\QR/2)‖T‖Lq,r(QR\QR/2)

≤ CR
2
q2

+ 1
r2
−1‖v‖2Lq,r(QR\QR/2)‖T‖Lq,r(QR\QR/2)

= CR2−3( 2
q+

1
r )‖v‖2Lq,r(QR\QR/2)‖T‖Lq,r(QR\QR/2)

Observe also that when q2 = ∞ or r2 = ∞, the above estimates also holds. Now,
from our assumption, we see that 2 − 3( 2

q + 1
r ) ≤ 0 and (v,T) ∈ [Lq,r(R3, w)]3.

Therefore, we conclude that

lim
R→∞

I2 = 0.
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Finally, we estimate I3. By repeating above arguments in the estimates of I2, we
use Lemma 2.1 and the fact (u,h) ∈ [Lq,r(R3)]3 to get

I3 ≤ C‖∇φR‖Lq2,r2 (QR\QR/2)‖v‖Lq,r(QR\QR/2)‖p‖L q2 , r2 (R3)

≤ CR
2
q2

+ 1
r2
−1‖v‖Lq,r(QR\QR/2)(‖u‖

2
Lq,r(R3) + ‖h‖2Lq,r(R3))

≤ CR2−3( 2
q+

1
r )‖v‖Lq,r(QR\QR/2)(‖u‖

2
Lq,r(R3) + ‖h‖2Lq,r(R3))→ 0, R→∞.

By collecting the estimates, we obtain∫
R3

|∇ ⊗ v|2dx = lim
R→∞

∫
QR/2

|∇ ⊗ v|2dx = 0.

Therefore, ∇v = 0, namely, v is a constant function in R3. Combining this with
the condition v ∈ [Lq,r(R3)]3, and therefore v ≡ 0, to wit, u ≡ −h. Substituting
this into (1.1)3 and (1.1)4 , we know that

(3.7)

{
∆h = 0,

div h = 0.

Accordingly, the Liouville theorem for a harmonic function and the condition
(u,h) ∈ [Lq,r(R3)]3 imply u = h = 0. �

4. PROOF OF THEOREM 1.4

Proof of Theorem 1.4. For each R > 0, let us denote B′R the ball in R2

centered at the origin with radius R. Also, let φ ∈ C∞0 (R2) be a standard cut-off
function with 0 ≤ φ ≤ 1 and

φ = 1 on B′1/2 and φ = 0 on R2\B′1.

For each R > 2, we defined φR(x′) = φ(x
′

R ) for x′ ∈ R2. Then, it follows that

φR = 1 on B′R/2 and φR = 0 on R2\B′R.

Moreover, there is a universal constant C independent on R such that

(4.1) |∇φR| ≤
C

R
and |∇2φR| ≤

C

R2
∀R > 0.

Let us also denote

DR = (B′R\B′R/2)× [−R0, R0].

From (3.2) with φR(x′) in place of ξ and the fact supp(u,h) ⊂ R2 × [−R0, R0], we
easily see that∫

B′R×[−R0,R0]

|∇ ⊗ v|2dx =
1

2

∫
DR

|v|2∆φRdx+

+
1

2

∫
DR

|v|2(T1,T2)∇φRdx

+

∫
DR

p(v1,v2)∇φRdx.
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Therefore, it follows that∫
B′
R/2
×[−R0,R0]

|∇ ⊗ v|2dx ≤ 1

2

∫
DR

|v|2|∆φR|dx+

+
1

2

∫
DR

|v|2|T||∇φR|dx

+

∫
DR

|p||v||∇φR|dx

= J1 + J2 + J3.(4.2)

Note that for R > 2,

w1(x′) ∼ R−α, ∀x′ = (x1, x2) ∈ B′R\B′R/2.
Therefore, J1 is bounded from above by

J1 ≤ CR
2α
q

∫ R0

−R0

∫
B′R\B′R/2

(|v|2w1(x′)
2
q )|∆φR(x′)|dx′dx3

≤ CR
2α
q ‖v‖2Lq,r(DR,w)‖∆φR‖Lq1,r1 (DR)

≤ CR
2α
q + 2

q1
−2R

1/r1
0 ‖v‖2Lq,r(DR,w)

= CR
2(α−2)

q R
1− 2

r
0 ‖v‖2Lq,r(DR,w),

where q1, r1 are defined in (3.5). This last estimate along with v ∈ [Lq,r(R3, w)]3

particularly implies that
lim
R→0

J1 = 0.

Now, in a similar way, we can also have

J2 ≤ CR
3α
q

∫ R0

−R0

∫
B′R\B′R/2

(|v|2w1(x′)
2
q )(|T|w1(x′)

1
q )|∇φR(x′)|dx′dx3.

Then, with q2, r2 as in (3.6), our using Hölder inequality and (v,T) ∈ [Lq,r(R3, w)]3

yields

J2 ≤ CR
3α
q ‖v‖2Lq,r(DR,w)‖T‖Lq,r(DR,w)‖∇φR‖Lq2,r2 (DR)

≤ CR
3α
q + 2

q2
−1R

1/r2
0 ‖v‖2Lq,r(DR,w)‖T‖Lq,r(DR,w)

= CR1+
3(α−2)

q R
1− 3

r
0 ‖v‖2Lq,r(DR,w)‖T‖Lq,r(DR,w) → 0, R→∞.

Finally, we control J3 in the same fashion. Again, we have

J3 ≤ CR
3α
q

∫ R0

−R0

∫
B′R\B′R/2

(pw1(x′)
2
q )(|v|w1(x′)

1
q )|∇φR(x′)|dx′dx3.

By inspection of q ∈ [3, 6], α = 6−q
α ∈ [0, 1] ⊂ [0, n), it follows from Proposition

2.2 that w1 ∈ A q
2
(R2), from which we are able to apply Lemma 2.1 and the fact

(u,h) ∈ [Lq,r(R3, w)]3 again to derive that

J3 ≤ CR
3α
q ‖p‖L q

2
, r
2
(R3,w)‖v‖Lq,r(DR,w)‖∇φR‖Lq2,r2 (DR)

≤ CR
3α
q + 2

q2
−1R

1/r2
0 (‖u‖2Lq,r(R3,w) + ‖h‖2Lq,r(R3,w))‖v‖Lq,r(DR,w)

= CR1+
3(α−2)

q R
1− 3

r
0 (‖u‖2Lq,r(R3,w) + ‖h‖2Lq,r(R3,w))‖v‖Lq,r(DR,w) → 0, R→∞.
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Accordingly, we conclude from estimates of Jk and (4.2) that∫
R3

|∇ ⊗ v|2dx = lim
R→∞

∫
B′R×[−R0,R0]

|∇ ⊗ v|2dx = 0,

from which our conclusion follows by repeating above arguments in the proof of
Theorem 1.2. �

Remark 4.1. By combining the proofs of Theorem 1.2 and Theorem 1.4 and
using (2.1), it can be easily verified that the assertion of Theorem 1.2 also holds if
(u,h) ∈ Lq(R3, w) where

‖f‖Lq(R3,w) =

(∫
R3

|f(x)|qw(x)dx

) 1
q

for q ∈ [3, 92 ] and

w(x) = (1 + |x|)−(
9
q−2),∀x ∈ R3.

5. PROOF OF THEOREM 1.6

The proofs of Theorem 1.6 can be completed by the method analogous to that
used above, the major change being the substitution of test function, and important
details in the calculation needed to be adjusted.

Proof of Theorem 1.2. For each R > 0, let φ ∈ C∞0 (R) be a standard
cut-off function with 0 ≤ φ ≤ 1 and

φ = 1 on [−1

2
,

1

2
], and φ = 0 on R\[−1, 1].

For each R > 2, we define φR(x3) = φ(x3

R ) with x3 ∈ R such that

(5.1) |φ′R| ≤
C

R
and |φ′′R| ≤

C

R2
∀R > 0.

We also define

ER = B′R0
× ([−R,R]\[−R/2, R/2]).

Likewise, substituting ξ for φR(x3) in (3.2) and the fact supp(u,h) ⊂ CR0
=

B′R0
× R, it is easily checked that∫

B′R0
×[−R,R]

|∇ ⊗ v|2dx =
1

2

∫
ER

|v|2φ′′R(x3)dx+

+
1

2

∫
ER

|v|2T3φ
′
Rdx

+

∫
ER

pv3φ
′
Rdx,
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from which we arrive at∫
B′R0
×[−R/2,R/2]

|∇ ⊗ v|2dx ≤ 1

2

∫
ER

|v|2|φ′′R(x3)|dx+

+
1

2

∫
ER

|v|2|T||φ′R|dx

+

∫
ER

|p||v||φ′R|dx

= K1 +K2 +K3.(5.2)

Similarly, as R > 2, we have

w2(x3) ∼ R−α ∀x3 ∈ ([−R,R]\[−R/2, R/2]).

Therefore, for q1, r1 are defined in (3.5), we can perform the Hölder inequality along
with the fact (v,T) ∈ [Lq,r(R3, w)]3 to get

K1 ≤ CR
2α
r

∫
ER

(|v|2w2(x3)
2
r )|φ′′R(x′)|dx

≤ CR
2α
r ‖v‖2Lq,r(DR,w)‖φ

′′
R‖Lq1,r1 (DR)

≤ CR
2α
r + 1

r1
−2R

2/q1
0 ‖v‖2Lq,r(DR,w)

= CR
2(α−1)

r −1R
2− 4

q

0 ‖v‖2Lq,r(DR,w) → 0, R→∞.

Then, let q2, r2 as in (3.6). In a similar way as we just did, we could derive

K2 ≤ CR
3α
r

∫
ER

(|v|2w2(x3)
2
r )(|T|w2(x3)

1
r )|φ′R(x′)|dx.

≤ CR
3α
r ‖v‖2Lq,r(ER,w)‖T‖Lq,r(ER,w)‖φ′R‖Lq2,r2 (ER)

≤ CR
3α
r + 1

r2
−1R

2/q2
0 ‖v‖2Lq,r(ER,w)‖T‖Lq,r(ER,w)

= CR
3(α−1)

r R
2(1− 3

q )

0 ‖v‖2Lq,r(ER,w)‖T‖Lq,r(ER,w) → 0, R→∞.

It remains to estimate K3. This can be done exactly the same as the estimates of
the other terms. Again, it is clear that

K3 ≤ CR
3α
q

∫
ER

(|p|w2(x3)
2
r )(|v|w2(x3)

1
r )|φ′R(x′)|dx.

Now, we note that as α ∈ [0, 1), it follows from Proposition 2.2 that w2 ∈ A r
2
(R).

Therefore, we are able to apply Lemma 2.1. Then, we can perform the calculation
using Lemma 2.1 together with the fact (u,h) ∈ [Lq,r(R3, w)]3 to obtain

K3 ≤ CR
3α
r ‖v‖Lq,r(ER,w)‖p‖L q

2
, r
2
(R3,w)‖φ′R‖Lq2,r2 (ER)

≤ CR
3α
r + 1

r2
−1R

2/q2
0 ‖v‖Lq,r(ER,w)(‖u‖2Lq,r(R3,w) + ‖h‖2Lq,r(R3,w))

= CR
3(α−1)

r R
2(1− 3

q )

0 ‖v‖Lq,r(ER,w)(‖u‖2Lq,r(R3,w) + ‖h‖2Lq,r(R3,w))→ 0, R→∞.

Consequently, we infer that∫
R3

|∇ ⊗ v|2dx = lim
R→∞

∫
B′R×[−R0,R0]

|∇ ⊗ v|2dx = 0.
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Arguing as in the proof of Theorem 1.2, we complete the proof. �
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