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1. Introduction

In our paper we consider two types of PDE systems. The first one is an n-
component evolutionary system of PDEs:

(1.1) ul =& (), i=1,...,n,
where 1! = u’(z,t) are unknown functions and £¢(u) is a differential polynomial in
ul,...,u", that is a polynomial in derivatives u?,ul ,u?, ..., j=1,...,n, whose
coefficients are functions of u',...,u". For n = 1, an example of such a system is
the famous KdV equation
1
U = §u$m + §uuw

A well known two-component case is the Kaup-Boussinesq system, see e.g. [22,
eqn. (4)]:

12 3 11
Up = Uy — U Uy,
2
2 1 2,1 1,2
Up = 5 lUggy — Uy — SUU

where m is an arbitrary constant.
We will also consider evolutionary systems of PDEs with differential constraints.
They are given by

uizfi(u,q), i=1,...,n,

(12) 0 :p(an)'

Here, unknown functions are u(z,t) = (u'(x,t),...,u"(z,t))" and q(z,t). Each
€4 (u, q) is a differential polynomial in u!,...,u™ and ¢, whereas the differential con-
straint  p(u,q) is a differential polynomial in ¢ and a function in w (but not in
derivatives of u). In most cases we consider just one constraint; the only exception
is Example 3.5.

In all the systems that we construct and analyse, the differential constraint p
can be explicitly resolved w.r.t. at least one of u’’s. Solving p(u, q) = 0 with respect

to u' and substituting u’ = p(ul,... v ut ... u" q) in the first equation of
(1.2) allows us to think of (1.2) as a system of n — 1 evolutionary PDEs and one
non-evolutionary PDE on n unknown functions «!, ..., u*~ ', ui*!, ... 4" and ¢. As

an example, consider the Dullin-Gottwald-Holm equation [11] (in this case, n = 1):

¥ 1
Ut = S Qpzx + UGy + 5(]’&;5,

(1.3) 20
uU=q-+ qum:-
Substituting the expression for u into the first equation gives
m ol 3 m 1
U+ 5 Yoot = 5zee T 5992 T 5 QreGe T 599w,

which is a single non-evolutionary PDE on ¢(z,t).

We will also deal with PDE systems given by (1.1) with the right hand side
¢ being a formal differential series (i.e., infinite sum of monomials in derivative
variables ul,ul ,ul_. ... with coefficients being functions of u',...,u™). We refer
to such systems as formal evolutionary PDEs (systems of type (1.1) with & being
a differential polynomial will be called non-formal).
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Let us explain, using the Dullin-Gottwald-Holm equation (1.3) as an example,
the relation between systems of type (1.2) and formal evolutionary PDEs. Observe
that the second equation of (1.3) can be formally solved with respect to ¢:

m m?
q=U— FUzx + —Uggaa —

2 4
(we discuss neither convergence of this differential series nor boundary or other
conditions). Substituting this formal expression into the first equation of (1.3)
leads to the formal evolutionary PDE

3 n ¥ m (’y 1 ) n
Ut = ZUUy gz — | FUzzzrr — Ulgzy — ZUzzUs HRRE
T2 2 2 \2 2

depending on m as a parameter.

Recall that a (formal) evolutionary PDE-system u’ = n'(u) is a (formal) sym-
metry of a (formal) evolutionary PDE-system u! = &%(u) (or, equivalently, these
two PDE-systems commute) if the following commutator vanishes

(1.4) ¥ (aTiDJ (n*) - 87770‘-1)] (ga)) —0.
j=0 a=1 xd xJ

Here and below u,; = U4y 2, D = 4 s the total derivative in x (for example,

j times dx

D(u®u®) = (u2)? + u*u?,) and D7 stands for the j-th power of D (for example
D3(u) = u2,, = u%). In the case of usual (= non-formal) PDEs, ul = n'(u)
is a symmetry of ui = £(u) if an only if (at least in the analytic category) both
systems can be solved simultaneously, that is, there exist n functions u(x,t,7),
which satisfy all 2n PDEs u® = n'(u) and u! = £(u) .

A (formal) differential series v is said to be a conservation law density of the
(formal) evolutionary equation u¢ = £%(u) if

oo n

(1.5) w=>% aii D’ (£) = Dw

j=0a=1 " xJ

for some formal differential series w. Such v is defined up to addition of an arbitrary
total derivative Dv. In the non-formal case, v should be understood as the density
of a conservation law: in this case, for any fast decaying or periodic solution (¢, x),
the integral [ v(u,ug,...)dz is independent of ¢ for any solution u(z,t) of (1.1).
We notice that both formulas (1.4) and (1.5) ‘respect’ the degree of differential
monomials so that they are well defined for formal differential series.

The main result of our paper is a construction of a family of multi-component
integrable PDE systems of the form (1.1) and (1.2). There are several different no-
tions of integrability in this context in the literature. In the case of systems (1.1), we
construct infinite hierarchies of (non-formal) conservation laws and of (non-formal)
pairwise commuting symmetries. The differential degrees of the conservations laws
and symmetries grow within each hierarchy.

By integrability of systems (1.2), we understand the existence of infinitely many
independent (possibly, formal) commuting symmetries and conservations laws of the
formal evolutionary equation obtained from (1.2) by the method demonstrated in
the example above; this can be done for all systems we construct.

The paper is organised as follows. In Section 2 we describe our main examples.
They are parameterised by certain discrete and continuous parameters and are of
four types. The equations of Type Il and Type IV are evolutionary, whereas those of
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Types I and IIT are evolutionary with differential constrains. All of them, however,
can be considered as different representatives of one single integrable system under-
stood as a commutative algebra of evolutionary flows, which includes both formal
and non-formal flows. We give explicit recursive formulas for common (non-formal)
symmetries and conservation laws for all these PDE systems, see Theorem 1.

All the famous integrable systems listed in the abstract correspond to certain
choices of parameters. In Section 3.3, we specify those parameters for each of them.
We also obtain other known integrable systems, e.g., the Marvan-Pavlov system
[20], which we essentially generalise. The generalisations are given by explicit for-
mulas and have no low-component analogues.

Theorem 1 follows directly from a more general construction described in Sec-
tion 3, see Theorems 2, 3 and 4. Namely, Theorem 2 constructs a family of evolu-
tionary PDEs with differential constrains, as well as formal commuting symmetries
and conservations laws for them. Next, Theorem 3 explains how one can ‘cook’
non-formal evolutionary PDEs, non-formal symmetries and non-formal conserva-
tion laws starting from those constructed in Theorem 2. The constructions in
Theorems 2, 3 depend on a solution of a certain, possibly infinite, system of PDEs
on a Nijenhuis manifold (M™, L). In Theorem 4, we solve this system under the
additional assumption that L is differentially non-degenerate and, hence, come to
the integrable systems from Theorem 1.

Let us now comment on the circle of ideas which led us to these results. The
construction was developed within the Nijenhuis Geomery programme [8]. Its main
ingredient is a Nijenhuis operator L on a manifold M", that is a (1,1)-tensor field
L= L;- such that its Nijenhuis torsion vanishes, i.e.,

LQ[Z/, n] — L[Lv,n] — L[v, Ln] + [Lv, Ln] = 0

for arbitrary vector fields v,7. In our recent paper [7], we constructed all non-
degenerate pencils of compatible co-dimensional Poisson structures of type #3+ &1,
where the Poisson structure &#; has order 1 and %3 is a Darboux-Poisson structure
of order 3. Magri-Lenard scheme applied to these pencils leads to certain integrable
bi-Hamiltonian systems. Translating them to the language of Nijenhuis Geometry
allowed us to generalise our construction further and obtain integrable systems
which are not necessarily Hamiltonian. We view Nijenhuis Geometry as the most
natural framework for them and expect that the systems and their properties can
and should be understood in the context of Nijenhuis operators, with no other
geometric structure involved.

2. Explicit formulas for new integrable systems, their symmetries and
conservation laws

2.1. Four types of equations. A Nijenhuis operator L on M" is called dif-
ferentially non-degenerate, if the differentials of the coefficients of its characteristic
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polynomial are linearly independent at every point. Typical examples of differen-
tially non-degenerate Nijenhuis operators are as follows:

(2.1)
ul 1 0 b 0 0 0
v 0 1 0 0 22 0 0
Leomp = - and  Lgiag =
w0 0 1 0 ... "1 0
u 0 0 0 0 O z"
Here u',...,u™ and 2!, ..., 2™ are local coordinate charts on M™. Moreover, in the

case of Lgiag We assume that 2 are all different. In fact, these two operators are
locally isomorphic: if we rewrite Lgiae in the coordinates u'(x),...,u"™(x) that are
coefficients of its characteristic polynomial (more precisely, we set det(¢tId —Lgiag) =
o — gl - - u™), then it transforms into Lcomp. Note also that every
differentially non-degenerate Nijenhuis operator L reduces to the companion form
Lcomp by an appropriate coordinate transform, and to the diagonal form Lgj,s near
those points where L has n distinct real eigenvalues, see e.g. [8].

Choose N > 0 and consider natural numbers ng,nq,...,ny and ¢4, ..., ¢ with
conditions ng +n1 +---+ny =n=dimM and ng — ¢1n; —--- —byny =d > 0,
and fix a polynomial

(2.2) m(\) = mo + mi\+ -+ mg\?

of degree < d. These are the parameters of our construction: 2N + 1 natural
numbers and d + 1 coefficients my, ..., mq.

Next, take the direct product M™ = Uy x --- x Uy of N + 1 discs Uy, ..., Uy
of dimensions ng, n1,...,ny equipped with differentially non-degerenerate Nijenhuis
operators Ly, ..., Ly. The operator field L on M" is defined as

(2.3) L=Ly®---& Ly.

Consider the following family of functions o(A) on M™, depending on A\ as a pa-
rameter (in general A € C, so the functions might be complex-valued):
det(Lo — A1d
o(\) = ct(Lo )
det(Ly; — A1d)%r ... det(Ly — AId)é~

(2.4)

Here in each expression det(L; — AId)%, the identity matrix Id is of the same size
as L;, i.e., n; x n; and ¢; denotes the power.
Next, consider the vector field (; on M™ uniquely defined by the relations

Loy det(Lo — AId) =1, Ly det(L; —AId) =0, i=1,...,N,
where L¢, denotes the Lie derivative, and define another vector field ¢ by setting

(2.5) ¢ = p(L)C-

where p(t) = det(L; — A1d)** ...det(Ly — AId)*¥m(t) is a polynomial in ¢ with
coefficients being functions on M™.

Based on these settings, we finally introduce four types of equations. As un-
known functions, we consider u!(z,t),...,u"(x,t),q(z,t), where (u', ..., u") should
be understood as coordinates on M™ and ¢ as an additional function.
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Type I. For each real or complex number A consider the equations

U = Quaa(L — A1) 71+ g(L — A1d) " tuy,

0 =m(\)qeaq — %m()\)(qgc)2 +o(N)g* —1.

This is a system of the form (1.2), i.e., an n-component system with a differential
constraint.

Type II. If )\; is a root of m(\), then the differential constraint in Type I
becomes degenerate and takes the form o()\;)g? = 1. Thus, we get an evolutionary
PDE

1 1
. u = [ —— L—)\Id)™! — | (L= N\ 1) M.
7 (). e (a0

Type III. Consider the equation
U = Quzal + (L + qu) Uy

(2.6)

(2.8) 4 Md

N
1
§<trL0 — Zgj tI‘Lj) =q+ (_1) 7 Qrax,
j=1
where m, is the highest coefficients of the polynomial m(t) = mg+mit+- - -+mgt?.
This is, again, a system of of the form (1.2), i.e., an n-component system with a
differential constraint.
Type IV. Assume now mg = 0 (in this case we say that m(t) has a root at

infinity, the terminology will be clarified later). Then (2.8) takes the form
1 al 1 al
(29) Ut = §(tI'L0 — ZEJ tI‘Lj)xme + (L =+ §(trL0 — ZEJ tI‘Lj> Id)ux
j=1 j=1

2.2. Commuting flows and conservation laws for the equations of
Types I — IV. Here we describe an explicit procedure that generates commut-
ing symmetries and conservation laws for the above four types of equations.

Step 1. In the one-component case, consider the relation

1
(2.10) a:§¥+%.
and its formal solution u = uy + us + ... as a differential series in o.
The recursion formula for the components of u from (2.10) was essentially dis-
covered by Kruskal and Miura. In the form we need (up to notation) it appeared
e.g. in [23, equs. 2.16-2.19]:

11
(2.11) w =V20, U= o ( 3 ZZLJ'U»H»ij + (ui)m>7 7> 1.
j=2

In the expansion u = Y u;, we are interested in the odd terms only and intro-
duce two formal differential series

(2.12) v(o,m) = ﬁZ(—l)smsags_H
s=0
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and
(2.13) w(o,m) = ﬁZ(—l)Sms(SzL28+1.
5=0

Here § stands for the variational derivative w.r.t. ¢ and m is considered as a formal
parameter.
Important fact. The series w(o, m) satisfies the following identity

(2.14) MWz (0,m) + 20w, (0,m) + o,w(o,m) = 0.

This identity is essentially known and comes from the theory of local infinite-
dimensional Poisson structures. It can be understood as the fact that v(o,m) is a
formal Casimir of the Poisson structure defined by the operator mD3 + 20D + o,
(for details and proof see e.g. [23, Proposition 2.1] and also [16, Theorem 2.4] for
n-component systems). One can also view (2.14) as a way of applying the Magri-
Lenard scheme to produce commuting symmetries for the Harry Dym equation.
However, we do not need such an interpretation and will use identity (2.14) as it is.
We will also use the following crucial observation by Gelfand and Dikii [13] (see
also [3]). Multiplying the Lh.s. of (2.14) by w(o,m) and integrating in x we get
another important identity for w (cf. the differential constraint from (2.6)):

1
(2.15) mwmwfimwi+ow2 =1,

which, in particular, allows us to reconstruct all the terms of (2.13) step by step
starting from the first term V26u, = %

Step 2. For m(A) and o(\) defined by (2.2) and (2.4) respectively, consider
the formal differential series (in any local coordinates u!, ..., u" on M") with com-
ponents depending on parameter A

(2.16) v(A) =v(e(Au),mA),  w(d) =w(o(A;u),m(A)),

obtained by replacing o with o(\) = o(X\;ul,...,u™) and m with m()) in (2.12)
and (2.13). Next, introduce the formal n-component vector field

(2.17) EN) = W\ aze (L — AT1d) 24+ w(A) (L — A1d) !

This vector field is naturally related to the r.h.s. of the first equation of system
(2.6) of Type 1. In fact, (2.6) can be equivalently rewritten as u; = §(\). It
follows from the fact that the differential series w(\) satisfies the same differential
relation (2.15) as the function ¢ (see second equation of (2.6)) and can be uniquely
reconstructed from it (see ‘Important fact’ in Step 1).

Step 3. For each root \; of the polynomial m()\), expand both m(\) and
o(A,u) into Taylor series in powers of e = A — \;, i.e.,

m(\; +¢) = mes Ai +e,u) ZO’SA

Substitution m(A) = Y o0 mg e and (A u) = > ooy 0s,a, (0)e® “transforms”
v(A) = v(e(Au),m(N)) and w(\) = v(o(A, u), m(N)), as well as £(N\) defined by
(2.17), into series in powers of ¢ :

(2.18) v(e(\i +e,u),m(\ +e)) = Zos,,\ias, with 09, = 2v/0(\i).

s=0
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oo

1
(2.19) w(o(Xi +),m(\i+e) =D wene®, with wo, = .
s=0 J(AZ)
(2.20)
o0
= s, €5, with = L L—\Id)™? L_ (L —-\Id)™*

3 ;}5 A%, with o, (m)III( )T+ m( )

Slmllarly for = oo, 1n the above construction we replace o(A) and m(\)
with a(\) = o (%) = (=A)m () and also L — AId with Id —=AL. In
particular, we set

V) =v(a(A),m(A),  w(A) =w(@(A),m(N)),
() = W(AN)aze (Id =AL)T'¢ +W(A)(Id =AL) ™!

Then if m(0) = 0, we substitute (), m(e) into these relations and expand in
powers of ¢ to get!

(221)  ¥(e) =) 0a1.008", With 01 =21/5(0) =2 and og 0o = —2f(u);
s=0
(2.22) W(e) =) ws_1,006%, With w_1 0 =1and wy e = }f(u),
2

(2.23)

= ng—l,oogsv with E—l,oo = Uy and gO,oo - %fme + (L + %fld)um
s=0
where f is defined from G(s) = 1 —ef + ..., ie, f = L|._oo(c) = trLy —
N
Zj:l Ej tr Lj .
The coefficients of the e-expansions (2.18), (2.20), (2.21) and (2.23) define hi-
erarchies of common commuting symmetries and conservation laws for the above
introduced equations of types I-1V. Namely, we have

THEOREM 1. Let Ay,..., A\, be the roots of the polynomial m()\) (including oo
when appropriate). Then the evolutionary PDE systems

u =&, t=1,...,7, s=0,1,....
are commuting symmetries and the differential polynomials
osn, t=1,...,7, s=0,1,...

are conservation law densities for equations (2.6)—(2.9) of Types I-IV. Moreover,
the equations (2.7, Type II) and (2.9, Type IV) take the form u; = &g 5, for A\; # oo
and \; = oo respectively.

Thus, for a Nijenhuis operator L (decomposed into differentially non-degenerate
blocks), Theorem 1 gives a series of multi-component integrable systems and pro-
vide, for each of them, commuting symmetries and conservation laws that can be
constructed by an explicit iterative procedure.

1n these power series, we shift indices of coefficients by 1. The reason is that the first terms
of these expansions are trivial and can be ignored. This shift also allows us to keep notation
consistent with the case of \; # oco.
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3. General construction

3.1. Parameters of the general construction. Let L be a Nijenhuis oper-
ator on M"™ and f : M™ — R be a function such that the 1-form L*d f is closed so
that locally L*d f = d f; for some function f;. Then (see Section 3 in [19]) there
exists an infinite sequence of functions fi, k = 1,..., such that d f, = (L*)*d f. We
refer to f as a conservation law for the Nijenhuis operator L. The name comes from
the fact that f provides a conservation law in the sense of (1.5) for the quasilinear
system u; = Lu,. The above observation means that f is a conservation laws for
every power of L or, equivalently, generates a hierarchy of conservation laws for L.

In particular, this implies that (L* — AId)~'d f is also closed for any A. Thus,
there locally exists a function g(\;u) depending on A as a parameter and such
that dg = (L* — AId)~'d f. Here u = (u',...,u") are coordinates on M" and d
denotes the differential of a function w.r.t. u. One of the main ingredients of our
construction is the function o(\;u) = e9%) satisfying the identity

(3.1) (L* =Ald)do=odf, AeC.

If L(u) — A1d is invertible, i.e. A ¢ Spectrum L(u), then o(\; ) is analytic in A,
otherwise the point (A, u) may be singular (like pole or zero, or branching point).

Next, assume that there exist a vector field ¢ on M™ and constant C' € R such
that?

(3.2) Le(a(Aw) + Co(Xu) = m(N),

that is, the left hand side does not depend on u and hence is a certain function of
A (in the examples discussed below, m()) is always a polynomial of degree < n =
dim M). This triple, i.e., Nijenhuis operator L, conservation law f and vector field
¢ are parameters of the construction.

Notice that o(A;u) and m(A) satisfying (3.1), (3.2) are defined up to simul-
taneous multiplication by an arbitrary function ¢(A). This kind of scaling is not
important for the construction below and we will treat it as a trivial transforma-
tion.

3.2. Main theorems. Fix a triple L, f and . Construct o(\;u) and m(X)
by formulas (3.1) and (3.2). Using them construct infinite differential series v(\)
and w(\) by (2.12) and (2.13).

Recall that the series w(\) satisfies the Gelfand-Dikii identity (2.15):

1
(33 ) (W WO = 500 0)?) + o = 1.
Based on this information, we introduce an n-component system with a differential

constraint®
iy, = Wags (V) (L = A1d) 7'+ w(A) (L~ A1d) ",

1

(3.4)
0= m(\) <wm<x>w<A> - (wmm)?) oM)W~ L.

2

2This condition is quite non-trivial so that the existence of a non-zero ¢ depends on L and f.
However, for ( = 0 the construction still makes sense but reduces to a hydrodynamic type system,
see Corollary 3.1.

3The equation of Type I from Introduction is exactly of this kind with ¢ = w(\) for a specific
choice of parameters L, f and (.
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In this construction one can naturally make sense of A\ = co. Namely, we define
7(A) = ¢(N)o(5) and m(A) = c(A\)m(5), where c()) is a suitable scaling factor. The
function a(\) does not satisfy (3.1), but does satisfy a very similar relation

(3.5) (Id=AL)da(A\) = =Aa(\)d f.
This implies that ¢(\) can be chosen in such a way that g(\) is analytic in A in
a neighbourhood of zero and moreover, d(A) = 1 — Af + ..., where dots denote

higher order terms in A. We will assume that ¢(\) is chosen in this way. Then we
set ¥(A) = v(a(A;u), m(N)) and W(A) = w(a(A;u), m(N)) and rewrite the family of
equations (3.4) in the following equivalent form obtained by replacing A with :

= Wawae (V) (Id =AL) T'¢ +w(A) (A =AL) ",

ug,
(3.6) - - ~ 1, 5 N

0=m(A) | War(NW(A) = 5(W2(X)7 | +(A)(W(A)" ~ 1.
More precisely, we have W(A\) = —A=w(5) so that ug, coincides with ug, , up to

Ve
appropriate rescaling (with a factor depending on \).
This transformation allows us to set A = 0 in (3.6) which will naturally corre-

spond to A = oo in (3.4). In particular, we set
(3.7) v(co) =7(0) and w(oo) = w(0).

However, 7(0) = 1 leading to w(0) = 1 and hence to the trivial evolutionary
equation uz, = u,. To get a non-trivial equation ‘at infinity’, we may consider the
derivative of (3.6) at A = 0, namely we set

= lim 5 (0, ) =

= % (V_an:x()\)(ld—/\[,)_lc_|_W(/\)(Id_>\L)—1ux —ux) _

= Qmwa + (L + qu)UJu

where w(A) = 1 4+ A\g + (higher order terms in ). In other words, ¢ is the derivative
of W(A\) w.r.t. A at zero. Substituting w(\) = 14+ Ag+... into the second equation
of (3.6) we obtain the following constraint for ¢:

m(0)qzz +2¢q — f(u) = 0.

To summarise, for A = co we consider the following evolutionary PDE system with
a constraint:

Ut

)

Ut = QraaC + (L + gld)uy,
0 = m(0)qee +2q — f(u).
Equations (3.4) and (3.8) (related to A # oo and A = oo respectively) are now

understood as a parametric family with A € C = C U {oo}. The main property of
this family of PDEs is as follows.

(3.8)

THEOREM 2. Let L be a Nijenhuis operator and f a conservation law of L.
Consider o(A;u) constructed from (3.1), and a vector field ¢ satisfying (3.2) for a
certain function m(\). Then for any A\, € C = C U {occ}, the differential series
v(u) defined by (2.12), (3.7) is a conservation law density for the evolutionary flow
ug, with a differential constraint defined by (3.4), (3.8). Moreover, if f is generic
in the sense that d f, L*d f,..., (L™ !)*d f are linearly independent, then the flows
Uy, ’s pairwise commute.
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As a straightforward corollary of this construction, we may consider the ‘trivial’
case when ¢ = 0 and m(\) = 0. In this situation, the first term in (3.4) disappears,
but our construction still gives a non-trivial series of integrable quasilinear systems.

COROLLARY 3.1. Let L(u) be a Nijenhuis operator, f(u) a conservation law of
L and o(\;u) denote the function satisfying (3.1). Then the evolutionary flows

ury = (A ) (L(u) — A1d) " u,,

pairwise commute for all A’s. Moreover, the functions are common conser-

o)
vation law densities for these flows (for all A and u).

REMARK 3.1. In the assumptions of Theorem 2, we obtain the flows of the form
w(A)(L — Md) " u, with w(X) = o(A)~1/2 for m = 0. This exponent —1, however,
is not very essential. Indeed, if o(\) satisfies (3.1), then o(\)¢ satisfies (3.1) also
with f replaced with f = ¢- f, so that Corollary 3.1 can be easily obtained by an
appropriate rescaling. Of course, this corollary admits a direct proof without using
Theorem 2.

We also note that Corollary 3.1 can be understood as a A-version of the con-
struction by F. Magri suggested in [19] and then developed in [17]. If f = tr L and
A — 00, then we obtain the system studied by E. Ferapontov and M. Pavlov in [12]
(see also [6]) and for f = c¢-tr L, ¢ € R we obtain the so-called e-systems studied
by M. Pavlov [21].

We will need another corollary from Theorem 2. Consider a formal PDE

(3.9) ug, = &(A)
obtained from (3.4) by resolving the constraint w.r.t. w()\), i.e., expressing w(\) as
a formal differential series and substituting it into the first equation of (3.4). As
a result, the r.h.s. of (3.9) becomes a formal differential series in the derivatives
Uy, Uz, - . . Whose coefficients are functions in A and u.

We now fix A and, in a small neighbourhood of it, expand (A + ¢) in powers
of e:

(3.10) N +e) Zés AE®.

In the same way we defines e-expansions for v()\) and w(\):

(3.11) vidte) = ZVS A5, wh4e) = ZWS A&’

Notice that by construction, each coefficient &5 x, vs,» or ws y is still a formal dif-
ferential series in ug, Ugg, . ...

COROLLARY 3.2. In the settings of Theorem 2, assume that the conservation
law f is generic in the sense that d f,L*d f,..., (L™ 1)*d f are linearly indepen-
dent. Then the (formal) evolutionary flows defined by the (formal) vector fields &, »
(A€ C, s =0,1,2,...) pairwise commute. Moreover, 9p,,, are common (formal)
conservation law densities for all of them (u € C, » =0,1,2,...).

The next theorem is closely related to Corollary 3.2 and deals with degeneration
of the differential constraints that we observed in Section 2 for Type I and Type
III, but now in the general case.
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THEOREM 3. In the settings of Theorem 2, let A; be a zero of m(\), i.e.,
m(A;) =0 (¢ € {1,2,...,k}). Then all the coefficients & »,, Vs, and w, y, of
e-expansions (3.10) and (3.11) at the point \; are differential polynomials so that
up = &5, 1s a usual evolutionary equation as in (1.1). In particular, for s = 0 these
equations have the following form

(3.12)
_ N — 1 1)1 L oy Ty -1 _
ugy, = () ( U(Ai))xm (L—X\T1d)" "¢+ a()\i)(L AiId) " uy, for A; # oo
and
(3.13) up, =&(00) = L fowe C+ (L + 3 £1d) ug, for \; = oo.

Summarising the statements of Theorems 2, 3 and Corollary 3.2 we come to
the following conclusion. For each A € C = C U {oo} we define an evolutionary
multi-component PDE system (3.4), (3.8) with a differential constraint as in (1.2).
The corresponding (formal) evolutionary flows u;, = &(\) pairwise commute and
admit an infinite family of common (formal) conservation laws also parameterised by
X € C. For some special values of the parameter A, namely for the zeros A1, Aa, . ..
of the function m(\) (oo is also allowed when appropriate), the corresponding PDE
equations us,, = §(A;) are usual evolutionary multi-component PDEs whose r.h.s.
are differential polynomials as in (1.1). Each \; generates hierarchies of commuting
non-formal symmetry fields &, and non-formal conservation laws v, ), for the
whole family w;, = £(\) of formal PDE systems. Moreover, the members of these
hierarchies are defined by means of an explicit iterative procedure in terms of the
function o(A;u) and vector field (.

Thus, Theorems 2 and 3 give a recipe for constructing multi-component in-
tegrable PDEs starting from a Nijenhuis operator L and its conservation law f
satisfying certain conditions. However, in order to construct a specific example of
such a system, we need to find a function o(u, \) and a vector field {(u) satisfying
(3.1) and (3.2), that is, to solve a (possibly, infinite) system of PDEs. It is straight-
forward to check that the function o and vector field ¢ given by (2.4) and (2.5) in
Section 2 are solutions of (3.1) and (3.2). The construction from Theorems 2, 3
applied to these o and ( gives the integrable systems of Types I-IV from Section 2
so that Theorem 1 immediately follows.

The next theorem shows that in the differentially non-degenerate case, o and ¢
given by (2.4) and (2.5) provide the only non-trivial solution of (3.1) and (3.2).

THEOREM 4. Let L be a differentially non-degenerate Nijenhuis operator and
f a conservation law of L such that at a point p € M™ the 1-forms

df,L*df,... (L™ Y)*df

are linearly independent. Assume that there exist o(\;u), m(\) and ¢ satisfying
(3.1) and (3.2) with m(A) # 0. Then, in a small neighborhood of p, the Nijenhuis
operator L, functions® o(\;u), m()\) and vector field ¢ are as in Section 2, see (2.3),
(2.4), (2.2) and (2.5) respectively.

4We recall that o(X;u) and m(\) are defined up to simultaneous multiplication by an arbitrary
function ¢(\) and this freedom is assumed here.



MULTICOMPONENT KDV AND CAMASSA-HOLM EQUATIONS 85

As already mentioned above, Theorem 1 follows directly from Theorems 2, 3 by
taking o(\) and ¢ given by (2.4) and (2.5). Theorems 2 and 3 are proved in Section
4 and Theorem 4 in Section 5.

3.3. Parameters corresponding to known integrable systems. In this
section we show that for particular choice of the parameters, Type I — IV equations
from Section 2 contain many famous integrable systems so that our approach allows
one to generate a vast amount of different integrable systems in a unifying manner.

ExaMPLE 3.1 (KdV, Camassa-Holm, Dullin-Gottwald-Holm and their general-
isations). In dimension n = 1, the differentially non-degenerate Nijenhuis operator
is L = u. Due to Theorem 4, the only possible o(A) is u— A and then ¢ = mg+mju.
Notice that

Leo(X) =my +miu = mg+ Ami +mq(u— X) = m(X) +mio(A),

as required by (3.2).
The Type I equation in this case is

mo + miu Uy
Ut = Grax DY +qu—)\’
1
0 = (mo + Am1)quzq — §(m0 + Am1)(gz)” + (u— A)g® — 1.

This is a three-parameter (mg, m; and A) family of integrable evolutionary PDEs
with differential constraint.
If my # 0, then taking A\g = _% we get Type II equation

1 Ugs
= m1<\/u—)\o)mxz + (U7)\0)3/2.

This is a two-parameter (\g and m; # 0)° family of equations. For \g = 0 it
yields (after rescaling) the reduction of the coupled Harry Dym equation [2, eqn.
26a]. It also appeared in [9] as the first flow of the inverse Camassa-Holm hierarchy
(flow m§0 in Section “Bihamiltonian structure” from [9]).

The Type III equation takes the form

Ut = Quaz(mo + miu) + (v + q)ug,
U mi

5= Ty ue +4q.

This is a two-parameter family of the PDEs with a constraint. Differentiating the
constraint we get an expression miQuzr = 2¢; — U;. Substituting it into the first
equation and renaming the coefficient we obtain Dullin-Gottwald-Holm equation
[11]. The case mo = 0 gives the Camassa-Holm equation.

Finally, the Type IV equation corresponds to m; = 0, leading to the celebrated
KdV equation

mo
U = TUZM + §uum.

ExaMPLE 3.2 (Coupled KdV and Harry Dym, Kaup-Boussinesq and Ito sys-
tems). Take an arbitrary n and consider the (differentially non-degenerate) Nijen-
huis operator L = Lcomp given by the first formula of (2.1). In the notation of

5The parameter \g is not essential unless we consider the limit as \g — oo.
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Section 2, we take N = 0, n = fg = d and m(\) = mu A" +m, A" "L+ + myg.
Then

o(N) = det(L — Ad) = (—1)" (A" — u! A" E — .. — "),
n 0 n 0

It is easy to check that Leo(X) = m(A) — (=1)"myo(A). For every root A; of m(A),
the Type II equation is

I )t !
ut—< W(L—md)m@ A Id)T ¢+ 1)

This is a (n+ 1)-parameter family of integrable equations (with m;’s as parameters

(L — X\ 1d) " u,.

involved in the formula for ¢ above). For the rather special case m, = 1 and
mo=--+=my_1 =0, we get \; =0 and taking L = Lcomp as in (2.1) we come to
coupled Harry Dym equations
1 ul
1 1 . 0 u?
0 u”

introduced in [2] by M. Antonowicz and A. Fordy.
If m,, = 0, then m(\) has a root at infinity and Type IV equation is

u=3(trL) ¢+ (L+itrL1d)u,.

TxrxT

This is a family of integrable multi-component PDE systems with n parameters
mo, ..., My—1. More specifically, for L = Leomp given by (2.1) we get

Mp—1
. n
Uy = %uim ¢+ (Lcomp + %ul Id)uw, (= : = Zmn—iei7 m; € R.
my i=1
mo
For ( =e;,i=1,...,n, we get n different systems known as coupled KdV systems

and introduced by Antonowicz and Fordy in [1].
The latter have two important examples for n = 2. For mo = my = 0,mg # 0
after coordinate change u! — —u',u? — —u? we get the Kaup-Boussinesq system

[22, eqn. (4)]:
3
1 2 1
U = U, — §U1Um
2 Mo 1 21 1,2
uy = 5 Uppy — U U1*5U us

1

For mg = my = 0,m; # 0 after coordinate change u' — —u',u? — —u? the same

formula yields Ito system [22, eqn. (25)]:

mq 3

1 _ 1 1,1 2

Uy = 2 uwxw_ﬁu um+uw’
1

2 _ 2,1 1,2

up = —uuy — U u.

2
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ExXAMPLE 3.3 (Marvan-Pavlov system). Now consider a pair of differentially
non-degenerate Nijenhuis operators Lo, L; in dimensions ng and ny. Assume ng —
n1 = d > 0 and consider coordinates w!,...,u™ and v',...,v™ in which Ly and
L, are given by the first formula of (2.1). In the notations of Section 2, take N =1
and 1 = 1. We get m(\) = mgA? + mgq_ 1A%~ + .- + myg. In these coordinates

Ao g z\no—1 oL g0
_ d
0'()\) - (_ ) A1 — pl)\na—1 ...

— /U’I’Ll

and

ny 6 no ] a
—(_1\2 r _ J_~_
¢C=(-1) md<;v Bur ;u 8uj>

By direct computation we have (o (\))
m(A), the Type II equation is

A7 ni rAPLTT
ut:< (—1)d= 2=t U

no no iyno—J
A; _ijl (CRY

+

d ny
0 .0
d
z_:(_l) mq—s ( - ou’ + Z v’ auj+s>

s=1 7j=1

m(A) — (=1)%a(\). For every root \; of

) (L — X Id)"i¢C+

A= S oA -
+ (_1)dw z”gluu"ﬂ (L — X\ 1d) Ly
i Zuj=1 i

This is a d-parameter family of integrable equations (with the coefficients of m(\)
as parameters involved into the formula for ). If mgy = 0 and the infinity is a root
of m(\), we get the Type IV equation

1 1
Uy = §(t1“L1 —trLz)me—&- (L—i— g(trlq —tr L) Id)um~

This is a d-parameter family of integrable equations. Taking mgy # 0 and all m; =
0,7 > 1 yields example by M. Marvan and M. Pavlov [20, 22].

EXAMPLE 3.4 (Two-component Camassa-Holm and Dullin-Gottwald-Holm sys-
tems). Fix n = 2 and consider the Nijenhuis operator of the from

2ul u?
b= (%),
This operator is related to left-symmetric algebras and plays an important role in
the linearization problem (see [15] for details). We take
o(\) =det(L — AId) = A2 — 2u* X — (u?)?,  m(\) = maA? + ma X\ + mo.
The vector field ( is
(M 1)&{@ @z)i

¢ (2 Tt ) 5 22 T2 ") B
We get L (a(N)) = m(A) —mao(A). For mg # 0, the Type III system in this setting
is

mq
1 1 1,1 2,2 1
Uy :qma:;r(_ —mou)—i—Qu Uy +u Uy, + qug,

2
mo mo
ut2 Q;cam( w2 7U2> + UQUi + qui,
ma
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Differentiating the last equation and rearranging terms, we get —"52qupe = ¢z — ul.
Substituting it into the first, we get the equivalent form of the previous PDE with
constraint

my
u% = quzaz + 2U1(Jz + qui + U2Ui7
2 Mo q 2
WS e ()
ma
ul =4+ - Y-

2
This is a 3-parameter family of integrable systems. For mo = 0 we obtain the two-
component Dullin-Gottwald-Holm equation [24, (3)]. If, in addition, m; = 0, then
we get two-component Camassa-Holm equation [10, (3) and (4)].

ExaMPLE 3.5. We actually can generalise the equations of type I and III to the
case of k constraints, k > 1. Consider the expansion (2.22) up to &2 :

w(e) =1+¢ewp, + 52w1,oo + ...

If m(0) # 0, then wp oo and wy o are formal differential series. Now substitute
the decompositions for w(e),a(e) and m(e) into the Gelfand-Dikii identity (3.3).
Renaming ¢' = wp o0, ¢ = w100 We get

0= m(e) (Wer(e(e) = 02(6)) ) + SO 1 =232+ 20" + gy )+

1
+ & (52 +2¢% + Mogz, + M1dy, +M0q 4y, + 2014 + (01)? — 57710((1;)2) tee
This yields differential relations for ¢', ¢2. Differential operator Id +D? is formally
invertible, so these constraints imply that ¢! is a differential series in &; and its
derivatives and ¢2 is a differential series in &1, and their derivatives.
Now consider the expansion (2.23) up to &2:

€(e) =€ 100 + 880,00 + %6100+ =
=uy + s(qimc +(L+4q" Id)ux)
+¢2 (quC + gt L+ (L2 +¢'L+¢? Id)uz> + ...
Taking &;,.c we get a PDE with two differential constraints
Ut = GgaC + Gpa LC+ (L7 4+ ¢" L+ ¢° 1d)uy,
0 =251+ 2¢" +Moqy,,
0 = Ga + 2¢° + Mog2, + Mia, +moq'ab, +2514" + (1)? — %mo(q;)?
For L differentially non-degenerate, N = 0 and m(t) = ¢™ this yields the general

form of Camassa-Holm equation CH(n,2) from [14]. Taking the expansion up to a
higher order, one obtains a greater number of differential constraints.

ExXAMPLE 3.6. In the previous examples, we have shown that many notable
integrable systems are special cases of the systems from Section 2. We now describe
one of the simplest new examples. By construction, integrable systems we deal with
are written in invariant form that is independent on the choice of a local coordinate
chart. In particular, in order to make our system more symmetric, we may choose
local coordinates related to the roots of the polynomial m(\).
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The next 3-component example is build starting with o(\) = det(L — A1d) and
m(A) = (A1 — AN)(A2 — A) (A3 — A) and choosing local coordinates (u',u?,u®) to be

1
= Ay

u' =det(\ 1d—L) [ |
s#i

In particular, u’ is proportional to o();) with some constant factor which is not
essential. Moreover, ¢ = —(u',u?,u3) T and (L — \;1d) !¢ = e;. Now if we take an
arbitrary linear combination of the (commuting) evolutionary PDEs (2.7) of Type
II, we get the following integrable system:

1 “ (1/\/7ﬁ>zmx ul
(3.14) ui | = [ e (1/‘/”?)19” A {
Ut 3 (1/\/1?) Y

where ¢1, co, c3 are arbitrary constants and A(u) is the 3 X 3 matrix with the com-
ponents

i uj C; _ Cj . . i C; _ j
RRRPYESY ((w‘)w <w‘>3/2)’ Ji md A= - A

rrx

One can also write it as follows:

W= e (( 1 ) g ) n wul —u'ul (e ¢
t = - =373 - .
j i ) e (ud)3/2 o A — uf/z u?/2
Here the first term represents the system of three uncoupled Harry Dym type equa-
tions (see Example 3.1), but the second term mixes all the variables.

The recursion formula for the conservation laws gives the following explicit
formula for the first six of them. The first two corresponding to the root A\; are

5 2 2 1,2 1,.3
(wak - § (u)?) - 2u)” ($2 + 224 - 1)
(u1)3/2 ’

(3.15) Vul  and

The other four correspond to the roots A, A3 and can be obtained from the above
formulas by cyclic permutation of indices 1,2,3.

One can also find, using the procedure described in Section 2, the formulas for
commuting flows. Actually, the commuting flows of the lowest order are (3.14) with
arbitrarily chosen ¢y, ca, c3. Notice that this example can be naturally generalised
to the case of an arbitrary number of components.

4. Proofs of Theorems 2 and 3
We start with the following Lemma.

LEMMA 4.1. Under the assumptions of Theorem 2, we have

(L) o) = — <d0(u) - Z(“)dau)).
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ProOF. Condition (3.1) reads
(41)  L'do(p) =o(wd f+pdo(p) =o(u)d f+ (n—AN)do(u) + Ado(u).

Recall that by construction (L})~'d f = U(lA)da()\). Rearranging the terms and
multiplying both sides of (4.1) by (L})™', we get the statement of Lemma. O

Now let us recall some basic formulas and introduce some notations. We denote
the derivative coordinates of order j by u2; and set ul, = u®. Consider a formal
evolutionary vector field & with components £°. The (Lie) derivative of a formal
differential series w along £ is defined by

oo

Lew =

Jj=0

with summation over « assumed, a =1,...,n.
Let & = £(\) be the formal vector field defined by (3.9) and associated with the
PDEs from Theorem 2. We have:

Lepyo(p) = %@5“(/\) = 8;55) (wm(A) (L—A1d)"'¢

W) (L= A1d) )" =
= eV 5 (I T4 w5

_ ! o),
= e ) () = 2

w
o(p)
oy (o) - mam).

(1),

The last step follows from Lemma 4.1. Further rearranging terms and using (2.14),
we get

(4.2)
Leo(p) =
- ﬁ <m<u>wm(x> + w(\)o (1) - 28 (W (V) + W“)"w“))) =
_ ﬁ <m(,u)wmm()\) + w(N)ow () — Zgﬂi ( - QU(A)W«’”(A))) -
- L <m(u)wm<x> T 20 (uwa () + azw)w(x)) .

Now let us proceed with the proof. Consider a pair of formal differential series
w1, wo. We use notation wi; ~ wo, if there exists a formal differential series u,
such that wi; — wo = Du. In particular, the Leibnitz rule for D implies, that
w1 D(wa) ~ —D(wq)wsa. More generally, it yields the formula

Wle (Wg) ~ (—1)ij(W1)W2.
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Using the chain rule %VT(C%) =w(u) 6(; 55), we get the following sequence of relations

Lev(n) = %Vu( “p NZ JDJ(au ))fa( A

7=0 Jj=
5V) oy

= DWWy =

= () 22 e (3) = wlin) Lo 1)

- ﬁmw)w(mwmm W (N +

W) (1) ~ =m0 ()

— 5 () (), w0+

) () =~ <m<u>wm<»

+20(p)wa(A) + 0n (H)W(/\)> w(A) =0

Here we used formula (4.2) and, again, identity (2.14). Thus, we get Le(x)v(p) ~ 0,
meaning that v(u) is a formal conservation law for the flow £(\). For A = oo the
proof is essentially the same.

Now let us proceed to the commuting flows. We will need the following Lemma.

LEMMA 4.2. Assume that o(p) and w(u) are related by Gelfand-Dikii identity
(3.3) and Le(nyo(p) is given by (4.2). Then

1
= 5 (welw ) = wlmwa ().

PROOF. We start with applying £(A) to Gelfand-Dikii identity (3.3) and multi-
plying the result by w(x) (we also take into account the fact that L commute with
D):

(4.4)

0 = W)L (m(u) (wan i) = 5020002 + o<u>w2<m> -

(4.3) Lenyw(p)

= (1) (W2(00) Loy Waw (1) + Wa ()W (1) Loy wpe) = W () w(pr) Loy (1)) +
+ 20 ()W (1) Loy w(p) +w? (1) Lepyo (i) =
= () (W2 () D? = wa ()W () D + o () (1) ) + 20 ()2 (1)) Leonywip)+
W () Leyo (1) = R(Lepyw(p)) +w? (1) Leoyo (k)
with
R = m(p) (w2 (1) D? = 3 (W)W (1) D + W (1) (1) 1 ) + 20 (1) (1) 1 =
= (2 = m()w(p)Waa(p) +m(p)w? (1)) Id —=m(u)w(p)w, (1) D +m(p)w?(u) D?,
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where in the latter relation we substitute

0000 = 1= () (weahwlo) = 5 00
from (3.3). Thus, we have the identity
(4.5) R(Lepyw(p)) = —w’ (1) Lenyo (w)-

Note that R is a (formally) invertible differential operator. Therefore, it suffices
to verify that Le\yw(u) defined by (4.3) satisfies (4.5) or, equivalently,

R (wa ()W(X) = w(p)wa(N)) + (1 = Nw (1) Le(ayo (1) = 0.

Computing the Lh.s. of this relation gives:

m(a)w? () (wo ()w(h) = w(pwa (V)
o 1) W () (1) (w0 ()W) = (g (V) ) =
= () wa ()w () (wa () w(N) = w()wa(3))
+ 20 (w2 (1) (W ()W) = w(p)w (V) ) +
+ (= WP () Leyo(p) =
= m()w2(12) (Waaa ()W) = W) Waso ()
+ 20 (w2 (1) (W ()W) = w(i)wa (V)
+ (= MW’ () Le o ().

T

Adding and subtracting o, (p)w(X\)w? (1) we arrive to the identity

(1= N Ley o () =m()Waaa (V) = 20 (2)wa (N) = 72 (w)w(A) ) (12)+

()W (1) + 20 () (1) + 00 (1) (1) ) w2 () w(A) = 0,

where the first term vanishes due to (4.2) and the second due to (2.14), completing
the proof. 0O

As we deal with evolutionary vector fields, it is enough to check that £(\) and
&(v) commute, acting on coordinate functions. Fix three pairwise distinct A, p, v.
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From Lemma 4.2, we get

1

+ 20 (0w (N) + o2 () w(N)) =
I — W ()
e )( s (W) + 2o ()W ()

= W) Wazze(A) — 2w, (,U)Wm:z(A))Jr
2

T e () + 20 (0w (0) + 02 () w() ) wa ()
1

ooy 200 (Warw () = wlp)w )

+ ou() (walp)w(v) = w()we(v)) ) +
1

20 ()W (V) + T ()W) + 00 (1) wa (1) ) W(N)

The identity

1 1 1
- + =0.
(=N =v) (p=NA=-v) (p=v)A-v)
implies that the r.h.s. of formula for L¢(,)Le(x)o (1) is symmetric in A,v. Thus,
Ley and Lg(y) commute on o (p).
Now recall that o(u) is constructed from a generic conservation law f. This
implies that in the expansion

o(p) =00+ por + ...

the differentials of oy, ...,0,_1 are linearly independent almost everywhere. Thus,
one can take them as coordinates u’ = ¢;_; and in these coordinates (Ig(y)gfg()\) —
Ig(/\)cfg(y))ui = 0, as required. This completes the proof of Theorem 2.

To verify the statement of Theorem 3, we first need to show that the coefficients
Esnis Vsn; and wy y, of the e-expansions (3.10) and (3.11) are well defined and are
differential polynomials in u',...,u". Indeed, by definition,

(4.6) v(A) = v(e(A\),m(\) = V2 (m(A
s=0

where 04(A) is a differential polynomial obtained from the homogeneous differential
polynomial wosy1(0,04,04a, ... ) of degree 2s by substitution o = o(A; u).

We are interested in the expansion of v(A\;+¢) = Y v, y,£° under the assumption
that m()\;) = 0. Since m(\; +¢) = a1e + aze? + ... and, therefore, (m(\; +¢))° =
aje® 4+ ..., we see from expansion (4.6) that v, is defined from the first s 4 1
coefficients g, ..., 5. Hence, v, y, is a non-homogeneous differential polynomial of
degree at most 2s.

The proof for w, , is literally the same. The conclusion for w, ), immediately
follows from the explicit formula of £(\) in terms of w(\), see (3.4) and (3.9).
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The explicit form (3.12) of the flows u;, = {(\;) for a root A; € C of m(}) is

straightforward. Indeed, setting m(\;) =0 in (3.4) gives U()\i)(w()\i))z —1=0,or

equivalently, w()\;) = \/ﬁ Substituting this expression into the first equation of
oy

i

(3.4) gives (3.12), as required. Similarly, for A; = co we set m(0) = 0 in (3.8) to get
q= % f, which after substitution into the first equation of (3.8) immediately gives
(3.13), completing the proof of Theorem 3.

5. Proof of Theorem 4

Since L is differentially non-degenerate, this operator is diagonalisable almost
everywhere. At “non-diagonalisable” points, the conclusion of Theorem 4 can be
derived by continuity arguments. So w.l.o.g. we assume that L = diag(z?,...,z").
Recall that f from equation (3.1) is a conservation law for L. Then f is a sum of n
functions such that the ith function depends on 2° only. Therefore, for every i the
function f; := g Tf depends on z! only.

Next, we consider relation (3.1). In coordinates, it reads:

dln(o) fi(zh)
ozt ol

oln(o)  fala)
dxn =\

Hence, the system (3.1) of n PDEs is actually a system of n ODEs in different
variables. Its solution must be of the form o = ¢()\) - 01 ... 0y, with

(5.1) oi(\ 2") = exp < ' %d s)

s

where ¢(\) is an arbitrary function and (sq, ..., $,) is an arbitrary point; we assume
that all s; # 0.
Next, consider relation (3.2). For our o(A) = ¢(A) - 01 ... 0, it reads

(5.2) <C+ZCix¢f_iA> O1...0n= T((;)) = ().

In the left hand side of this relation, f; and (; are smooth functions in x which
are independent on A\, whereas the r.h.s. is a function independent of x. The
following statement shows that under these conditions, f;’s have to be constants
and, moreover, very special.

LEMMA 5.1. The functions f; are integer constants different from zero and no
greater than 1. Moreover, for every i such that f; # 1 we have ¢; = 0.

PrOOF. Integration by parts gives

oi(\,z') = exp < G ds)

si S—A

= €xXp (fz(xl) In(z" = A) = fi(si) In(s; — A) — /I fi(s)In(s — )\)d3>
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implying o(z,A) = (z} — \)1@) (g2 — X)) (g7 — \)/@5(), 2) where the
function & has neither zeros nor poles. The equation (5.2) reads then
(5.3)

(C + i W) (@t = NN (@2 = NRED @ N EE( ) = M)

Note that the function f f )In(s — A)d s is locally bounded, so the function
(A, z) is bounded for small z° — X and is not zero.

Assume for a certain 4 that f; is not integer at a point (2%, ..., 2™). Substituting
A = 2t (for generic ') makes m(\) = 0 or Mm(A\) = oo leading to a contradiction.
Indeed, the first factor of (5.3) has integer order of zeros and poles, so to compensate
it f; must be integer for each * and therefore constant. Note that the case m()\) =
oo is not allowed since the left hand side is finite almost everywhere.

Thus, all f; are integer. Then the function 6(\, z) depends on A only. Further
we assume that it is equal to 1 since we can “hide” it in m(\) (we keep the same
notation). Our equation (5.3) then becomes:

(5.4) <C+Z e > N @ =N @ = ) =m0,

where f; are integer constants. If (* # 0 then the first factor of (5.4) has a
pole of order 1 implying f; = 1. If ¢! = 0 and f; > 0, then (5.4) has zero for
A = ' which again leads to contradiction. It remains to notice that f; # 0 since

df,L*d f,..., L™ 'd f are linearly independent by our assumption. O
W.l.o.g. we assume that f; = 1 for ¢ = 1,...,k and the other f; are negative
integers; we set {g+1 = —fk41,-.-,4n = —fn. The equation (5.4) reads then
k
¢ (zhFtt — XYt (™ — )
5.5 C = A).
(5:5) < +;x5—)\ CES N VRN e VR

Notice that the expression in the l.h.s. can be written as a rational function in A of
the form % where P(\) = C(—\)* + ... is a polynomial of degree at most
k. Similarly, the rhus. is 77 PO ))\) where F(X\) = (xF 1 — \)fr+1 (2™ — N)mmi(N).
Since P(A\) = F(X) we conclude that m()\) = mgA? + ... is a polynomial of degree
at most d=k — V{1 —-—4£,. In particular, d >0 and mq = (—1)C.

Finally, it remains to notice that ¢* can be found from (5.5) by using the partial
fraction decomposition theorem which gives:
(Ft — ) (2™ — 2¥) e (a?)

% :
Hs:l,s#i(‘rs - xl)

Summarising this discussion we conclude that for L = diag(x!,. .., 2"), we have
(up to scaling with a factor ¢()))

(5.6) ("=

k n
Zzﬂ Z bt
=1 i=k+1
IT5 (= N)

o) = ITi- a1 (T _A)e"
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and ¢ given by (5.6).

To get the conclusion of Theorem 4 in its final form, we only need to combine
the coordinates z’s, i = k + 1,...,n into groups depending on the values of the
exponents ¢; (z' and 27/ go to the same group iff ¢; = ¢;). After appropriate
renumbering, we come to the desired description of L, o, m and (.

6. Conclusion

In our paper, we constructed new explicit families of integrable multi-component
evolutionary equations with and without differential constraints, see Section 2. The
equations uy, = &(A\; U, Uy, Ugy, ... ) Within each family are parametrised by A €
C = CU{oc}. The corresponding (formal) evolutionary flows pairwise commute for
all values of parameters and admit a family of common (formal) conservation laws
V(15 U, s, Ugy, - . . ) also parametrised by p € C. For specific values of A\ (namely,
roots A1, ..., \q of a certain polynomial) the above equation generates an hierarchy
of usual (i.e. non-formal) commuting flows & 5,, s =0, 1, ..., defined by means of a
differential polynomial of degree 2s + 3. The equation u;, = E(Ni3 Uy Uy Uy U ),
initial term of this hierarchy, is a third order PDE system given by an elegant explicit
formula. All the subsequent terms can be found by means of explicit recurrent
formulas. Similar for conservation laws: v()\;) generates an hierarchy of common
polynomial conservation laws v, »,, s = 0,1,..., for all the flows, where v, », is
a differential polynomial of degree 2s that can be found explicitly by an iterative
procedure. These families of integrable equations, for a simple choice of parameters,
include and generalise many known examples of integrable systems. Some of multi-
component evolutionary equations we constructed are essentially new and they have
no low-component analogues.

The construction is based on a new approach, which is rather differential-
geometric than algebraic (in contrast to many other constructions of integrable
systems which are often based on algebraic or algebraic-geometric concepts). Our
results have been naturally obtained within the Nijenhuis Geometry programme ini-
tiated in [8]. This suggests that Nijenhuis Geometry might be a convenient frame-
work for studying further properties of the constructed systems and generalizing
them. Because of its differential-geometric nature, our constructions are invariant
with respect to the choice of coordinates on M"; that is, the systems behave co-
variantly if we change unknown functions u by a diffeomorphism tnew = Unew (Uold)-
One can use this fact in the search of applications of our systems in natural sci-
ences. Examples discussed in Section 3.3 actually suggest that ‘physically relevant’
variables correspond to those coordinates on M"™ in which the Nijenhuis operator
has a nice form, e.g., the ‘companion’ and ‘diagonal’ forms from (2.1), or the form
in which the components of L are linear in coordinates.

The famous integrable systems that we generalise to an arbitrary number of
components (such as KdV, Camassa-Holm, Dullin-Gottwald-Holm, Harry Dym,
Kaup-Boussinesq) have been intensively studied for decades; for these studies, a
number of non-trivial geometric, algebraic and analytical methods were invented
and successfully applied. The next natural step would be to figure out how to
adapt these methods to new systems. In particular, it would be interesting to
construct Lax representations for new systems, to find explicit solutions by the
inverse scattering method, to construct a recursion operator and, of course, to find
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physically relevant models that are described by new systems. We invite our fellow
mathematicians and physicists to join this research.
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