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Polymer Kinetic Theory Temperature Dependent
Configurational Probability Diffusion Equations: Existence

of Positive Solution Results
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Abstract. A new configurational probability diffusion - CPD - equation that

accounts for temperature dependent molecular dynamics for incompressible

polymer fluids is introduced. We prove the existence of positive solutions for the
corresponding variational formulation using Schauder’s fixed point theory. The

polymer fluid macromolecules are modeled as F initely Extensible Nonlinear

E lastic dumbbells, also known as FENE chains.
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1. Introduction

Polymer fluid industrial flows are commonly subjected to strong temperature
gradients: this is a feature of almost all processing technologies (see e.g. [4], [27],
[28]). Even though this was known for a long time, studying non-isothermal flows is
notoriously difficult at both modeling and mathematical levels and the issue remains
largely an open question only seldom addressed.
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Kinetic theories ( [5], [19], [32]) focus on for the dominant inter and intra molec-
ular interactions responsible for the macroscopically observed rheological behavior.
Gathering inspiration from the earlier work of Curtiss and Bird in [18], we obtained
in [16] a more general configurational probability diffusion (CPD) equation based
on temperature dependent polymer molecular dynamics, without the linearizations
originally assumed in [18], an undertaking never considered before. Very important
to recall here, CPD equations are the theory’s backbone for they enter the defini-
tion of the fluid stress tensor, reason for which they are studied to this day, see,
e.g. [24], [21], [22], [20], [25], [12], [13], [14], [1], [2], [3], [11], [9], [26], [6], [30], [8],
[15], [10].

Specifically, we assumed the polymer chains to be modeled as FENE (F initely
Extensible N onlinear E lastic) dumbbells, a popular approximation of the physical
reality. In the modeling calculations we assumed the temperatures at dumbbell
extremities to be different from each other. This situation corresponds to a rather
general case in which the heat flow also occurs along the chain. The fluid is assumed
incompressible: the macroscopic velocity v satisfies∇x�v � 0. Let ψ, θ andQ denote
the probability density, the temperature and the end-to-end vector, respectively.

Define the Péclet number Pe � 2ζV L

kBθ0
and the Deborah number De � ζV l20

4kBθ0L
as

e.g. in [24] and [16] (see also [17] for several remarks). De can equivalently be

introduced as De � ζV

4HL
, but since H � Hpθq � kB

l20
θ, upon normalizing θ one

recovers exactly the definition just presented. The corresponding initial boundary
value problem reads

Bψ
Bt �∇x � pvψq � 1

Pe
∇x � tr∇x pθ lnψq �∇Q ppQ �∇xθq lnψqsψu

� ∇Q � pκQψq � 1

Pe
∇Q � rψ∇x ppQ �∇xθq lnψqs

� 1

2De
∇Q � pθ∇Qψq � 1

2De
∇Q �

�
Q

1� }Q}2{Q2
0

θψ



� 0(1.1)

(1.2) ψ|BΣ̄T�p0,T q � 0

(1.3) ψpt � 0q � ψ0, ψ0 given

In [16] we proved the existence of positive solutions to the corresponding vari-
ational formulation of (1.1) using fixed point techniques.

In this paper we continue the aforementioned work and take on to studying a
closely related CPD. Specifically, instead of assuming two different temperatures at
the dumbbell’s ends, we now assume the temperature field on the average and be
given at the FENE dumbbell’s barycenter. The subsequent calculations are identical
in nature to those of [16]. The new CPD reads:

Bψ
Bt � ∇x � pvψq � 1

Pe
∇x � r∇x pθ lnψqψs �∇Q � pκQψq

� 1

2De
∇Q � pθ∇Qψq � 1

2De
∇Q �

�
Q

1� }Q}2{Q2
0

θψ



� 0(1.4)
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For commodity, a further simplification can be achieved by carrying out the
re-scaling Q{Q0. Relabeling the newly introduced variable again by Q for sake of
simplicity of notations leads to

Bψ
Bt � ∇x � pvψq � d1∇x � r∇x pθ lnψqψs �∇Q � pκQψq � d2∇Q � pθ∇Qψq

� d2δ∇Q �
�

Q

1� }Q}2 θψ


� 0(1.5)

with d1 � 1

Pe
, d2 � 1

2Q2
0De

and δ � Q2
0 being positive constants.

As an aside: if the temperature θ is set constant and the probability density ψ
considered to be independent of the macroscopic (Eulerian) variable x, then both
(1.1) and (1.4) simplify to the standard FENE diffusion equation (see equation
13.2-13 on page 62 in [5]) the steady state form of which was studied in [12].

Now, equation (1.5) is taken with the more specialized boundary conditions
(1.6) and (1.7) - as compared to (1.2) - in order to also ensure ψ is normalized (see
also [25]):

(1.6) rvψ � d1∇x pθ lnψqψs � νx � 0, x P BΩ, Q P Bp0, 1q, t P p0, T q

(1.7)

�
κQψ � d2θ∇Qψ � d2δθ

2Q

1� }Q}2ψ
�
�νQ � 0, x P Ω, Q P BBp0, 1q, t P p0, T q

Of notice the above boundary conditions (1.6)-(1.7) render the study of solu-
tions existence significantly more complicated than it is the case for the standard
Dirichlet condition (1.2). In order to deal with the said complexity we need to
use (2.7) (introduced in the next section) and to work within the framework of
appropriately defined weighted Sobolev spaces V and H - fact leading to increased
proofs technicality - as opposed to working with classical Sobolev spaces H1

0 as done
in [16].

The ensuing problem is proved to have positive solutions using Schauder’s fixed
point theory.

The paper is organized as follows:

 Section 2 is devoted to obtaining the variational formulation of the CPD
equation under consideration

 Section 3 deals with the problem regularization
 In Section 4 we obtain estimates uniform in ϵ
 Section 5 gives the proof of the main and final existence result

2. Introducing the Problem and Its Variational Form

Let Ω be an open domain with smooth enough boundary BΩ P C 1 and Bp0, 1q �
Rd, d � 2 or 3. Next Σ :� Ω � Bp0, 1q, x P Ω, Q P Bp0, 1q. Let ΣT :� Σ � r0, T q,
T ¡ 0, and ΩT :� Ω�r0, T q. Let κ � ∇xv denote the macroscopic velocity gradient,
and the usual summation convention over repeated indices applies, i.e. κQ � κijQj .

The problem is stated as follows: find ψ : ΣT ÞÑ R, such that



138 IONEL SORIN CIUPERCA AND LIVIU IULIAN PALADE

Bψ
Bt � ∇x � pvψq � d1∇x � r∇x pθ lnψqψs �∇Q � pκQψq � d2∇Q � pθ∇Qψq

� d2δ∇Q �
�

2Q

1� }Q}2 θψ


� 0, @ px,Q, tq P ΣT(2.1)

solution complying with the boundary conditions

(2.2) rvψ � d1∇x pθ lnψqψs � νx � 0, x P BΩ, Q P Bp0, 1q, t P p0, T q

(2.3)

�
κQψ � d2θ∇Qψ � d2δθ

2Q

1� }Q}2ψ
�
�νQ � 0, x P Ω, Q P BBp0, 1q, t P p0, T q

and with the initial conditions

(2.4) ψ px,Q, t � 0q � ψ0 px,Qq , with ψ0 : Σ ÞÑ R being given

Since by a simple calculation one has

∇x pθ lnψqψ � ψ lnψ∇xθ � θ∇xψ

then (2.2) takes the form

Bψ
Bt � ∇x � pvψq � d1∇x � pθ∇xψq � d1∇x � rψ lnψ∇xθs

� ∇Q � pκQψq � d2∇Q � pθ∇Qψq � d2δ∇Q �
�

2Q

1� }Q}2 θψ


� 0,

@ px,Q, tq P ΣT(2.5)

Also, (2.2) can be re-written as

(2.6) rvψ � d1θ∇xψ � d1ψ lnψ∇xθs � νx � 0

Observe now that

d2θ∇Qψ � d2θδ
2Q

1� }Q}2ψ � d2θ
 
∇Qψ � δ

�
∇Q ln

�
1� }Q}2��ψ(

� d2θ∇Q

�
ψe�δ lnp1�}Q}2q	 eδ lnp1�}Q}2q

which leads to

(2.7) d2θ∇Qψ � d2θδ
2Q

1� }Q}2ψ � d2θM∇Q

�
ψ

M



, MpQq � p1� }Q}qδ

Assume in the following that

(2.8) δ ¡ 1

We now take on to give the variational formulation of the problem (2.5), (2.6)
and (2.3). Let
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H :�
"
ϕ : Σ ÞÑ R :

»
Σ

1

M
ϕ2 dxdQ   8

*

endowed with the inner product xϕ, ψyH �
»
Σ

1

M
ϕψ dxdQ.

Let

V :�
#
ϕ : Σ ÞÑ R :

»
Σ

�
1

M
ϕ2 � 1

M
|∇xϕ|2 �M

����∇Q

�
ϕ

M


����
2
�
dxdQ   8

+

endowed with the inner product

xϕ, ψyV �
»
Σ

�
1

M
ϕψ � 1

M
∇xϕ �∇xψ �M∇Q

�
ϕ

M



�∇Q

�
ψ

M


�
dxdQ

Both H and V are Hilbert spaces. Next, one multiplies (2.5) by
ϕ

M
, ϕ P V , and

using Stoke’s Theorem and (2.7) one gets:

»
Σ

1

M

Bψ
Bt ϕ�

»
Σ

ψ

M
v �∇xϕ� d1

»
Σ

θ

M
∇xψ �∇xϕ

�d1
»
Σ

1

M
∇xθ plnψqψ �∇xϕ

�
»
BΩ�Bp0,1q

1

M
rvψ � d1θ∇xψ �∇xθ plnψqψs � νx �

»
Σ

κQψ �∇Q

�
ϕ

M




�d2
»
Σ

Mθ∇Q

�
ψ

M



�∇Q

�
ϕ

M




�
»
Ω�BBp0,1q

1

M

�
κQψ � d2Mθ∇Q

�
ψ

M


�
� νQ � 0

The boundary terms in the above do vanish thanks to (2.3), (2.6) and (2.7).
Therefore the variational formulation reads:

d

dt

»
Σ

1

M
ψϕ �

»
Σ

ψ

M
v �∇xϕ� d1

»
Σ

θ

M
∇xψ �∇xϕ

� d1

»
Σ

1

M
∇xθ plnψqψ �∇xϕ�

»
Σ

κQψ �∇Q

�
ϕ

M




� d2

»
Σ

Mθ∇Q

�
ψ

M



�∇Q

�
ϕ

M



� 0, @ϕ P V(2.9)

Moreover, (2.5) and (2.4) can be recast in the form that is given in the following
for better grasping: for any ξ P C 1 r0, T s such that ξpT q � 0,
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»
ΣT

1

M
ψϕξ1 � ξp0q

»
Σ

ψ0ϕ�
»
ΣT

1

M
ψξv �∇xϕ� d1

»
ΣT

1

M
θξ∇xψ �∇xϕ

� d1

»
ΣT

1

M
ξ∇xθ plnψqψ �∇xϕ�

»
ΣT

ξκQψ �∇Q

�
ψ

M




� d2

»
ΣT

Mθ∇Q

�
ψ

M



�∇Q

�
ϕ

M



ξ � 0, @ϕ P V(2.10)

3. The Regularized Problem. Estimates, Positive Solutions Existence

3.1. Notations, Assumptions and Preliminary Results. Let

XT :�
"
ϕ P L2p0, T ;V q : dϕ

dt
P L2p0, T ;V 1q

*
.

The inclusions V � H � V 1 are continuous. The inclusion V � H also being
compact (see [31]), it implies the inclusion XT � L2p0, T ;Hq is also compact. We
make the following assumptions regarding the problem data:

 v P L8 pΣT q , κ P L8 pΣT q
 θ P L8 �

0, T ;W 1,8pΣq�
there exists θm ¡ 0 such that θpx, tq ¥ θm a.e. for px, tq P Ω�p0, T q

 assume ψ0 P H
From hereon we employ the shorthand notation B � Bp0, 1q. Let p ¡ 2 be such

that H1
�
Rd

� � Lp
�
Rd

�
holds true. Let cs ¡ 0 be such that }u}LppΩq ¤ cs}u}H1pΩq,

for all u P H1pΩq, and, }u}LppBq ¤ cs}u}H1pBq, for all u P H1pBq.
Let the following Hilbert spaces be defined as:

HB :�
"
ϕ : B ÞÑ R :

»
B

1

M
ϕ2dQ   8

*

VB :�
#
ϕ : B ÞÑ R :

»
B

1

M
ϕ2 �M

����∇Q

�
ϕ

M


����
2

dQ   8
+

Using assumption (2.8) one can prove (see Theorem 6.2.5 in [29], equation (26)
in [25], and Lemma 3.6 in [7]) the below recalled result:

Proposition 3.1. Let ϕ P VB. Then
ϕ?

M p1� }Q}2q P L
2pBq, ϕ?

M
P LppBq.

Moreover, there exists cB ¡ 0 such that

(i)

���� ϕ?
M p1� }Q}2q

����
L2pBq

¤ cB}ϕ}VB
, for all ϕ P VB

(ii)

���� ϕ?
M

����
LppBq

¤ cB}ϕ}VB
, for all ϕ P VB

Let p1 ¡ 2, p2 ¡ 2 be such that 1{p1 � 1{p2 � 1 and 1{p � 1{p2 � 1{2. The
following result is proved below:

Proposition 3.2. Let ϕ P V . Then
ϕ?
M

P H1pΣq, and for all ϕ P V there

exists a positive constant c2 such that

���� ϕ?
M

����
H1pΣq

¤ c2}ϕ}V .
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Proof. Capitalizing on the definition of the functional space V , one gets that
ϕ?
M

P L2pΣq and 1?
M

∇xϕ P L2pΣq. Next,

(3.1) ∇Q

�
ϕ?
M



� ∇Q

�?
M

ϕ

M



�
?
M∇Q

�
ϕ

M



� ϕ

M
∇Q

�?
M

	

Since ∇Q

�?
M

� � �δQ
?
M

1� }Q}2 , then
ϕ

M
∇Q

�?
M

� � �δQ ϕ?
M p1� }Q}2q .

By observing that»
Σ

ϕ2

M p1� }Q}2q2 �
»
Ω

»
B

ϕ2

M p1� }Q}2q2 ¤ cB

»
Ω

}ϕ}2VB
dx

and by Proposition 3.1 one gets
ϕ

M
∇Q

�?
M

� P L2pΣq.
□

Before ending this Section we give the proof of the following result.

Proposition 3.3. Let MX :� tMϕ, ϕ P Xu. Then MC8pΣ̄q is dense in V .

Proof. Let first the following functional spaces be given by:

Ṽ :�
"
ϕ̃ : Σ ÞÑ R :

»
Σ

M

�
ϕ̃2 �

���∇xϕ̃
���2 � ���∇Qϕ̃

���2
 dxdQ   8
*

ṼB :�
"
ϕ̃ : B ÞÑ R :

»
B

M

�
ϕ̃2 �

���∇Qϕ̃
���2
 dQ   8

*
They are Hilbert spaces endowed with corresponding inner products. The map-

pings Ṽ Q ϕ̃ ÞÑ Mϕ̃ P V , and ṼB Q ϕ̃ ÞÑ Mϕ̃ P VB are isomorphisms from Ṽ to V ,
and from ṼB to VB respectively.

In order to prove the announced result, we point out that it suffices to prove
that C8pΣq is densely included into Ṽ . First, that C8

�
B̄
�
is densely included into

ṼB is a consequence of part c of Theorem 3.2.2 on page 239 in [31]. Even though we
capitalize on the aforementioned result, its proof will here be significantly modified
in order to deliver the result we stated.

Let Σ0 � Rd �Bp0, 1q � R2d and let the functional space

Ṽ0 :�
"

ϕ̃ : Σ0 ÞÑ R :

»
Σ

�
ϕ̃2 �

���∇xϕ̃
���2 � ���∇Qϕ̃

���2
 dxdQ   8, and ϕ̃ � 0

for |x| ¥ α, for some α ¡ 0

*

We now introduce the extension operator PΣ0
that sends ϕ̃ P Ṽ into PΣ0

ϕ̃ P Ṽ0.
There exists cΣ0

¡ 0 such that, for all ϕ̃ P Ṽ ,
���PΣ0

ϕ̃
��� ¤ cΣ0

���ϕ̃���
Ṽ
. This operator is

introduced using a partition of unity with respect to the variable x (thus “ignoring”
the variable Q).

We next prove that for any fixed ψ̃ P Ṽ0 and for any ϵ ¡ 0, there exists

ψ̃ϵ P C8
�
Σ̄0

�
such that

���ψ̃ � ψ̃ϵ

���
Ṽ0

¤ ϵ, a fact that ends the proof. To achieve

this goal we draw inspiration from Theorem 3.2.2 of [31]. What is actually needed

is to approximate by a C8 function a function ψ̃px,Q � qq, px,Qq P Σ0, where q
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is taken in a cone contained in Rd, with }q} small enough, with the late function
being defined on a space larger than Σ0. Next, this function is convoluted with a
suitably chosen mollifier function, and from now on the difference with Triebel’s
proof of [31] is that the convolution is carried out with respect to the two variables
x and Q.

□

3.2. Problem Regularization. The regularization of (2.5) is performed by
replacing lnψ by a regularizing function gϵpψq, with ϵ ¡ 0 small enough. Let thus
gϵ : R ÞÑ R be given by:

(3.2) gϵpψq �

$''''''''&
''''''''%

ln

�
1

ϵ



if z ¥ 1

ϵ

ln z if ϵ ¤ z ¤ 1

ϵ

ln ϵ if
1

ln ϵ
¤ z ¤ ϵ

1

z
if z ¤ 1

ln ϵ

Denote Eϵpzq � zgϵpzq, for any z P R. Let E : 0,�8 ÞÑ R,

(3.3) Epzq �
#
z ln z if z ¡ 0

0 if z � 0

Consequently the regularized problem (2.9) will read

d

dt

»
Σ

1

M
ψϵϕ�

»
Σ

1

M
ψϵv �∇xϕ� d1

»
Σ

1

M
∇xψϵ �∇xϕ

�d1
»
Σ

1

M
ψϵgϵ pψϵq∇xθ �∇xϕ�

»
Σ

κQψϵ �∇Q

�
ϕ

M




�d2
»
Σ

Mθ∇Q

�
ψϵ

M



�∇Q

�
ϕ

M



� 0, for all ϕ P V(3.4)

to be considered together with (2.4).
Next we endeavor to prove the existence of a solution to (3.4) using the fixed

point technique. Let the operator Sϵ : L2 p0, T ;Hq ÞÑ p0, T ;Hq, Sϵ

�
ψ̃ϵ

	
� ψϵ,

where ψϵ is a solution to the equation:

d

dt

»
Σ

1

M
ψϵϕ�

»
Σ

1

M
ψϵv �∇xϕ� d1

»
Σ

1

M
∇xψϵ �∇xϕ

�d1
»
Σ

1

M
ψϵgϵ

�
ψ̃ϵ

	
∇xθ �∇xϕ�

»
Σ

κQψϵ �∇Q

�
ϕ

M




�d2
»
Σ

Mθ∇Q

�
ψϵ

M



�∇Q

�
ϕ

M



� 0, for all ϕ P V(3.5)

Now the problem of our focus reads

(3.6)
d

dt
xψϵptq, ϕy � a

�
t, ψ̃ϵptq, ψϵptq, ϕ

	
� 0, @ϕ P V
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with a : p0, T s �H � V ÞÑ R,

pt, r, u, wq ÞÑ apt, r, u, wq �
»
Σ

1

M
vpt, xqu �∇xw � d1

»
Σ

1

M
θpx, tq∇xu �∇xw

�d1
»
Σ

1

M
∇xθpx, tqugϵprq �∇xw �

»
Σ

κQu �∇Q

� w
M

	

�d2
»
Σ

Mθpx, tq∇Q

� u

M

	
�∇Q

� w
M

	
Let ψ̃ϵ P L2 pΣT q be fixed. We now prove the following result:

Lemma 3.1. There exists a constant c1 ¡ 0 such that

(i)
���a�t, ψ̃ϵ, u, w

	��� ¤ c1}u}V }w}V , @u,w P V
There exist two constants α ¡ 0, β P R such that

(ii) a
�
t, ψ̃ϵ, u, u

	
� β}u}2H ¥ α}u}2V , @u P V

Proof. To prove (i), notice first that:

����
»
Σ

1

M
vu �∇xw

���� ¤ }v}L8pΩq
»
Σ

���� u?
M

����
����∇xw?

M

���� ¤ }v}L8pΩq}u}V }w}V

����
»
Σ

κQu �∇Q

� w
M

	���� ¤ }κ}L8pΩq
»
Σ

���� u?
M

����
���?M∇Q

� w
M

	��� ¤ }κ}L8pΩq}u}V }w}V
The estimates for the remaining terms are obtainable in a similar nature hence

the details are skipped.
Switching now to proving (ii), observe first that

�����
»
Σ

1

M
vu �∇xu� d1

»
Σ

1

M
ugϵ

�
ψ̃ϵ

	
∇xθ �∇xu� κQu �∇Q

� u

M

	 ����
¤ η}u}2V � cη}u}2H , @η ¡ 0

and the end of the proof follows. □

This allows to prove the existence and uniqueness of a solution ψϵ P L2 pXT q X
L8p0, T ;Hq to (3.6) (see Theorem 4.1 on page 257 and Remark 4.3 on page 258
in [23]). This also shows the operator Sϵ is well defined.

Consider now the dense and continuous injections V � H � V 1. Let the
operator Aϵ be such that Aϵ : p0, T q � L2 pΣq � V � V ÞÑ V 1, xAϵpt, r, uq, wy �
apt, r, u, wq, for all w P V and for all pt, r, uq P p0, T q � L2pΣq � V . Then the
equation (3.6) takes the form

(3.7)
d

dt
ψϵ �Aϵ

�
t, ψ̃e, ψϵ

	
� 0

Acting with this equality on ψe and making use of Lemma (3.1) leads to

(3.8) }ψϵ}XT
¤ cpϵq

Let us now prove the following result:
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Proposition 3.4. Sϵ continuously maps L2p0, T ;Hq on L2p0, T ;Hq.
Proof. Assume ψ̃ P L2p0, T ;Hq. Let ψ̃k be a sequence strongly converging

towards ψ̃ in L2p0, T ;Hq. Let ψϵ,k � Sϵ

�
ψ̃k

	
and ψϵ � Sϵ

�
ψ̃
	
. We shall prove

that ψϵ,k strongly converges to ψϵ in L2p0, T ;Hq.
As in (3.8) one gets }ψϵ,k} ¤ 2c. By compactness we get a sub-sequence (for

simplicity equally denoted ψϵ,k) and a ψ̂ϵ P XT such that ψϵ,k
L2p0,T ;HqÝÝÝÝÝÝÝÑ
kÑ�8

ψ̂ϵ strongly.

Next, we take the limit k Ñ �8 in the equation satisfied by ψϵ,k. Let us first focus
on the limit

»
ΣT

ψϵ,k?
M

∇xθgϵ

�
ψ̃
	
� 1?

M
∇xϕξptq RÝÝÝÝÑ

kÑ�8

»
ΣT

ψϵ?
M

∇xθgϵ

�
ψ̃
	
� 1?

M
∇xϕξptq

that occurs for any ξ P C 1p0, T q. Actually, as
ψ̃k?
M

L2pΣT qÝÝÝÝÝÑ
kÑ�8

ψ̃?
M

, one deduces

ψ̃k
L2pΣT qÝÝÝÝÝÑ
kÑ�8

ψ̃. This gives gϵ

�
ψ̃k

	
L2pΣT qÝÝÝÝÝÑ
kÑ�8

gϵ

�
ψ̃
	
, because gϵ P W 1,8 pRq. Conse-

quently, ψ̂ϵ � Sϵpψ̃q, and we get the stated result by virtue of uniqueness. All the
remaining limits can be calculated likewise.

Next, by making use of Schauder’s fixed point theorem it follows the existence
of a fixed point Sϵ which is a solution of the regularized problem (3.4).

We shall always denote by ψϵ this solution and we also have that ψϵ P XT and
ψϵ satisfies (3.8). Therefore:

(3.9)
d

dt
ψϵ �Aϵ pt, ψe, ψϵq � 0

□

4. Uniform Estimates

4.1. L1 Norm Estimates. To begin with, let us first prove the following
positive solutions result:

Lemma 4.1. Assume ψ0 ¥ 0 and let ψϵ be a solution to the problem (3.9) and
(2.4). Then ψϵ ¥ 0.

Proof. We proceed as in [16]. Let ψϵ � ψ�ϵ �ψ�ϵ , with ψ�ϵ , ψ�ϵ P L2p0, T ;V q.
Using (3.9) upon ψ�ϵ gives

1

2

d

dt

��ψ�ϵ ��2H � aϵ
�
t, ψϵ, ψ

�
ϵ , ψ

�
ϵ

� � 0

and

ψ�ϵ pt � 0q � 0

Next, upon making use of the estimates in Lemma (3.1) we get ψ�ϵ � 0, fact
which ends the proof.

□

The following result gives the announced uniform estimate:

Lemma 4.2. For a.e. t P p0, T q, one has }ψϵptq}L1pΣq � }ψ0}L1pΣq.
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Proof. Set M P V into the variational formulation (3.4) for ψϵ. We get

d

dt

»
Σ

ψϵ � 0

which triggers »
Σ

ψϵptq �
»
Σ

ψ0, for t P p0, T q a.e.
The fact that ψϵ has been proved to be positive leads to the above stated

conclusion. Additionally we get the below uniform estimate

}ψϵptq}L8p0,T ;L1pΣqq � }ψ0}L1pΣq

□

4.2. Stronger Uniform Estimate. We here prove the following result:

Lemma 4.3. There exists c ¡ 0, independent of ϵ, such that any solution ψϵ to
(3.4) and (3.9) satisfies

}ψϵ}XT
� }ψϵ}L8p0,T ;Hq ¤ c

Proof. Using (3.9) upon ψϵ gives

1

2

d

dt

»
Σ

1

M
ψ2
ϵ � d1

»
Σ

θ

M
|∇xψϵ|2 � d2

»
Σ

θM

����∇Q

�
ψϵ

M


����
2

¤
»
Σ

���� ψϵ?
M
v � ∇xψϵ?

M

�����
»
Σ

����κQ ψϵ?
M

?
M∇Q

�
ψϵ

M


����
�d1

»
Σ

1

M
|∇xθψϵgϵ pψϵq �∇xϕ|(4.1)

We now proceed to finding estimates for the terms appearing in the right hand
side of (4.1). For any η ¡ 0,

»
Σ

���� ψϵ?
M
v � ∇xψϵ?

M

���� ¤ η

����∇xψϵ?
M

����
2

L2pΣq

� 1

4η
}v}L8pΣT q

»
Σ

1

M
ψ2
ϵ(4.2)

»
Σ

����κQ ψϵ?
M

?
M∇Q

�
ψϵ

M


���� ¤ η

����?M∇Q

�
ψϵ

M


����
2

L2pΣq

� 1

4η
}κ}L8pΣT q

»
Σ

1

M
ψ2
ϵ(4.3)

We now focus on the last term in the right hand side of (4.1). We denote

Iϵ � d1

»
Σ

1

M
|∇xθψϵgϵ pψϵq �∇xψϵ|

First observe that we have

|gϵpzq| ¤ |lnpzq| , @z ¡ 0

Next, since
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lim
zÑ0�

z |lnpzq|
z1�δ1 � z1�δ1

� lim
zÑ�8

z |lnpzq|
z1�δ1 � z1�δ1

� 0, @δ1 ¡ 0

it follows that, for any δ1 ¡ 0, there exists a cδ1 ¡ 0 such that

z |lnpzq| ¤ cδ1
�
z1�δ1 � z1�δ1

�
, @z ¡ 0

We further obtain

|ψϵ ln pψϵq| ¤ C1

�
ψ1�δ1
ϵ � ψ1�δ1

ϵ

�
Therefore

(4.4) |Iϵ| ¤ c1}θ}L8p0,T ;W 1,8pΣqq pI1ϵ � I2ϵq
where

I1ϵ �
»
Σ

1

M
ψ1�δ1
ϵ }∇xψϵ}

I2ϵ �
»
Σ

1

M
ψ1�δ1
ϵ }∇xψϵ}

The following estimates hold true:

I1ϵ �
»
Ω

»
B

�
ψϵ?

M p1� }Q}2q


1�δ1 }∇xψϵ}?
M

�
1� }Q}2�1�δ1

Mδ1{2

¤
»
Ω

���� ψϵ?
M p1� }Q}2}

����
1�δ1

L2pBq

����∇xψϵ?
M

����
L2pBq

�»
B

�
1� }Q}2�2{δ1�2

M
dQ

�δ1{2

(4.5)

Consider δ1 ¡ 0 small enough such that

»
B

�
1� }Q}2�2{δ1�2

M
dQ   8

Using (i) of Proposition (3.1) one gets that

(4.6) I1ϵ ¤ c2}ψϵ}2�δ1
V

Next,

I2ϵ �
»
Ω

»
B

ψ1�δ1
ϵ

M p1�δ1q{2
ψ2δ1
ϵ

}∇xψϵ}?
M

1

Mδ1{2

with
ψ1�δ1
ϵ

M p1�δ1q{2
ψ2δ1
ϵ P Lp{p1�δ1q, ψ2δ1

ϵ P L1{p2δ1q,
}∇xψϵ}?

M
P L2,

1

Mδ1{2
P La,

where
1� δ1
p

� 2δ1 � 1

2
� 1

a
� 1, and p ¡ 2 being given in Section (3.1). As p ¡ 2

one can find an a ¡ 2 so that the later equality is satisfied by choosing δ1 ¡ small

enough. Therefore a � 2p

p� 2� 2δ1 � 4pδ1
. Clearly we can choose δ1 ¡ 0 small

enough such that
1

M δ1{2
P LapBq. It results that
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I2ϵ ¤ c

»
Ω

���� ψϵ?
M

����
1�δ1

LppBq

����∇xψϵ?
M

����
L2pBq

�»
B

ψϵ


2δ1

dx

with

���� ψϵ?
M

����
1�δ1

LppBq

P Lp{p1�δ1qpΩq,
����∇xψϵ?

M

����
L2pBq

P L2pΩq,
�»

B

ψϵ


2δ1

dx P L1{p2δ1qpΩq.
Using Lemma (4.2) we obtain

(4.7) I2ϵ ¤ c3}ψ0}L1pΣq}ψϵ}2�δ1
V

Further on, from (4.4), (4.6) and (4.7), one sees that for any η ¡ 0 there exists
cη ¡ such that

(4.8) |Iϵ| ¤ η}ψϵ}2V � cη

and from (4.1), (4.2), (4.3) and (4.8) and upon using Gronwall’s inequality that»
Σ

1

M
ψ2
ϵ ¤ c4pT q, @t P p0, T q

Next, upon integrating (4.1) for t P p0, T q, it gives
»
ΣT

�
1

M
|∇xψe|2 �M

����∇Q

�
ψe

M


����
2
�
dxdQdt ¤ c5pT q

Going back to (3.9) we see the proof is achieved.
□

5. Taking the Limit for ϵÑ 0

Equations (3.4) and (2.4) say that for any ξ P C 1p0, T q, with ξpT q � 0, one has

�
»
ΣT

1

M
ψϵϕξ

1 �
»
Σ

1

M
ψ0ϕξp0q �

»
ΣT

ψϵ

M
v �∇xϕξ � d1

»
ΣT

θ

M
∇xψϵ �∇xϕξ

�d1
»
ΣT

1

M
∇xθψϵgϵpψϵq �∇xϕξ �

»
ΣT

κQψϵ �∇Q

�
ϕ

M



ξ

�d2
»
Σ

θM∇Q

�
ψ

M



�∇Q

�
ϕ

M



ξ � 0(5.1)

Thanks to Lemma (4.3) it follows there exists ψ P XT XL8p0, T ;Hq such that,
for a sub-sequence for convenience also denoted here ψϵ, one has

ψϵ
L2p0,T ;V qÝÝÝÝÝÝá

ϵÑ0
ψ weakly
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ψϵ
L8p0,T ;V qÝÝÝÝÝÝÝá

ϵÑ0
ψ weakly� �

We also have ψ ¥ 0 and }ψ}L8p0,T ;L1pΣqq � }ψ0}L1pΣ, thanks to Lemma (4.2).
We now prove the following Theorem:

Theorem 5.1 (Main Result). The function ψ is a solution to (2.10).

Proof. Taking the limit ϵ Ñ 0 in (5.1) involves standard procedures save for
the following limit

(5.2)

»
ΣT

1

M
∇xθψϵgϵpψϵq �∇xϕξ

RÝÝÝÑ
ϵÑ0

»
ΣT

1

M
∇xθψ lnpψq �∇xϕξ

which is here addressed. In doing so we draw inspiration from our previous pa-

per [16]. A density based reasoning is put to work: assume first that
ϕ

M
P C8

�
Σ̄
�
.

Up to a ϵ-related sub-sequence, by compactness one has the strong convergence

ψϵ
L2p0,T ;HqÝÝÝÝÝÝÝÑ

ϵÑ0
ψ. It follows the strong convergence

ψϵ?
M

L2pΣT qÝÝÝÝÝÑ
ϵÑ0

ψ?
M

. We next

deduce, equally up to a ϵ-related sub-sequence, that

(5.3)
ψϵ?
M
px,Q, tq RÝÝÝÑ

ϵÑ0

ψ?
M
px,Q, tq, px,Q, tq P ΣT a.e.

and that there exists h P L2pΣT q, independent of ϵ, such that

(5.4)

���� ψϵ?
M

���� ¤ h, px,Q, tq P ΣT a.e.

From (5.3) it results that ψϵpx,Q, tq L2pΣT qÝÝÝÝÝÑ
ϵÑ0

ψpx,Q, tq for px,Q, tq P ΣT a.e..

On one hand, assume first that ψpx,Q, tq ¡ 0. Selecting ϵ ¡ 0 small enough
one gets gϵpψϵpx,Q, tqq � ln pψϵpx,Q, tqq. Thus, since function E is continuous,

Eϵ pψϵpx,Q, tqq � E pψϵpx,Q, tqq RÝÝÝÑ
ϵÑ0

E pψpx,Q, tqq
Assume next ψpx,Q, tq � 0. Given that ψϵ ¥ 0 we have |ψegϵpψeq| ¤ |Epψeq|,

thus triggering

Eϵ pψϵpx,Q, tqq RÝÝÝÑ
ϵÑ0

0 � E pψpx,Q, tqq , a.e. px,Q, tq P ΣT

We have thus proved that

Eϵ pψϵpx,Q, tqq RÝÝÝÑ
ϵÑ0

E pψpx,Q, tqq , a.e. px,Q, tq P ΣT

On the other hand now, for any δ2 ¡ 0 there exists cpδ2q ¡ 0 such that

|E pψϵq| ¤ cpδ2q
�
ψ1�δ2
ϵ � ψ1�δ2

ϵ

�
Invoking (5.4) we get

|Eϵ pψϵq| ¤ cpδ2q
��
h
?
M

	1�δ2 �
�
h
?
M

	1�δ2
�
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Observing that functions
�
h
?
M

�1�δ2
and

�
h
?
M

�1�δ2
belong to L1pΣT q (given

that h P L2pΣT q), we obtain the expected result invoking Lebesgue’s dominated
convergence theorem. This ends the reasoning to proving the passing to the limit
of (5.2) is lawful.

Then the limit function ψ solves (2.10) with ϕ such that
ϕ

M
P C8

�
Σ̄
�
.

Let now ϕ P V be fixed. Proposition (3.3) implies there exists a sequence

ϕk P V , with
ϕk
M

P C8
�
Σ̄
�
, such that ϕk

VÝÝÝÝÑ
kÑ�8

ϕ. Then ψ solves (2.10) with ϕ

being replaced by ϕk. We now let k Ñ �8 in this late equation. All limits are
easily evaluated save for the one below

(5.5) lim
kÑ�8

»
ΣT

1

M
∇xθψ lnpψq �∇xϕkξ �

»
ΣT

1

M
∇xθψ lnpψq �∇xϕξ

for which we give a detailed proof. We recall here that for any δ2 ¡ 0, there
exists a cpδ2q ¡ such that

|ψ lnpψq| ¤ cpδ2q
�|ψ|1�δ2 � |ψ|1�δ2

�
It then suffices to prove that

(5.6)
ψ1�δ2

?
M

P L2pΣT q

and that

(5.7)
ψ1�δ2

?
M

P L2pΣT q

which would give the expected result.
Actually, observe that

»
ΣT

1

M
ψ2�2δ2 �

» T

0

»
Σ

»
B

�
ψ?

Mp1� }Q}2q


2�2δ2 p1� }Q}2q2�2δ2

M δ2

with

�
ψ?

Mp1� }Q}2q


2�2δ2

P L2{p2�2δ2qpBq; for δ2 ¡ 0 small enough we have

p1� }Q}2q2�2δ2

M δ2
P L8pBq.

Then, upon observing that

���� ψ?
Mp1� }Q}2q

����
2�2δ2

L2pBq

P L2{p2�2δ2qpΩq,

»
ΣT

1

M
ψ2�2δ2 ¤ c

» T

0

»
Ω

���� ψ?
Mp1� }Q}2q

����
2�2δ2

L2pBq

dxdt

¤ c

» T

0

»
Ω

}ψ}2�2δ2
VB

dxdt

¤ c

» T

0

}ψ}2�2δ2
V dxdt(5.8)
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thus proving (5.6); use of Proposition (3.1) has been made in obtaining the
above estimates.

To prove (5.7) we proceed as following:

»
Σ

1

M
ψ2�2δ2 �

» T

0

»
Σ

1

M
ψ2ψ2δ2dQdxdt ¤

» T

0

���� ψ?
M

����
2

L2{p1�2δ2qpΣq

�»
Σ

ψ


2δ2

dt

¤ }ψ0}2δ2L1pΣq

» T

0

���� ψ?
M

����
2

H1pΣq

dt(5.9)

where, in the above, we have used the fact that H1pΣq ãÑ L2{p1�2δ2qpΣq for δ2
small enough. Also

1

M
ψ2 P L1{p1�2δ2qpΣq, ψ2δ2 P L1{p2δ2qpΣq.

Now, invoking Proposition (3.2), we get the result and the proof is achieved.
□

6. Conclusions

In this paper we have proved the existence of positive solutions to a new con-
figurational probability diffusion equation of relevance for polymer fluid dynamics.
The results contained here are a continuation of the work [16]. On the modeling
level the most notable of all the features of the CPD is that in obtaining it use has
been made of the temperature influence on the dominant molecular interactions.
This equation is further to be studied together with a temperature diffusion equa-
tion, itself obtained on kinetic theory grounds. The results will be published in a
following-up paper.

References
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Université Lyon 1, CNRS, Institut Camille Jordan UMR 5208. Bât Braconnier, 43
Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France.

Email address: ciuperca@math.univ-lyon.fr



152 IONEL SORIN CIUPERCA AND LIVIU IULIAN PALADE

INSA-Lyon, CNRS, Institut Camille Jordan UMR 5208 & Pôle de Mathématiques.

Bât. Leonard de Vinci No. 401, 21 Avenue Jean Capelle, F-69621, Villeurbanne, France.
Email address: liviu-iulian.palade@insa-lyon.fr


	1. Introduction
	2. Introducing the Problem and Its Variational Form
	3. The Regularized Problem. Estimates, Positive Solutions Existence
	4. Uniform Estimates
	5. Taking the Limit for le0
	6. Conclusions
	References

