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Abstract. We introduce new models for Schrödinger-type equations, which

generalize standard NLS and for which different dispersion occurs depending
on the directions. Our purpose is to understand dispersive properties depend-

ing on the directions of propagation, in the spirit of waveguide manifolds, but

where the diffusion is of different types. We mainly consider the standard Eu-
clidean space and the waveguide case but our arguments extend easily to other

types of manifolds (like product spaces). Our approach unifies in a natural way

several previous results. Those models are also generalizations of some appear-
ing in seminal works in mathematical physics, such as relativistic strings. In

particular, we prove the large data scattering on waveguide manifolds Rd × T,
d ≥ 3. This result can be regarded as the analogue of [63, 65] in our setting

and the waveguide analogue investigated in [28]. A key ingredient of the proof

is a Morawetz-type estimate for the setting of this model.
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1. Introduction

Anomalous diffusion, also called fractional diffusion, appears naturally in the
physics and mathematical physics literature in the study of relativistic matter and
strings, see e.g. for the works [9, 18, 24, 25, 46, 47] and references therein.
Similarly, a tentative description of some quantum mechanics has been undertaken
in [44, 43, 45]. The classical relativistic operator is the multiplier

√
|ξ|2 +m2−m

where m ≥ 0 is a constant. Fractional Schrödinger operators are a fundamental
equation of fractional quantum mechanics, which was derived by Laskin [45] as a
result of extending the Feynman path integral, from the Brownian-like to Lévy-like
quantum mechanical paths. The corresponding physical realizations were made in
condensed matter physics [54] and in nonlinear optics [48].

In the present contribution, we investigate dispersive properties of Schrödinger
operators generalizing the previous operator. One possible generalization is to re-
place the square root with any power between 0 and 1 (see e.g. [9] for a similar
generalization). Those operators have been investigated recently in different direc-
tions. The long-time behaviors (such as global well-posedness, scattering, blow-up,
and the existence of invariant measures) of the solutions are interesting and widely
studied. In [6], the blow-up with radial data in certain regimes was constructed
by deriving a localized virial estimate for the fractional Schrödinger equation. In
[28], the first author of this paper together with Guo, Wang and Zhao performs the
Kenig-Merle’s concentration-compactness-rigidity method [39] and obtains global
well-posedness and scattering in the energy space in the defocusing case, and in
the focusing case with energy below the ground state. We also refer the reader
to [27, 15, 42, 37, 34, 57, 55, 52, 56, 19, 59, 58] and references therein for
many other results on the long time behaviors for relativistic NLS. In all the pre-
vious works the operator under consideration is (−∆)σ for σ ∈ (0, 1), which is the
multiplier |ξ|σ. The ambiant space is either the whole Euclidean space Rd or the
(rational) torus Td. The aim is two-fold: first, we consider the waveguide manifold,
i.e. (−∆)σ defined on Rd × T; more interestingly, we introduce a new model where
the operator acts differently according to the spatial direction.

In the following, we consider only the case of the waveguide Rd × Tn. To
motivate the reason behind the equations we consider, we first state the Levy-
Kintchine formula (see e.g. [5]): every (isotropic) Levy process with pure jumps in
Rd is given by the multiplier

m(ξ) =

∫
Rd

(
1− ei ξ·x + i ξ · xχ|x|<1

)
Π(dx)

where Π(dx) is the so-called Levy measure satisfying the integrability condition∫
Rd

max(1, |x|2)Π(dx) <∞.

The multiplier m(ξ) = |ξ|2σ is obtained by choosing Π(dx) = 1
|x|d+2σ dx. On the

other hand, one could consider singular Levy measures just as Dirac masses sup-
ported along some (or all) axis coordinates. In this paper, we consider the following
model {

i∂tu+
(
(−∆x)

σ + (−∂2y)σ
)
u = F, (x, y) ∈ Rd × Tn,

u(0) = u0 ∈ Hσ(Rd × Tn).
(1.1)
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In view of the previous discussion, the operator (−∆x)
σ + (−∂2y)σ corresponds

to the multiplier m(ξ, η) = |ξ|2σ+|η|2σ where ξ is the Fourier variable corresponding
to x ∈ Rd and η the one to y ∈ Tn. In particular, this is a Levy process with a
singular Levy measure. To the best of our knowledge, dispersive and space-time
estimates for such propagators have not been considered yet in the literature.

Remark 1.1. It is important to notice that all the (dual) variables in Rd ×Tn

have to be present in the multiplier m. Otherwise, the associated operator becomes
subelliptic, and major dispersive issues arise as in the case of the Schrödinger prop-
agator in the Heisenberg group [2] or the Szegö model of Gérard and Grellier (see
e.g. [26] and subsequent articles).

The case of regular Levy measures has been considered for instance in [16, 28,
34]. We would like to comment further on the model under consideration: It is
a well-known fact that on a compact manifold, there is no dispersion, and loss of
derivatives occurs in the Strichartz estimates (see e.g. [8]). Similarly, on a waveg-
uide manifold (or a product manifold), e.g. Rd ×Tn ⊂ Rd+n, dispersion occurs but
the fact that only part of the directions (d here) contributes to diffusion introduces
several complications. Our model is another instance of such a phenomenon: it is
by now well-known that anomalous diffusion of order 2σ exhibits a loss of 1 − σ.
A variation on our model would be for example to consider the Euclidean factors
Rd × R but considering a different diffusion on each factor Rd and R. Product
spaces Rd×Tm are known as ‘waveguide manifolds’ and are of particular interest in
nonlinear optics. We refer to [14, 13, 30, 32, 33, 35, 36, 40, 64, 66, 68, 69, 70]
with regard to waveguide settings.

An interesting feature of the equation (gNLS) is its product structure. In par-
ticular, this allows us to get interaction Morawetz estimates using the tensorization
argument in [17] and also use in a much better-streamlined way the vector-valued ar-
gument of Tzvetkov-Visciglia [62]. This latter operator satisfies the non-degeneracy
assumptions in Schippa too [53]. One could also consider different geometries in the
ambiant space like the pure tori case Td ×T or the pure Euclidean one Rd ×R. We
chose to consider the waveguide case as a middle point between these two geometries.
It is relatively straightforward to generalize our results to those two geometries. In
the case of the classical fractional laplacian on pure tori, global well-posedness has
been considered by Schippa in [53] using a decoupling approach. As far as nonlinear
applications are concerned, we will be considering (unless otherwise stated we will
always consider n = 1){

i∂tu+
(
(−∆x)

σ + (−∂2y)σ
)
u = µ|u|pu, (x, y) ∈ Rd × T,

u(0) = u0 ∈ Hσ(Rd × T),
(gNLS)

where µ = ±1 and 4σ
d < p < 4σ

d+1−2σ .

Remark 1.2. We consider the exponent p to be in the subcritical range, for
some technical reasons. The left endpoint indicates mass-critical if we ignore the
torus direction; the right endpoint indicates energy-critical if we regard the torus
direction as Euclidean direction. So essentially, the problem is energy-subcritical
and mass-supercritical.

The well-posedness theory and the long-time dynamics for generalized Schrödinger
operators on waveguide manifolds are understudied. It is our goal here to fill this
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gap in the literature by exhibiting a wealth of different techniques previously used
to deal with some models in the case here of waveguides. For the extremal cases
of tori or Euclidean spaces, we refer the reader to [16, 20, 28, 34] and references
therein.

The operators under consideration are well-designed to generalize Tzvetkov-
Visciglia’s results in [62, 63] thanks to the product structure of the operator. Our
main result is

Theorem 1.3. Let σ > 1
2 in (gNLS) and assume the spatial variable is radial

in Rd. Then we have:

• (i) for any initial datum u0 ∈ Hσ
x,y, the IVP (gNLS) has a unique local

solution u(t, x, y) ∈ C((−T, T );Hσ
x,y) where T = T (∥u0∥Hσ

x,y
) > 0;

• (ii) Moreover, when µ = −1 (defocusing case), the solution u(t, x, y) can be
extended globally in time. Moreover, the solution scatters in the following
sense: there exist f± ∈ Hσ

x,y(Rd × T) such that

lim
t→±∞

∥u(t, x, y)− eit((−∆x)
σ+(−∂2

y)
σ)f±∥Hσ

x,y(Rd×T) = 0.

We comment on the previous results:

(1) The radiality assumption is to avoid loss of derivatives in the Strichartz
estimates. For our range of powers, this is a technical assumption that
can be removed.

(2) The assumption σ > 1
2 is also due to some technical reasons if one wants

to modify the method in Tzvetkov-Visciglia [63]. Roughly speaking, it is
because the Sobolev embedding exponent in 1D is 1

2+.
(3) We provide two different proofs of the well-posedness result: one using

decoupling and one using vector-valued analysis.

Remark 1.4. Since NLS with a harmonic trapping potential has similar prop-
erties/behaviors as NLS on tori, heuristically one may compare NLS with a partial
harmonic potential with NLS on waveguides. (See [1, 11, 31] and the references
therein.) Thus one may conjecture that it is possible to obtain the analogue of
Theorem 1.3 with a partial harmonic potential.

The paper is organized as follows: In section 2, we discuss preliminaries includ-
ing notations and some useful estimates; in Section 3, we discuss well-posedness
theory using vector-valued argument; in Section 4, we discuss well-posedness the-
ory using decoupling argument; in Section 5, we establish a Morawetz-type estimate
for our equation, which is the crucial step for obtaining the decay property of so-
lutions of (gNLS); in Section 6, we give the proof for the large data scattering; in
Section 7, we give a few more remarks on the research line of ‘dispersive equations
on waveguide manifolds’.

Acknowledgment. Y. S. is partially supported by the Simons foundation
through a Simons collaborative grant for mathematicians and NSF grant DMS-
2154219. X. Y. was funded in part by an AMS-Simons travel grant. H. Y. was
supported by a start-up funding of ShanghaiTech University. Z. Z. was supported
by the NSF grant of China (No. 12101046) and the Beijing Institute of Technology
Research Fund Program for Young Scholars.
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2. Preliminaries

In this section, we briefly discuss notations and some basic estimates.

2.1. Notations. We write A ≲ B to say that there is a constant C such that
A ≤ CB. We use A ≃ B when A ≲ B ≲ A. Particularly, we write A ≲u B to
express that A ≤ C(u)B for some constant C(u) depending on u.

Then we give some more preliminaries on the setting of the waveguide manifold.
The tori case can be defined similarly. In fact, it is included since it is a special
case. Throughout this paper, we regularly refer to the spacetime norms

∥u∥Lp
tL

q
z(It×Rm×Tn) =

(∫
It

(∫
Rm×Tn

|u(t, z)|q dz
) p

q

dt

) 1
p

.

Similarly, we can define the composition of three Lp-type norms like Lp
tL

q
xL

2
y. More-

over, we turn to the Fourier transformation and Littlewood-Paley theory. We define
the Fourier transform on Rm × Tn as follows:

(Ff)(ξ) =
∫
Rm×Tn

f(z)e−iz·ξ dz,

where ξ = (ξ1, ξ2, ..., ξd) ∈ Rm × Zn and d = m + n. We also note the Fourier
inversion formula

f(z) = c
∑

(ξm+1,...,ξd)∈Zn

∫
(ξ1,...,ξm)∈Rm

(Ff)(ξ)eiz·ξ dξ1...dξm.

For convenience, we may consider the discrete sum to be an integral with the discrete
measure so we can combine the above integrals together and treat them to be one
integral. Moreover, we define the Schrödinger propagator eit∆ by(

Feit∆f
)
(ξ) = e−it|ξ|2(Ff)(ξ).

Similarly, for more general operator eitϕ(∇/i),(
Feitϕ(∇/i)f

)
(ξ) = e−itϕ(ξ)(Ff)(ξ).

We are now ready to define the Littlewood-Paley projections. First, we fix η1 : R →
[0, 1], a smooth even function satisfying

η1(ξ) =

{
1, |ξ| ≤ 1,

0, |ξ| ≥ 2,

andN = 2j a dyadic integer. Let ηd = Rd → [0, 1], ηd(ξ) = η1(ξ1)η1(ξ2)η1(ξ3)...η1(ξd).
We define the Littlewood-Paley projectors P≤N and PN by

F(P≤Nf)(ξ) := ηd
(
ξ

N

)
F(f)(ξ), ξ ∈ Rm × Zn,

and

PNf = P≤Nf − P≤N
2
f.

For any N ∈ (0,∞), we define

P≤N :=
∑

M≤N

PM , P>N :=
∑

M>N

PM .
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2.2. Some useful estimates. In this subsection, we discuss some useful es-
timates to prove Theorem 1.3. We note that there is a symmetric assumption for
the initial data in Theorem 1.3, but for the sake of completeness, we also discuss
the nonradial Strichartz estimate. We refer to Tao [60] for the standard Strichartz
estimate for NLS and refer to Guo-Wang [29] and the references therein for general
radial Stricharz estimates.

We say that (p, q) is admissible if

2

p
+
d

q
=
d

2
, 2 ≤ p, q ≤ ∞ (p, q, d) ̸= (2,∞, 2).

For the nonradial case, we define the following Strichartz norm

∥u∥Ss
p,q

:= ∥|∇|−d(1−σ)( 1
2−

1
q )u∥Lp

t∈IW
s,q
x

where I = [0, T ). We use u0 for the initial data and F for the nonlinearity. Consider

(2.1) (i∂t + (−∆x)
σ)u = F, u(0) = u0 ∈ Hσ(Rd).

Then we have the Strichartz estimate (see [16, 34]),

Lemma 2.1 (Strichartz estimate). Fix σ ∈ (0, 1) and s > 0. For an admissible
pair (p, q) and (a, b), we have

∥eit(−∆)σu0∥Ss
p,q

≲ ∥u0∥Hs
x

and

∥
∫ t

0

ei(t−s)(−∆)σF (s)ds∥Ss
p,q

≲ ∥|∇|sF∥La′
t∈IL

b′
x
.

Corollary 2.2. Consider (p̃, q̃) satisfying

2

p̃
+
d

q̃
=
d

2
− s+ d(1− σ)(

1

2
− 1

q
),

where s ≥ d(1− σ)( 12 − 1
q ). Consider (a, b) to be admissible pair. Then

∥eit(−∆)σu0∥Lp̃
tL

q̃
x
≲ ∥u0∥Hs

x

and

∥
∫ t

0

ei(t−s)(−∆)σF (s)ds∥Lp̃
tL

q̃
x
≲ ∥|∇x|sF∥La′

t∈IL
b′
x
.

For proving Theorem 1.3, we introduce the radial Strichartz estimate for σ-
admissible pairs (see Lemma 2.1 of [28]). Consider σ > 1

2 and u solving (2.1), then
the following estimate holds

∥u∥Lp
tL

q
x
≲ ∥u0∥Ḣγ + ∥F∥

Lp̃′
t Lq̃′

x
,

where the pairs satisfy

(2.2)
2σ

p
+
d

q
=
d

2
− γ,

2σ

p̃
+
d

q̃
=
d

2
+ γ.

In the exponent relation (2.2), we call (p, q) is σ-admissible with γ regularity; we
call (p, q) σ-admissible if γ = 0.

The previous estimates hold on Euclidean spaces of dimension d. On the waveg-
uide Rd × T, one can adopt the strategy in [62] (Proposition 2.1 for the NLS case)
based on mixed norms (or in other words vector-valued norms). We discuss this
case now. We prove



SINGULAR LEVY PROCESSES 159

Lemma 2.3. Consider (1.1) and pairs (p, q), (p̃, q̃) satisfying the exponent rela-
tions (2.2), then

∥u∥Lp
tL

q
xL2

y
≲ ∥u0∥Ḣγ + ∥F∥

Lp̃′
t Lq̃′

x L2
y
,

and

∥u∥Lp
tL

q
xH

γ
y
≲ ∥u0∥Ḣγ + ∥F∥

Lp̃′
t Lq̃′

x Hγ
y
.

Proof of Lemma 2.3. The proof of Lemma 2.3 is very similar to Proposition
2.1 of [62] (NLS case) so we just explain the difference from the NLS case here.
For the NLS case, the main idea is decomposing the functions with respect to the
orthonormal basis of L2(T) given by the eigenfunctions {ϕj}j of −∆y. For the
FNLS case, we consider ϕj = ϕj(y) then

(−∆x −∆y)ϕj = λ2jϕj , λj > 0.

So we can write u(x, y) by

u(x, y) =
∑
j

uj(x)ϕj(y),

and uj(x) in Fourier satisfies

i∂tûj +
(
|ξ|2σ + λ2σj

)
ûj = F̂j .

Hence we are reduced to the case of Guo-Wang [29] for the symbol |ξ|2σ + λ2σj and
the result follows. □

For the record, we state below the nonradial case, taking the y-direction into
consideration:

Lemma 2.4. Consider (1.1). For (p̃, q̃) and (a, b) as in Lemma 2.1, we have

∥eit(−∆)σu0∥Ss
p,qH

γ
y
≲ ∥u0∥Hs

xH
γ
y

and

∥
∫ t

0

ei(t−s)(−∆)σF (s)ds∥Ss
p,qH

γ
y
≲ ∥|∇x|sF∥La′

t∈IL
b′
x Hγ

y
.

At last, we recall the following useful lemma (see [63])

Lemma 2.5. For every 0 < s < 1, p > 0 there exists C = C(p, s) > 0 such that

∥u|u|p∥Ḣs
y
≤ C∥u∥Ḣs

y
∥u∥pL∞

y
.

3. Well-posedness theory for (gNLS) with vector-valued arguments

In this section, we establish well-posedness theory for (gNLS) in Theorem 1.3
by the standard contraction mapping method together with the conservation law
(from local to global). The main work is to construct suitable function spaces
and to show the natural Duhamel mapping is a contraction mapping. It is tightly
based on the Strichartz estimate for (gNLS) on Rd × T and careful choices of the
exponents. We refer to Section 4 of [63] for the NLS analogue and Section 3 of [65]
(the fourth-order NLS case).

We also note that the analysis in this section covers the standard NLS case
(when σ = 1), which is consistent with [63]. It is essential to assume σ > 1

2 as we
can see from the proof shortly.
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First, we introduce the integral operator by Duhamel formula,

Φu0
(u) = eit((−∆x)

σ+(−∂2
y)

σ)u0 − i

∫ t

0

ei(t−s)((−∆x)
σ+(−∂2

y)
σ)(|u|pu) ds.

Then we can construct function space and show Φu0
is a contraction mapping. For

the defocusing case, conservation law allows us to extend local well-posedness to
global well-posedness.

We define three norms,

∥u∥XT
= ∥u∥

Lq
tL

r
xH

1
2
+δ

y ([−T,T ]×Rd×T)
,

∥u∥Y 1
T
=
∑
k=0,1

∥|∇x|kσu∥Ll
tL

m
x L2

y([−T,T ]×Rd×T),

and

∥u∥Y 2
T
=
∑
k=0,1

∥|∂y|kσu∥Ll
tL

m
x L2

y([−T,T ]×Rd×T),

where (l,m) is σ-admissible and (q, r) is σ-admissible with s regularity (s+ 1
2 + δ ≤

σ). We will give the precise restrictions for the indices shortly, i.e. (3.1), (3.2) and
. Here we note that σ > 1

2 such that it is ok to find a s > 0. Combining the above
three norms together, we define

∥u∥ZT
= ∥u∥XT

+ ∥u∥Y 1
T
+ ∥u∥Y 2

T
.

Now we prove a contraction mapping for Φu0
.

Step 1. (Φu0 is from ZT to ZT ) Consider XT norm first. By Strichartz
estimate, Lemma 2.5 and the Hölder,

∥|u|pu∥
Lq̃′

t Lr̃′
x H

1
2
+δ

y

≲ ∥∥u∥p+1

H
1
2
+δ

y

∥
Lq̃′

t Lr̃′
x

≲ Tα(p)∥u∥p+1

Lq
tL

r
xH

1
2
+δ

y

.

with α(p) > 0. Here we choose the indices such that,

(3.1)
1

r̃′
=
p+ 1

r
,
1

q̃′
>
p+ 1

q
.

It is manageable since the problem is subcritical, which is similar to the NLS case.
Then consider Y 1

T and Y 2
T norms. By Strichartz and the Hölder, for k = 0, 1,

∥Dku|u|p∥Ll′
t Lm′

x L2
y
≲ ∥∥Dku∥L2

y
∥u∥pL∞

y
∥Ll′

t Lm′
x

≲ ∥∥Dku∥L2
y
∥u∥p

H
1
2
+δ

y

∥Ll′
t Lm′

x

≲ Tα(p)∥Dku∥Ll
tL

m
x L2

y
∥u∥p

Lq
tL

r
xH

1
2
+δ

y

,

with α(p) > 0, where D stands for |∇x|σ, |∂y|σ. (We note that we have used the
fractional rule, i.e. Lemma A4 in Kato [38]. See also Lemma 2.6 of Dinh [20].)

Here we choose the indices such that,

(3.2)
1

m′ =
1

m
+
p

r
,

1

l′
>

1

l
+
p

q
.

It is also manageable since the problem is subcritical, which is similar to the NLS
case.
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Thus, taking the above estimates into consideration, we can take the proper
T = T (∥u0∥Hσ

x,α
) and R = R(∥u0∥Hσ

x,α
) such that Φu0

(BZT ′ ) ⊂ BZT ′

Step 2. (Φu0
is a contraction) In this step, we show the contraction for Φu0

.
Let T,R > 0 be as in Step 1. Then there exist T̄ = T̄ (∥u0∥Hσ

x,y
) < T such that

Φu0 is a contraction on BZT̄
(0, R), equipped with the norm Lq

T̄
Lr
xL

2
y.

Using Strichartz estimate, the Hölder and the Sobolev inequality,

∥Φu0
(v1)− Φu0

(v2)∥Lq
tL

r
xL

2
y
≲ ∥v1|v1|p − v2|v2|p∥Lq̃′

t Lr̃′
x L2

y

≲ ∥∥v1 − v2∥L2
y
(∥v1∥pL∞

y
+ ∥v2∥pL∞

y
)∥

Lq̃′
t Lr̃′

x

≲ Tα(p)∥v1 − v2∥Lq
tL

r
xL

2
y
(∥v1∥p

Lq
tL

r
xH

1
2
+δ

y

+ ∥v2∥p
Lq

tL
r
xH

1
2
+δ

y

).

with α(p) > 0. Thus we conclude by taking T small sufficiently.
Step 3. (Uniqueness and Existence in Z)
It is the same as the analogue in Section 4 in [63]. We just use the contraction

mapping argument so we skip it.
Step 4. u ∈ C((−T, T );Hσ

x,y)
It is the same as the NLS analogue in Section 4 of [63] so we omit it. We

just use Strichartz estimates again as in Step 1 to guarantee that u(t, x, y) ∈
C((−T, T );Hσ

x,y).
Step 5. (Unconditional uniqueness) We prove that for

u1, u2 ∈ C((−T, T );Hσ
x,y)

are fixed points of Φu0
, then u1 = u2.

Considering the difference of the integral equations satisfied by u1 and u2 and
using Strichartz estimate,

∥u1 − u2∥Ll
tL

m
x L2

y
≲ ∥u1|u1|p − u2|u2|p∥Ll′

t Lm′
x L2

y

≲ ∥u1 − u2∥Ll
tL

m
x L2

y
(∥u1∥p

L
lp

l−2 L
mp

m−2
x L2

y

+ ∥u2∥p
L

lp
l−2 L

mp
m−2
x L2

y

)

≲ ∥u1 − u2∥Ll
tL

m
x L2

y
Tα(p)(∥u1∥p

L∞L
mp

m−2
x L2

y

+ ∥u2∥p
L∞L

mp
m−2
x L2

y

).

with α(p) > 0. It is now like the NLS case. We can let T be small enough to ensure
uniqueness. (For Sobolev inequality reason) We note that

2 <
mp

m− 2
<

2d

d+ 1− 2σ
,

is required. We note again we still need σ > 1
2 in this estimate.

The proof for the global well-posedness part in Theorem 1.3 is now complete
using vector-valued arguments.

4. Well-posedness theory for (gNLS) with decoupling arguments

This section is devoted to the proof of the well-posedness aspects of Theorem
1.3 using decoupling arguments, in the spirit of the strategy designed by Schippa
[53]. To be more specific, we consider p = 3 in (gNLS) and assume for sake of
generalization that the index of the regularity of the initial data u0 is s. We then
have

Theorem 4.1. There exists s0(d, σ) such that the initial value problem (gNLS)
with p = 2 is locally well-posed for s > s0(d, σ).
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Since the dimension of the y component here is easier to handle than in the
previous section, we choose to consider directly the general waveguide Rd−n × Tn.
The argument is based on the approximation of the Euclidean component as in [4]
together with the decoupling theorem of Bourgain and Demeter [7]. We will even
here consider the case of a multiplier m(ξ, η) = |ξ|2σ + |η|2, which means that the
diffusion is Euclidean in tori directions. The adaptation to an anomalous diffusion
is straightforward.

On a dyadic interval Ij = (2−j , 2−j+1), the mutliplier m behaves at low fre-
quencies like |ξ|2σ and at high frequencies like |η|2. An important tool in decou-
pling arguments is the behavior of the hessian of the phase function. The hessian
D2m(ξ, η) is block-diagonal with a first (d − n) × (d − n)-matrix corresponding to
the hessian of the function ξ → |ξ|2σ and a second block which is an n× n−matrix
which is a multiple of the identity. Therefore, the degeneracy of the phase m is
only dictated by the behavior of the eigenvalues at a given ξ of the hessian of |ξ|2σ
which are comparable on a dyadic interval to 2σ (2σ − 1)N2(σ−1) for a dyadic in-
teger N . Notice that the convexity of the phase changes according to σ w.r.t. the
value σ = 1/2. Finally notice that for N dyadic ∇|ξ|2σ ∼ N2σ−1. We denote by
ψ(N) := N2(σ−1) +N2 the phase function describing the behavior at dyadic scale
N of the eigenvalues of the Hessian of m. We also denote by k the minimum be-
tween the number of negative eigenvalues and positive eigenvalues of D2m, so that
actually k = 0 whenever σ > 1/2.

We start by recalling the following decoupling-type lemma.

Lemma 4.2. Suppose g, gl are Schwartz functions on Rd−n×Tn with g = P≤Ng,
such that

g(x, y) =
∑

l∈Zn,|l|≤N

∫
[−N,N ]d−n

ĝl(ξ)e
2πi(x·ξ+y·l) dξ.

Cover [−N,N ]d−n by finitely-overlapping cubes Qk of side-length ∼ 1, let {ϕk} be a
partition of unity adapted to the Qk, and define gθm,k

= e2πiy·mF−1
x (ĝmϕk). Then

for p ≥ 2(d+2−k)
d−k and any time interval I of length ∼ 1 we have

(4.1) ∥eitm(∇/i)g∥Lp(I×Rd−n×Tn)

≲ϵ
N ϵ+ d

2−
d+2
p

(min{m(N), 1})
1
p

(∑
m,k

∥e
itm(N∇/i)

N2m(N) gθm,k
wI∥2Lp(R×Rd−n×Tn)

) 1
2

,

where wI is a bump function adapted to I.

Proof. The proof of Lemma 4.2 is similar to the proof of the discrete restriction
theorem in Bourgain-Demeter [7]. We approximate functions on product space
Rd−n×Tn by functions on Rd, apply the decoupling theorem, and then take limits.
We refer to Lemma 3.2 of Barron [4] for the standard Strichartz case, which has
similar spirits. There are two differences from Barron [4] that we need to be careful
about. First, the range for p is different (more narrow). Also, we need to make
discussions regarding the value of m(N), compared to 1. Let Bl ∈ Rd−n be a fixed
ball of radius N if m(N) ≪ 1 (radius Nm(N) if m(N) ≳ 1), and let wl be a smooth
weight adapted to Bl × [−1, 1]. We observe that to prove Lemma 4.2 it will suffice
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to show that,
(4.2)

∥eitm(∇/i)g∥Lp(I×Bl×Tn) ≲ϵ
N ϵ+ d

2−
d+2
p

(min{m(N), 1})
1
p

(∑
m,k

∥e
itm(N∇/i)

N2m(N) gθm,k
wI∥2Lp(wl)

) 1
2

.

Then to prove the full estimate (4.1) on Rd−n×Tn, we choose a finitely-overlapping
collection of balls Bl that cover Rd−n, and then apply (4.2) in each Bl and use
Minkowski’s inequality to sum that:

∥eitm(∇/i)g∥p
Lp(I×Rd−n×Tn)

≲ϵ

∑
l

∥eitm(∇/i)g∥pLp(I×Bl×Tn)

≲ϵ
N ϵ+ d

2−
d+2
p

(min{m(N), 1})
1
p

∑
l

(∑
m,k

∥e
itm(N∇/i)

N2m(N) gθm,k
∥2Lp(wI)

) p
2

≲ϵ
N ϵ+ d

2−
d+2
p

(min{m(N), 1})
1
p

(∑
m,k

∥e
itm(N∇/i)

N2m(N) gθm,k
∥2Lp(w)

) p
2

,

which completes the proof of Proposition 4.2. Thus it suffices to prove (4.2). This
reduction process is standard. We note that we have to discuss two situations: i.e.
m(N) ≪ 1 and m(N) ≳ 1 respectively. The two cases are essentially similar and the
main difference is the integral range. Let’s consider the first case as an example.
For the other case, we can modify the arguments accordingly.

We start with rescaling u0 to have frequency support in [−1, 1]d. We let

u(x, y, t) = eitm(∇/i)g.

Note that

u(N−1x,N−1y,N−2m(N)−1t)

= Nd−n

∫
Bd−n

1

∑
m∈N−1Zn∩Bn

1

ĝ(Nξ,Nm)e
i(x·ξ+y·m+t(

m(Nξ)

N2m(N)
+

m(Nm)

N2m(N)
))
dξ.

For convenience, we denote the set ΛN = N−1Zn ∩Bn
1 . Similarly to Barron [4], we

then let Ef denote the extension operator as follows,

Ef =

∫
Bd−n

1

∑
m∈N−1Zn∩Bn

1

f(ξ,m)e
i(x·ξ+y·m+t(

m(Nξ)

N2m(N)
+

m(Nm)

N2m(N)
))
dξ,

where f(ξ,m) = ĝ(Nξ,Nm). After applying a change of variables on the spatial
side and using periodicity in the y variable, we see that

∥u∥Lp(BN×Tn×[0,1]) = Nd−nN
−(d+2)

p m(N)−
1
p ∥Ef∥Lp(BN2×NTn×[0,N2m(N)])

= Nd−nN
−(d+2)

p m(N)−
1
pN−n

p ∥Ef∥Lp(BN2×N2Tn×[0,N2m(N)])

≤ Nd−nN
−(d+2)

p m(N)−
1
pN−n

p ∥Ef∥Lp(BN2×N2Tn×[0,N2]).

Then following Barron [4], we introduce the operator Ẽ defined by

Ẽf =

∫
Bd−n

1

∫
Bn

1

f(ξ1, ξ2)e
i(x·ξ1+y·ξ2+t(

m(Nξ1)

N2m(N)
+

m(Nξ2)

N2m(N)
))
dξ1dξ2.
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Given a function f on [−1, 1]d−n × ΛN , let

fδ(ξ1, ξ2) =
∑

m∈ΛN

cdδ
−d1{|ξ2−m|≤δ}f(ξ1,m), δ <

1

N
,

where cd is a dimensional constant chosen for normalization. Then by Lebesgue
differentiation and Fatou lemma, we have

(4.3) ∥Ef∥Lp(BN2×N2Tn×[0,N2]) ≤ lim inf
δ→0

∥Ẽfδ∥Lp(BN2×N2Tn×[0,N2]).

We will begin by estimating Ẽf for arbitrary f on Bd
1 before specializing to fδ and

passing to the limit later in the argument. The above process reduces the waveguide
case to the Euclidean case. Then we can use Bourgain-Demeter’s decoupling result
[7] and the limiting argument (4.3) to obtain,

∥Ef∥Lp∗ (BN2×N2Tn×[0,N2]) ≤ lim inf
δ→0

N ϵ+αd
(∑
m,k

∥Ẽfδm,k∥2Lp∗ (wN2 )

)
.

The rest of the proof follows as in Barron [4]. □

We prove now the crucial (localized) Strichartz estimates whose proof has a
similar spirit with Proposition 3.4 [4]. The tori analogue of Lemma 4.3 is proved in
Schippa [53].

Lemma 4.3. Let the interval I be compact. Then, we have the following esti-
mates, holding up to any ϵ > 0,

∥PNe
itm(∇/i)f∥Lp(I×Rd−n×Tn) ≲ϵ,|I|

N
d
2−

d+2
p +ϵ

(min{m(N), 1})
1
p

∥f∥L2(Rd−n×Tn),

where p ≥ 2(d+2−k)
d−k . The number k has been introduced before.

Proof. Suppose f = P≤Nf . By interpolating with p = ∞ (via Bernstein’s

inequality) it suffices to prove the endpoint case p = 2(d+2−k)
d−k . By Lemma 4.2,

∥eitm(∇/i)f∥Lp(I×Rd−n×Tn)

≲ϵ
N ϵ+ d

2−
d+2
p

(min{m(N), 1})
1
p

(∑
m,k

∥e
itm(N∇/i)

N2m(N) fθm,k
wI∥2Lp(R×Rd−n×Tn)

) 1
2

.

By Plancherel theorem it suffices to prove the desired estimate when f = Pθf and
θ = θm,k. In this case, we apply Hölder’s inequality in time to get

∥e
itm(N∇/i)

N2m(N) fθwI∥Lp(R×Rd−n×Tn) ≲ ∥e
itm(N∇/i)

N2m(N) fθ∥Lq
tL

p
x(R×Rd−n)

where q = 4p
(d−n)(p−2) is the admissible time exponent for the Strichartz estimate

on Rd−n. Applying the Strichartz estimate for fractional Schrödinger operator (see
[29, 16, 20] and the reference therein),

∥e
itm(N∇/i)

N2m(N) fθ∥Lq
tL

p
x(R×Rd−n) ≲ ∥fθ∥L2

x(R×Rd−n).

This completes the proof.

□
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Remark 4.4. By interpolation with the trivial bound L∞
t L

2
x or using the Bern-

stein inequality, a Lp
tL

q
x-version Strichartz estimate can be obtained as below

∥PNe
itm(∇/i)u0∥Lp

tL
q
x(I×Rd−n×Tn) ≲ϵ,|I|

N
d
2−

2
p−

d
q+ϵ

(min{m(N), 1})
1
p

,

where p, q ≥ 2(d+2−k)
d−k .

One can then prove the following bilinear estimates which give the desired well-
posedness result for the cubic generalized NLS model in the setting of waveguide
manifolds, i.e. the statement in Theorem 4.1.

Proposition 4.5. Let I be a compact interval. Then, there exists s(d, k) such
that we have the estimate,∥∥PNe

itm(∇/i)u0PKe
itm(∇/i)v0

∥∥
L2

t,x(I×Rd−n×Tn)
≲Cs,|I| K

2s∥PNu0∥L2∥PKu0∥L2

to hold for s > s(d, k).

Proof. We note that the proof is based on the Strichartz Lemma 4.3. We
refer to Proposition 1.3 of [53] for the tori version.

Let PN =
∑

K1
RK1

, where RK projects to cubes of side-length K. Then, by
means of almost orthogonality∥∥PNe

itm(∇/i)u0PKe
itm(∇/i)v0

∥∥2
L2

t,x(I×Rd−n×Tn)

≲
∑
K1

∥∥PK1
eitm(∇/i)u0PKe

itm(∇/i)v0
∥∥2
L2

t,x(I×Rd−n×Tn)

In viewing of Hölder’s inequality we are left with estimating two L4
t,x-norms. Clearly,

by Lemma 4.3, ∥∥PKe
itϕ(∇/i)v0

∥∥
L4

t,x(I×Rd−n×Tn)
≲ Ks∥PKv0∥L2 .

Then it suffices to treat the other term. The rest of the proof follows line to line
from Proposition 1.3 of [53] so we omit. □

5. Morawetz estimates on waveguides

In this section, we establish a Morawetz estimate for solutions to (gNLS) on
Rd × T. This step is crucial to obtain the decay property for solutions of (gNLS).

We first define the following Morawetz action on the waveguide Rd × T:

Mϕ[u(t)] := 2 Im

∫
Rd×T

u(t, x, y)∇xϕ(x) · ∇xu(t, x, y) dxdy.

Note that, employing the similar idea in [51], the weight function ∇xϕ(x) that we
chose here depends on only x, and not on y.

Then we present the main result in this section. For a ready-to-use Morawetz
estimate, see Corollary 5.2.

Lemma 5.1. If u solves (gNLS), then the Morawetz action satisfies the identity

d

dt
Mϕ[u(t)] =

∫ ∞

0

ms

∫
Rd×T

(
4∂xk

um(∂xkxl
ϕ)∂xl

um −∆2
xϕ |um|2

)
dxdydm

− 2pµ

p+ 2

∫
Rd×T

∆xϕ |u|p+1
dxdy.
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Proof of Lemma 5.1. Following the strategy in [6], we define

Γϕ := i(∇x · ∇xϕ+∇xϕ · ∇x),

that is

Γϕf := i[∇x · ((∇xϕ)f) +∇xϕ · ∇xf ].

Under this notation, we claim that

⟨u(t),Γϕ(t)⟩ = −Mϕ[u(t)].(5.1)

Note that ⟨f, g⟩ = Re
∫
Rd×T fg dxdy.

In fact,

⟨u(t),Γϕ(t)⟩ = ⟨u(t), i[∇x · ((∇xϕ)u) +∇xϕ · ∇xu]⟩
= ⟨u, i∇x · ((∇xϕ)u)⟩+ ⟨u, i∇xϕ · ∇xu⟩ .

We then compute the two inner products separately:

⟨u, i∇xϕ · ∇xu⟩ = Re

∫
Rd×T

u(i∇xϕ · ∇xu) dxdy

= − Im

∫
Rd×T

u∇xϕ · ∇xu dxdy = −1

2
Mϕ;

and

⟨u, i∇x · ((∇xϕ)u)⟩

= Re

∫
Rd×T

ui∇x · ((∇xϕ)u) dxdy = − Im

∫
Rd×T

u∂xl
(∂xl

ϕu) dxdy

= − Im

∫
Rd×T

u∂xlxl
ϕu dxdy − Im

∫
Rd×T

u∂xl
ϕ∂xl

u dxdy

= − Im

∫
Rd×T

u∇xϕ · ∇xu dxdy = −1

2
Mϕ.

Therefore, by combining these two terms, we conclude the claim (5.1)

⟨u(t),Γϕ(t)⟩ = −Mϕ[u(t)].

Next, we compute the derivative of Mϕ[u(t)] with respect to time t. Using
(gNLS)

∂tu = i
(
(−∆x)

σ + (−∂2y)σ
)
u− iµ|u|pu
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and Plancherel theorem, we write

d

dt
Mϕ[u(t)]

=

〈
d

dt
u(t),Γϕu(t)

〉
+

〈
u(t),

d

dt
Γϕu(t)

〉
=
〈
i
(
(−∆x)

σ + (−∂2y)σ
)
u− iµ |u|p u,Γϕu(t)

〉
+

〈
u(t),Γϕ

d

dt
u(t)

〉
=
〈
i
(
(−∆x)

σ + (−∂2y)σ
)
u,Γϕu(t)

〉
− ⟨iµ |u|p u,Γϕu(t)⟩

+
〈
u(t), iΓϕ(

(
(−∆x)

σ + (−∂2y)σ
)
u− µ |u|p u)

〉
= −

〈
u(t),

(
(−∆x)

σ + (−∂2y)σ
)
iΓϕu(t)

〉
+
〈
u(t), iΓϕ

(
(−∆x)

σ + (−∂2y)σ
)
u(t)

〉
+ ⟨u(t), µ |u|p iΓϕu(t)⟩ − ⟨u(t), iΓϕ(µ |u|p u)⟩

= −
〈
u(t), [(−∆x)

σ + (−∂2y)σ, iΓϕ]u(t)
〉
+ ⟨u(t), [µ |u|p , iΓϕ]u(t)⟩ ,

where we used the commutator notation [A,B] = AB −BA.
Noticing that

[(−∂2y)σ, iΓϕ] = 0,

we then have

d

dt
Mϕ[u(t)] = −⟨u(t), [(−∆x)

σ, iΓϕ]u(t)⟩︸ ︷︷ ︸
I

+ ⟨u(t), [µ |u|p , iΓϕ]u(t)⟩︸ ︷︷ ︸
II

=: I + II.

In the rest of the proof, we will work on the linear term I and the nonlinear
term II separately.

First, we consider the linear term I. In order to deal with the [(−∆x)
σ, iΓϕ]

term inside I, we will employ the following Balakrishinan’s representation formula
for (−∆x)

σ introduced in [3] for σ ∈ (0, 1),

(−∆x)
σ =

sin(πσ)

π

∫ ∞

0

mσ−1 −∆x

−∆x +m
dm.(5.2)

In general, for A ≥ 0, m > 0, the following commutator has the form of

[
A

A+m
,B] = m

1

A+m
[A,B]

1

A+m
.

In particular, if taking A = −∆x and combining with (5.2), we write

[(−∆x)
σ, B] =

sin(πσ)

π

∫ ∞

0

mσ 1

−∆x +m
[−∆x, B]

1

−∆x +m
dm.(5.3)

Then taking B = iΓϕ in (5.3), we have

[(−∆x)
σ, iΓϕ] =

sin(πσ)

π

∫ ∞

0

mσ 1

−∆x +m
[−∆x, iΓϕ]

1

−∆x +m
dm.(5.4)

Now we claim that

[−∆x, iΓϕ] = 4∂xk
(∂xkxl

ϕ)∂xl
+∆2

xϕ,(5.5)

where to emphasize that ∆x takes derivative only in the Rd direction, we put x in
its subscript. Similarly, in the following calculations, ∂xl

and ∂xk
are differential

operators in Rd directions, while ∂y is the T direction derivative.
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In fact, recalling

iΓϕf := −[∇x · ((∇xϕ)f) +∇xϕ · ∇xf ],(5.6)

we write

[−∆x, iΓϕ]f

= −∆x(iΓϕ)f + iΓϕ(∆xf)

= ∆x∇x · ((∇xϕ)f) + ∆x(∇xϕ · ∇xf)−∇x((∇xϕ)∆xf)−∇xf · ∇x(∆xf)

= ∂xkxk
∂xl

(∂xl
ϕf) + ∂xkxk

(∂xl
ϕ∂xl

f)− ∂xl
(∂xl

ϕ∂xkxk
f)− ∂xl

∂xlxkxk
f.(5.7)

Then using the product rule, we continue from (5.7)

[−∆x, iΓϕ]f

= ∂xkxk
(∂xlxl

ϕf) + 2∂xkxk
(∂xl

ϕ∂xl
f)− ∂xlxl

ϕ∂xkxk
f

− ∂xl
ϕ∂xkxkxl

f − ∂xl
f∂xkxkxl

f

= ∂xkxkxlxl
ϕf + 2∂xkxlxl

ϕ∂xk
f + ∂xlxl

ϕ∂xkxk
f + 2∂xkxkxl

ϕ∂xl
f

+ 4∂xkxl
ϕ∂xkxl

f + 2∂xl
ϕ∂xkxkxl

f

− ∂xlxl
ϕ∂xkxk

f − ∂xl
∂xkxkxl

f − ∂xl
ϕ∂xkxkxl

f

= ∆2
xϕf + 4∂xkxlxl

ϕ∂xk
f + 4∂xkxl

ϕ∂xkxl
f

= 4∂xk
(∂xkxl

ϕ)∂xl
f +∆2

xϕf.

This proves the claim (5.5).
At this point, we are in a good position to compute the term I. First, combining

(5.5) and (5.4), we write

[(−∆x)
σ, iΓϕ] =

sin(πσ)

π

∫ ∞

0

mσ 1

−∆x +m
[−∆x, iΓϕ]

1

−∆x +m
dm

=
sin(πσ)

π

∫ ∞

0

mσ 1

−∆x +m
[4∂xk

(∂xkxl
ϕ)∂xl

+∆2
xϕ]

1

−∆x +m
dm.

Therefore

I = −⟨u(t), [(−∆x)
σ, iΓϕ]u⟩

=

∫
Rd×T

u
sin(πσ)

π

∫ ∞

0

mσ 1

−∆x +m
[−4∂xk

(∂xkxl
ϕ)∂xl

−∆2
xϕ]

1

−∆x +m
udmdxdy.

For m > 0, we define

um(t) := cσ
1

−∆x +m
u(t) = cσF−1

(
û(t, ξ)

|ξ|2 +m

)
,

where

cσ :=

√
sin(πσ)

π
.
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Under such change of variables and with Fubini’s theorem, Plancherel theorem,
and integration by parts, we obtain

I =

∫ ∞

0

∫
Rd×T

ucσm
σ 1

−∆x +m
[−4∂xk

(∂xkxl
ϕ)∂xl

−∆2
xϕ]um dxdydm

=

∫ ∞

0

mσ

∫
Rd×T

cσ
−∆x +m

u[−4∂xk
(∂xkxl

ϕ)∂xl
−∆2

xϕ]um dxdydm

=

∫ ∞

0

mσ

∫
Rd×T

um[−4∂xk
(∂xkxl

ϕ)∂xl
−∆2

xϕ]um dxdydm

=

∫ ∞

0

mσ

∫
Rd×T

4∂xk
um(∂xkxl

ϕ)∂xl
um −∆2

xϕ |um|2 dxdydm.

Then we consider the nonlinear term II. Noticing that

∇(|u|p+2
) =

p+ 2

p
∇(|u|p) |u|2 ,

and using (5.6) again, we obtain

II = ⟨u(t), [µ |u|p , iΓϕ]u(t)⟩
= −µ ⟨u(t), [|u|p ,∇x · ∇xϕ+∇xϕ · ∇x]u⟩
= −µ ⟨u(t), |u|p ∇x · ((∇xϕ)u)⟩ − µ ⟨u(t), |u|p ∇xϕ · ∇xu⟩

= − 2pµ

p+ 2

∫
Rd×T

∆xϕ |u|p+2
dxdy.

Therefore, together with the computation on terms I and II, we get

d

dt
Mϕ[u(t)] =

∫ ∞

0

ms

∫
Rd×T

(
4∂xk

um(∂xkxl
ϕ)∂xl

um −∆2
xϕ |um|2

)
dxdydm

− 2pµ

p+ 2

∫
Rd×T

∆xϕ |u|p+2
dxdy,

which implies Lemma 5.1. □

Corollary 5.2. Assume u to be a smooth solution to the initial value problem
(gNLS) with d ≥ 3, then we have the following Morawetz inequality∫

R

∫
Rd×T

|u(t, x, y)|p+2

|x|
dxdydt ≲ sup

t∈R
∥u(t)∥2

Ḣ
1
2
≲ sup

t∈R
∥u(t)∥2Hσ .

Proof of Corollary 5.2. We take ϕ(x) = |x| (independent on y) in Lemma
5.1. Hence

∇xϕ =
x

|x|
,

∆xϕ =
d− 1

|x|
,

∂xkxl
ϕ =

δxkxl

|x|
− xkxl

|x|3

∆2
xϕ =

{
−πδ(x), d = 3,

−(d− 1)(d− 3) |x|−3
, d ≥ 4.
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Under such choice of ϕ, we claim that∫ ∞

0

ms

∫
Rd×T

(
4∂xk

um(∂xkxl
ϕ)∂xl

um −∆2
xϕ |um|2

)
dxdydm ≥ 0.(5.8)

Assuming (5.8), we obtain for the defocusing equation (µ = −1 in (gNLS))

d

dt
M|x|[u(t)] ≥

2p

p+ 2

∫
Rd×T

∆x(|x|) |u(t, x, y)|p+2
dxdy

=
2p

p+ 2

∫
Rd×T

d− 1

|x|
|u(t, x, y)|p+2

dxdy,(5.9)

which gives Corollary 5.2 by combining the following upper bound of M|x| in [17]∣∣M|x|[u(t)]
∣∣ ≲ sup

t
∥u(t)∥2

Ḣ
1
2
≲ sup

t
∥u(t)∥2Hσ ,

and integrating in t using the fundamental theorem of calculus.
To see (5.8), we write (when d ≥ 4)∫

Rd

(
4∂xk

um(∂xkxl
ϕ)∂xl

um −∆2
xϕ |um|2

)
dx

=

∫
Rd

(
4∂xk

um(
δxkxl

|x|
− xkxl

|x|3
)∂xl

um +
(d− 1)(d− 3)

|x|3
|um|2

)
dx.(5.10)

The d = 3 case can be handled similarly, hence omitted.
Using the notation ∇e⃗u = (e⃗ · u) e⃗

|e⃗|2 and ∇⊥
e⃗ u = ∇u−∇e⃗u with e⃗ = x⃗, we can

decompose ∇u orthogonally. Then we have

∂xk
umxkxl∂xl

um ≤ 1

2
|∂xk

umxk|2 +
1

2
|∂xl

umxl|2

≤ 1

2
|∇e⃗um|2 |x|2 + 1

2
|∇e⃗um|2 |x|2

= |∇xum|2 |x|2 .

Then continuing from (5.10), we obtain

(5.10) ≥
∫
Rd

(
4
|∇xum|2

|x|
− 4

|∇e⃗um|2 |x|2

|x|3
+

(d− 1)(d− 3)

|x|3
|um|

)
dx

=

∫
Rd

(
4
|∇xum|2 − |∇e⃗um|2

|x|
+

(d− 1)(d− 3)

|x|3
|um|2

)
dx

=

∫
Rd

(
4

∣∣∇⊥
e⃗ um

∣∣2
|x|

+
(d− 1)(d− 3)

|x|3
|um|2

)
dx ≥ 0,

then (5.8) follows by integrating (5.9) in both y and m. This completes the proof
of Corollary 5.2.

□

6. Proof of the scattering result

In this section, we give the proof for the scattering result in Theorem 1.3. There
are four steps and we will discuss them step by step. The strategy has similar spirit
with [63, 65].
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6.1. Step 1: the Morawetz bound. Recall the Morawetz estimate (Corol-
lary 5.2) established in Section 5, we have

(6.1)

∫
R

∫
Rd×T

|u(t, x, y)|2+p

|x|
dtdxdy ≲data 1.

6.2. Step 2: Proof of the decay property. Based on the Morawetz bound
above, we aim to show the decay property of (gNLS), i.e.

lim
t→∞

∥u(t, x, y)∥Lq
x,y(Rd×T) = 0,

where 2 < q ≤ 2 + r (for any r < 2+4σ+dp+p+2pσ
2d ). This decay property is essential

for us to obtain the scattering result.

Remark 6.1. One may also consider the (stronger) pointwise type decay which
describes the decay rate of nonlinear solutions quantitatively. See [23, 67] for recent
results and the references therein.

In viewing of interpolation with the mass conservation law, it suffices to show
the endpoint case, that is,

(6.2) lim
t→∞

∥u(t, x, y)∥L2+r
x,y (Rd×T) = 0.

We will prove it by contradiction. Before starting with the proof, we recall a radial
Sobolev embedding as follows,

Lemma 6.2 (Radial Sobolev Embeddings in Rd in [61]). Let d ≥ 1, 1 ≤ q ≤ ∞,
0 < s < d and β ∈ R obey the conditions

β > −d
q
, 0 ≤ 1

p
− 1

q
≤ s

and the scaling condition

β + s =
d

p
− d

q

with at most one of the equalities

p = 1, p = ∞, q = 1, q = ∞,
1

p
− 1

q
= s

holding. Then for any spherically symmetric function f ∈ Ẇ s,p(Rd), we have∥∥∥|x|β f∥∥∥
Lq(Rd)

≲ ∥|∇|s f∥Lp(Rd) .

Let β satisfies (2 + p)β + 1 = 2 + r.
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Via Lemma 6.2, Hölder inequality and Sobolev embedding, we have

∥u(t, x, y)∥L2+r
x,y (Rd×T)

=
( ∫

|u(t, x, y)|2+r dxdy
) 1

2+r

=
( ∫ |u(t, x, y)|(2+p)β

|x|β
· |x|β |u|

) 1
2+r

≲
( ∫

Rd×T

|u(t, x, y)|2+p

|x|
dxdy

) β
2+r ·

( ∫
(|x|β |u|)

1
1−β dxdy

) 1−β
2+r

=
( ∫

Rd×T

|u(t, x, y)|2+p

|x|
dxdy

) β
2+r ·

(
∥(|x|β |u|)∥

L
1

1−β
x,y

) 1
2+r

≲
( ∫

Rd×T

|u(t, x, y)|2+p

|x|
dxdy

) β
2+r ·

(∥∥∥|∇|su∥L2
x

∥∥
L

1
1−β
y

) 1
2+r

≲
( ∫

Rd×T

|u(t, x, y)|2+p

|x|
dxdy

) β
2+r ·

(
∥|∇x|s|∇y|τu∥L2

xL
2
y

) 1
2+r

≲
( ∫

Rd×T

|u(t, x, y)|2+p

|x|
dxdy

) β
2+r .

We require the indices satisfy:

s+ τ ≤ σ (regularity requirement from the energy conservation),

(β − 1

2
)+ = τ (Sobolev embedding in 1D),

β + s =
d

2
− d(1− β) (radial Sobolev embedding),

(2 + p)β + 1 = 2 + r (the relation between β and r).

We need to choose β satisfies β < 1
2 +

1
2+σ

d . Correspondingly, r < 2+4σ+dp+p+2pσ
2d .

That is the exponent requirement in the decay estimate (6.2).
We are now ready to prove (6.2) by contradiction argument. If (6.2) does not

hold, using the estimate above, we deduce the existence of a sequence {tn}n → ∞
and ϵ0 > 0 such that( ∫

Rd×T

|u(tn, x, y)|2+p

|x|
dxdy

) β
2+r ≥ ∥u(tn, x, y)∥L2+r

x,y (Rd×T) ≥ ϵ0 > 0.

Without loss of generality, we consider tn → +∞. Similar as in [63], we get the
existence of T > 0 such that

inf
n

inf
t∈(tn,tn+T )

( ∫
Rd×T

|u(t, x, y)|2+p

|x|
dxdy

) β
2+r ≥ ϵ0

2
.

Notice that since {tn}n → +∞ then we can assume (modulo subsequence) that the
intervals (tn, tn + T ) are disjoint. In particular we have∑

n

T (
ϵ0
2
)

2+r
β ≤

∑
n

∫ tn+T

tn

( ∫
Rd×T

|u(t, x, y)|2+p

|x|
dxdy

)
dt

≤
∫ ( ∫

Rd×T

|u(t, x, y)|2+p

|x|
dxdy

)
dt
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and hence we get a contradiction since the left hand side is divergent and the right
hand side is bounded by (6.1).

6.3. Step 3: Proof of the spacetime bound. We aim to show,

(6.3) u ∈ Lqθ
t L

rθ
x H

1
2+δ
y (Rt × Rd × T)

and

lim
t1,t2→∞

(∥u∥Ll′
t Lm′

x L2
y([t1,t2]×Rd×T) + ∥|∇x|σ(u)∥Ll

tL
m
x L2

y([t1,t2]×Rd×T)

+ ∥|∂y|σ(u)∥Ll
tL

m
x L2

y([t1,t2]×Rd×T)) <∞.

The above spacetime bounds are sufficient to show the scattering for (gNLS).
In this step, all spacetime norms are over Rt × Rd × T unless indicated otherwise.
For example, we define

∥f(t)∥Lp
t>t0

:=

(∫ ∞

t0

|f(t)|p dt
) 1

p

for any given time-dependent function f(t), and similarly we can define ∥f(t)∥Lp
t<t0

.

We note that we will apply an H
1
2+δ
y valued version of the critical analysis of [10].

Proof. Using Strichartz estimates and the Hölder inequality,

∥u∥
L

qθ
t>t0

L
rθ
x H

1
2
+δ

y

≲ ∥u0∥Hσ(Rd×T) + ∥|u|pu∥
L

q̃θ
′

t>t0
L

r̃θ
′

x H
1
2
+δ

y

≲ ∥u0∥Hσ(Rd×T) + ∥u∥1+p

L
(1+p)q̃θ

′
t>t0

L
(1+p)r̃θ

′
x H

1
2
+δ

y

≲ ∥u0∥Hσ(Rd×T) + ∥u∥(1+p)θ

L
qθ
t>t0

L
rθ
x H

1
2
+δ

y

∥u∥(1+p)(1−θ)

L∞
t>t0

L
pd
2

x H
1
2
+δ

y

.

Similar to Lemma 2.5 in [63] (this lemma is an analysis result which does not involve
the nonlinear PDE structure so we can use it directly), based on the decay property
(6.2), we can further obtain

(6.4) ∥u∥
L

pd
2

x H
1
2
+δ

y

= o(1).

Using the decay property (6.4), we see for every ϵ > 0 there exists t0 = t0(ϵ) > 0
such that

∥u∥
L

qθ
t>t0

L
rθ
x H

1
2
+δ

y

≤ C∥u0∥H2(Rd×T) + ϵ∥u∥
L

qθ
t>t0

L
rθ
x H

1
2
+δ

y

.

We can now use the continuity argument to obtain

∥u∥
L

qθ
t>0L

rθ
x H

1
2
+δ

y

<∞.

Similarly, we obtain ∥u∥
L

qθ
t<0L

rθ
x H

1
2
+δ

y

<∞.

Now we consider the second estimate. We show ∥|∂y|σ(u)∥Ll
tL

m
x L2

y
, the other

estimates are similar. Using Strichartz estimate and the Hölder inequality,

∥|∂y|σ(u)∥Ll
t>t0

Lm
x L2

y
≲ ∥u0∥Hσ(Rd×T) + ∥|∂y|σ(|u|pu)∥Ll′

t>t0
Lm′

x L2
y

≲ ∥u0∥Hσ(Rd×T) + ∥|∂y|σ(u)∥Ll
t>t0

Lm
x L2

y
∥u∥p

L
qθ
t>t0

L
rθ
x L∞

y

≲ ∥u0∥Hσ(Rd×T) + ∥|∂y|σ(u)∥Ll
t>t0

Lm
x L2

y
∥u∥p

L
qθ
t>t0

L
rθ
x H

1
2
+δ

y

.
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We conclude by choosing t0 large enough and by recalling (6.3).
For FNLS, due to the Strichartz estimates and Sobolev embedding, we choose

the indices satisfying,

s+
1

2
+ δ ≤ σ,

(regularity requirement from the energy conservation)

2σ

qθ
+

d

rθ
=
d

2
− s,

2σ

qθ
+

d

r̃θ
+

2σ

q̃θ
+

d

rθ
= d,

(Strichartz exponent relations)

1

(p+ 1)q̃θ
′ =

θ

qθ
,

1

(p+ 1)r̃θ
′ =

θ

rθ
+

2(1− θ)

pd
,

(the Hölder inequality, or say, interpolation) and

2σ

l
+
d

m
=
d

2
,

1

m′ =
1

m
+

p

rθ
,

1

l′
=

1

l
+

p

qθ

(Strichartz exponent relations and the Hölder inequality). □

6.4. Step 4: Proof of the scattering asymptotics. In fact by using the
integral equation, it is sufficient to prove that

lim
t1,t2→∞

∥∥∥∥∫ t2

t1

e−is((−∆x)
σ−∂2σ

y )(|u|pu) ds
∥∥∥∥
Hσ

x,y(Rd×T)
= 0.

Moreover, using Strichartz estimates, we only need to show,

lim
t1,t2→∞

(
∥|u|pu∥Ll′

t Lm′
x L2

y([t1,t2]×Rd×T) + ∥|∇x|σ(|u|pu)∥Ll′
t Lm′

x L2
y([t1,t2]×Rd×T)

+∥|∂y|σ(|u|pu)∥Ll′
t Lm′

x L2
y([t1,t2]×Rd×T)

)
= 0.

Noticing the two established estimates, the above limit follows in a straightforward
way. Thus we proved scattering in the energy space.

7. Further remarks

In this section, we make a few more remarks on this research line, i.e. long time
dynamics for dispersive equations on waveguide manifolds. As mentioned in the
introduction, this area has been developed a lot in recent decades. The authors are
interested in this research line for several years. Though many theories/tools/results
have been established, there are still many interesting open questions left. We list
some interesting related problems in this line for interested readers.

1. The critical regime. The cases we are considering in this paper are of a
‘double subcritical’ nature (gNLS). In fact, it is also quite interesting to consider
the scattering theory for the critical regime. For example,

(i∂t + (−∆x)
σ + (−∂2y)σ)u = µ|u| 4σd u, u(0, x, y) = u0(x, y) ∈ Hσ(Rd × T),

and

(i∂t + (−∆x)
σ + (−∂2y)σ)u = µ|u|

4σ
d+1−2σ u, u(0, x, y) = u0(x, y) ∈ Hσ(Rd × T).

The first one is of mass-critical nature and the second one is of energy-critical nature.
New techniques are needed including function spaces, profile decomposition, profile
approximations and even resonant systems. See [13, 30, 68, 69] for the NLS case.
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2. Improvements/generalizations for Theorem 1.3. One may also try to remove
the radial assumption in Theorem 1.3 or consider (gNLS) on more general waveguide
manifolds Rn × Tm. However, when m ≥ 2, one can at most show the global well-
posedness since the scattering is not expected to hold. Another point is to consider
the cases d = 1, 2. Some more techniques are required, such as the Morawetz-type
estimate in 1D and 2D (see Section 5).

One may consider other problems for (gNLS) such as growth of Sobolev norms
(weak turbulence) or low regularity type results (see [70] and the references therein).

3. Scattering for focusing NLS/4NLS/gNLS on waveguide manifolds. The re-
sults discussed in this paper concern mainly the defocusing case. In general, large
data scattering for the focusing NLS (or other dispersive equations) on waveguides
is comparably less understood than the defocusing case. Threshold assumptions
are necessary and new ingredients are needed to handle this type of problems. See
[66] for a recent global well-posedness result, see [21, 22, 39, 41] for the Euclidean
results and see [12, 49] for some very recent scattering result.

4. Critical NLS on higher dimensional waveguide manifolds. For critical NLS
(or other dispersive models) on waveguide manifolds, most of the models are lower
dimensional (with no higher than four whole dimensions), which leads to quintic
or cubic nonlinearity. This gives one advantage to applying function spaces to deal
with nonlinearity. In general, the difficulty of the critical NLS problem on Rm×Tn

increases if the dimension m + n is increased or if the number m of copies of R is
decreased (which is concluded in [36]). There are no large data global results for
critical NLS on waveguide manifolds with at least 5 whole dimensions, to the best
knowledge of the authors. Moreover, the Hartree analogues are also less understood.

5. NLS on other product spaces. Instead of waveguide manifolds, one may
consider dispersive equations on other types of product spaces, for example, Rd×Sn
where Sn are n-dimensional spheres (Sn can be replaced by other manifolds). See
[50] for a global well-posedness result of NLS on pure spheres. In this regime, NLS
may be a good model to start with. One can also replace Sn by other manifolds.
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