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Abstract. Based on the recent surprising work on the symmetry break-

ing phenomenon of the Allen-Cahn equation [11, 12], we consider the one-

dimensional parabolic sine-Gordon equation with periodic boundary condi-
tions. Particularly, we derive a strong dependence of the non-trivial steady

states on the diffusion coefficient κ and provide some description on them for

0 < κ < 1. To further investigate the property of energy associated to the
steady states, we give a complete classification and prove the monotonicity of

the ground state energy with respect to the diffusion constant κ. Finally, we

identify the exact decay rate of the solution to the parabolic equation together
with the explicit leading term for κ ≥ 1.
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1. Introduction

In this paper, we consider the following one-dimensional parabolic sine-
Gordon equation on the domain T = [−π, π]

(1.1)

{
∂tu = κ2∂xxu− f(u), (t, x) ∈ (0,∞)× T,
u|t=0 = u0,
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where κ is the diffusion constant, f(u) = − sinu = F ′(u), and F (u) = cosu + 1 is
the usual double-well potential. The unknown function u : T → R represents the
concentration difference in the phase field context and typically takes the value in
[−π, π].

The sine-Gordon model was first discovered in the 1860s when studying surfaces
with constant negative curvature [2]. Since then, it has been widely investigated
in both physics and geometry. Due to its complete integrability, the sine-Gordon
model occupies a particular position in other well-known nonlinear scalar field the-
ories. One can see [4, 15, 16] and the references therein for the background in
details.

The classical one-dimensional sine-Gordon equation

(1.2)
∂2ϕ

∂x2
− ∂2ϕ

∂t2
= sinϕ

is used to approximate the differential equation, which describes the propagation of
a slip in an infinite chain of elastically bound atoms lying over a fixed lower chain
of similar atoms (cf. [6]). Concerning equation (1.2), G.L. Lamb [9] proved that it
admits a solution of the following form

ϕ = 4arctan (X(x)/T (t)) .

Based on the expression, we can easily find out that X(x) and T (t) must satisfy

(X ′(x))2 = kX4(x) +mX2(x) + n,

(T ′(t))2 = −kT 4(t) + (m− 1)T 2(t)− n,

where k,m, n are arbitrary constants. For a special case, k = 0 and n = m, we can
get

X(x) = sinh
√
mx, T (t) =

m

m− 1
cosh

√
(m− 1)t,

and

ϕ = 4arctan

(
u2 sinh x√

1−u2

cosh ut√
1−u2

)
,

where

u =
√

1− 1/m.

This solution has been already discovered, which was used to describe a collision
between two kinks in a centre-of-mass coordinate system, see [14] and the reference
therein.

It is natural to extend (1.2) in high spatial dimensions. Particularly, in the two
spatial dimension, the equation reads as

(1.3)
∂2ϕ

∂x2
+

∂2ϕ

∂y2
− ∂2ϕ

∂t2
= sinϕ,

which is invariant under the Lorentz transformation. Barone-Esposito-Magee [1]
concluded that particle-like solutions of (1.3) occur only if the boundary conditions
at the origin are able to provide the gradient of

∇ϕ ≈ −α
ūr

r
,

where ūr is a unit vector in a radial direction. We refer the readers to [4, 5, 10, 13]
for more background.
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Our parabolic sine-Gordon equation (1.1) can be viewed as the parabolic version
of the usual wave-type sine-Gordon equation in the phase-field context. Recently, in
the work of Li-Quan-Tang-Yang [11], they observe the symmetry breaking phenom-
enon in the typical high-precision computation of the Allen-Cahn equation with very
smooth initial data. It happens due to the manifestation of the gradual accumula-
tion of non-negligible machine round off errors over time. In fact, this phenomenon
also happens for the other equations with double well potential. In order to solve
this issue, they proposed a new Fourier filter method which works successfully for a
class of initial data with certain symmetry and band-gap properties. Furthermore,
they obtained several interesting results concerning the one-dimensional Allen-Cahn
equation with periodic boundary conditions, including the complete classification
of steady states, the monotonicity property of the associated energy to the diffusion
constant and the asymptotic behavior of the profiles in [12]. In the current paper,
we would like to consider the same problem for the sine-Gordon equation, where
the nonlinearity term behaves similarly as the Allen-Cahn equation. Concerning
the steady state of the sine-Gordon equation, Cheng-Li-Quan-Yang [3] established
the maximum principle on the torus for all dimensions and classified all bounded
steady states in the one-dimensional for (1.1), this is a starting point of our work
in this paper.

To get a better understanding of the steady state, we shall consider the following
elliptic equation on the real line, i.e.

(1.4) κ2u′′ + sinu = 0 in R.
The first result of this paper is:

Theorem 1.1. Let 0 < κ < 1 and mκ be the largest positive integer such that
mκ < 1/κ, then the equation (1.4) admits exactly mκ non-constant 2π periodic
solutions up to some translation and odd reflection.

In [3], Cheng-Li-Quan-Yang showed that any periodic solution of (1.4) with
|u(0)| ≤ π is bounded, i.e. |u| ≤ π. Except for the trivial solutions u = ±π, all
the other nontrivial solutions satisfy |u| < π and our interests are focused on these
solutions.

For equation (1.4), we introduce the associated energy

(1.5) E(u) =

∫
R

(
κ2

2
|u′|2 + cosu+ 1

)
dx.

Based on the (1.5), we further define the energy of the periodic functions

(1.6) Eκ(u) =

∫
T

(
κ2

2
|u′|2 + cosu+ 1

)
dx.

Let

(1.7) Eκ = inf
u∈F

Eκ(u),

where

F =
{
ϕ ∈ H1(T)

∣∣∣ϕ(x) = ϕ(x+ 2π) and |ϕ| < π, x ∈ R
}
.

Usually, the 2π-periodic solution uκ of (1.4) is called ground state if uκ is odd
and achieves Eκ. For a fixed κ ∈ (0, 1), it can be obtained from [3, Proposition 3.2]
that the ground state solution is unique after translation and reflection if necessary.
For convenience, we introduce the notion of odd zero-up solution, which is odd and
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the first derivative at zero is positive. Based on it, we also introduce the notion
of odd zero-up ground states Uκ, if a ground state is odd zero-up solution (see
Definition 3.1). For any 0 < κ < 1, defining mκ to be the unique integer such that

1

mκ + 1
≤ κ <

1

mκ
,

and each j = 1, · · · ,mκ,

(1.8) ũκ,j(x) = Ujκ(jx),

then {ũκ,j}mκ
j=1 are all the possible odd zero-up solutions to (2.1). In fact, the energy

of ũκ,j(x) satisfies

Eκ(ũκ,j) =

∫
T

(
κ2

2
(∂xũκ,j)

2 + cos ũκ,j + 1

)
dx = Ejκ(Ujκ).

Now we state the following theorem on the energy functional Eκ(u) of the 2π-
periodic solutions.

Theorem 1.2. Let Eκ be defined in (1.7). Then it can be achieved for any
κ > 0. Furthermore, the following hold:

(a) Eκ = 4π for κ > 1 and it is only achieved by trivial solution u = 0.
(b) Eκ is achieved by Uκ whenever κ ∈ (0, 1).
(c) If 0 < κ1 < κ2 < 1, then there is strict monotonicity property Eκ1 < Eκ2 .
(d) The odd zero-up ground state Uκ satisfies∣∣∣Uκ(x)− 2 arcsin tanh

(x
κ

)∣∣∣ ≤ Ce−
d
κ ,

where C > 0, d > 0, and

lim
κ→0

Eκ

κ
= 16 > 0.

(e) For 0 < κ < 1, the 2π-periodic solutions of (1.4) have the following
property: any 2π-periodic solution of (1.4) which is not identically ±π or
0 must coincide with ũκ,j, for an integral j < 1/κ, where ũκ,j is defined
in (1.8). Furthermore Eκ(u) = Emκ(Umκ).

In the second part of this paper, we consider the parabolic equation (1.1),
proving the convergence results of the solution and identifying the explicit profiles.
Precisely:

Theorem 1.3. Let 0 < κ < 1. Assume the initial data u0 : R → R is 2π-
periodic, odd, |u0| ≤ π and non-negative in [0, π]. Suppose u is the solution to (1.1)
corresponding to the initial data u0. Then we have u(x, t) → Uκ or 0 as t → ∞.
Moreover, if u0 ̸= 0 and Eκ(u0) ≤ 4π, then u(x, t) → Uκ as t→ ∞ and the rate of
convergence is exponential in time.

Theorem 1.4. (Vanishing as t → ∞). Let κ ≥ 1. Assume u0 is 2π periodic,
odd and |u0| ≤ π and non-negative in [0, π]. Suppose u is the solution to (1.1)
corresponding to the initial data u0. If κ > 1, we have

(1.9) u(x, t) = e−(κ2−1)tα∗ sinx+ r(t), ∀ t ≥ 1,

where the constant α∗ depends on (u0, κ), and ∥r(t)∥H2(T) = o(e−(κ2−1)t) as t →
+∞.
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For κ = 1, we have

(1.10) u(x, t) = t−
1
2 β∗ sinx+ r1(t),

where the constant β∗ depends on u0, and ∥r1(t)∥H2(T) = o(t−
1
2 ) as t → ∞.

The rest of this paper is organized as follows. In Section 2, we provide some
description of steady state for 0 < κ < 1. The Section 3 is devoted to the proof of
Theorem 1.1 and 1.2. In addition, we give a complete classification of the steady
state and rigorously prove the energy monotonicity. In Section 4, we analyze the
convergence of the sine-Gordon equation and prove Theorems 1.3 and 1.4. Some
concluding remarks are given in the last section.

2. Property of steady state

We call uκ,∞ the steady state if it satisfies

(2.1) κ2u′′
κ + sinuκ = 0, on T.

It is worth noting that the solutions to (1.1) are rigid [3, Proposition 3.1]. Noted
that for u0(x) = sinx, we have

uκ(x, t) =
∑

m≥1: m is odd

cm(t) sinmx.

In particular, it follows that the corresponding steady state uκ,∞ is odd. If 2π is
the minimal period, we have uκ,∞(0) = u′

κ,∞(π2 ) = 0. We want to find a steady
state such that it is monotonically increasing on [0, π

2 ] with

(2.2) uκ,∞(0) = u′
κ,∞

(π
2

)
= 0.

For simplicity, we denote uκ,∞ as uκ to represent desired steady state. We let
uκ(

π
2 ) = Nκ < π when κ ∈ (0, 1), and observed that we should have Nκ → π as

κ → 0. Multiplying (2.1) by u′
κ and using (2.2), we obtain

(2.3) (u′
κ)

2 =
2

κ2
(cosuκ − cosNκ).

If uκ is monotonically increasing in
(
0, π

2

)
, (2.3) is equivalent to

(2.4) u′
κ(x) =

√
2

κ

√
cosuκ − cosNκ,

with uκ(0) = 0, uκ(
π
2 ) = Nκ, which gives that

(2.5)

g(Nκ) :=

∫ π
2

0

u′
κ√

cosuκ − cosNκ

dx =

∫ Nκ

0

1√
cosuκ − cosNκ

duκ

uκ=Nκt=======

∫ 1

0

Nκ√
cos(Nκt)− cosNκ

dt =
π√
2κ

.

For each fixed κ ∈ (0, 1), there exists a unique Nκ ∈ (0, π) such that (2.5) holds.
Here we noted that g(Nκ) is monotonically increasing for κ ∈ (0, 1). On the other
hand, if κ ≥ 1, we obtain the equation (2.1) only has trivial solution u ≡ 0. While
if 0 < κ ≪ 1, one can obtain

π −Nκ = O(e−
c
κ ).

In summarize, we have the following results:
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Proposition 2.1. The following holds:

(1)The function g defined in (2.5) is monotonically increasing on (0, π), and g(Nκ) →
∞ as Nκ → π.

(2)For any 0 < κ < 1, there exists a unique 0 < Nκ < π such that

(2.6) g(Nκ) =
π√
2κ

.

Furthermore we have

(2.7) c1e
− c2

κ < π −Nκ < c3e
− c4

κ ,

where ci > 0, i = 1, · · · , 4 are positive constants.

(3)For any 0 < κ < 1, there exists a unique 2π-periodic C∞ odd function uκ such
that

• uκ is a steady state, i.e. κ2u′′
κ + sinuκ = 0.

• uκ(0) = u′
κ(

π
2 ) = 0, uκ(

π
2 ) = Nκ, and uκ is monotonically increasing on

[0, π
2 ].

• uκ(π − x) = uκ(x) for
π
2 ≤ x ≤ π.

Moreover for 0 < κ ≪ 1, we have

(2.8) 0 ≤ 2 arcsin tanh
(x
κ

)
− uκ(x) ≤ c5 exp

(
−c6

κ

)
,

where c5, c6 are positive constants.

Proof. We shall prove the Proposition point by point.

1. For Nκ ∈ [0, π), taking the derivative of g(Nκ) with respect to Nκ, then we have

g′(Nκ) =

∫ 1

0

[2 cos(Nκt) +Nκt sin(Nκt)]− [2 cosNκ +Nκ sinNκ]

2(cos(Nκt)− cosNκ)
3
2

dt.

It is clear that the denominator is positive in (0, 1), it remains to show the numerator
is also positive in (0, 1). Considering the function f(x) = 2 cosx+x sinx, x ∈ (0, π),
with its derivative

f ′(x) = − sinx+ x cosx = cosx(− tanx+ x), x ∈ (0, π).

By the simple properties of trigonometric functions, it is not difficult to obtain
that f ′(x) is always non-positive in (0, π). It follows that f(x) is monotonically
decreasing in (0, π). As a consequence, for t ∈ (0, 1), we derive

(2 cos(Nκt) +Nκt sin(Nκt))− (2 cosNκ +Nκ sinNκ) = f(Nκt)− f(Nκ) > 0.

Hence, we have shown that g′(Nκ) > 0 and it indicates that g(Nκ) is monotonically
increasing for Nκ ∈ (0, π).
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While as Nκ is close to π, we define δ = π −Nκ and introduce t∗ = π−δ
π+δ , then

we have δ ≤ π
5 and Nκ ≥ 4π

5 when t∗ ≥ 2
3 . In addition,

(2.9)

g(Nκ) =

∫ 1

0

Nκ√
2 sin Nκ(t+1)

2 sin Nκ(1−t)
2

dt =

∫ 1

0

Nκ√
2 sin δ(t+1)+(1−t)π

2 sin Nκ(1−t)
2

dt

>

∫ t∗

2
3

Nκ√
2 sin δ(t+1)+(1−t)π

2 sin Nκ(1−t)
2

dt >

∫ t∗

2
3

Nκ√
2 sin (π(1− t)) sin Nκ(1−t)

2

dt

>

∫ t∗

2
3

Nκ√
πNκ(1− t)2

dt =

√
Nκ

π
ln

π + δ

6δ
.

Then it is easy to see that g(Nκ) → ∞ as Nκ → π.
2. The existence and uniqueness of Nκ follows from the behavior of the function
g(·). Now we shall derive the upper and lower bounds on Nκ. From uκ

(
π
2

)
= Nκ

and (2.1), we obtain that Nκ → π as κ → 0. Therefore, when Nκ ≤ 4
5π, κ is

bounded away from zero by a positive constant, and (2.7) holds in this case. Thus
it remains to consider the situation of Nκ ∈

[
4π
5 , π

)
. From (2.9), we have

π√
2κ

= g(Nκ) >

√
Nκ

π
ln

π + δ

6δ
>

√
Nκ

π
ln

π

6δ
,

which directly yields

(2.10) π −Nκ >
π

6
e
√

π
Nκ

(
− π√

2κ

)
>

π

6
e−

√
5
8 (

π
κ ) = c1e

− c2
κ .

On the other hand, we have

g(Nκ) =

∫ 1

0

Nκ√
cos(Nκt)− cosNκ

dt =

∫ 2
3

0

Nκ√
cos(Nκt)− cosNκ

dt

+

(∫ t∗

2
3

+

∫ 1

t∗

)
Nκ√

2 sin δ(t+1)+(1−t)π
2 sin Nκ(1−t)

2

dt

:=Î1 + Î2 + Î3.

We shall estimate the right hand of above equality respectively as follows:

(i) For Î1, using sinx > 2
πx, for x ∈

(
0, π

2

)
, we get

Î1 =

∫ 2
3

0

Nκ√
cos(Nκt)− cosNκ

dt <

∫ 2
3

0

Nκ√
cos 2Nκ

3 − cosNκ

dt

=

∫ 2
3

0

Nκ√
2 sin 5Nκ

6 sin Nκ

6

dt <

∫ 2
3

0

Nκ√
2 sin

(
5π
6

)
Nκ

3π

dt =

√
4

3
πNκ < 2π.
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(ii) For Î2:

Î2 =

∫ t∗

2
3

Nκ√
2 sin δ(t+1)+(1−t)π

2 sin Nκ(1−t)
2

dt

<

∫ t∗

2
3

Nκ√
2
π2 δNκ(1 + t)(1− t) + 2Nκ

π (1− t)2
dt <

∫ t∗

2
3

Nκ√
2Nκ

π (1− t)2
dt

=

√
πNκ

2

∫ t∗

2
3

1

1− t
dt < −

√
πNκ

2
ln

2δ

π + δ
< −Nκ

2
ln

5δ

3π
,

where we used δ ≤ π
5 .

(iii) Finally, for Î3:

Î3 =

∫ 1

t∗

Nκ√
2 sin δ(t+1)+(1−t)π

2 sin Nκ(1−t)
2

dt <

∫ 1

t∗

Nκ√
2
π (δ(t+ 1) + (1− t)π) Nκ(1−t)

π

dt

<

∫ 1

t∗

Nκ√
2Nκδ
π2 (1− t)

dt = 2

√
π2Nκ

π + δ
< 2π.

Combining above inequalities, we have

(2.11)
π√
2κ

= g(Nκ) < 4π − Nκ

2
ln

5δ

3π
,

which yields

(2.12) π −Nκ <

(
3π

5
e10
)
e−

√
2

κ = c3e
− c4

κ .

The desired result then follows by collecting the estimates (2.10) and (2.12).

3. Fixed 0 < κ < 1 and consider the function

h(uκ) =

∫ uκ

0

κ√
2(cos y − cosNκ)

dy, 0 < uκ < Nκ.

Clearly h : [0, Nκ] → [0, π
2 ] is strictly monotonically increasing and bijective. The

inverse map of h(uκ) then defines the desired function uκ in the interval [0, π
2 ]. It is

known that uκ(
π
2 ) = Nκ and u′

κ(
π
2 ) = 0. In addition, according to [3, Proposition

3.1], we derive that uκ is symmetry with respect to x = π
2 , i.e., uκ(x) = uκ(π − x)

for x ∈ (0, π
2 ).

Finally to show (2.8), we denote θ(x) = 2 arcsin tanh(xκ ). Clearly
duκ

dx
=

√
2

κ

√
cosuκ − cosNκ,

dθ

dx
=

2

κ
cos

θ

2
,

uκ(0) = θ(0) = 0.

Observe that

duκ

dx
<

√
2

κ

√
cosuκ + 1 =

2

κ
cos

uκ

2
.
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Denote η(x) = uκ(x)− θ(x). We obtain η′(0) < 0 follows from

(2.13) η′(x) <
2

κ
cos

uκ

2
− 2

κ
cos

θ

2
.

Here we claim that

η(x) < 0, for 0 < x <
π

2
.

Otherwise there exists ξ ∈ (0, π
2 ), such that η(ξ) = 0. At this moment, uκ(ξ) = θ(ξ)

which implies that η′(ξ) < 0 by (2.13). On the other hand, η(ξ) = 0 and η(y) < 0
for y ∈ (0, ξ), which means η′(ξ) ≥ 0. Thus we arrive at a contradiction and it
proves that η(x) < 0. Hence for 0 ≤ x ≤ π

2 ,

(2.14) uκ(x)− θ(x) ≤ 0.

We shall prove the lower bound of η(x) by dividing the discussion into the following
two cases, for simplicity, we use c denotes a generic positive constant, which may
change from line to line.

(1) η(x) is monotonically decreasing on
[
0, π

2

]
or η(x) obtains the minimal value at

π
2 . Then

(2.15) 0 ≥ η(x) ≥ η
(π
2

)
= Nκ − θ

(π
2

)
≥ Nκ − π ≥ −3π

5
e10−

√
2

κ = −ce−
c
κ ,

where we used (2.12) in the last inequality.
(2) η(x) takes the global minimal value at ξ ∈

(
0, π

2

)
. It suffices to consider the

critical point which satisfies η(ξ) ≥ −ce−
κ
c . Noted that

sin
uκ + θ

4
< sin

Nκ + π

4
= sin

2π − δ

4
<

2π − δ

4
.

Using (2.13) and the fact that η is non-positive for
[
0, π

2

]
, we have

dη

dx
<

2

κ
cos

uκ

2
− 2

κ
cos

θ

2
= − 4

κ
sin

uκ + θ

4
sin

η

4
<

δ − 2π

4κ
η.

It follows that
d

dx

(
e

(2π−δ)x
4κ η(x)

)
< 0.

Then we have

0 > e
(2π−δ)x

4κ η(x) > e
2π−δ
4κ ·π2 η

(π
2

)
> −ce

1
κ (

π(2π−δ)
8 −

√
2),

which implies

0 > η(x) > −ce
1
κ (

π(2π−δ)
8 −

√
2− (2π−δ)x

4 ).

For x > π
2 − 4

√
2

2π−δ + 1
10 , we obtain

0 > η(x) > −ce
1
κ (

π(2π−δ)
8 −

√
2− (2π−δ)x

4 ) > −ce−
c
κ .

While x ∈
[
0, π

2 − 4
√
2

2π−δ + 1
10

]
. Using η′(ξ) = 0 due to ξ is the interior point such

that η(x) achieves the minimal value, we have

cosuκ(ξ)− cos θ(ξ) = cosNκ + 1 = 2ce−
c
κ ,

which is equivalent to

(2.16) sin
uκ(ξ) + θ(ξ)

2
sin

θ(ξ)− uκ(ξ)

2
= ce−

c
κ .
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then by computing directly, it is not difficulty to see that

(2.17) η(ξ) ≥ −ce−
c
κ .

Combining (2.15) and (2.17), we obtain

(2.18) uκ(x)− θ(x) ≥ −ce−
c
κ .

□

3. Classification of steady state energy

In this section, we consider the energy Eκ(u) (see (1.6)) of solutions to (1.1).
Combining the discussion of Section 2 with [3, Proposition 3.2], we see that the
nontrivial bounded steady state solution is a periodic function of 2π. Hence, we
are concerned about the following problem

(3.1)

{
κ2u′′ + sinu = 0, x ∈ R,
u(x) = u(x+ 2π).

For simplicity of presentation, we introduce the following definition.

Definition 3.1. (1) (Odd zero-up solution) We shall say that u is an odd
zero-up solution to (3.1) provided that the solution u is odd and u′(0) > 0.

(2) (Odd zero-up ground states) For each 0 < κ < 1, we define Uκ = uκ, where
uκ is obtained in Proposition 2.1 as the odd zero-up ground state solution to (3.1).

We also define the odd zero-up ground state energies E
(0)
κ as

(3.2)

E(0)
κ =

∫
T

(
κ2

2
(U ′

κ(x))
2 + cosUκ(x) + 1

)
dx

=

∫
T
(2 cosUκ − cosNκ + 1) dx,

where we recall 0 < Nκ < π is the unique number satisfying:

(3.3)

∫ 1

0

Nκ√
cos(Nκt)− cosNκ

dt =
π√
2κ

.

For any solution of (3.1), we assume that its minimal period is 2π
m for some

suitable positive integer m. From the [3, Proposition 3.2], it is clear to see that
u(x) has 2m zero points in [x, x + 2π] for any x ∈ R and u(x) has odd symmetry
with respect to any zero point. Consequently, we may assume u(0) = 0 and u is
odd after a suitable shift. Hence we may assume that u′(0) > 0 after reflection if
necessary. Therefore, in this section, we shall restrict our discussion on the odd
zero-up solutions of equation (3.1). Concerning all the odd zero-up solutions to
(3.1), we have the following classification results.

Theorem 3.2. (Classification of odd zero-up solutions to (3.1)). For any 0 <
κ < 1, define mκ ≥ 1 as the unique integer such that

1

mκ + 1
≤ κ <

1

mκ
.

Then there are only mκ odd zero-up solutions to (3.1). More precisely, the following
holds:

For each j = 1, · · · ,mκ, define (note below that jκ < 1)

(3.4) ũκ,j(x) = Ujκ(jx).
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Then {ũκ,j}mκ
j=1 are all the possible odd zero-up solutions to (3.1). Furthermore the

energies of ũκ,j are given by

(3.5) Eκ,j =

∫
T

(
κ2

2
(∂xũκ,j)

2 + cos ũκ,j + 1

)
dx = E

(0)
jκ ,

where E
(0)
jκ was defined in (3.2).

Proof. Suppose u is a possible odd zero-up solution to (3.1). The crucial
observation is that we must have u achieves its first peak at x = π

2j for some

integer j ≥ 1. Now make a change of variable

y = jx, ũκ,j(y) = uκ(x).

Then clearly
j2κ2ũ′′

κ,j(y) + sin ũκ,j(y) = 0,

with ũκ,j(0) = 0, ũ′
κ,j(0) > 0, and ũ′

κ,j(
π
2 ) = 0. From the proof in Step 3 of

Proposition 2.1, there exists a unique solution uκ with |uκ| < π solving the equation

u′
κ =

√
2

κ

√
cosuκ − cosNκ,

with uκ(0) = 0, u′
κ(

π
2 ) = 0. As a consequence, we obtain that ũκ,j = Ujκ. Now

note that jκ < 1 and this gives the constraint j ≤ mκ. The characterization (3.5)
follows from the fact that

Eκ,j =

∫
T
(2 cos ũκ,j(x)− cosNjκ + 1) dx

=

∫
T
(2 cosUjκ(jx)− cosNjκ + 1) dx,

and the fact that Ujκ is 2π-periodic. □

By Theorem 3.2 one can easily get Theorem 1.1.

Theorem 3.3. (Monotonicity and asymptotic of odd zero-up ground state en-
ergies). For any κ > 0, define

(3.6) Ẽκ = inf
uκ∈SO

∫
T

(
1

2
(κ∂xuκ)

2 + cosuκ + 1

)
dx,

where

SO =
{
ϕ
∣∣∣ϕ : T → R is odd and C1, ϕ′(0) > 0

}
.

Then we have

(a) Ẽκ = 4π for κ ≥ 1, and it is obtained only at the zero function.

(b) Ẽκ = E
(0)
κ for 0 < κ < 1. Moreover, the infimum is only achieved by Uκ.

(c) If 0 < κ1 < κ2 < 1, then Ẽκ1
< Ẽκ2

.

Furthermore

(3.7) lim
κ→0

E
(0)
κ

κ
= γ∗ = 16 > 0.

Remark 3.4. The constant 1 in the definition of energy seems extra, but we
add it in order to Uκ → 0 as κ → 0, and it plays the same role as the constant term
in the definition of the energy functional of the Allen-Cahn equation.

Our proof process shall use the following lemma.
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Lemma 3.5. Let Uκ be the odd zero-up ground state solution of equation (3.1),
then we have

(3.8) Uκ1
(x) > Uκ2

(x), x ∈
(
0,

π

2

]
provided that 0 < κ1 < κ2 < 1.

Proof. At first, we notice that Uκ(0) = 0, Uκ is monotone increasing for
x ∈

(
0, π

2

)
. By (2.4) we have

(3.9) U ′
κ(x) =

√
2(cosUκ − cosNκ)

κ
, for x ∈

(
0,

π

2

)
,

where Nκ is the maximum value of Uκ in [0, π
2 ], i.e., Nκ = Uκ(

π
2 ). By (3.9) we have

(3.10)

∫ Uκ(x)

0

κ√
2(cosw − cosNκ)

dw = x, x ∈
(
0,

π

2

)
.

If 0 < κ1 < κ2 < 1, by (2.6) and monotonicity of g(Nκ) in Proposition 2.1, we have
0 < Nκ2 < Nκ1 < π. This implies that

− cosNκ1
> − cosNκ2

.

Therefore, for any w ∈ min {Nκ1 , Nκ2}, we have
κ1√

2(cosw − cosNκ1
)
<

κ2√
2(cosw − cosNκ2

)
.

Together with (3.10) we derive that Uκ1(x) > Uκ2(x) for x ∈
(
0, π

2

]
. □

Proof of Theorem 3.3. We shall prove the Theorem 3.3 point by point.
(a) We notice that uκ ≡ 0 is the only odd zero-up solution to (3.1) whenever κ ≥ 1.

Then it is easy to verify that Ẽκ = 4π for κ ≥ 1.

(b) For any 2π-periodic odd zero-up solution to (3.1) which is different by Uκ, we
denote its minimal period by 2π

m and the solution by um,m ≥ 2. Consider the
function

v(y) = um(x), y = mx.

Then it is not difficulty to verify that

v(x) = Umκ(x) for x ∈
(
0,

π

2

]
.

By Lemma 3.5, for m ≥ 2 we have

(3.11) Uκ(x) > Umκ(x) for x ∈
(
0,

π

2

]
.

On the other hand, we noticed that

(3.12)

E(0)
κ =

∫ π
2

0

(
2κ2(U ′

κ)
2 + 4 cosUκ + 4

)
dx

= 2κ2UκU
′
κ

∣∣∣x=π
2

x=0
+

∫ π
2

0

(
−2κ2UκU

′′
κ + 4 cosUκ + 4

)
dx

=

∫ π
2

0

(2Uκ sinUκ + 4 cosUκ + 4) dx.

It is not difficulty to verify that function h(Uκ) = Uκ sinUκ+2 cosUκ+2 is monotone
decreasing for Uκ ∈ [0, π). Using (3.11) we have

(3.13) E(0)
κ < E(0)

mκ.
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By equation (3.5) we have

E(0)
mκ = E(um) =

∫
T

(
κ2

2
(u′

m)2 + cosum + 1

)
dx.

Together with (3.13) we obtained that

E(0)
κ = Ẽκ.

(c) The point (c) follows from (b), monotonicity of Uκ with respect to κ and the
equation (3.12). In the end, we shall show the asymptotic as κ → 0. By Proposition
2.1, the main part of Uκ on [0, π

2 ] is given by 2 arcsin tanh(xκ ). The result (3.7) then
follows from

E(0)
κ =

∫ π

−π

(2 cosUκ − cosNκ + 1) dx

= 8

∫ π
2

0

cos
(
2 arcsin tanh

(x
κ

))
dx− 2π cosNκ + 2π +O

(
e−

c6
κ

)
= 8κ

∫ π
2κ

0

(1− 2 tanh2 y)dy − 2π cosNκ + 2π +O
(
e−

c6
κ

)
= 16κ

∫ π
2κ

0

d(tanh y)− 2π − 2π cosNκ +O
(
e−

c6
κ

)
= 16κ tanh

( π

2κ

)
− 2π − 2π cosNκ +O

(
e−

c6
κ

)
,

where y = x
κ and the c6 corresponds to equation (2.8). By Proposition 2.1 and

Taylor expansion, we obtain cosNκ = −1 +O
(
e−

c
κ

)
. Consequently we have

γ∗ = lim
κ→0

E
(0)
κ

κ
= 16.

□

By Theorem 3.3, we can obtain (a)-(c) in Theorem 1.2. In addition, we notice
that the C0 estimate in the point of (d) of Theorem 1.2 follows easily by (2.8). While
for the point (e), one can easily prove it by some direct computations. Hence, we
complete the entire proof of Theorem 1.2.

4. Convergence to steady state

In this section, we investigate the convergence rate of the solution and charac-
terize the detailed profiles as t → ∞.

4.1. Case of 0 < κ < 1. We start this subsection with the following result in
the spectrum analysis. This is important to indicate that the rate of convergence
is exponential.

Lemma 4.1. Let 0 < κ < 1. Assume Uκ is the odd zero-up ground state. Then
for any 2π-periodic odd function ϕ ∈ H1(T) we have

(4.1)

∫
T
κ2|ϕ′|2dx−

∫
T
|ϕ|2 cosUκdx ≥ C∥ϕ∥2H1(T)

for some constant C > 0.
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Proof. Firstly, since Uκ is the odd zero-up ground state, then for any ϕ ∈
H1(T) we have(

d2

ds2
Eκ(Uκ + sϕ)

) ∣∣∣∣∣
s=0

=

∫
T
κ2|ϕ′|2dx−

∫
T
|ϕ|2 cosUκdx ≥ 0.

Therefore, C ≥ 0 obviously holds.
Next, we prove that C > 0 by contradiction. Suppose that C = 0, then we

can find a sequence of odd function ϕn (vanishes on the boundary of ∂T) such that
∥ϕn∥H1(T) = 1 and ∫

T
κ2|ϕ′

n|2dx−
∫
T
|ϕn|2 cosUκdx ≤ 1

n
.

Passing to a subsequence if necessary, we obtain there exists a nontrivial odd func-
tion ϕ∗ ∈ H1(T) such that

ϕn ⇀ ϕ∗ in H1(T)

and

(4.2) κ2ϕ′′
∗ + ϕ∗ cosUκ = 0 on T.

Since Uκ is the odd zero-up ground state, by directly computing we see that

(4.3)

Eκ(Uκ + cϕ∗) =Eκ(Uκ) +
c2

2

∫
T

(
κ2(ϕ′

∗)
2 − ϕ2

∗ cosUκ

)
dx

+
c3

3!

∫
T

(
ϕ3
∗ sinUκ

)
dx+O(c4),

for any real number c. Using (4.2) we see that the second term on the right hand
side of (4.3) vanishes, then together with Eκ(Uκ + cϕ∗) ≥ Eκ(Uκ) for any c, we
have ∫

T
ϕ3
∗ sinUκdx = 0.

It implies that ϕ∗ must possess a zero point in (0, π), denoted by x∗. By the
Strum Comparison Theorem [8, Theorem VI-I-I], we derive that any solution of
the following equation must have a zero point in (0, x∗),

(4.4) κ2U ′′
κ + sinUκ = 0.

However we noticed that Uκ is a solution of (4.4) and positive in (0, π). Thus we
arrive at a contradiction and the lemma is proved. □

Proof of Theorem 1.3. Without loss of generality we may assume u0 ∈ C∞

by smoothing estimate. It is not hard to verify that u(x, t) is a 2π-periodic odd
function and also odd symmetric with respect to x = π. Therefore

u(0, t) = u(π, t) ≡ 0, ∀t ≥ 0.

Together with that u0(x) is non-negative in [0, π], we conclude that u(x, t) ≥ 0
for x ∈ [0, π] by maximum principle [7, section 2, Lemma 5]. Similarly, we have
u(x, t) ≤ 0 for x ∈ [−π, 0]. On the other hand,

(4.5)
d

dt

(
κ2

2
∥∂xu∥22 +

∫
T
(cosu+ 1) dx

)
= −∥∂tu∥22.
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It follows that ∥∂tu∥L1
tL

2
x

< ∞ and one can extract a subsequence such that

∂tu(tn) → 0 in L2. By using higher uniform Sobolev estimate one can obtain con-
vergence in higher norms. In particular we can obtain u(tn) → u∞ for some steady
state of (3.1). In addition, u∞ is a 2π-periodic odd function and non-negative for
x ∈ [0, π]. By the proof of Theorem 1.1 we see that 0 and Uκ are the only steady
states which are non-negative in [0, π]. As a consequence, we derive that u∞ could
be either Uκ or the trivial solution 0.

Moreover, if u0(x) ̸= 0 and Eκ(u0) ≤ 4π , using (4.5) we see that

Eκ(u∞) ≤ Eκ(u0) ≤ 4π.

The inequality sign holds only u∞ = u0. While it is known that Eκ(0) = 4π and
u0 ̸= 0, then we get u∞ = Uκ. To obtain exponential convergence, we can take tn
large enough such that u(tn) is sufficiently close to the steady state Uκ. Combined
with Lemma 4.1 then we obtain exponential convergence. Hence, we finish the
entire proof. □

4.2. Case of κ ≥ 1. In the case of κ ≥ 1, we consider the parabolic sine-
Gordon equation

(4.6)

{
∂tu = κ2∂xxu+ sinu, (x, t) ∈ T× (0,∞),

u|t=0 = u0.

To state the following result, we introduce the Fourier projection operators Π1,Π≥2

such that for f =
∑
m≥1

fm sin(mx) (assume the series converges sufficiently fast), it

is easy to see

(4.7) Π1f = f1 sinx; Π≥2f =
∑
m≥2

fm sin(mx).

In other words, Π1 is the projection to the first sine-mode, and Π≥2 simply removes
the first Fourier mode in the sine series expansion.

Theorem 4.2. Let κ ≥ 1. Assume u0 is 2π periodic, odd and |u0| ≤ π .
Suppose u is the solution to (4.6) corresponding to the initial data u0.

• If κ > 1, we have exponential decay

(4.8)


∥u(t, ·)∥2 ≤ ∥u0∥2e−(κ2−1)t, ∀t ≥ 0;

∥u(t, ·)∥H2 ≤ β1e
−(κ2−1)t, ∀t ≥ 1

2
;

∥Π≥2u(t, ·)∥H2 ≤ β2e
−3(κ2−1)t, ∀t ≥ 1

2
,

where β1 > 0, β2 > 0 depend on (u0, κ), and Π≥2 is defined in (4.7).
• For κ = 1, we have algebraic decay

(4.9)



∥u(t, ·)∥2 ≤
√
12π∥u0∥2√

t∥u0∥22 + 12π
, ∀t ≥ 0;

∥u(t, ·)∥H2 ≤ β3t
− 1

2 , ∀t ≥ 1

2
;

∥Π≥2u(t, ·)∥H2 ≤ β4t
− 3

2 , ∀t ≥ 1

2
,

where β3 > 0, β4 > 0 depend on u0.
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Remark 4.3. For κ > 1, higher (i.e. Hm,m > 2) Sobolev norms of u also
decay exponentially but we shall not dwell on this issue here. Note that we state
the decay result for t ≥ 1/2 to allow the smoothing effect to kick in. The number
1/2 is for convenience only and it can be replaced by any other t0 > 0 with suitable
adjustment of the corresponding pre-factors in the estimate.

Proof of Theorem 4.2. First we note that for bounded initial data, local
and global well-posedness is not an issue and we merely focus on the decay estimates.
We shall divide the proof into three parts.

(1) For the L2 decay estimates, first we assume u0 is smooth, and in particular
has a finite sine-series expansion. It follows that u(t) must have a spectral gap.
Directly computing gives

1

2

d

dt

(
∥u∥22

)
= −κ2∥∂xu∥22 + ∥u∥22 −

1

3!
∥u∥44 +

1

5!
∥u∥66 +W,

where

W =

∞∑
m=2

− 1

(4m− 1)!

∫
T
u4mdx+

1

(4m+ 1)!

∫
T
u4m+2dx

≤
∞∑

m=2

− 1

(4m− 1)!

(
1− π2

4m(4m+ 1)

)∫
T
u4mdx ≤ 0.

Using Poincaré inequality

∥u∥L2(T) ≤ ∥∂xu∥L2(T),

and the fact that κ > 1, we obtain

1

2

d

dt
(∥u∥22) ≤ −κ2∥∂xu∥22 + ∥u∥22 −

1

3!
∥u∥44 +

1

5!
∥u∥66

≤ −(κ2 − 1)∥u∥22 −
1

12
∥u∥44

≤ −(κ2 − 1)∥u∥22 −
1

24π
∥u∥42,

where we employed the estimates

− 1

3!
∥u∥44 +

1

5!
∥u∥66 ≤ − 1

3!
∥u∥44

(
1− π2

20

)
≤ − 1

12
∥u∥44,

and Hölder’s inequality in the last inequality. Then we derive that in the case of
κ > 1,

∥u(t, ·)∥2 ≤ ∥u0∥2e−(κ2−1)t,

while in the case of κ = 1,

∥u(t, ·)∥2 ≤
√
12π∥u0∥2√

t∥u0∥22 + 12π
.

By a simple approximation argument, both estimates also hold under the assump-
tion that u0 ∈ L∞.

(2) we now show the second inequality in (4.8). First by smoothing estimates and
interpolation, we have ∥∥∂2

x(u(t, ·))
∥∥
2
≤ α1e

−κ1t, ∀t ≥ 1

2
,
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where α1 > 0 depends on (u0, κ), and κ1 > 0 depends only on κ. In addition, by
the Sobolev Embedding Theorem, we can obtain that u ∈ L∞. Then we have∫

T
∂2
x

(
u2m+1(t, ·)

)
∂2
xudx

=

∫
T

[
(2m+ 1)u2m∂2

xu+ 2m(2m+ 1)u2m−1(∂xu)
2
]
∂2
xudx

≤
∫
T

(
c1(2m+ 1)e−2mκ1t

(
∂2
xu
)2

+ 2m(2m+ 1)c2e
−(2m−1)κ1t (∂xu)

2
∂2
xu
)
dx

≤
[
c1(2m+ 1)e−2mκ1t + 2m(2m+ 1)c3e

−(2m−1)κ1t
]
∥∂2

xu∥22,

where c1, c2, c3 are uniform positive constants and depend on (u0, κ), furthermore,
we have used Hölder’s inequality and Interpolation inequality in the above first
inequality. We now compute for t ≥ 1

2 ,

1

2

d

dt

(
∥∂2

xu(t, ·)∥22
)
=

∫
T

[(
κ2∂xx(∂

2
xu) +

∞∑
m=0

(−1)m

(2m+ 1)!
∂2
x(u

2m+1)

)
∂2
xu

]
dx

≤
∫
T
−κ2

(
∇(∂2

xu)
)2

dx+

∫
T
(∂2

xu)
2dx

+

∞∑
m=1

c1(2m+ 1)e−2mκ1t + 2m(2m+ 1)c3e
−(2m−1)κ1t

(2m+ 1)!
∥∂2

xu∥22

≤
(
−(κ2 − 1) + α2e

−κ1t
)
∥∂2

xu∥22,

where α2 > 0 depends on (u0, κ). Integrating in time then yields the second in-
equality in (4.8).

(3) The proof of the third inequality in (4.8) is similar. Note that for all t ≥ 1
2 ,

∞∑
m=1

∥∂2
x

(
Π≥2u

2m+1(t, ·)
)
∥2

(2m+ 1)!
≤

∞∑
m=1

∥∂2
x

(
u2m+1(t, ·)

)
∥2

(2m+ 1)!
≤ α3e

−3(κ2−1)t,

where α3 > 0 depends on (u0, κ). With this we compute

1

2

d

dt
(∥∂2

xΠ≥2u(t, ·)∥22)

≤ −κ2∥∇(∂2
xΠ≥2u)∥22 + ∥∂2

xΠ≥2u∥22 +
∞∑

m=1

∥∂2
x(u

2m+1)∥2
(2m+ 1)!

∥∂2
xΠ≥2u∥2

≤ −(4κ2 − 1)∥∂2
xΠ≥2u∥22 + α3e

−3(κ2−1)t∥∂2
xΠ≥2u∥2,

where we used

∥∇(∂2
xΠ≥2u)∥22 ≥ 4∥∂2

xΠ≥2u∥22.
Then integrating in time, we obtain

∥Π≥2u(t, ·)∥H2 ≤ β2e
−3(κ2−1)t,

where β2 depends on (u0, κ). Hence we obtain the third inequality in (4.8).
Finally the third inequality in (4.9) follows from working with the system

∂tΠ≥2u = −κ2∂xx(Π≥2u) +

∞∑
m=0

(−1)m

(2m+ 1)!
Π≥2(u

2m+1),
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and bootstrapping estimate using the first inequality in (4.9). The estimate of
second in (4.9) is obvious. We omit the details. □

Theorem 4.4. (Profiles as t → ∞). Let κ ≥ 1. Assume u0 is 2π periodic, odd
and |u0| ≤ π . Assume ∥u0∥2 > 0 so that u0 is not identically zero. Suppose u is
the solution to (4.6) corresponding to the initial data u0. Then the following hold

• Case κ > 1. For all t ≥ 1, we have

(4.10) u(x, t) = e−(κ2−1)tα∗ sinx+ r(t),

where the constant α∗ depends on (u0, κ). The remainder term has the
estimate

∥r(t)∥H2 ≤ α̃e−3(κ2−1)t, ∀t ≥ 1,

with α̃ > 0 depends only on (u0, κ).

• Case κ = 1. For all t ≥ 1, we have

(4.11) u(x, t) = t−
1
2 β∗ sinx+ r1(t),

where the constant β∗ depends on u0.
If β∗ = 0, then the remainder term r1(t) has the estimate

∥r1(t)∥H2 ≤ β̃t−1
√

ln(t+ 2), ∀t ≥ 1,

with β̃ > 0 depends only on u0.

If β∗ ̸= 0, then the remainder term r1(t) has the estimate

∥r1(t)∥H2 ≤ β̃t−
3
2 ln(t+ 2), ∀t ≥ 1,

with β̃ > 0 depends only on u0,.

Proof. We first consider κ > 1. Write

u = Π1u+Π≥2u,

where the operators Π1,Π≥2 are defined in (4.7). Furthermore, note that (4.6) is
equivalent to{

∂tu = κ2∂xxu+ u+ (sinu− u) , (x, t) ∈ T× (0,∞),

u|t=0 = u0.

By Theorem 4.2 the term Π≥2u has the desired decay for t ≥ 1 and can be included
in the remainder r(t). Thus we only need to treat the single-mode part Π1u. Denote

Π1u(t) = a(t) sinx, a(t) =
1

π

∫
T
Π1u(t, x) sinxdx;

Π1(sinu(t)− u(t)) = b(t) sinx, b(t) =
1

π

∫
T
Π1 (sinu(t, x)− u(t, x)) sinxdx.

By Theorem 4.2, we have for some C̃ > 0 depending only on (u0, κ),

|b(t)| ≤ C̃e−3(κ2−1)t.

Clearly we have
d

dt
a(t) = −(κ2 − 1)a(t) + b(t).
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Solving above ODE, we have for t ≥ 1,

a(t) = e−(κ2−1)(t− 1
2 )a

(
1

2

)
+

∫ t

1
2

e−(κ2−1)(t−s)b(s)ds

= e−(κ2−1)t

(
e

1
2 (κ

2−1)a

(
1

2

)
+

∫ ∞

1
2

e(κ
2−1)sb(s)ds

)
+ r̃(t),

where

|r̃(t)| ≤ e−(κ2−1)t

∫ ∞

t

e(κ
2−1)s|b(s)|ds = O(e−3(κ2−1)t).

Clearly then (4.10) follows.

The proof of (4.11) is slightly more intricate. We only need to treat the piece
Π1u since the part Π≥2u can be included in the remainder term r1(t). Observed
that for t ≥ 1

2 , by Theorem 4.2 we have

(u(t))
2m+1

= (Π1u(t) + Π≥2u(t))
2m+1 = (Π1u)

2m+1 + r̃(t), m = 1, 2, · · · ,

where

∥r̃(t)∥H2 = O(t−
2m+3

2 ), ∀t ≥ 1

2
, m = 1, 2, · · · .

Denote Π1u(t) = a(t) sinx. It follows that

(4.12) Π1((Π1u(t))
3) =

3

4
a(t)3 sinx.

For a(t), we have the ODE

(4.13)
d

dt
a(t) = −1

8
a(t)3 + r̄(t), ∀t ≥ 1

2
,

where |r̄(t)| = O(t−
5
2 ). Denote θ(t) = a(t)2. It is not difficulty to obtain that

d

dt
θ(t) = −1

4
θ(t)2 +O(t−3).

By Proposition 4.1 below, we have for t ≥ 3,

θ(t) =
θ∗
t
+O(t−2 ln t).

Note that θ∗ ≥ 0 due to θ(t) is always nonnegative. We can take β∗ = 0 if θ∗ = 0,
then the desired result follows easily. If θ∗ > 0, then |a(t)| ∼ t−1/2 for t large. By
continuity it can only take one sign. Thus we obtain β∗ =

√
θ∗ or β∗ = −

√
θ∗. The

estimate for the remainder term is trivial. We omit the details. □

Clearly, Theorem 1.4 follows from above result. At last, we give the proof of
conclusion used in the Theorem 4.4.

Proposition 4.1. Assume T ≥ 3. Suppose θ : [T,∞) → [0,∞) is continuously
differentiable and satisfies

sup
t≥T0

tθ(t) < ∞; θ′(t) = −1

4
θ2(t) + F (t), ∀t ≥ T0 > T,

where for some K0 > 0

|F (t)| ≤ K0t
−3, ∀t ≥ T.
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Then there exists θ∗ ∈ R, such that

θ(t) =
θ∗
t
+O

(
ln t

t2

)
,

and

sup
t≥T

∣∣θ(t)− θ∗
t

∣∣
ln t
t2

< ∞.

Proof. Note that we only need to investigate the regime t ≫ 1. We shall
discuss two cases:

Case 1. 0 < lim sup
t→∞

tθ(t) < ∞. In this case we first claim that

(4.14) lim inf
t→∞

tθ(t) > 0.

Denote

(4.15) 4θ0 = lim sup
t→∞

tθ(t) > 0.

Let

Ω(t) = θ(t)− η0t
−1,

where η0 > 0 satisfies

η0 ≤ min

{
1

4
θ0,

1

10

}
.

By (4.15), we can choose t0 > 0 sufficiently large such that

θ(t0) ≥
θ0
t0
,

η0
4t20

−K0t
−3
0 > 0.

Note that the first condition above guarantees that

Ω(t0) ≥ 0,

and second condition guarantees that

η0
4t2

−K0t
−3 > 0, ∀t ≥ t0.

Now consider Ω(t) on the time interval [t0,∞). If Ω(t) > 0 for all t ≥ t0 we are
done. Otherwise there exists some time t1 > t0 such that Ω(t1) = 0. Then clearly

θ(t1) =
η0
t1
; Ω′(t1) ≥ −1

4

η20
t21

+
η0
t21

−K0t
−3
1 ≥ η0

4t21
−K0t

−3
1 > 0.

Thus Ω(t) continues to be positive a little bit past t1. This argument then guaran-
tees that Ω(t) ≥ 0 for all t ≥ t0. Thus (4.14) is proved. Then for T large enough
we have

θ(t)t ∼ 1, ∀t ≥ T.

From the ODE of θ(t) we obtain

d

dt

(
1

θ

)
=

1

4
+O(t−1).

It follows that for T ′ sufficiently large and all t ≥ T ′ + 2,

θ(t) =
1

d1 + d2(t− T ′) +O(ln(t− T ′))
,
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where d1, d2 > 0 are positive constants. The desired asymptotics then follows easily.
Case 2. lim sup

t→∞
tθ(t) = 0. In this case we make a change of variable:

(4.16) t = Nτ, θ(t) = γΘ(τ),
N

γ
F (t) = F̃ (τ).

Clearly

d

dτ
Θ(τ) = −1

4
γNΘ2(τ) + F̃ (τ), |F̃ (τ)| ≤ K0

1

γN2
τ−3.

Thus, if we take γ = 2
N and N sufficiently large such that K0

2N ≤ 1, we obtain

(4.17) Θ(τ) ≤ 1

2

∫ ∞

τ

Θ2(s)ds+
1

2τ2
, ∀τ ≥ τ0,

where τ0 is sufficiently large. Based on (4.17), we claim that there exists a constant
C1 > 0 depending on τ0 such that

(4.18) Θ(τ) ≤ C1

τ2
, ∀τ ≥ τ0.

It is easy to see that lim sup
τ→∞

τΘ(τ) = 0 and we may assume that for some α0 ∈ (0, 1)

that

Θ(τ) ≤ α0

τ
, ∀τ ≥ τ0.

Next, we run the following iteration argument. If we have

Θ(τ) ≤ α

τ
, ∀τ ≥ max

{
τ0,

1

α

}
,

then by (4.17) we obtain

Θ(τ) ≤ α2

2τ
+

1

2τ2
≤ α2

τ
, ∀τ ≥ max

{
τ0,

1

α2

}
.

Now define αk+1 = α2
k, we get

αk = α2k

0 .

Obviously it holds that

Θ(τ) ≤ αk

τ
, ∀τ ≥ max

{
τ0,

1

αk

}
.

Consider τ ∈
[

1
αk

, 1
α2

k

]
, it is easy to see αk ≤ τ−

1
2 . Then we have for all τ ∈

[
1
αk

, 1
α2

k

]
with 1

αk
≥ τ0, it holds that Θ(τ) ≤ τ−

3
2 . As a consequence,

Θ(τ) ≤ τ−
3
2 , ∀τ ≥ τ0.

Substituting it into (4.17) we obtain (4.18). Together with (4.16) we derive that

θ(t) = O(t−2).

Thus, we could also get desired estimate in this case by taking θ∗ = 0. □
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5. Concluding remarks

In this work, we start by describing the steady states for 0 < κ < 1. Then
we give a full classification of steady state energies and confirm the monotonicity
of the odd zero up ground state energies with respect to κ. In the second part,
we analyze the convergence of the steady state. We obtain that the steady state
is exponentially decaying to 0 for 0 < κ < 1, and present the accurate asymptotic
behavior for the case κ ≥ 1 up to the second term.
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