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Analyticity of the semigroup corresponding to a strongly
damped wave equation with a Ventcel boundary condition
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Abstract. We consider a wave equation with a structural damping coupled

with an undamped wave equation located at its boundary. We prove that,

due to the coupling, the full system is parabolic. In order to show that the
underlying operator generates an analytical semigroup, we study in particular

the effect of the damping of the “interior” wave equation on the “boundary”
wave equation and show that it generates a structural damping.
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1. Introduction

Assume Ω is a smooth domain of Rd with a boundary ∂Ω that is the union of
two connected components Γ0 and Γ1. We consider the coupling between two wave
equations:

(1.1)


∂ttu− ν∆∂tu−∆u = 0 in (0,∞)× Ω,

u = 0 on (0,∞)× Γ0,
u = η on (0,∞)× Γ1,

∂ttη − κ∆bη − µ∆b∂tη = −ν∂n∂tu− ∂nu in (0,∞)× Γ1.
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The constants of the above system are nonnegative: ν, κ, µ ∈ R+. The equations on
Γ1 can be seen as Ventcel boundary conditions and can model a thin layer structure
at the boundary, see [6, Appendix A]. For sake of completeness, we present in
Appendix A a formal way to see how such a system can be obtained. The operator
∆b denotes the Laplace–Beltrami operator. We have also denoted by n the unit
exterior normal of Ω and by ∂n the normal derivative.

If we take ν = µ = 0 and κ > 0, then (1.1) corresponds to an hyperbolic
system and the energy of the system is constant in time. By adding the dampings
−ν∆∂tu and −µ∆b∂tη (with ν, µ ∈ R∗

+), we modify the nature of the equations.
These terms correspond to a Kelvin-Voigt model for a viscoelastic material: the
corresponding stress depends not only on the strain but also on its time derivative
(see, for instance, [12] and references therein). In particular, if ν > 0 and µ > 0
(and κ > 0), then the underlying semigroup is analytic (see [8, Theorem 3.3]). The
same result holds for κ = 0 and µ = 0 (see [8, Theorem 3.4]).

Note that these damping terms have also an effect on the asymptotic behavior
in time of the system. Since ν, κ, µ ∈ R+, the underlying semigroup of (1.1) is
contractive, and if ν > 0 or µ > 0 then the semigroup is strictly contractive (see
[8, Theorem 3.1]). Finally, if ν > 0, κ ⩾ 0 and µ ⩾ 0 then the semigroup is
exponentially stable (see [8, Theorem 3.2]).

In this article, we consider the case

(1.2) ν > 0, κ > 0 and µ = 0.

This means that the wave equation in Ω has a structural damping whereas there is
no damping in the wave equation on Γ1. For this case, it is proved in [9] that the
corresponding semigroup is of Gevrey type. Our aim is to improve this result by
showing that this semigroup is analytic. Let us introduce some notation in order
to state our main result. We set

(1.3) D(A1)
def
= H2(Γ1), A1

def
= −κ∆bη : D(A1) → L2(Γ1).

Note that (see [4, Prop. 6.1 pp. 171] and [10]) for α ⩾ 0,

D(Aα
1 ) = H2α(Γ1), D(Aα

1 )
′ = H−2α(Γ1),

where Hs(Γ1) denotes the Sobolev space of order s. Note that since Γ1 is with-
out boundary, the dual of Hs(Γ1) with respect to L2(Γ1) is H−s(Γ1). Using this
notation, we can write (1.1) with the condition (1.2) under the following form

(1.4)


∂ttu− ν∆∂tu−∆u = 0 in (0,∞)× Ω,

u = 0 on (0,∞)× Γ0,
u = η on (0,∞)× Γ1,

∂ttη +A1η = −ν∂n∂tu− ∂nu in (0,∞).

We can also write the above system as

(1.5)
d

dt


u
∂tu
η
∂tη

 = A


u
∂tu
η
∂tη
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by introducing

(1.6) H def
=

{
(u1, u2, η1, η2) ∈ H2(Ω)× L2(Ω)×D

(
A

3/4
1

)
×D

(
A

1/4
1

)
; u1 = η1 on Γ1, u1 = 0 on Γ0

}
,

(1.7) D(A)
def
=

{
(u1, u2, η1, η2) ∈ H ∩

(
H2(Ω)×H2(Ω)×D

(
A

5/4
1

)
×D

(
A

3/4
1

))
; u2 = η2 on Γ1, u2 = 0 on Γ0

}
,

(1.8) A


u1

u2

η1
η2

 def
=


u2

ν∆u2 +∆u1

η2
−A1η1 − ν∂nu2 − ∂nu1

 .

We are now in a position to state our main result:

Theorem 1.1. The operator A is the infinitesimal generator of an analytic and
exponentially stable semigroup on H. In particular,

(1.9) sup
λ∈C+

|λ|
∥∥∥(λI −A)

−1
∥∥∥
L(H)

< ∞.

In the above statement we have used the notation

(1.10) C+ def
= {λ ∈ C ; Re(λ) ⩾ 0} .

Remark 1.2. As explained above, Theorem 1.1 is related to [9] where they consider
the same system and show that the semigroup generated by A is of Gevrey class.
Here we improve this result by exploiting the damping in Ω and by showing that
through the coupling, it leads to a damping in the wave equation on Γ1 that is
sufficient to obtain an analytic semigroup. We can also refer to the work [7] where
the authors consider general damping terms for wave type equations and study the
regularity of the corresponding semigroups.

Remark 1.3. It is worth noting that the approach considered here has been al-
ready used in other articles devoted to fluid-structure interaction systems. In that
case, the system written in Ω corresponds to the Stokes equations whereas on the
boundary Γ1, one can consider the wave equation or the beam equation, see [3],
[1], [2]. In that cases, we showed how the viscosity of the fluid affects the wave or
the beam equation and obtain that the corresponding semigroups are analytic for
a wave equation and of Gevrey class for a beam equation.

The outline of the article is as follows: in the next section (that is Section 2),
we define and study several operators associated with (1.4) and more precisely on
the resolvent equation associated with A. We introduce in particular the operator
Vλ corresponding to the wave equation on Γ1 with the damping operator Lλ due
to the coupling with the wave equation in Ω. We obtain some estimates of V −1

λ in
Section 3 by first introducing an approximation of Vλ. Then in Section 4, we use
these estimates to show Theorem 1.1. In Appendix A, we give a formal derivation
of our model.
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2. Definition and properties of some operators

In this section, we define several operators associated with the resolvent equa-
tion. The first operators, Uλ and Wλ, correspond to the wave equation in Ω. The
operator Lλ is a Dirichlet to Neumann operator that allows us to describe the influ-
ence of the wave in Ω on the wave at Γ1. We decompose this operator with the help

of L0 and several operators K
(1)
λ , K

(2)
λ , Kλ and Rλ. The operator Vλ corresponds

to the operator of the wave in Γ1 where we include the action on the wave in Ω. We
show that this operator is invertible and we estimate its inverse in the next section.

2.1. The operator Uλ. Let us consider the system

(2.1)

{
λ2uλ,f − (νλ+ 1)∆uλ,f = f in Ω,

uλ,f = 0 on Γ0 ∪ Γ1.

In the lemma below, we recall that this system is well-posed for λ ∈ C+ so that we
can consider the operator Uλ defined by

Uλf
def
= uλ,f .

Lemma 2.1. Assume λ ∈ C+. Then, for any f ∈ L2(Ω), the system (2.1) admits
a unique solution uλ,f ∈ H2(Ω). Moreover, there exists C > 0 such that for any
λ ∈ C+ and for any f ∈ L2(Ω),

(2.2) |λ|2∥uλ,f∥L2(Ω) + (1 + |λ|)∥uλ,f∥H2(Ω) ⩽ C∥f∥L2(Ω).

In particular,

Uλ ∈ L(L2(Ω), H2(Ω) ∩H1
0 (Ω)), ∥Uλ∥L(L2(Ω),H2(Ω)∩H1

0 (Ω)) ⩽
C

(1 + |λ|)
.

Proof. The existence and uniqueness of uλ,f ∈ H2(Ω) for f ∈ L2(Ω) and
λ ∈ C+ follows from classical results on elliptic equations: the case λ = 0 reduces
to the standard Laplace equation, whereas for λ ̸= 0, we first use the Lax-Milgram
lemma on the variational formula∫

Ω

((
ν +

1

λ

)
∇u · ∇v + λuv

)
dx =

1

λ

∫
Ω

fv dx (v ∈ H1
0 (Ω)).

Using that Reλ ⩾ 0, Reλ−1 ⩾ 0, we deduce the existence and uniqueness of a
solution uλ,f ∈ H1

0 (Ω) of the above system and the H2 regularity of uλ,f is a
consequence of the ellipticity of the Laplace operator.

To obtain (2.2) we first take the inner product of (2.1) with λuλ,f and the real
part of the result yields

Reλ ∥λuλ,f∥2L2(Ω) +
(
ν |λ|2 +Reλ

)
∥∇uλ,f∥2L2(Ω) = ∥f∥L2(Ω) ∥λuλ,f∥L2(Ω) .

Combining this relation with the Poincaré inequality, we deduce that

(2.3) |λ| ∥∇uλ,f∥L2(Ω) ⩽ C∥f∥L2(Ω).

Then, taking the inner product of (2.1) with −(νλ+ 1)∆uλ,f and considering the
real part of the result, we find

ν Reλ ∥λ∇uλ,f∥2L2(Ω) + |νλ+ 1|2 ∥∆uλ,f∥2L2(Ω)

⩽ ∥f∥L2(Ω) |νλ+ 1| ∥∆uλ,f∥L2(Ω) + |λ|2 ∥∇uλ,f∥2L2(Ω) .
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The above equation and (2.3) yield

|νλ+ 1| ∥∆uλ,f∥L2(Ω) ⩽ C∥f∥L2(Ω).

Hence, the required estimates of ∥uλ,f∥H2(Ω) follows from H2-elliptic regularity
of the Laplace operator and the estimate of ∥uλ,f∥L2(Ω) is then obtained from
(2.1). □

2.2. The operators Wλ. Let us now consider the system:

(2.4)

 λ2wλ,η − (νλ+ 1)∆wλ,η = 0 in Ω,
wλ,η = 0 on Γ0,
wλ,η = η on Γ1.

By using Lemma 2.1 and a standard transposition method, the above system is
well-posed and the operator Wλ defined by

Wλη
def
= wλ,η

satisfies

(2.5) Wλ ∈ L(H3/2(Γ1), H
2(Ω)) ∩ L(H−1/2(Γ1), L

2(Ω)) ∩ L(H1/2(Γ1), H
1(Ω)).

In order to get estimates in the corresponding norms, we first note that

(2.6)

 −∆w0,η = 0 in Ω,
w0,η = 0 on Γ0,
w0,η = η on Γ1,

and there exists a constant C > 0 such that

(2.7) ∥w0,η∥H2(Ω) ⩽ C ∥η∥H3/2(Γ1)
, ∥w0,η∥H1(Ω) ⩽ C ∥η∥H1/2(Γ1)

,

∥w0,η∥L2(Ω) ⩽ C ∥η∥H−1/2(Γ1)
.

Then, we write

(2.8) wλ,η = w0,η + λzλ,η

where

(2.9)

{
λ2zλ,η − (νλ+ 1)∆zλ,η = −λw0,η in Ω,

zλ,η = 0 on Γ0 ∪ Γ1.

We can apply Lemma 2.1 with (2.7), and we deduce that for any s ∈ [0, 2], there
exists C > 0 such that

(2.10) |λ|1−
s
2 ∥zλ,η∥Hs(Ω) ⩽ C ∥η∥H−1/2(Γ1)

(η ∈ H−1/2(Γ1)).

In particular, combining the above relation with (2.7), there exists C > 0 such that
for any λ ∈ C+,

(2.11) ∥Wλ∥L(H−1/2(Γ1),L2(Ω)) ⩽ C,

and

(2.12) ∥Wλη∥H2(Ω) ⩽ C
(
∥η∥H3/2(Γ1)

+ |λ| ∥η∥H−1/2(Γ1)

)
.
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2.3. The operators Lλ. We define

(2.13) Lλη
def
= ∂nwλ,η = ∂nWλη,

where wλ,η is the solution of (2.4). From (2.5), we have

(2.14) Lλ ∈ L(H3/2(Γ1), H
1/2(Γ1)).

Taking the inner product of the first equation of (2.4) by wλ,η̃ and using (2.5), we

obtain for η̃ ∈ H1/2(Γ1)
(2.15)

(νλ+1) ⟨Lλη, η̃⟩H−1/2(Γ1),H1/2(Γ1)
= λ2

∫
Ω

wλ,ηwλ,η̃ dx+(νλ+1)

∫
Ω

∇wλ,η ·∇wλ,η̃ dx

and in particular, we can extend Lλ as

(2.16) Lλ ∈ L(H1/2(Γ1), H
−1/2(Γ1)).

In the case λ = 0, we deduce from (2.15)

⟨L0η, η̃⟩H−1/2(Γ1),H1/2(Γ1)
=

∫
Ω

∇w0,η · ∇w0,η̃ dx

and the following result:

Proposition 2.2. The operator L0 ∈ L(H1/2(Γ1), H
−1/2(Γ1)) is self-adjoint and

there exists ρ1 > 0 such that

(2.17) ⟨L0η, η⟩H−1/2(Γ1),H1/2(Γ1) ⩾ ρ1∥η∥2H1/2(Γ1)
(η ∈ H1/2(Γ1)).

Taking the inner product of the first equation of (2.6) by zλ,η̃ we deduce that

(2.18)

∫
Ω

∇w0,η · ∇zλ,η̃ dx = 0.

Using the decomposition (2.8) into (2.15) and (2.18), we deduce

(2.19) (νλ+ 1) ⟨Lλη, η̃⟩H−1/2(Γ1),H1/2(Γ1)
= (νλ+ 1) ⟨L0η, η̃⟩H−1/2(Γ1),H1/2(Γ1)

+ λ2

∫
Ω

wλ,ηwλ,η̃ dx+ (νλ+ 1)|λ|2
∫
Ω

∇zλ,η · ∇zλ,η̃ dx.

2.4. The operators K
(1)
λ , K

(2)
λ , Kλ and Rλ. Next, using (2.5) and (2.10),

we define for η ∈ H−1/2(Γ1),

(2.20) ⟨K(1)
λ η, η̃⟩H1/2(Γ1),H−1/2(Γ1)

def
=

∫
Ω

wλ,ηwλ,η̃ dx,

(2.21) ⟨K(2)
λ η, η̃⟩H1/2(Γ1),H−1/2(Γ1)

def
=

∫
Ω

∇zλ,η · ∇zλ,η̃ dx,

(2.22) Kλ
def
= K

(1)
λ + νλK

(2)
λ ,

and

(2.23) Rλ
def
= L0 + |λ|2K(2)

λ .

Therefore (2.19) can be written as

(2.24) (νλ+1)Lλ = (νλ+1)L0+λ2K
(1)
λ +(νλ+1)|λ|2K(2)

λ = νλL0+λ2Kλ+Rλ.

We have the following properties on Kλ:
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Lemma 2.3. For λ ∈ C+, K
(1)
λ , K

(2)
λ ∈ L(H−1/2(Γ1), H

1/2(Γ1)) and there exists
a constant C > 0 such that for any λ ∈ C+,∥∥∥K(1)

λ

∥∥∥
L(H−1/2(Γ1),H1/2(Γ1))

+ |λ|
∥∥∥K(2)

λ

∥∥∥
L(H−1/2(Γ1),H1/2(Γ1))

⩽ C

and  ⟨K(1)
λ η, η⟩H1/2(Γ1),H−1/2(Γ1) ⩾ 0

⟨K(2)
λ η, η⟩H1/2(Γ1),H−1/2(Γ1) ⩾ 0

(η ∈ H−1/2(Γ1)).

Proof. The bound on K
(1)
λ comes from (2.20) and (2.11) and the bound on

K
(2)
λ comes from (2.21) and (2.10). □

Lemma 2.4. There exists a constant C > 0 such that the operator Kλ defined by
(2.22) satisfies for any λ ∈ C+:

(2.25) ∥(I +Kλ)η∥L2(Γ1) ⩾ ∥η∥L2(Γ1) (η ∈ L2(Γ1)),

(2.26) ∥Kλη∥H1/2(Γ1) ⩽ C∥η∥H−1/2(Γ1) (η ∈ H−1/2(Γ1)),

(2.27) ∥η∥H1/2(Γ1) ⩽ C∥(I +Kλ)η∥H1/2(Γ1) (η ∈ H1/2(Γ1)),

(2.28) ∥(I +K∗
λ)η∥L2(Γ1) ⩾ ∥η∥L2(Γ1) (η ∈ L2(Γ1)),

(2.29) ∥K∗
λη∥H1/2(Γ1) ⩽ C∥η∥H−1/2(Γ1) (η ∈ H−1/2(Γ1)),

(2.30) ∥η∥H1/2(Γ1) ⩽ C∥(I +K∗
λ)η∥H1/2(Γ1) (η ∈ H1/2(Γ1)).

Proof. We deduce relations (2.25), (2.26), (2.28), and (2.29) from Lemma 2.3.
For (2.27), we use (2.25) and (2.26):

∥η∥H1/2(Γ1)
⩽ ∥(I +Kλ)η∥H1/2(Γ1)

+ ∥Kλη∥H1/2(Γ1)

⩽ ∥(I +Kλ)η∥H1/2(Γ1)
+ C ∥η∥H−1/2(Γ1)

⩽ ∥(I +Kλ)η∥H1/2(Γ1)
+ C ∥(I +Kλ)η∥L2(Γ1)

⩽ C ∥(I +Kλ)η∥H1/2(Γ1)
.

We deduce (2.30) similarly. □

Lemma 2.5. There exists a constant C > 0 such that the operator Rλ defined by
(2.23) satisfies for any λ ∈ C+:

(2.31) ∥Rλη∥H1/2(Γ1)
⩽ C

(
∥η∥H3/2(Γ1) + |λ|∥η∥H−1/2(Γ1)

)
.

Proof. This is a consequence of (2.14) and Lemma 2.3. □

2.5. The operator Vλ. Let us define

(2.32) Vλ
def
= λ2I +A1 + (νλ+ 1)Lλ.

From (2.24), we have

(2.33) Vλ = λ2 (I +Kλ) + νλL0 +A1 +Rλ.

First, we can show the following result

Lemma 2.6. For any λ ∈ C+, the operators Vλ : D(A
3/4
1 ) → D(A

1/4
1 )′ and Vλ :

D(A
5/4
1 ) → D(A

1/4
1 ) are isomorphisms.
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Proof. We divide the proof into three cases:

Case 1: Reλ > 0. For any g ∈ D(A
1/4
1 )′, one has to show the existence and unique-

ness of η ∈ D(A
3/4
1 ) such that

(2.34)
Vλη

λ
=

(
λI +

1

λ
A1 +

(
ν +

1

λ

)
Lλ

)
η = g.

From (2.24), the above relation can be written as(
λI +

1

λ
A1 +

(
ν +

1

λ

)
L0 + λK

(1)
λ +

(
ν +

1

λ

)
|λ|2K(2)

λ

)
η = g.

We then consider the variational formulation of the above relation

(2.35)

λ (η, η̃)L2(Γ1)
+

1

λ

(
A

1/2
1 η,A

1/2
1 η̃

)
L2(Γ1)

+

(
ν +

1

λ

)
⟨L0η, η̃⟩H−1/2(Γ1),H1/2(Γ1)

+ λ
(
K

(1)
λ η, η̃

)
L2(Γ1)

+

(
ν +

1

λ

)
|λ|2

(
K

(2)
λ η, η̃

)
L2(Γ1)

= ⟨g, η̃⟩H−1/2(Γ1),H1/2(Γ1)(
η̃ ∈ D(A

1/2
1 )

)
.

From Proposition 2.2 and Lemma 2.3 and using that Reλ > 0, we can apply the

Lax-Milgram lemma and we deduce the existence and uniqueness of η ∈ D(A
1/2
1 )

satisfying (2.34). From (2.16), we deduce that A1η ∈ D(A
1/4
1 )′ and thus that η ∈

D(A
3/4
1 ). If moreover, g ∈ D(A

1/4
1 ), then we deduce from (2.14) that A1η ∈ D(A

1/4
1 )

and thus that η ∈ D(A
5/4
1 ).

Case 2: Reλ = 0, λ ̸= 0. From Lemma 2.3 and Proposition 2.2, there exists ε ∈(
0, π

2

)
(depending on λ) such that

(2.36) ν⟨L0η, η⟩H−1/2(Γ1),H1/2(Γ1) ⩾ |λ| tan(ε)
(
∥η∥2L2(Γ1)

+
(
K

(1)
λ η, η

)
L2(Γ1)

)
.

We define θ
def
= ε if Imλ > 0 and θ

def
= −ε if Imλ < 0 so that

Re

(
eiθ

λ

)
=

sin ε

|λ|
> 0, Re

(
λeiθ

)
= −|λ| sin ε < 0.

Now, we replace (2.34) by

(2.37) eiθ
Vλη

λ
=

(
λeiθI +

eiθ

λ
A1 +

(
νeiθ +

eiθ

λ

)
Lλ

)
η = g.

The corresponding variational formulation is

λeiθ (η, η̃)L2(Γ1)
+

eiθ

λ

(
A

1/2
1 η,A

1/2
1 η̃

)
L2(Γ1)

+

(
νeiθ +

eiθ

λ

)
⟨L0η, η̃⟩H−1/2(Γ1),H1/2(Γ1) + λeiθ

(
K

(1)
λ η, η̃

)
L2(Γ1)

+

(
νeiθ +

eiθ

λ

)
|λ|2

(
K

(2)
λ η, η̃

)
L2(Γ1)

= ⟨g, η̃⟩H−1/2(Γ1),H1/2(Γ1)

(
η̃ ∈ D(A

1/2
1 )

)
.



STRONGLY DAMPED WAVE EQUATION 257

We can apply the Lax-Milgram lemma since Lemma 2.3, Proposition 2.2 and (2.36)
yield

Re
(
λeiθ

)
∥η∥2L2(Γ1)

+Re

(
eiθ

λ

)∥∥∥A1/2
1 η

∥∥∥2
L2(Γ1)

+

(
ν cos θ +Re

(
eiθ

λ

))
⟨L0η, η⟩H−1/2(Γ1),H1/2(Γ1) +Re

(
λeiθ

) (
K

(1)
λ η, η

)
L2(Γ1)

+

(
ν cos(θ) + Re

(
eiθ

λ

))
|λ|2

(
K

(2)
λ η, η

)
L2(Γ1)

⩾
sin ε

|λ|

∥∥∥A1/2
1 η

∥∥∥2
L2(Γ1)

The proof follows then as in Case 1.

Case 3: λ = 0. For any g ∈ D(A
1/4
1 )′, one has to show the existence and uniqueness

of η ∈ D(A
3/4
1 ) such that

V0η = (A1 + L0) η = g.

Using Proposition 2.2, we can again apply the Lax-Milgram lemma and conclude
as in Case 1. □

3. Estimation of V −1
λ

In the previous section, we have defined Vλ by (2.32) (see also (2.33)) and we
have shown that it is invertible. We now estimate its inverse. First, we introduce
the notation

(3.1) C+
α

def
=

{
λ ∈ C+ ; |λ| > α

}
.

The main result of this section is the following:

Theorem 3.1. There exists α > 0 such that for λ ∈ C+
α and for θ, β ∈

[−1/4, 3/4] with 0 ⩽ θ + β ⩽ 1, the following estimate holds

(3.2) sup
λ∈C+

α

|λ|2−2θ−2β∥Aθ
1V

−1
λ Aβ

1∥L(L2(Γ1)) < +∞.

In order to prove Theorem 3.1, we consider the following “approximation” of
Vλ:

(3.3) Ṽλ
def
= λ2(I +Kλ) + 2ρλA

1/2
1 +A1 +Rλ.

Comparing (2.33) and the above relation, we have

(3.4) Vλ − Ṽλ = λS,

where

(3.5) S
def
= νL0 − 2ρA

1/2
1 : D(A

1/4
1 ) → D(A

1/4
1 )′.

Using Proposition 2.2, there exists ρ > 0 small enough such that S is a positive
self-adjoint operator. In what follows, we fix ρ > 0 so that it satisfies this property.

We are going to estimate the inverse of Ṽλ, see Theorem 3.3 to prove Theorem 3.1.
First, we recall the following result that can be found in [3, Lemma 3.4].

Lemma 3.2. There exists a constant C0 such that for all λ ∈ C+,

(3.6)
∥∥∥(λ2I + 2ρλA

1/2
1 +A1)η

∥∥∥
L2(Γ1)

⩾ C0

(
|λ|2∥η∥L2(Γ1) + ∥A1η∥L2(Γ1)

)
(η ∈ D(A1)).
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Theorem 3.3. There exists α > 0 such that for all λ ∈ C+
α the operator

Ṽλ : D(A
5/4
1 ) → D(A

1/4
1 ) is an isomorphism and for θ, β ∈ [−1/4, 5/4] such that

0 ⩽ θ + β ⩽ 1, the following estimates hold

(3.7) sup
λ∈C+

α

|λ|2−2θ−2β∥Aθ
1Ṽ

−1
λ Aβ

1∥L(L2(Γ1)) < +∞,

(3.8) sup
λ∈C+

α

|λ|2−2θ−2β

∥∥∥∥Aθ
1

(
Ṽ ∗
λ

)−1

Aβ
1

∥∥∥∥
L(L2(Γ1))

< +∞.

Proof. We write (3.3) as

(3.9) Ṽλ = (I +Kλ)
[
λ2 + 2ρλA

1/2
1 +A1

]
−Kλ

[
2ρλA

1/2
1 +A1

]
+Rλ.

From Lemma 2.4 and Lemma 3.2, there exists a constant c > 0 such that

(3.10)
∥∥∥(I +Kλ)

[
λ2η + 2ρλA

1/2
1 η +A1η

]∥∥∥
H1/2(Γ1)

⩾ c
(
|λ|2∥A1/4

1 η∥L2(Γ1) + ∥A5/4
1 η∥L2(Γ1)

)
.

Combining Lemma 2.4 and Lemma 2.5, we obtain a constant C > 0 such that for
λ ∈ C+,∥∥∥Kλ

[
2ρλA

1/2
1 +A1

]
η
∥∥∥
H1/2(Γ1)

+ ∥Rλη∥H1/2(Γ1)

⩽ C

(
|λ|

∥∥∥A1/4
1 η

∥∥∥
L2(Γ1)

+
∥∥∥A3/4

1 η
∥∥∥
L2(Γ1)

)
.

Using an interpolation inequality and the Young inequality, we deduce from the
above estimate that∥∥∥Kλ

[
2ρλA

1/2
1 +A1

]
η
∥∥∥
H1/2(Γ1)

+ ∥Rλη∥H1/2(Γ1)

⩽ C|λ|−1
(
|λ|2∥A1/4

1 η∥L2(Γ1) + ∥A5/4
1 η∥L2(Γ1)

)
and thus, with (3.9) and (3.10), we deduce that for α large enough, and for λ ∈ C+

α ,

(3.11)
∥∥∥Ṽλη

∥∥∥
H1/2(Γ1)

⩾ C
(
|λ|2∥A1/4

1 η∥L2(Γ1) + ∥A5/4
1 η∥L2(Γ1)

)
.

Since
Ṽ ∗
λ = λ

2
(I +K∗

λ) + 2ρλA
1/2
1 +A1 +Rλη,

and since K∗
λ satisfies the same properties as Kλ, we also deduce that for α large

enough, and for λ ∈ C+
α ,

(3.12)
∥∥∥Ṽ ∗

λ η
∥∥∥
H1/2(Γ1)

⩾ C
(
|λ|2∥A1/4

1 η∥L2(Γ1) + ∥A5/4
1 η∥L2(Γ1)

)
.

From (3.11), we deduce that Ṽλ : D(A
5/4
1 ) → D(A

1/4
1 ) is a closed operator and has

a closed range: if (ηn)n is a sequence of D(A
5/4
1 ) such that

(
Ṽληn

)
is convergent,

then (3.11) yields that (ηn)n is a Cauchy sequence of D(A
5/4
1 ) and we deduce that

(ηn)n is convergent in D(A
5/4
1 ) which yields the result.

Using [5, Corollary II.17 (iv), p.28], we deduce from (3.11) and (3.12) that

Ṽλ is invertible. Moreover, these relations also imply (3.7) and (3.8) for (θ, β) =
(1/4,−1/4) and (θ, β) = (5/4,−1/4). By interpolation, this yields (3.7) and (3.8)
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for (θ,−1/4), θ ∈ [1/4, 5/4]. By a duality argument, we obtain (3.7) and (3.8) for
(−1/4, β), β ∈ [1/4, 5/4]. Then, by interpolating (3.7) and (3.8) between (1/4 +
κ,−1/4) and (−1/4, 1/4 + κ) for κ ∈ [0, 1], we deduce the result. □

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1. The proof is the same as the proof of Theorem 3.6

in [3]. The main idea to use (3.4) and (3.5) in order to compare V −1
λ and Ṽ −1

λ . The

key point in the proof of Theorem 3.6 in [3] is the relation Re⟨λζ, Ṽλζ⟩L2(Γ1) ⩾ 0.
Here, we can show this relation by using (3.3), combined with (2.22) and (2.23):
for any ζ ∈ D(A1),

(3.13) Re⟨Ṽλζ, λζ⟩L2(Γ1) = Reλ∥λζ∥2L2(Γ1)
+ |λ|2 Reλ⟨ζ,K(1)

λ ζ⟩L2(Γ1)

+ ν|λ|4⟨ζ,K(2)
λ ζ⟩L2(Γ1) + |λ|2 Reλ⟨ζ,K(2)

λ ζ⟩L2(Γ1)

+ 2ρ|λ|2∥A1/4
1 ζ∥2L2(Γ1)

+Reλ∥A1/2
1 ζ∥2L2(Γ1)

+Reλ⟨ζ, L0ζ⟩L2(Γ1)

and we conclude by using Lemma 2.3 and Proposition 2.2. □

4. Proof of the main result

We are now in a position to prove Theorem 1.1. Assume

(4.1) F = (f1, f2, g1, g2) ∈ H2(Ω)× L2(Ω)×D
(
A

3/4
1

)
×D

(
A

1/4
1

)
.

First, we show that we can solve the following equation for λ ∈ C+:

(4.2) (λI −A)U = F.

Writing

U = (u1, u2, η1, η2),

the above equation can be written as

(4.3)



λu1 − u2 = f1 in Ω,
λu2 − ν∆u2 −∆u1 = f2 in Ω,

u1 = u2 = 0 on Γ0,
u1 = η1, u2 = η2 on Γ1,

λη1 − η2 = g1 in Γ1,
λη2 +A1η1 + ν∂nu2 + ∂nu1 = g2 in Γ1.

Step 1. Here we show

(4.4) C+ ⊂ ρ(A).

In order to do this, we deduce from the first two equations of (4.3) that

λ2u2 − λν∆u2 −∆u2 = λf2 +∆f1

and

λ2u1 − λν∆u1 −∆u1 = λf1 − ν∆f1 + f2

so that

(4.5) u2 = Wλη2 + Uλ (λf2 +∆f1)

and

(4.6) u1 = Wλη1 + Uλ (λf1 − ν∆f1 + f2) .
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Combining similarly the last two equations of (4.3), we find

λ2η2 +A1η2 + (νλ+ 1)∂nu2 = λg2 −A1g1 − ∂nf1

and

λ2η1 +A1η1 + (νλ+ 1)∂nu1 = λg1 + g2 − ν∂nf1.

Now, we use (4.5), (4.6), (2.13), and (2.32) to write the two previous equations as
follows

(4.7) Vλη2 = λg2 −A1g1 − ∂nf1 − (νλ+ 1)∂nUλ (λf2 +∆f1) ,

(4.8) Vλη1 = λg1 + g2 − ν∂nf1 − (νλ+ 1)∂nUλ (λf1 − ν∆f1 + f2) .

From (4.1) and Lemma 2.1, we deduce that the right-hand side of (4.7) and (4.8)

are respectively in D(A
1/4
1 )′ and D(A

1/4
1 ). Thus from Lemma 2.6, there exists a

unique solution (η1, η2) ∈ D(A
5/4
1 )×D(A

3/4
1 ) of (4.7) and (4.8). Then (4.5), (4.6),

combined with Lemma 2.1 and (2.5) yield (u1, u2) ∈ H2(Ω)2. We have solved (4.2).
Step 2. We now show the estimate (1.9). Let us consider α from Theorem 3.1.

From the above step, using the continuity of the resolvent, we already have

sup
λ∈C+,|λ|⩽α

|λ|
∥∥∥(λI −A)

−1
∥∥∥
L(H)

< ∞.

It is thus sufficient to show

(4.9) sup
λ∈C+

α

|λ|
∥∥∥(λI −A)

−1
∥∥∥
L(H)

< ∞

to obtain (1.9). In order to do this, we use (4.7) to write

(4.10) η2 = −V −1
λ ∂nf1 − (νλ+ 1)V −1

λ ∂nUλ (∆f1)− λ(νλ+ 1)V −1
λ ∂nUλf2

− V −1
λ A1g1 + λV −1

λ g2.

From Theorem 3.1 (with (θ, β) = (1/4,−1/4) or (θ, β) = (1/4, 1/4)) and Lemma 2.1,
we have

(4.11)
∥∥∥λA1/4

1 V −1
λ ∂nf1 + λ(νλ+ 1)A

1/4
1 V −1

λ ∂nUλ (∆f1)
∥∥∥
L2(Γ1)

⩽ C ∥f1∥H2(Ω) ,

(4.12)∥∥∥λ2(νλ+ 1)A
1/4
1 V −1

λ ∂nUλf2

∥∥∥
L2(Γ1)

⩽ C ∥(νλ+ 1)Uλf2∥H2(Ω) ⩽ C ∥f2∥L2(Ω) ,

(4.13)
∥∥∥λA1/4

1 V −1
λ A1g1

∥∥∥
L2(Γ1)

⩽ C
∥∥∥A3/4

1 g1

∥∥∥
L2(Γ1)

,

(4.14)
∥∥∥λ2A

1/4
1 V −1

λ g2

∥∥∥
L2(Γ1)

⩽ C
∥∥∥A1/4

1 g2

∥∥∥
L2(Γ1)

.

Combining (4.10) with (4.11)–(4.14), we deduce that

(4.15) ∥λη2∥D(A
1/4
1 )

⩽ C ∥F∥H .

Moreover, we deduce from (4.10) and from (4.3) that

(4.16) λη1 = −V −1
λ ∂nf1 − (νλ+ 1)V −1

λ ∂nUλ (∆f1)− λ(νλ+ 1)V −1
λ ∂nUλf2

+ g1 − V −1
λ A1g1 + λV −1

λ g2.
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Similarly as above, we apply Theorem 3.1 ((with (θ, β) = (3/4,−1/4) or (θ, β) =
(3/4, 1/4)) and Lemma 2.1, and we deduce

(4.17) ∥λη1∥D(A
3/4
1 )

⩽ C ∥F∥H .

Now, coming back to (4.5), we obtain

∥λu2∥L2(Ω) ⩽ ∥λWλη2∥L2(Ω) +
∥∥λ2Uλf2

∥∥
L2(Ω)

+ ∥λUλ∆f1∥L2(Ω) .

Combining the above relation with (2.11), Lemma 2.1 and (4.15), we deduce

∥λu2∥L2(Ω) ⩽ C
(
∥λη2∥H−1/2(Γ1)

+ ∥f2∥L2(Ω) + ∥f1∥H2(Ω)

)
⩽ C ∥F∥H .

Finally, (4.3) and (4.5) yield

∥λu1∥H2(Ω) ⩽ ∥Wλη2∥H2(Ω) + ∥λUλf2∥H2(Ω) + ∥Uλ∆f1∥H2(Ω) + ∥f1∥H2(Ω) .

Combining the above relation with (2.12), Lemma 2.1 and (4.3), we deduce

∥λu1∥H2(Ω) ⩽ C
(
∥η2∥H3/2(Γ1)

+ ∥λη2∥H−1/2(Γ1)
+ ∥f2∥L2(Ω) + ∥f1∥H2(Ω)

)
⩽ C

(
∥λη1∥H3/2(Γ1)

+ ∥g1∥H3/2(Γ1)
+ ∥λη2∥H−1/2(Γ1)

+ ∥f2∥L2(Ω) + ∥f1∥H2(Ω)

)
.

Combining this with (4.15) and (4.17) yields

∥λu1∥H2(Ω) ⩽ C ∥F∥H .

We thus deduce (4.9) and therefore (1.9). Combined with (4.4), this allows us to
conclude the proof of Theorem 1.1.

Appendix A. Formal derivation of Ventcel boundary conditions

In this section, we present a formal way to derive the system (1.1) and in
particular the Ventcel boundary conditions. The approach is the same as in [6,
Appendix A] and we write this part only for sake of completeness.

We consider for any δ > 0 small enough,

ωδ := {x+ sn ; s ∈ (0, δ), x ∈ Γ1}

and we assume that

Ω ∩ ωδ = Γ1.

We define the domain Ωδ by

Ωδ := Ω ∪ ωδ.

Then, we consider the following system coupling two wave equations:

(A.1)



∂ttu− ν∆∂tu−∆u = 0 in (0,∞)× Ω,
∂ttv − κ∆v = 0 in (0,∞)× ωδ,

u = v on (0,∞)× Γ1,
∂n(ν∂tu+ u) = κ∂nv on (0,∞)× Γ1,

u = 0 on (0,∞)× Γ0,
∂nv = 0 on (0,∞)× ∂ωδ \ Γ1.

In the above system, the two wave equations are coupled at the interface Γ1 through
standard transmission conditions. Note that we choose to consider a Neumann
boundary condition on the ∂ωδ \Γ1. Similar computations for a Dirichlet boundary
condition lead to a slightly different model.
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First we use a standard formula for the Laplace operator in Γ1 as follows (see,
for instance, [11, p.220, formula (5.59)]):

∆v = ∂2
nv + (div n)∂nv +∆bv on Γ1.

Then using Taylor’s formula and the Neumann boundary condition on ∂ωδ \Γ1, we
deduce

0 = ∂nv(x+ δn) = ∂nv(x) + δ∂2
nv(x) +O(δ2) on Γ1.

We thus deduce from the wave equation on ωδ and from the two above relations
that

∂ttv − κ∆bv = −κ

δ
∂nv +O(δ) on (0,∞)× Γ1.

Then using the transmission conditions, and denoting by η the trace of v on Γ1, we
deduce

∂ttη − κ∆bη = −1

δ
∂n(ν∂tu+ u) +O(δ) on (0,∞)× Γ1.

Neglecting the remainder, we recover the Ventcel condition in (1.1). Note that in
this system, we take δ = 1 since this constant does not play any role in the proof
of our main result.
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[5] Häım Brezis. Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Mâıtrise.
[Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris, 1983. Théorie
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Institut de Mathématiques de Toulouse ; UMR5219; Université de Toulouse, CNRS,
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