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ABSTRACT. In the present contribution, we first prove the existence of m-fold
simply-connected V-states close to the unit disc for Euler-a equations. These
solutions are implicitly obtained as bifurcation curves from the circular patches.
We also prove the existence of quasi-periodic in time vortex patches close to
the Rankine vortices provided that the scale parameter o belongs to a suitable
Cantor-like set of almost full Lebesgue measure. The techniques used to prove
this result are borrowed from the Berti-Bolle theory in the context of KAM for
PDEs.
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1. Euler-a equations and main results

We consider the Euler-a planar model with parameter a > 0 given by

(1.1)

ou+ (v-Viu+ (Vv)Tu+Vr =0, in Ry x R?
V-v=V.-u=0,

u=v-—a’Av,

v(0,-) = vo.
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This model is a regularization of Euler equations describing the flow of an incom-
pressible fluid on spatial scales larger than the length scale parameter «. It has been
introduced in the context of averaged fluid models, see [53, 54]. In the literature, v
and u are called the filtered and unfiltered velocities, respectively. Actually, u cor-
responds to the velocity field of the fluid. Notice that (Vv)T denotes the transpose
of the Jacobi matrix for v, namely

(Vv)—r = (8vj)
Ox; 1<4,5<2.

The pressure term 7 is linked to the pressure field p of the fluid through the relation
mAp— L - v

Remark that we formally recover the classical Euler model, by taking o = 0 in the

above set of equations. The rigorous justification of this convergence can be found

in [62]. In the sequel, we assume that a > 0. Let us consider the unfiltered vorticity
w defined by

(1.2) WAVt u=Vt (Id-a?A)yv, V2 (‘6‘92> :

1
Applying the operator V+- to the first equation in (1.1), we find, after straightfor-
ward computations using the divergence-free conditions, that w is a solution to the
following active scalar equation

(1.3) Ow +v-Vw=0.

Such kind of nonlinear and nonlocal transport PDE has been widely studied during
the past decade in fluid dynamics, especially regarding the periodic motions and
more recently the quasi-periodic ones. We shall discuss in this introduction two
types of active scalar models in the form (1.3) which will be of interest in the
sequel. The first example is given by the classical velocity-vorticity formulation of
2D Euler equations, namely

0w +vE . Vw® =0, vE = ViwF, AP = WP,

In this case, the potential velocity ¥ is obtained as the convolution with the Green
function associated to the Laplace problem set in the whole plane, namely

(1.4) " = G x w", G® £ Llog(|- ).

The second example is given by quasi-geostrophic shallow-water equations with
parameter A\ > 0, shorten in what follows into (QGSW),, which is a geophysical
asymptotic model describing the circulation of the atmosphere at large time and
space scales [71, p.220]. This model is given by

g™ + VY V@Y =0, VYV =VvIEYY, (A 2)EY =gtV

In this case, the potential velocity 111?\“’ is obtained as the convolution with the
Green function associated to the Helmoltz problem set in the whole plane, namely

(1.5) TSV = GSW x ¢°V, GV £ —iKo(/\\ -1,

where K is the modified Bessel function of second kind. We refer to the Appendix
A for a presentation of modified Bessel functions and some of their useful proper-
ties. The parameter \ is called Rossby deformation length or Rossby radius and
quantifies the rotation/stratification balance for the fluid. Few results are known
regarding this model and we may refer to [27, 69] for the mathematical context of
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interest in the sequel and to [28, 29] for interesting numerical simulations in the
physical literature.

This paper is based on the following fundamental relation, which can be found
for instance in [7, 66], giving a nice expression of the Euler-« velocity field v.

(1.6) v=Viy, U 2Gxw, G =GP -G

Due to the importance of this formula for our work, we provide in Section 2 its
detailed justification. In our approach, we take advantage of this explicit link with
Euler and QGSW equations to prove the existence of periodic and quasi-periodic
vortex patch motions for the Euler-a equations. In particular, we shall make ap-
peal to the computations carried out in [14, 17, 27, 43, 50, 52] relatively to these
contexts. For the Euler-a model, the global existence and uniqueness of classical
solutions has been obtained in [18]. The well-posedness of weak solutions in the
space of bounded Radon measures for (1.1) has been proved in [66]. Indeed, the
formula (1.6) and (A.4) imply that the vector field v is less singular than the Euler
one, which allows to reach the class of measures for the well-posedness. An other
consequence is that the Yudovitch theory also applies in this context and the weak
solutions are Lagrangian. This fact is the starting point to be able to look for vortex
patches. Before presenting the notion of vortex patch solutions together with the
main results of this study, we may end this presentation by briefly mentioning that
the 2D Euler-a model has also been intensively studied in the case of subset of R?
domains with suitable boundary conditions. We may for instance refer the reader
to [19, 20, 21, 63, 60].

Now, we shall present the notion of vortex patches and discuss some historical
background about the periodic and quasi-periodic settings. The techniques used to
find these two kind of solutions are completely different. The periodic solutions are
obtained by using bifurcation theory from the stationary solutions and the quasi-
periodic ones appear in the context of KAM/Nash-Moser theories. Considering an
open bounded simply-connected domain Dy in R? then the function 1p, provides an
initial datum in the Yudovitch class. Therefore, we have existence and uniqueness
of a global weak solution which, according to the transport structure of (1.3), takes
the following form

w(t7 ) = ]‘Dt7

where D; is the image of Dy by the flow map associated to the velocity field v,
namely

Dy = ®,(Dy), ®y(x)=a+ /0 v(s, ®4(x))ds.

The resulting solution ¢ — 1p, is called a vorter patch with initial patch 1p,.
Given any parametrization z(t,-) : T — 0D, of the boundary of the patch at time
t, it is well-known since the works [50, 51| that for an active scalar equation, as
in our case, the particles on the boundary move with the flow and remain at the
boundary. Hence, at least in the smooth case, one can write the following equation
called wvortex patch equation.

(1.7) (002(6,0) = v (t,2(1,0)) ) - n(t,2(2,0) =0,
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where n(t, z(t,0)) is the outward normal vector to the boundary dD; of D; at the
point z(t,8). Since the dynamics is planar, it is more convenient to use the complex
notation. In particular, the Euclidean structure of R? is transposed into the complex
world in the following way:

Vu=a+ibeC, Yv=d +ibt €C, w-v 2 (u,v)p2 = Re (uv) = aa’ + bb'.

Remarking that n(t, z(t,0)) is real-proportional to i9pz(t,0), then we get the com-
plex form of the contour dynamics motion (1.7),

(1.8) Im (atz(t, e)m) —Im (v(t, 2t 9))W) .

» Uniformly rotating solutions.
Uniformly rotating vortex patches, also called V-states, form a particular subclass
of vortex patch solutions taking the form

(1.9) Dy = D,

Any solution of this form is rotating with a time independent angular velocity
Q € R around its center of mass fixed at the origin. If 2 = 0, then it is stationary,
otherwise it is time periodic with period 25—? Historically, the first example of V-
states was provided by Kirchhoff [56] who showed that for Euler equations any
ellipse with semi-axis a and b uniformly rotates for an angular velocity 2 = ﬁ.
Observe from (1.6), (1.4) and (1.5) that the stream function ¥ admits a radial Green
kernel. Therefore, any radial initial profile would generate a stationary solution. In
particular, the Rankine vortices given by the discs provide such examples. The
purpose of this study is to prove the existence of periodic (and quasi-periodic)
vortex patch structures close to these equilibrium states. Due to the invariance by
dilation of the model, it is sufficient to search for these type of solutions close to
the unit disc. The analytical study of existence of V-states close to the unit disc for
Euler equations goes back to the work of Burbea [17]. We also refer to [50] for a
more recent and rigorous point of view. Indeed, combining Crandall-Rabinowitz’s
Theorem B.1 and complex analysis, one can find the existence of branches of m-fold
V-states bifurcating from the unit disc at the angular velocities

1
(1.10) e

m

2m

Later on, a lot of attention has been paid to such type of solutions for different
nonlinear transport fluid models like Euler equations in the plane or in the unit disc,
generalised surface quasi-geostrophic equations (SQG), and (QGSW), equations.
Also, several topological and regularity settings were explored and we may refer to
[22, 27, 33, 34, 35, 36, 37, 38, 39, 40, 42, 44, 46, 47, 48, 49, 50, 51, 68, 69].
Nevertheless, it seems that the Euler-a model has been set aside from these studies.
Hence, we propose here to study the emergence of simply-connected V-states for this
model. For this task, due to the decomposition (1.6), we may emphasize the result
in [27], where they found the following angular velocities related to the modified
Bessel functions for which the bifurcation of simply-connected V-states from the
unit disc occurs

(L11) Q5 N) 2 LKL () = IO K (V).

Now, we shall present the first theorem proved in this study and dealing with
periodic simply-connected patches bifurcating from the Rankine vortices.
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THEOREM 1.1. Let > 0 and 8 € (0,1). For any m € N*, there exists a branch
of m-fold V-states of reqularity C'*7 bifurcating from the unit disc at the angular
velocity

pm—1 1 1 1 1 SW (1
(112) Q5(0) 2 T = (0 () K1 (3) = Im (£) K (3) ) = Q5 — 20V (2)

for Euler-a equations (1.1).

REMARK 1.1. Let us make the following remarks.

(i) Observe that the bifurcation frequencies (1.12) are exactly the superposi-
tion of those of Euler (1.10) and (QGSW)1 (1.11) models which is in
accordance with the remark in Section 2 and the structure of the vortex
patch equation (1.8).

(i) The following convergences hold true.

Q(0) — b1 (1)K (1) 205 (), Q%) — Bl =0k,
(i) The case m = 1 corresponds to a translation of the trivial solution, see
Remark 3.1.

The Theorem 1.1 is proved by using Crandall-Rabinowitz’s Theorem B.1 in the
spirit of the previous works mentioned above. For that purpose, we reformulate the
vortex patch equation (1.8) in the uniformly rotating framework with conformal
mappings. We chose to use the conformal functional setting in order to be able
to take advantage of the computations already done in [27, 50]. Nevertheless,
one could also use the polar parametrization similarly to the next result on quasi-
periodic solutions. Introducing, for an initial domain Dy close to the unit disc D,
the conformal parametrization ® : C\ D — C \ Dy in the form

> a
o) =2+ f(),  f)=3 2 ack
n=0
we can reformulate the vortex patch equation (1.8) in the uniformly rotating context
as the following equation

\V/’U)GT, Fa(Q,f)(UJ):(),
with

Fo(@ £)(w) 2 Im { (Q@(w) + I°(H)(w) + 1% (£) (0, w) )5 (w) |,
FE(f)(w) £ £ ¥(7)log (|2(w) - 2(r)))dr,

JT

I5%(f) () 2 f &' (1) Ko (L[0(r) — ®(w)]) dr.

T
Remarking that the disc provides a line of solutions F,(£2,0) = 0 for Q € R, we
shall apply the local bifurcation theory to find non-trivial solutions. In Proposition
3.1, we prove that the functional F, is of class C'! with respect to some Holder
regularity spaces and its linearized operator at the equilibrium has the Fredholm
property and expresses as the following Fourier multiplier

Vw €T, diFa(R0)(w) = an(n+1) (QﬁH(Q) - Q)Im(wn+1).

n=0
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The one dimensional kernel condition for applying bifurcation theory is ensured
by the strict monotonicity of the sequence (Qg(a))n cn- Which is checked using
some refined estimates on modified Bessel functions, see Lemma 3.1. Finally, the
transversality condition is a direct consequence of the Fourier decomposition of the
linearized operator and is checked in Proposition 3.2-(iv).

» Quasi-periodic in time vortex patches.

This topic is rather new in vortex patch dynamics and the tools used are borrowed
from KAM /Nash-Moser theories [2, 11, 58, 64, 65]. Recall that a function r : R —
R is said to be quasi-periodic if there exists d € N*, 7 = 7(¢) : T¢ — R continuous
and w € R such that

(1.13) r(t) =7(wt), VI€Z\{0}, w-1#0.

The existence of quasi-periodic vortex patches close to the unit disc for the QGSW
equations have been proved in [52]. These solutions are obtained by selecting the
Rossby deformation length in a massive Cantor set. Similarly, in [41], the authors
used the parameter inside the equations to generate quasi-periodic vortex patches
near the Rankine vortices for (SQG), equations for suitable selected values of a.
Here our work follows the same idea relying on the free parameter a to obtain these
solutions. We mention two other works recently obtained for Euler equations. The
first one concerns the quasi-periodic patches close to the Rankine vortices in the unit
disc presented in [43]. The second result, which can be found in [14], is relative
to quasi-periodic patches close to the Kirchhoff ellipses. In both cases, this is a
geometrical parameter which, when taken among a Cantor-like set of admissible
parameters, allows to find quasi-periodic solutions. Our second result reads as
follows.

THEOREM 1.2. Let 0 < ap < a1, 2 > 0 and S C N* finite. There exists g €
(0,1) small enough such that for every choice of amplitudes a = (a;);es € (R%)IS
enjoying the smallness condition

|a| < €0,

there exists a Cantor-like set €, C (o, 1) with asymptotically full Lebesgue mea-
sure as a — 0, i.e.

lim |6 | = a1 — o,

a—0
such that for any a € 6w, the equation (1.3) admits a time quasi-periodic vortex
patch solution with diophantine frequency vector wpe(a,a) 2 (wj(a,a))jes € RISI
and taking the form w(t, ) = 1p,, with
(1.14)

D, = {461(94“), 0elo,2r], 0<(< R(tﬁ)}, R(t,0) = /T +2r(t,0),
r(t,0) = Z a; cos (j6 + w;(a,a)t) + p(wpe(a, a)t, 0).
jes

The diophantine frequency vector satisfies the following asymptotic

E
wpe (e, a) a:g) ( — (a))jGS’

where Q?(a) are the equilibrium frequencies defined by

() £ j(Q+ 9 (@),
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with Qr:ﬂ(a) as in (1.12). In addition, the perturbation p : TS+ — R is an even
function satisfying for some large index of reqularity s,

Hp||HS(T\§|+1,R) a0 o(al).

Now we shall briefly mention the key steps of the proof of Theorem 1.2 which
are similar to the ones of [41, 43, 52]. The core of the proof of Theorem 1.2 relies on
Berti-Bolle theory [11] and [41, Sec. 6]. We mention here some results which have
been obtained using this theory [3, 5, 6, 12, 13, 15, 16, 30, 32]. Plugging the
ansatz (1.14) into the vortex patch equation (1.8) provides a nonlinear Hamiltonian
transport PDE for the radial deformation » in the form

(1.15) Or = 0N H (1),

with Hamiltonian 7 related to the kinetic energy and the angular momentum.
This equation satisfies the reversibility property, namely if (¢,0) — r(t,0) is a
solution, then so is (¢,0) — r(—t, —60). After a rescalling r — er the equation (1.15)
can be seen as a quasilinear perturbation of its linearization at the equilibrium
(e =0), see (4.42). As mentioned in Lemmas 4.5 and 4.1, this latter is an integrable
Hamiltonian system, namely for any finite set of Fourier modes S C N* of cardinal
d € N*, the linearized equation at the Rankine patch admits, for almost every «
in (ap, aq), reversible quasi-periodic solutions with d-dimensional frequency vector
—wpq(a) £ (- Q;—:(a))jes in the form

r(t,0) = er cos (j0 — Q5 (a)t), r; € R*.
JjE€S

The property (1.13) for wgq(e) holds for almost every a by imposing some Dio-
phantine conditions. The measure of the corresponding set is a consequence of the
transversality condition in Lemma 4.9-(i) together with the Riissmann Lemma 4.6.
Notice that the transversality condition is itself a consequence of the non-degeneracy
of the function o — wgq(@) on [, 1], see Lemma 4.8. The introduction of the
Diophantine conditions implies the invertibility of the linearized operator at the
equilibrium state but with a fixed loss of derivatives. Therefore, to find quasi-
periodic solutions for the nonlinear model, we may apply a Nash-Moser scheme.
For this aim we reformulate the problem in terms of embedded tori. This is done
by splitting the phase space LZ(T) in (4.12) associated with (1.15) into tangential Lg
and normal L? subspaces, see (4.43). Then we introduce in (4.44) the action-angle
variables (I,4) by using a symplectic polar change of coordinates for the Fourier
coefficients on the tangential subspace. Thus, any function r € L? (wa L%(TQ)) can
be related to an embedded torus, namely

(o) = A(i(p)), i: T? — TIxRIxL? A:T4 xR x L2 — L3(T).
e = (99 I(9),2(9)),

Then, the search of reversible quasi-periodic solutions to (1.15) is equivalent to
looking for reversible tori solutions to

(1.16) F (i, k,a,w, e) =0,

where .7 is a nonlinear functional whose complete expression can be found in (4.48).
This provides a true solution of the original problem for the particular value

(1.17) k= —wpq(a).
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To find non-trivial solutions of (1.16), we apply a Nash-Moser scheme. At each step,
we shall find an approximate right inverse, with nice tame estimates, of the linearized
operator d; ..% (ip) at the reversible torus ip of the current step. Applying the
Berti-Bolle theory [11] and [41, Sec. 6], one can conjugate the linearized operator
di 7 (ig) by a suitable diffeomorphism of the toroidal phase space T¢ x R? x L2
in order to obtain a triangular system in the action-angle-normal variables up to
nice error terms. Then to solve the triangular system, it is sufficient to find an
almost approximate right inverse for the linearized operator in the normal directions
denoted .2, and related to the linearized operator L., of (1.15) through the relation
(4.53). To do so, we conjugate £ to a constant coefficients operator up to error
terms. This is the content of the Section 4.5. First, in Proposition 4.3 we use a KAM
reduction process with quasi-periodic symplectic change of variables to reduce the
transport part of L.,.. Then, in Proposition 4.4 we look at the localization effects
in the normal directions to recover the reduction of the transport part for %, .
This provides a diagonal operator of order 1 plus a remainder of order (0,—1) in
the variables (¢, ). Finally, in Proposition 4.5 we use a KAM reduction process in
the Toeplitz operators class to reduce the remainder term. Each KAM reduction
occurs for suitable restrictions of the parameters («,w) to a Cantor-like set. In
addition, the inversion of the final diagonal operator also requires an extraction
of parameters. The Nash-Moser process constructs a non-trivial solution (o, w)
(foo (@, W), Koo (@, w)) with reversible torus i, modulo restriction of the parameters
to a Cantor set in («,w) obtained gathering all the restrictions of all the steps for
the contruction of the almost approximate right inverses of the linearized operators.
Then, coming back to (1.17), we rigidify the frequency w into w(«,€) so that

(1.18) Koo (o, w(a, €)) = —wiq(a).

We mention that the introduction of the free-parameter x was required to apply the
Berti-Bolle theory along the scheme, more precisely to invert the triangular system.
The condition (1.18) gives a final Cantor set in « only that we must check it is not
empty. This latter fact is obtained in Proposition 4.8 by estimating the Lebesgue
measure of the set through the Riissmann Lemma 4.6 together with the perturbed
transversality conditions.

2. The stream function associated to the filtered velocity

This short section is devoted to the justification of the formula (1.6) which is
the fundamental relation for this work. Recall that the identity (1.6) was already
observable in the literature, for instance in [7, 66]. The divergence-free property
for v and u in (1.1) implies the existence of stream functions ¥ and 1 such that

v=Vt¥, u=V'y
and the goal of this section is to find a nice expression for the velocity potential
W. Notice that, according to the third equation in (1.1), the stream functions are
linked through the relation

Y= (1-a?A)T.

Then, (1.2) implies

w=Ap=(1-a’A)AD.
We deduce from (1.4) and (1.5) that

— A
U=23G" GV rw £ Grw.
[e3
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Now our goal is to compute G. One can write

G(7) = gar /Rz Ko (%) log(|z — y[) dA(y)
= st [ o (&) 1og (1o = y)at)

— ot [ B0 (1) tog (1o + [y — 20 y) dAG)
RQ

where dA denotes the planar Lebesgue measure. Writing « = (R cos(6), Rsin()),
then a polar change of variables yields

2m
(2) = gtz / / rKo (£)log (R? +r° — 2Rrcos(0 — n)) drdn

log(R -~ r > r T T
=0 [k ()t ks [ 5K (2) T () o
where Ip denotes the Poisson integral defined by
Vr eR, Ip(z)= / log (1 + 2® — 2z cos(n))dn.

It is well-known, see for instance [23], that the Poisson integral admits the following
explicit formula

Ip(z) = 4dmlog(|x]), if |z| > 1.

Therefore,
G) = 42 [k (2)ar+ 5k [ 5K (2) 08 (5) dr

2T 2T

R
:M/ LKy (L) dr + 5 ”Ko( ) log (r) dr.
Jo JR

A change of variables together with (A.3), (A.5) and (A.6) give

R R
S [ (5 dr = [T sty = 5 (1 B (8))

and
oo

ﬁ ; LK (g) log (r) dr = 1055:1) /R uKy (u) du + i/R uKy (u)log (u) dr

o0
Rlz(;go(éa)K (8)+ £ /E uKo (u)log (u) du.
An integration by parts in the last integral together with (A.6) lead to

% . uKo (u)log (u )du—% ( )1og —|—27T/ K (u

- QﬂaKl (5) 1Og (R) - MKl (E) + ?KO (%) :

2T

Gathering the foregoing computations and reminding that R = |z| we obtain

(2.1) G(r) = 3 log(ja]) + = Ko (1) = G¥(2) - 63V (a).

a
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Notice that we recover a radial function as a convolution of two radial functions. In
particular, any radial profile gives a stationary solution for the active scalar equation
(1.3) satisfied by w.

3. Periodic rigid motion

This section is devoted to the proof of the Theorem 1.1 which is an application
of the Crandall-Rabinowitz’s Theorem B.1. This latter is applied to a reformulation
of the vortex patch equation (1.8) in the uniformly rotating framework.

3.1. Function spaces and reformulation of the vortex patch equation.
The goal of this subsection is to set up the contour dynamics equation for the
Euler-a V-states near the Rankine vortices. Consider an ansatz (1.9) with simply-
connected domain Dy and rotating uniformly with some angular velocity 2. At time
t > 0, the boundary 0D, can be parametrized by

(3.1) 2(,0) = 2(0,0),  6€[0,2n],  2(0,0) = 2(0,2n).
With this parametrization, the left hand side of (1.8) becomes
(3.2) Im((')tz(t,ﬁ)agz(tﬁ)) - QRe(z(O,H)ﬁgz(O,H)).

As for the computation of the right hand-side of (1.8), it is obtained from the
Biot-Savart law. Note that the velocity potential ¥ given by (1.6) writes in this
context

(o) = & [ gz - €)dA©) + & [ Ko (- €]) aace)

¢ J Dy
Notice that the real notation # € R? has been replaced by the complex notation
z € C. To get the Biot-Savart law we shall use Stokes’ Theorem in complex notation

% [ deredaae - [ e

oD
Hence, by making the identification 2id; = V+ leading to v(t,2) = 2i0-¥(¢, 2) one
deduces, after a regularization procedure similar to the one explained in the proof
of [43, Lem. 2.1], that

63 vt =g [ tosle-chas— oo [ Ko (g de
One easily obtains from (3.1), (3.3) and change of variables,

(3.4) v(t, z(t,0)) = eiQtv(O, 2(0,9)).

Thus, combining (3.4) and (3.1), we obtain

(3.5) Im(v(t,z(t,@))W) = Im(v(O,z(O,é)))W).
Gathering (3.2) and (3.5), the equation (1.8) becomes

(3.6) ORe (z((), 9)W> =1Im (v(o, 2(0, 9))W).

Therefore, denoting 2’ a tangent vector to the boundary 9Dy at the point z, one
gets from (3.3) and (3.6) that for any z € 9Dy,
(3.7)

— 1 1 _
ORe (227) +Tm ([zﬁ /aDO log (| — €])d¢ + /BDD Ko(xlz - <|)d<} z) =0.
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In accordance with the previous works in the field beginning with the one of Burbea
[17], we should rewrite the equation (3.7) by using conformal mappings. For that
purpose we shall now present the function spaces used throughout this first part on
periodic solutions. Notice that we shall identify 27-periodic functions g : R — C
with functions f : T — C defined on the torus T = R/27Z = U through the relation

fw) =g(6), w=c".

In this part, we shall consider the following notation for the mean value line integral
of any continuous function f defined on the torus T

]fr f(r)dr = — / f(r :ﬂ f(e)ede.

Now, we introduce the Holder spaces on the unit circle. Given 8 € (0, 1), we denote
by CP(T) the space of continuous functions f such that

. 1£(0) - )]
I fllcsry = I fllLee(r) + (T,igfe’w Ir—w|?
TF#w

<0

and we denote by C'*#(T) the space of C' functions with S-Holder continuous
derivative such that

Ifllcr+acry & 1 Fll=cry + H@Hcﬁ(m

For 5 € (0,1), we set

XA 2 {f e C"AT) st. YweT, flw anw” fn € R}

n=0

Yﬁ 2 {g c CB(T) s.t. Yw € T g Zgnen y In € R}

en(w) £ Im(w™).

Remark that the m-fold symmetry property can be translated in the functional
spaces as follows

X11n+ﬁé {f€X1+ﬂ s.t. VUJGT anm 1w }a
Yxﬁ A {g cY? st Vwe T, g(w Zgnmenm } .

We shall also consider the following balls of radius » > 0 in X'*8 and X1H#
respectively

B,Wé{fe X6 gt ||fucl+ﬁm<r}, BItS & BItA A X1H8.

Based on the Riemann mapping Theorem, we may parametrize the boundary of Dy
by considering the conformal mapping ® : C\ D — C\ Dy given by

B(2) 2 2+ f(2), Z v m€ER

n=0



322 EMERIC ROULLEY

Here, f is in B}*? for small r. We have ®(T) = Dy and we mention that the link
between the regularity of the mapping and of the boundary is given by Kellogg-
Warschawski’s Theorem [72, 67]. For w € T, a tangent vector to the boundary
0Dy at the point z = ®(w) is given by

27 = —iwd (w).
Plugging this into (3.7) and using the change of variables £ = ®(1) give
Vwe T, Fuo(Q, f)(w) =0,
with
(88)  Fa(@N)w) 2 Tm { (Q®(w) + (/) (w) + I (/) (0, w) )5 (w)}

I5(f)(w) & ][ &' (r) log (|®(w) — B(r)])dr,

T

9 (f) (o, w) £ f & (1)Ko (1|0 (w) — &(r)]) dr.

T

Observe that the functional F,, makes appear a term I® associated with the Euler
dynamics and a term ISW corresponding to the QGSW equations.

3.2. Regularity aspects and structure of the linearized operator. Our
next task is to study some regularity properties for the functional F,, defined in (3.8),
look for the structure of its linearized operator at the Rankine vortex and check some
monotonicity property for its spectrum. We first remark that the linearized operator
at the equilibrium state acts as a Fourier multiplier according to the functions spaces
introduced in Section 3.1. More precisely, we have the following result.

PRrROPOSITION 3.1. Let o > 0. Then the following properties hold true.
(1) There exists r > 0 such that for any 8 € (0, 1), the following hold true.
(i) Fy: R x BB = YP is well-defined and of class C'.
(it) For any m € N*, the restriction F, : R x B} — Y2 is well-defined.
(iii) The partial derivative Ood;Fy : Rx BITF — £ (X'P YF) ezists and
18 CONtINUOUS.

(i) For any Q € R, one has F,(£2,0) = 0.

(2) Let Q e R\ {3 —11 (1) K1 () }. Then the operator dsF,(£,0) : X' 7 —
Y? is Fredholm with index 0.
In addition, for h € X8 writing

[ee]
YweT, h(w)= Zan@", an € R,
n=0
we have for any w € T,

(89)  drFa(@0)(w) = Y an(n+ 1) (57 - 4 (1) — Q) ensa(w),

n=0
with QW as in (1.11).

PrOOF. 1. (i) The proof of the regularity is now classical. We refer the reader
to [50] for the computations associated with the Euler part and to [27] for the
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computations associated with the QGSW part.
(ii) For f € B:{S, the following identities hold

rm
Vw e T, P (e%w) —eW o (w), o’ (e%w) =® (w).

Therefore, the change of variables 7 — e 7 implies

2im 2im 2im

IE(f) () = ¥ (@), V() (e Fw) = F IV (f)(a,w).
Consequently,

VweT, Fa(@ f)(e™ w) = Fa(, f)(w).
This symmetry property proves the desired result.
(iii) One readily has
Bod s Fa (9, £)[A])(w) = Im {h/(w)m(w) n h(w)mf(w)} .
Hence, for (f,g) € (B}T)? and h € C*T(T), we get

HaﬂdfFa(Qa FIh] - BQdfFa(Q7g)[h}H ) S = gllersemllbllerve -

co(T

This proves the continuity of dodsFy : R x B} — L(X T Y).
(iv) For w € T, using the change of variable 7 +— wr, the fact that |w| =1 and the
definition of the line integral, we get

I7(0)(w) = ﬁlog (|w — T|)d7’
=w 7[ log (|1 — T|)dT
T

. 27
_w ERRUINRT
= 277/0 log (|1 —€])e'”de.

Now remark that
11— e? =2(1— cos(d)) = 4sin® (£).
In particular, this latter quantity is even in 6. Hence, we infer

(3.10) I¥(0)(w) = %/0 7Tlog (sin2 (g)) cos(0)do = —%~

The last identity is a consequence of the following formula which can be found for
instance in [22, Lem. A.3].

27

(3.11) = log (sin® () ) cos(nf)do = L
0 n
Similarly,
(3.12) Y (0)(w) = % / ! Ko(2]sin (£)]) cos(0)do = wIi (L) K1 (L).
0

The last identity follows from the following identity which can be found in the proof

of [52, Lem. 3.2].
2
(3.13) % Ko(2sin (4)) cos(n)dd =1, (1) K, (£).
0



324 EMERIC ROULLEY

Inserting (3.10) and (3.12) into (3.8) and using ww = |w|? = 1 gives the desired
result.
2. We can write

7 Fo (€, 0)[H] () = Z{h] (w) + K[ (w),
with
T 2 (0 3+ 11 (1) K, () )i (TG},
K[Rh](w) £ Im { (Qh(w) + dsI*(0)[h)(w) + d I3V (0)[R](w))w} .

One obv1ou51y has that Z : X% — Y# is an isomorphism provided that Q #
= —1; ( )K1 ( ) One readily has

AT O)hl(w) = f. () log (jw = rl)dr + f Md +f ’Md

and

A 5% (0)[B](w) = ][ W (r) Ko (L w — 7|)dr

i ( (w) — h(r)) (@ —7)
fKO (alw =l 2alw — 7| 4
][KO (2w —7|) (A(w )2a|u()z)7(|w—7)

Now, combining (A.2) and (A.4), we can write
Ko(z) = —log(z) + F1(2), Kj(2) = =K1(2) = =1 + Fy(2),
with Fy,F},Fa,F, bounded at 0. Gathering the foregoing computations leads to
dyI%(0)[h)(w) + dg 7 (0)[A] (w)

— R Rl i + b - EHNET),
T T

2a|w — T |

This can be written in the form
dfI%(0)[R)(w) 4 d I°™(0) [h](w) = T, (h)(w) + T, (1) (w) + Tz (1) (w),
with
Tx(u)(w) = ]fru(T)K(w,T)dT,
Ki(w,7) £ Fy (§|w — Tl),

) (h(w) — h(T)) (@ - 7)

2a|w — 7|

Ko(w, T) éFg(é|w77| dr.

Using the boundedness of Fy, F|, Fy and F), close to zero, we get

Ky (w,7)| < C, |0k (w, 7)| <

lw — |’
Cllhllcres(ry

|K2(w77—)| < CHh||Cl+B(T)a IawKQ(va” < |’LU — 7_|
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Therefore, applying Lemma B.1, one obtains the continuity of dfI*(0)+d 15V (0) :
C™A(T) — C(T) for any B < § < 1. Coming back to the definition of K, we
deduce that for any f < § < 1, the operator £ : X% — Y?° is continuous
(the symmetry property being easily obtained by straightforward calculations and
changes of variables in the integrals). Hence, using the compact embedding of
C%(T) into CP(T) for B < § < 1, one deduces that the operator K : X'+8 — Y7
is compact. Consequently, applying [24, Cor. 5.9], d;F,(9,0) : X*# — YP is a
Fredholm operator with index 0. Now, we shall compute the Fourier representation
of this operator. Fix

o0
h(w) = Z a,@" € X1
n=0
First observe that

(3.14) Ihl(w) = —(Q= 3+ L (£) K1 (1)) D nanenia(w)
and
(3.15) Im {Qh(w)w} = —Q Z anent1(w).

The next task is to compute d¢I"(0). One has
7[ K (7)log (|w — 7|)dr = w 7[ W (wr)log (|1 — 7|)dr
Jr Jr

=_ Z na,w" 7[?""'1 log (|1 — 7|)dr.
n=1 JT

The last integral can be computed as follows by using (3.11)

2

7[?”+1log (\1—7‘\)617‘: % e " Jog (|1—ei‘9|)d9
Jr Jo
27
=L log (sin® () ) cos(nd)do
= —LO
2n°

Hence,

n=1
Similarly, we obtain
h(w) — h(r) > ][W—Tn Sk SN ]li_k
dr = an dr = — a4y, W n—k g
& RO AP A =S DR A
:72‘17"@”,
n=1
h(”(U)fm > ][w”fT” o ! k+1][ _k
7 N dr = an dr = — ApW n—k - —
]{T 2w—7) ;2 L w7 ;k:o > LT
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Consequently,
(3.16) dsI®(0) = 0.

Now, let us turn to the calculation of Im {d;I%"V(0)[h](w)w} . The formula (3.13)
gives

][h’ (Lw—7|)d Znanw ][ T Ko (21— 7))dr

27

”“"“’ Ko (2 sin ( (£)) cos(nd)do

nl

S ST

n=1

Thus

tu { f (7)o o 7)ar | = S ()Ks (inenir(0)
On the other hand
RSICIEEE) (h(w) = h(m)) (@ = 7) + (h{w) = B(T) (w = 7)

20w — 7|

(o f iy oy T D(E 1)
_nz:%an (w ]{TKO(Q\I TD Sall—7] dr

wi2 [ iy oy =D -1
+w ]-[H-KO(O‘H TD Sall— 7] dr | .

One can easily check that the above integrals are real and therefore

Im {w]fr Ko(&|w =) (hw) = W) (@ = 7) + (Alw) = W) (w = 7) dr}

2aw — 7|

_ i " <7§ e dT) rea (1)
) i <][ Ky )T _Tn+l)2;|57n;|7n) e dT) enii ().

Now, symmetry arguments together with an integration by parts and (3.13) imply
for any k € N*

bk -1 [?" . sin(k#) sin
f R =)= o [T (s () D)
2 11— 0 )

4oy

o 2m

= ﬁ ; K{(2sin (%)) sin(k0) cos (%) do
k 2m

= % .

= ki (1) K5 (2).

Ko(%sin (%)) cos(k0)do
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Combining the foregoing computations leads to

Tm {d ;15 (0) 1] ()}

(3.17) = > an (0t Dhnsr (2) Kogr (2) = 1 (2) K (2) )ensa (),
n=0
Putting together (3.14), (3.15), (3.16) and (3.17) gives the desired result. O

According to Proposition 3.1 the possible values for 2 from which we can hope
to bifurcate are

(318) (@) = 55t = [0 (5) K (3) = 1 (3) Kn () ] = Q0 =0 (3)

[e3 (03 (03

for n € N*. We shall now prove the monotonicity of the sequence (Qg(a))
This is given by the following result.

neN*’

LEMMA 3.1. For any o > 0, the sequence (€2, (c))
and tends to Q% (), with

(@) =3 - (3) K (3)-

nene 18 strictly increasing

Moreover,

* E n—1

PROOF. The convergences are immediate consequences of (A.7) and (A.6). We
shall now study the monotonicity. For this aim, we consider for any fixed o« > 0,
the smooth function f, defined on (0, 00) by

>0, far) 2Q(0) 25 -5 - L) K () + L (3) Ko (3)

According to (A.8), we can write

LR ) = [ (Esin (3) e ar

1
Ve >0, |Jo(z)=—

™ .

/ cos (xsin(@))d&’ <1
0

Since the function Jy is continuous and non-constant on (0, 0c0), we deduce that

0.(1 (2 Ry (2))] < 3 [ ten =
0

Therefore
Oufav) = 3t + 0, (I (1) Ko (1) ) > 0.
This achieves the proof of Lemma 3.1. O
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3.3. Construction of local bifurcation branches. We check here the hy-
pothesis of Crandall-Rabinowitz’s Theorem B.1 which immediately imply Theorem
1.1. Notice that the line of trivial solutions has already been obtained in Lemma
3.1-1-(iv).

PROPOSITION 3.2. Let a > 0, § € (0,1) and m € N*. The following assertions
hold true.

(i) Fy : R x X585 Y is well-defined and of class C*.
(ii) The kernel ker (dfFa (Qf:n(oz),O)) is one dimensional and generated by

Vom : T C
w w

%
oo™
(i1i) The range R(dfFa (Qi(a),())) is closed and of codimension one in Y,5.
(iv) Transversality condition:

Od s Fo (D (a), 0) [vo,m] & R(dfFa (Qm (@), 0))-

ProOF. (i) Follows immediately from Proposition 3.1-1.
(ii) It is a direct consequence of Proposition 3.1-2 and Lemma 3.1 since for

w) = Z ap @™t € XAEP,
n=0
we have by (3.9)

(3.19) dyFo(Q( Z nman( () — an(a))enm.

(iii) From Proposition 3.1-2, we know that dyF, (5 (a),0) is a Fredholm opera-
tor with index zero. Together with the point (ii), we conclude that the range of
dyFy, (Qﬁl(a),O) is closed with codimension one. We endow Y2 with the scalar
product

][ f dw = Z famGnm, [ = Z fam€nm, 9= Z InmE€nm-

n=1

The continuity of (-,-) on Y£ x Y2 is a direct consequence of Cauchy-Schwarz
inequality and the continuous embedding C?(T) < L?(T). We claim that

(3.20) R (d7 Fa (2%(2),0)) = (em) ™,

where the orthogonal is understood in the sense of the scalar product (-, -). Observe
that (3.19) and the point (i) immediately imply the first inclusion in (3.20). The
inverse inclusion is deduced from the fact that the range is of codimension one.
(iv) For any h € X5,

Yw €T, OgdsFa(R5(a),0)[h](w) =m {h(w)w + W} .
Consequently, (3.20) implies
Doy Fa (8, (), 0) [vo.m] = —Mem ¢ R(dfFa (25, (a), 0)).

This ends the proof of Proposition 3.2 and proves Theorem 1.1. |
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REMARK 3.1. Observe that for m = 1, a similar calculation to Proposition
3.1-1-(iv), shows that for ®(z) = z + ag, with ag € R, one has F,(0,P) = 0.
By uniqueness of the constructed branch of bifurcation, this latter corresponds to a
translation of the Rankine vortez.

4. Quasi-periodic Euler-a patches

This section is devoted to the proof of Theorem 1.2. It is based on KAM and
Nash-Moser techniques in a similar way to the recent works [14, 41, 43, 52]. First
let us introduce the notations and topologies used along this section.

4.1. Topologies for functions and operators. This subsection presents the
notations and topologies used along this part on the construction of quasi-periodic
vortex patches. First we fix

(4.1) 0<ag<ag.

The parameter « will live in the interval («g, ). More precisely, at the end it will
belongs to a Cantor set contained in this interval. We shall denote

(4.2) d e N*

the number of excited frequencies generating the quasi-periodic solutions. Conse-
quently, the frequency vector w belongs to R%. More precisely, at the end w should
be close to the equilibrium frequency vector obtained at the linear level at the Rank-
ine vortex. Our solutions will be searched in the Sobolev class constructed on L?
in the variables ¢ € T¢ and 6 € T. Hence, we decompose any p € L?(T4*+! C), in
Fourier series as follows

A
p= E PL,j ©l,js Pz,j:<Pvel,j>L2<w+l,<C)’
(1,j)ezd+t

where (e; ;) j)ezxz denotes the classical Hilbert basis of the complex Hilbert space
L?(T4+1, C). Explicitly, we have

A i(lptie a
e (p,0) = ellet ), e = e

The associated Hermitian inner product is

<p1a P2>L2(Td+1’c) £ Ad+1 P1 (4,07 9)P2(% e)d@dea

/” f(z)dz = (271r)” /[0727@ f(z)dz.

For s € R the complex Sobolev space H*(T?*!, C) is given by

L0 £ {pe ATHLO) st ok 2 Y 0l < oo,
(l,j)eza+t

(1, 4) = max(L, [1],]j])-

The closed sub-vector space of real valued functions is denoted
H* 2 B (T*LR) 2 {p e HY(THLC) st ¥(p,0) € T, plp,0) = p(,0) |

= {p € H*(T™',C) st. V(,j)€Z™, py ;= ij}-
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In order to ensure some suitable embeddings, we shall consider the following re-
strictions on the Sobolev indices. In particular S is chosen large enough.

(4.3) S>s>s0> +q+2

During the scheme, we shall also keep track of the regularity of our functions and
operators with respect to the parameters p 2 (o, w). Thus, we introduce the pa-
rameters

(4.4) ~v € (0,1), qg € N”
and consider the following weighted spaces

W 0,5 2 {p: 05 B st [ol¢ < oo},

102 Z ~lel sug 195 p(tts I re-1ets

a€eNd+1 ne
lal<aq

W (0,C) & {p L0 C st |lpll1° < oo},

Iply® & > A bup 105 p(12)-
aeNd+1
|ol<a

The set O is an open bounded subset of R4*! which will be fixed in (4.50). The
parameters v and ¢ will be fixed in (4.99) and (4.49), respectively. Observe that
any p € Weo7(0O, H®) decomposes as follows

Pl 0,0) = > prj(pwer;(p,0).
(l,j)eza+1

Some classical properties of the weighted Sobolev norm are gathered in the following
lemma. We refer for instance to [16, 12, 13] for the ideas of their proofs.

LEMMA 4.1. Let (d,v,q,s0,s) satisfying (4.2), (4.3) and (4.4). Take p1,p2 €
W&o (O, H®). Then the following assertions hold true.

(1) Space translation invariance: for any n € T, we have T,p1 : (i, p,0) —
pi(p, p,n+0) € We7(0, H*), and

l7apillg:d = llpnllg:s-
(71) Projectors properties: For all N € N* and for all t € R,

o 0 <
Mvplgce < Nollzd Mol < N7 pallgde,

where the projectors are defined by

Ty [ Y (p)jes | 2> (p)jey, Ty 21d—TIly,

i€ jez
J lFI<N

(11i) Law products: pips € WY (O, H®) and

lp1p2ll3:0 S a2l 328 + Noall3: o35 -
(iv) Composition law: For f € C*(O x R,R), if there exists M > 0 such that

loall3:2 o2l < m,
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then f(p1) — f(p2) € Wq’(’o”((’) H?) with

||f(/01) (p2)|| C(S d qafv )le_p2|qs )
where we used the notation

V(i 0,0) € O x T f(p) (1, 0,0) = f1, p(p, 0, 6)).

We shall now present the operator topology used along this section. In partic-
ular, we deal with the Toeplitz in time operator class. These notions are based on
the one introduced in [3, 12, 13, 16]. We consider parameter dependent operators
in the form

T:p€ O T(u) € LH (T C)),

which can be identified with an infinite dimensional matrix (Tll’J (,u))
010 Wlo)e(z)?

(4.do)€L?
through their action on the Hilbert basis (em)(l Jezixz 3 follows
1,7 l,j
T(:u)elmjo = Z Tl0]30< )el,j7 TIOJJO( ) £ <T(:u)el0,jovel,j>L2('ﬂ‘d+1)'
(Lj)ezd+1

More precisely, we shall see such operators acting on W%>7(O, H*(T4+1 C)) in
the following sense,

p € WE™7(0, HY(T,C)),  (Tp)(u, ¢,0) £ T(1)p(,,0).

We shall now introduce the Toeplitz operators class. An operator T'(u) is said to
be Toeplitz in time iff

T () =T9 (1= lo), T (u, 1) 2 T ().

Its action on a function p = Z Plo,jo€lo,jo Writes
(lo,jo)€Z4H1
(4.5) Twp= > T (1—10)pjoer;-
(t.19)€ ()2
(4:d0) €72

The Toeplitz topology is given by the following off-diagonal norm,
ITIES g 2 Y sup 105 (T) (1) ll0-a,5—Ja

aeNd+1 ®
|el<a

ITNEas 2 > (Lm)* sup [TF(D)P.
(1,m)€zd+1 J=k=m

We mention that we will encounter several operators acting only on the variable 6
and that can be considered as p-dependent operators T'(u, ) taking the form of
integral operators

T(p, 0)p(ep, /K 1 5 0,m)p(e,m)dn.

One can easily check that those operators are Toeplitz and therefore they satisfy
(4.5). We shall now give some classical results on the Toeplitz norm. The proofs
are very similar to those in [16] concerning pseudo-differential operators.

LEMMA 4.2. Let (d, s0,8,7,q) satisfying (4.2), (4.3) and (4.4). Let T, Ty and
T be Toeplitz in time operators.
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(i) Composition law:
HT1T2||O d,q,s ~> ||T1||o d,q, s||T2 + HT1||O d,q,s0 ||T2||o d,q,s*

(i) Link between operators and oﬁ—dzagonal norms:

1ol S ITIES g0 N3

In particular

slelly

Q;So

1ol S TS g s

q,s nr~

Now, we give the following definition inspired for instance from [4, Def. 2.2].
DEFINITION 4.1. We defined the following involutions

(72p)(p,0) = p(=p, =0),  (Fep)(p,0) = p(p,0).
An operator T = T(p) is said to be
e real iff Vp € L2(T4H . C), Sp = p = Z.(Tp) = Tp.
e reversible iff T'o S = — S50 T.
e reversibility preserving iff T o S = S50 T.

We end this subsection by recalling an important lemma whose proof can be found
in [52, Lem. 4.4].

LEMMA 4.3. Let (d, so, $,7, q) satisfy (4.2), (4.3) and (4.4), then for any integral

opearator T with a real-valued kernel K, namely

(Tp) (1, ¢, 0) :Ap(u,cp,n)K(u,saﬂ,n)dm K (p,0,0,m) = K(u,0,0,m),

the following property holds true.

o If K is even in (p,0,n), then T is a real and reversibility preserving
Toeplitz in time operator.
e If K is odd in (p,0,n), then T is a real and reversible Toeplitz in time

operator.
Moreover,
.0
710 S [ IR e+ 3oy
and
O
1770 < lIpl2:2 / 1K (e + ) [3:0dn + [o]3S / 1K (%, e + IO,

where the notation x,-,. denote u, p, 0, respectively.

2. Hamiltonian contour dynamics equation and its linearization.
Here, we reformulate the contour dynamics equation (1.8) as a Hamiltonian equation
on the radial deformation of the patch motion near the Rankine vortex associated
with the unit disc. We also compute the linearization of this Hamiltonian equation
both at the equilibrium and at a general state close to it. Let us consider the
following polar parametrization of the boundary of a patch ¢t +— 1p, close to the
Rankine patch 1p.

(4.6) 2(t,0) £ R(t,0)e! O~ R(t,0) £ \/1+ 2r(t,0).

The radial deformation r is assumed to be of small amplitudes and the angular
velocity €2 > 0 is introduced to avoid the resonance of the first equilibrium frequency
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as in [41, 52]. Therefore, r satisfies an Hamiltonian PDE as explained in the
following lemma.
LEMMA 4.4. The following hold true.

(i) At least for short time T > 0, the radial deformation r in (4.6) is solution
of the following equation: for any (t,0) € [0,T) x T,

(47) Der(t,0) + Q0ur(t,0) — FE[I(1,0) — FSV[r)(a,1,60) = 0,
where
(48) FE[(,0) & /T log (A, (t,0.1)) 33, (R(t.0)R(1.n) sin(y — 6) ) dn.

(49)  FV[r)(ont,0) & /jT Ko (LA4,(t,0,0)) 93, (R(t, ) R(t,n) sin(n — 6) ) dn,
(4.10) A (t,0,m) £ |R(t, 0)e’ — R(t, n)ei"| .

(i) The nonlinear and nonlocal transport-type PDE (4.7) can be written in the
following Hamiltonian form

(4.11) Opr = 0NV A (1),
where
H() 2 L EX) -0 g (1),
02— [ Wweadae). S0 % /D |22dA(2).

The notation V stands for the L2(T)-gradient associated with the L3(T)
normalized inner product

(1.0 ey 2 [ or(O)pa(0)0.

Proor. (i) First, from the polar parametrization (4.6), it is easy to check that
the left hand-side of (1.8) writes

Im (8tz(t, 0)89z(t,9)> = —0,r(t,0) — Qpr(t, ).
Now we study the right hand-side of (1.8). Combining (3.3) and (A.1), we deduce
Im (v(t,z(t,a))agz(t,e)) - f/log (1(t,0) — 2(t,)|)Im (&,z(t,n)agz(t,@)) dn
T
- [ Ko (Rlz(t.0) - 2(t.n)
T
We conclude by remarking that

tm (,2(t,m)D02(2,0) ) = 08, I (=(t,m)=(£,0) ) = 03, (R(t, m)R(t,0) sin(5 — 6) ).

(ii) Using polar change of coordinates and (4.6), we obtain

R(t,0) )
F(r)(t) = /T/O 2dedo = i/ﬂ‘(1+2r(t,0)) de,

) 1m (9,2t m)0=10.0)) d

leading to
VZ(r)=1+2r and 3Q0,V_¢(r) = Qdpr.
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Now that we have treated the corresponding linear term in (4.7), we can assume
Q = 0. From the complex notation, we have
00 (t,2(t,0)) = VE(t,2(t,0)) - 0gz(t,0)
= Im (V(t.2(t,0))9p=(t,0))
= —F®r](t,0) — F5¥V[r](a, t,0).

From (1.6), we can write

W(t,z) = . G(z,)dA),  G(z.8) = G(z &)
The kernel G satisfies the following symmetry property
G(2.6) = G(£.2).
Consequently, we can apply the general [43, Prop. 2.1] giving
VE(r)(t,0) = =29 (t, 2(,0)).
This achieves the proof of Lemma 4.4. O

We shall now briefly discuss the symplectic framework behind the Hamiltonian
equation (4.11). First notice that one deduces from (4.11) that the space average
is preserved along the motion so we may assume it zero and work in the following
phase space

(4.12) L(T) 2 {1" =3 rje; st ory=m, Y Il < oo}, e;(0) 2 0.
jewx jezr
The symplectic form # on LZ(T) generated by (4.11) writes
(4.13) W (r,7) 2 /Taglr(o)?(e)da, Iy tr 2 Z Hej.
JEL
The associated Hamiltonian vector-field X ,» is defined by
A (r)lp) =W (Xoe(r),p)s  Xow(r) = 0VH(r).

We shall also present the reversibility property of the Hamiltonian J#. For that
purpose we introduce the following involution on LZ(T)

(4.14) (S7)(0) = r(-0), % =1d.
Then changes of variables give
S oF"=—-FF0.7, S oFW = FWo 7
implying in turn
H oS =, XwoS =—-S0Xyp.

Now, in view of applying a Nash-Moser scheme, we shall compute the linearized
operator both at the equilibrium and at a general state close to it. It is proved in
[43, Lem. 3.1 and 3.2] that

(4.15) d,F*(r)[p] = 09 (V,"0) — D4LE(p),
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with
@17 LEE)0) 2 [ pltm)los (4, (1. 0m) d
and
d,. FE(0)[p] = —%(%p — 0K % p = —iZjQ‘E—lpjej, K(9) = %log (sin2 (g)) .

JEL
We recall that A, and R are defined by (4.10) and (4.6), respectively. In addition,
it has been proved in [52, Lem. 3.1 and 3.2] that

(4.18) d. F*¥(r)[p] = 99 (VW p) — 06 L™ (p),
with
(4.19) ViWV(a,t,0) £ ﬁ/TKo(éAr(t,@m))@n (R(t,n)sin(n — 0))dn,

(420)  LEV(p)(aut0) 2 / ot Ko (LA, (t,0,1m)) dn

and
dF3(0)p] = I (3) Ko () 0op — 00Qa x p = 1D _ Y (%) pres.
jez
Qa(0) = Ko (3 [sin (3)]) -
Gathering the previous results leads to the following lemma giving the general
expression of the linearized equation and stating that the equilibrium is given by a
Fourier multiplier associated with an integrable Hamiltonian system.
LEMMA 4.5. The following assertions hold true.

(i) The linearization of (4.11) at a general state r writes

(4.21) oup =00 (Vep +Lu(p))
where V,. and L, are respectively defined by
(4.22) Vi(a,t,0) 2 Q—VEt,0) — VSWV(a,t,0), L, 2 LE + LW,
In addition, we have the following symmetry property
(4.23) r(—=t,—0)=r(t,0) = V.(a,—t,—0)=V,.(a,t,0).
(ii) (a) Atr =0, the equation (4.21) becomes
(4.24) 9ep = OgL(a)p = 09V H1(p),

where L(«) is the self-adjoint operator given by
L(a) 2 —Vy(a) — Ko * -,
Vol@2Q+i-L (1)K (L), Ka2K+Qa.
The equation (4.24) is generated by the quadratic Hamiltonian
(4.26) Hi.(p) = 5(L()p,p) 12

(4.25)
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(b) In Fourier expansion, the solutions of (4.24) take the form
Z p;l J0 Q; (a))
Jjezr
where for all j € 7,

() 2 g0 Bt = (1 () 5 () = 1 () K ()]
(4.27) =j [Q + Q7 (a)} ;
with Q?(a) are the frequencies obtained in the periodic case and de-

fined in (1.12). The operator L(«) and the Hamiltonian 4, also
write

ol (a
(4.28) L(a)p = — Z ]j( )pjej and I,p=— Z

jez jET*

Q(a 2
lp;I”

4.3. Transversality and linear quasi-periodic solutions. The aim of this
section is to find quasi-periodic solutions for the linearized equation (4.24), which
is the basis for expecting to get them at the nonlinear level. The result reads as
follows

PROPOSITION 4.1. Let (g, a1,d) as in (4.1)-(4.2). Take S C N* with |S| = d.
Then, there exists a Cantor-like set
g C [0, 1], |Crq| = o1 — ao
such that for any o € €rq, every function in the form
0) = ij cos (j0 — Q5 (a)t) p; € R*
JESs
is a time quasi-periodic reversible solution to (4.24) with frequency vector

(4.29) wiq(a) = (Q?(O‘))jes'

The proof of this proposition is very similar to [52, Prop. 3.1] so we refer the
reader to the corresponding paper. We mention that in the proof, to measure the
Cantor set 6y, we make appeal to the following Riissmann Lemma which can be
found in [70, Thm. 17.1].

LEMMA 4.6. Let qo € N*, a,b € R with a < b and m;,M € (0,00). Let [ €
CF1([a,b],R) such that

4.30 inf max (@) )| = m.
( ) z€a,b] ¢€0,q0] d ()‘

Then, there exists C = C(a,b,qp) > 0 such that

1

trefat] st 1) <M <O Iflonsgonn

To apply the previous lemma, we shall check the transversality condition (4.30)
for the equilibrium frequency vector wgq in (4.29). It is proved in Lemma 4.9-(i).
Notice that the measure of the final Cantor set in Section 4.6 generating quasi-
periodic solutions for the nonlinear model requires transversality conditions for the
perturbed frequency vector. These latter are obtained by perturbative arguments
from the one for the equilibrium frequency vector stated in Lemma 4.9 and which are
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themselves deduced from the non-degeneracy of the unperturbed frequency vector
proved in Lemma 4.8. First we start by giving some properties of the frequencies
(4.27).

LEMMA 4.7. The following properties hold true.
(i) Va>0, QFa) ~ Vo(a)j, with Vo(a) as in (4.25).
Jj—o0
(ii) For all o > 0, the sequence (QF(a))jen~ is strictly increasing.

(i1i) For any j € Z*, we have

Va >0,

()| = Qljl.
(iv) For any j,j' € Z*, we have
Va >0, ‘Q;D(a) — Q¥ ()| = 0lj - 7
(v) Given 0 < ag < ey and qo € N, there exists Cy > 0 such that

08 (2 (@) = 2% (@) )| < Colj = Jol-

Vi,jo € Z*, max  sup
q€[0,90] aefag,a1]

PRrROOF. (i) and (ii) follow immediately from Lemma 3.1 and (4.27).
(iii) Due to the symmetry (4.27), it sufficies to study the case j € N*. From Lemma
3.1, we get
Yo > 0, Q;:(a) > 0.

Consequently,
Va > 0, Q;:(a) > jQ.
(iv) Due to the symmetry (4.27), it suffices to prove that
Va >0, V(j,j") e N |QF(a)£Q5(a) >Qlj£ /]
The point (ii) allows us to restrict the discussion to the case j > j'. We can write
QF (a) £ Q5 () = Q@ + ') + jQ5 (a) £ §'Q5 ().
In view of Lemma 3.1, we obtain
7 () £ 5'Q5 (a) > 0.

Hence
E E S
Q5 (o) £ Q5 (o) = Q3 £5).
(v) As before, by symmetry, it sufficies to prove that

V(. jos @, a) € ()2 x [ag, @] x [0, 0], |98 (2% () £ 25 (@) | < Colj %ol

Let us start with the difference. We can write form (4.27)

N b ;
Q7 (a) = Q5 (@) = Qj — jo) + SO (L) sV (L), sV 258N,

Now it has been proved in [52, Lem. 3.3-(vi)] that for some 0 < Ao < Aj, there

exists C > 0 such that
(4.31)

v(jaj()a)\ﬂq) € (N*)2 X [)‘07)\1] X [[qu()]]7

(V) £ Q)| < €l £ jol.
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We warn the reader about the difference of definitions of the frequencies QJS-W be-
tween this article and [52] (with the € missing). But this has no impact here.
Hence, we conclude by the triangle inequality that for some Cy > 0

V(. jos @, a) € ()2 x [ag, @] x [0, 0], |08 (2% (0) = 25 (@) | < Colj = ol
We now trun to the additional case. We can write

O<Q?(O¢)+Q?O(oz):f2(j+j0)+(j o + Jjo Jo— 1) QSW(a) QSW( )

2jo

Notice that
vieN', LE<l and QY (1)>o.

2y
Thus,
0 < Qj(a) + () < (2+3)( +Jo).
Combined with (4.31), this ends the proof of Lemma 4.7. O

For a fixed finite set of Fourier modes
(4.32) S={j1,...,ja} CN*, J1< oo < Ja, d e N*,
we define the equilibrium frequency vector
(4.33) wiqg(a) = (Q}E(a))jes.

Then, in view of the measure of the final Cantor set, we may check the Riissmann
conditions for the unperturped frequency vector (4.33). They are obtained by using
the following non-degeneracy conditions.

LEMMA 4.8. Let (g, ) as in (4.1). The equilibrium frequency vector wgq and
the vector-valued functions (wrq, Vo) and (wgq, Vo, 1) are non-degenerate on [, au],
namely the curves

a € [ag, a1] — wiq(a),
a € [ag, a1] — (weq(a),
o € [ag, a1] = (weq(a)

(@),
(@), 1)

are not contained in an hyperplane of R?, R and R¥2, respectively.

55

)

PROOF. B Assume that there exists (ci,...,cq) € R? such that

Vo € [ag, a1], chQ

which is equivalent to

d
(4.34) Vo € [ag, aq], Z Crj (Q + ]’2“];) = Z cin’V (1)
k=1
By analyticity of the product I, K, on {z € C s.t. Re(z) > 0} for any n € N*,

then by continuation principle, the previous identity is still true for a > 0. Taking
the limit o — 0 in the previous relation implies from (A.6)

d
Zijk( + Jgjkl) =0.
k=1
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The equation (4.34) is reduced to

chQSW a 20.

Then, proceeding as in [52, Lem. 3.4], the asymptotic expansion of large argument
for I; K; provides an invertible Vandermonde system leading to V& € [1,d], ¢, = 0.
» Assume that there exists (cy, ..., cq, car1) € R¥ (vesp. (ci,...,¢d,Ca11,Cas2) €
R?*+2) such that

Va € [, aq], (resp. caq2t) car1Vola) + chQ

which is equivalent to the fact that for any o € [ag, a1],

(4.35) car1(Q+ 1 +ch3k(9+ﬂ'gjj) = carili (2 +ch§z (1)

(resp. + cai2)

As in the previous point, this identity can be extended to (0,00) and taking the
limit o — 0, one gets by (A.6)

(resp. Cata+t) Cd+1 Q + + Z Crik (Q + ]’2“%1> =0.

Inserting this information into (4.35) yields

Ya > 0, Cd+1[1 + ZCkQSW a =0.
This equation has also been studied in [52, Lem. 3.4] leading to ¢1 = ... = ¢4 =
¢i+1 = 0 (resp. supplemented by c¢442 = 0). This achieves the proof of Lemma
4.8. O

Now we shall prove the transversality conditions for the equilibrium frequency
vector.

LEMMA 4.9. [Transversality] Let (oo, 1) as in (4.1). Then, there exist ¢qo € N
and po > 0 such that the following results hold true. Recall that wgq and Q;: are
defined in (4.33) and (4.27) respectively.

(i) For anyl € Z\ {0}, we have

inf max
aglag,a1] g€[0,90]

(ii) For any (I,7) € Z% x (N*\ S)

08 (weal@) - 12 jVo(a) )| > po 1)

Ohwrq(a) - 1| > poll).

inf max
aglag,a1] ¢€[0,q0]

(iii) For any (l,j) € Z¢ x (N*\ S)

0% (wra(e) - 14 Q5 (@)) | = o).

inf max
a€lag,a1] g€[0,q0]
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(iv) For anyl € Z%, 34,5 € N*\ S with (1,5) # (0,5"), we have
a1 (qu(a) 14 Q(a) + O (a)) ‘ > poll).

inf max
aglag,a1] ¢€[0,q0]

PrOOF. We shall prove the point (iv) which is the most difficult one. The
arguments are similar in the other cases using the corresponding non-degeneracy
conditions provided by Lemma 4.8. Fix some [ € Z% and j,5/ € N* \ S with
(1,7) # (0,7"). If for some ¢g > 0

|.] :l:]/| 2 CO<Z>7
then applying the triangle inequality together with Lemma 4.7-(iv), we get
wiq(a) - 1+9Q5 () =9 ()

> [0 () £ 0% (0)| ~ Jwa() 1 > QL5 ClI| > (1),
Therefore it remains to check the proof for indices satisfying
(4.36) JE5<eofl), 1ezZ\{0}, j,j eN"\S.

We assume in view of a contradiction that for all m € N, there exist real numbers
lm € Z3\ {0}, jm, ji, € N*\ S satisfying (4.36) and a,,, € [avg, ;] such that

oF (0)=0F (o)
% <wE‘*(a)'l"‘ R >|
Q=Qm

1

< m+1.

max
q€[0,m]

Im

This implies that

< 1

(4.37) Vqe N, Vm >q, mtl

[Lm |

F ()£0f (@)
% (qu(a) s P I
la=am,

By compactness and (4.36), up to considering a subsequence, we can assume that

(4.38) bn = & £ 0, lim {mm — g lim a,, = a.

lim o= = ]
m—soo |lm] m—oo m m— oo

Now we shall study separetely the cases whether the sequence (I,,), is bounded or
not.

» Here we assume that the sequence (I,,),, is bounded. Then, by compactness, we
can assume, up to an extraction, that we have the following convergence

lim I, =14 0.
m— 00

Now according to (4.36) we have two sub-cases to discuss depending whether the
sequences (Jm)m and (4., ), are simultaneously bounded or unbounded.

e We first study the case where the sequences (ju,)m and (j.,)m are bounded.
Observe that the is the only case to consider if we work with the sign ” + 7 in
(4.36). Since they are sequences of integers, then by compactness we may assume,
up to considering an extraction, that they are constant, namely

(4.39) 35,7 € N*\'S s.t. VvmeN, j,=3j and j, =j.
Hence taking the limit as m — oo in (4.37), we obtain

VgeN, a1 (qu(a) T+ 0B(a) £ Q?%(a))l =

Thus, the analytic function o — wgq(a) -1 + Q;—‘.:(oz) + Q?i, (o) is identically zero
which enters in contradiction with Lemma 4.8 up to replacing wgq by (wgq, Qg‘) or
(WEq, Q‘]-T:, Q;%)
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e Now we study the case where (j;)m and (j),)m are both unbounded and without
loss of generality we can assume that

lim j,, = lim j/, = oo.
m—r o0 m—r oo
Notice that here this case only concerns the situation with a sign 7 —” in (4.36).

Nevertheless, for later purposes, we may treat both sign situations. From the ex-
pression (4.27) we can write

QF (a) £QF (@) =(jm *+ jj)Vo(a) = (3 £ 3)
+ (% 50) (1, K5,) (5) £ jﬁn((fj;nKa‘;n)(i) - (Ijijm)(§)>7

with Vp(«) as in (4.25). It has been proved in [52, Lem. 3.5] that for any ¢ € N,
and for any 0 < Ay < Ay,

lim  sup
M50 xelXo,A1]

m O3 (L, K, — Ij;n,Kj;ﬂ,)(A)’ =0,
(4.40)

lim  sup
m—r o0 AG[AOJ\H

Therefore (4.38) and (4.40) imply for any ¢ € N,
Tim |10 (98 () £ Q% (@) =0 (dVla) + 17N (3 £ 1))
By taking the limit as m — oo in (4.37), we find
Vg e N, 08 (wnqla) -+ dVo(a) + 1117 (5 %))‘ =

(L5, K, )] = 0.

la=am |o=a

Thus, the analytic function a — wgq(a) - ¢+ dVp(a) + |I|71(3 £ 3) with (¢,d) #0
and (E, d, |Z|_1) # 0 is vanishing which contradicts Lemma 4.8.

» Now we treat the case where the sequence (I,,)., is unbounded. Up to an extrac-
tion we can assume that

lim |I,,] = o0.
m— 00

We shall distinguish three sub-cases.
o We first assume that the sequences (jm,)m and (j,,)m are bounded. Hence we have
the stationary behaviour (4.39) up to extraction. Then taking the limit in (4.37)
yields,

Vge N, Olwgq(@)-c=0.
which leads to a contradiction as before.
e The case where the sequences (jm)m and (j,,)., are both unbounded is similar to
what has been done previously.
e Now we assume that the sequence (j,)m is unbounded and (j!,)m is bounded
(the symmetric case is similar). Without loss of generality we can assume that

lim j,, = oo, gro=7.
m—roo
One obtains from (4.40) and (4.38)
: -1 3 _
VgeN,  lim [ln| 08 (0F, (0) £ 95, () = dOLVi(a).

Consequently, taking the limit m — oo in (4.37) gives

VgeN, 0 (qu(a) e+ JVo(a)) =0
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Thus, the analytic function a — wrq(a)-¢+dVp(a) is identically zero with (¢, d) # 0
which contradicts Lemma 4.8. This completes the proof of Lemma 4.9. O

4.4. The functional of interest and associated tame estimates. In this
subsection, we shall reformulate the problem in terms of embedded tori through
the introduction of action-angle variables. This leads to look for the zeros of a
nonlinear functional. Observe that the equation (4.11) can be seen as a quasilinear
perturbation of its linearization at the equilibrium state, namely

Or = L(a)(r) + X (1),
(441)  Xo() 2 [3 -1 (2) K1 (L) |00 + 0o 7+ FE[] + FSV],

with F®, F5W and L(a) as in (4.8), (4.9) and (4.25). The smallness property is
encoded by the introduction of a small parameter €. Then we consider the rescaling
r +— er with r bounded. Therefore (4.11) becomes

(4.42) Or = HL(a)(r) + eX oz (1), Xao (1) 2 e 2 X p(er).
Remark that (4.42) can be written in the Hamiltonian form
Oyr = 0gVH(r), Ho(r) &2 e 2 (er) & JA,(r) + 2. (r),

with J4, as in (4.26) and £Z2.(r) containing the higher order terms more than
cubic. We shall now reformulate the problem in terms of embedded tori. For that
purpose, we introduce the action-angle variables. This is done in the following way.
Introducing the symmetrized tangential sets S and Sy associated to S in (4.32)

géSU(—S):{j:j’]eS}’ Soégu{o}’

we can split the phase space L2(T) into tangential and normal subspaces

2 Lo
(4.43) Ly(T) = Lg®d L7,
with
Lgé{U:Zvjej, V_j :Fj}, Lié{z: Z zj€e;, Z_j:Z’ij}.
jes JEL\So
Therefore, we can decompose any r € LZ(T) as follows
r=0v+2z, v:HSOTéerejeLg, ZZHSLO’/‘é Z rie; € LA.
jes JEZ\So
We consider small amplitudes
(2;),e5 € (RL)Y, a_;=a;
and introduce the action-angle variables
(1,9) = ((Ij)jeg’ (ﬁj)jeg)’ Ij=LeR 9 ;=-9;€T
such that on the tangential set Lz we have
(4.44) Vr e Lg, rzzw/a?+|j|ljemjejév(ﬁ,[).
Jjes
This defines an application

A: T*xRIx L2(T) — LET)
I1,z) — r=v(I)+z
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which is symplectic with respect to the symplectic structure #  defined in (4.13).
We refer for instance to [43] for a proof of this result. In these coordinates the new
Hamiltonian system is generated by the Hamiltonian

(4.45)

1
HoEH, oA= N + P, JVé—qu(a)-I—|—§<L(a)z,z>L2(T), P. 2 P.oA.

We look for an embedded invariant torus
i: T4 — TIxRYIxL?
p = ile) 2 ((9), I(9), 2(0))
of the Hamiltonian vector field
(4.46) Xop, & (017, —09 2,115, 06V . H2)

filled by quasi-periodic solutions with Diophantine frequency vector w. Note that
for value e = 0, the Hamiltonian system

w - 0yi(p) = X (i(¢p))

possesses, for any value of the parameter o € (g, 1), the flat invariant torus
(¢,0,0). Similarly to [11, 41, 43, 52], we shall introduce a free parameter x € R?
to deal with zero p-average conditions in the construction of an almost approximate
right inverse for the linearized operator and therefore consider the following family
of modified Hamiltonians,

(4.47) HEE N+ €Pe, N &k T+ %<L(a) z, z>L2(T).

We mention that the original problem is recovered by taking k = —wgq (). Accord-
ing to (4.46) (replacing J# by #2") and (4.47), we are now interested in finding
non-trivial zeros of the nonlinear functional
(4.48) F (i, 5, (,w), &) £ w- Byi(p) — Xoen(i(p))
w - 0,0(p) — K — e0rP:(i(p))
= w - 0p1(p) + €09 Pe(ip))
w 0p2(p) — O [L(@)2(p) + V. Pe(il(¢))]

We point out that we can easily check that the Hamiltonian 727" is reversible in the
sense of the Definition 4.1, that is,

oS =", S(W,I,z) = (=9,1,.72),
with . as in (4.14). Thus, we look for reversible tori solutions of .7 (i, k, (a, w), &) =
0, that is satisfying
Si(p) =i(—¢), dle.  I(=p)=-0(p), I(=p)=1I(p), z(=¢)=(L2)(¥).

Now we define the periodic component J of the torus i together with its Sobolev
norm by

J(p) £i(p) — (9,0,0) = (B(p), (), 2()),  Op) £ V(p) — ¢,

1313:8 2 10115 + I113: + 111175

The norm || - [|7: is defined in Section 4.1. We shall fix ¢ as follows

(4.49) 7= qo+2,
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with the gy appearing in Lemma 4.9. This particular choice is relevant in the final
subsection when checking the perturbed Riissmann conditions. We also define the
set of parameters O as follows

(4.50) O 2 (ap,a1) x B(0, Ry) € R4
where the open ball B(0, Ry) C R? with Ry > 0 is chosen such that

qu((ao,al)) C B(O, %)

This is well-defined by continuity of the application wgq in (4.33). This particular
structure is chosen so that the perturbed frequency vector in Section 4.6 is included
in the corresponding component of O in order to check trivial inclusions. We shall
now prove tame estimates for X g.

LEMMA 4.10. Let (v, so, 8,q) satisfying (4.4), (4.3) and (4.49). There exists
€0 € (0,1] such that if
,0
||r||’qy,30+2 < €0,
then we have the following estimates for the vector field X o in (4.41)
(i) 1 Xo 70 S Il \7“||qso+2
(ii) | dr Xz (r)lplllg:d < llolly, s+z\|7"||q stz t ||7"Hq Callolly e o2
(@]
(i) Hd%X‘@(T)[PhPﬂ 3;? S ||P1| so+2||p2 s+2+||p1| s+2Hp2|q,so+2
+1rllg g+z||p1

PRrROOF. It suffices to prove the estimate (iii). Indeed, the estimates (i) and (ii)
are consequences of (iii) by a direct application of Taylor formula since X 4(0) =0
and d, X (0) = 0. Recall from (4.15) and (4.18) that

d- X (r)[p] = [* — I (1)K (£ )}3904-39’% *p+d F2(r)[p] + d F>7 (r)[p]

= 5= 0 (2) K1 (2) |00 + 00K p
+ 99 (V,Pp) — 9oLy (p) + 90 (VW p) — g L3™ ().
Differentiating the last expression with respect to r yields
4} X 5 (r)[p1, po] = 3o ((d:V,*[p2])p1) — Do (d Ly [p2] p1)
+ 95 (V¥ [p2])pr) — Do (d, L3 [pa] p1).-

But it has been proved in [43, Lem. 5.2] and [52, Lem. 5.2] that each term in
the right hand-side of the previous equality satisfy an estimate as in (iii) in the
statement of this lemma which concludes the proof of this latter. O

5,0 5,0
q,eo—&-QHp?”q s0+2°

Consequently proceeding as for [52, Lem. 5.3], the previous lemma implies the
following one stating tame estimates for the perturbed Hamiltonian vector field in
the action-angle-normal variables.

LEMMA 4.11. Let (v, S0, 8, q) satisfy (4.4), (4.3) and (4.49). There exists ey €
(0,1) such that if

€ < €o, ||J||q so+2 < ]'
then the perturbed Hamiltonian vector field in the new variables
Xpa = (817)57 _8197?& HSLaGVz/Pa)
defined through (4.45) and (4.46) satisfies the following tame estimates
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() [|Xp. ()39 $1 + ||3||qs+z
(i) HdiXPE Z)[ZH a5~ S qs+2 + ||j||q 5+2HZ||q,50+2

(1) @2, 33T S NTR Sl TS 42+ 19175, (1717:52)

4.5. Almost approximate right inverse. The aim of this section is to
construct for any vector-valued function kg : © — R? and any reversible torus
io0 = (Yo, Io, 20) close to the flat one an almost approximate right inverse for the
linearized operator
(4.51) di,e)F (o, ko) [0, K] = w - Ot — di X yer0 (i0(0)) 2] — (K, 0,0)
associated with the functional .# defined in (4.48). For this purpose, we use the
Berti-Bolle theory developed in [11] and [41, Sec. 6]. Namely, we can find a linear
diffeomorphism of the toroidal phase space T? xR%x L2 such that the conjugation of
(4.51) by this application is a triangular system in the action-angles-normal variables
up to error terms either vanishing at an exact solution or small fast decaying. The
key point to solve the triangular system is that it is sufficient to almost invert the

linearized operator in the normal directions. According to the computations done
n [11, 41], this latter admits the following form

(452) L2 2 (i) 2T (w Dy — 0y NV LI (i () — gam@))nglo ,

where 72 is as in (4.47) and R(¢p) is a remainder operator coming from a coupling
with the tangential part and given by

R(p) £ Ly (9)01VP-(io(9)) L2(0) + L (9)9:V1Pe(in(0)) + 81V P (io(¢)) L2(0),
with P. as in (4.45) and
Ly iR 12, Lo(6) 2 —[(00%0) o)) 05", Zo(d) 2 20(05 " (9)):
We used the following definition by duality for the transposed operator L, : Lﬁ_ —
Rd
VueLi, YoeR! (Ly(p)u,v)p, = (u, La(9)V) 13 my-

Furthermore, we can have a more explicit decomposition of the operator %, . The
result is described in the following proposition whose proof is similar to [52, Prop.
6.1] or [43, Prop. 6.1].

PROPOSITION 4.2. Let (d,~, so, q) satisfy (4.2), (4.4), (4.3) and (4.49). Then,
the operator £, in (4.52) writes

(4.53) L1 =T (Ley — cO0R) I,

where the operator L., is defined as follows with V., and L, obtained from (4.21)-
(4.22),

(4.54) Loy L. 890 + Oy (VET . ) + OgL,-
The function r is linked to the reversible torus iy in the following way
(455) ’I"(QD, ) £ A(ZO(()D>)7 ’I"<—(p, _9) = T((p7 ‘9)

and satisfies the following estimates

171135

||A127”|

||qsa

(4.56)

O+ || Al .50 maxje{l,z} 1351 35‘9

q,s v
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Here and in the sequel, we shall use the following notation: given two tori i; and
ia, for any function f = f(i) depending on a generic torus i, we denote

Avaf(i) = f(iz) — f(in).
Finally, the operator R is an integral operator with kernel J satisfying the symmetry
property

(4.57) I (=, =0, —n) = T (p.0.n)

and the following estimates for all ¢ € N,

(4.58) Sup 1D5T) (%, s + 7 S 1+ 11T0l170 5
7

and

(4.59)

Y4 O , 0
Slelqu;||A12(3e~7)(*a',-,77+-)||3js S \|A12l|q,g+3+e+||A12Z|| so+s aX 135119 s34
n

€{1,2}
where *, -,., denote the variables o, p,0 and Jo(¢) = ig(0) — (,0,0).

Now we shall start the reduction procedure of the operator .%, . The first step
is the reduction of the transport part of L., in (4.54), which is done by conjugation

with quasi-periodic symplectic change of variables close to the identity similarly to
[5, 15, 31, 52]. Actually, we apply here [52, Prop. 6.2]. The result is the following.

PROPOSITION 4.3. Let (d, so,S,7,4q,q0) satisfy (4.2), (4.3), (4.4) and (4.49).
We consider the following parameters

Uéqoﬁa 7—1édqo—i_17
(4.60) S éSo—Fqu-‘rTl—l-Q, [ho é47’1(1‘|'67'1 +3,
51 £ 51+ T2q + T2, Sh = SHy st 1,
A

01250+ Tq+2m +4, 092 s)+01+3.
We also denote
3\
NnéN0(2) ) N0>2

For every choice of additional parameters (e, p, sp) with the constraints

3
(4.61) P2 = Mo, p =0, Sp = max (2u2 +s+ 1,5, +P> )

there exists €9 > 0 such that if the following smallness condition holds
(4.62) ey INE? < e, 15017 qsthJz <1,

then there exist mi? € Wo*7(0O,C) e-close to the equilibrium one Vg in (4.25),
namely

(4.63) s — Voll3© S e
and an invertible quasi-periodic symplectic change of variables & in the form
BE(L+058)B, Bp(p,.0) £ p(p, 0.0+ B(u p.6)), B € W70, H)
with inverse - in the form
B =0+0,0B7,  B7p(up.y) = p(n, 0,y + Blu 0, y))
with R
y=0+p8(pp0) < 0=y+p5ey)
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enjoying the symmetry properties

(464) B(a7w7_(p)_9) = _6(aaw7§0?9)7 B(avwa_¢7 _9) = _B\(a7w7@59)

and the following estimates for all s € [sg, S]

(4.65) 1% pll3:2 + 1B+ pll3: S lellg: + &7 130lly e el
and
(4.66) 1B S UB17:° S v (1+190)35%,)

such that for any n € N, then in restriction to the Cantor-like set
(4.67)
Oni o (io) = ﬂ {(a,w) €O s.t. ‘w -1 +jmf0°(a,w)’ > %},
(1.5)€24 x2\{(0,0)}
[ Nn
the following reduction holds
(4.68) Lo 2B LB =w-0p+m°0g + 0pKa * - + OpR., + EY,

with Ko as in (4.25) and ES = E? (o, w,ig) a linear operator satisfying

(@]
(4.69) 1B pl70 S eNE2 N3 ol s +2-
The operator R, is a real and reversibility preserving integral operator satisfying
(70)  Vselso, 8] max ORI, S v (14 190050)

In addition, for any tori iy and iy both satisfying (4.62), we have

||A12m°°||7’(9 SellAwills

,8ht+2?
(4.71) o »
q 8h+P + ”Auﬂ”q Sh+p ~ S ey ||A122||q Sh+pto1
and
(472) ma‘X ||A12(a§R5T)||O d,q,5,+p ~ 8’}/ -t HAlQZHq Sp+pto2”

ke{0

PROOF. Using the computations in [52, Prop. 6.2] and [43, Prop. 6.2] for the
VE and V3V in (4.16)-(4.19), we get the following estimate for V., in (4.22),

,0 ,0 ,0
IVer = Vollgi < IVE + 41320 + IVEY - LK 7 S = (14 190172,4) -

This allows us to start a KAM reduction procedure as detailed in [52, prop 6.2],
which provides 0700, (i0), mi?, 5 and E) as in the statement, with the corre-
sponding estimates (4.65), (4.66), (4.69), (4.71) and symmetry (4.64) such that in

restriction to @10 (i0) we have

B (w0 0p + 00 (Ver ) ) B = w0+ 0, + 030y + E.

Now, we shall look at the conjugation effect on the nonlocal term. Refering to
[62, Lem. 5.1] and [43, Lem. 5.1], we have the following decompositions for the
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operators in (4.17)-(4.20),
(4.73)

OULE, = 00k -+ OGLE. 1, LEL()(9.0) 2 [ plerm)KE (0,0, ),
JT
(4.74)
OpLZY = 09Qa * - + OpLZY, LY (p)(a, 0, 0) é/p(%n)Kiﬁv(awp,@,n)dn,
T

where the kernels KE. and K2V are respectively defined by

KE, (¢,0,m) £ log (ver(9,6,1)),
2 3
ver (. 0,1m) 2 <<W) + R(%@)R(sﬁ,n)) :
KS)“N(QO7 07 77) £ ‘%/(9 - n)%hl()\v 2 93 77) + ‘%/57’72(>‘7 ®, 03 77)7
H (0) £ sin® (3) log ([sin (5)]) ,

oo

2m
%r,l()‘a »,0, 77) £ ((22)!)2 sin?™ 2 (9;27]> (1 - Usr(@v 0, 77))» A

m=1

HoralOnpn ) £ g (152 s (0. 001)

= KE(,0,m) 1o (AMer(,0,m))

+ f()\Asr(cpﬂ,n)) —f (2)\ sin (7’2;‘9) D , / analytic.
One can easily check that (4.55) implies
(4.75) KZ.(=¢,—0,—n) =KZ.(¢.0,m), KZV(a, —p, =0, —n) = K& (0, 0,0, 1).
Hence, in restriction to &) 0. (i0) we have by (4.73)-(4.74),

B Loy B =w- Oy + 0y + 0B LE, B + 0B LEY B + ED,
= w0y +m; 0 + 0Ky * - + OpRer +E2,

(1>
L~

with

R., 2 BLE #+ B LN B+ (B (s ) B—x ) + (B (Qur)#— Qo).
The estimates (4.70) and (4.72) are obtained similarly to [52, Prop. 6.2] and [43,
Prop. 6.2] by using Lemma 4.3, Lemma 4.1 and (4.66)-(4.71). In particular, the

reversibility property follows from (4.75)-(4.64). This concludes the proof of Propo-
sition 4.3. (]

Then we study the action of the localization in the normal directions. For that,
we introduce the operator

#, =& g, B3,
which satisfies by virtue of (4.65) the following estimate

+ L1 17,0
(4.76) 125 0172 S ol + v HIToll) s, Il

q,s ~ q,5+01

7,0
q,80"

Hence, the result reads as follows.
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PROPOSITION 4.4. Let (d, s0,.5,7, 4,90, T1, Sh, Sh, 02, p) satisfy (4.2), (4.3), (4.4),
(4.49), (4.60) and (4.61). There exist g > 0 and o3 = 03(71,¢,d,S0) = 02 such
that if the following smallness condition holds

(4.77) ey ' N§? < eo, [[Folly <1

q,SthUs =N

then for any n € N*, in restriction to the Cantor-like set Oy (i) defined in
(4.67), the following decomposition holds

ﬂllflﬂl = (w . ap er;faa + Oy * )Hé}) + %o + E711
éw-awﬂé'g +@(]+=@0+E}L
(4.78) £ % +E,).
The operator 9y = Hé‘o .@Oﬂg-o s a reversible diagonal operator described by

Doer; =idle ;, dYe,w,ig) = QF(a) + jrd(a,w, o),

(4.79) 0 N

(e, w,i0) = miy (o, w) — Vo(a),
with
(4.80) 1179 Se 1Arl7€ SellAwnills o
The operator %y = HSLO %’OHSLO 15 a real and reversible Toeplitz in time integral
operator satisfying

o

(4.81) Vs € [s0,8], max 0T 0 <27t (14130055 )
and
(4.82) | A12%o]| Sev 0 5h+P+0'3
The operator EL satisfies the following estimate
(4.83) IELAIZ0 S eNE2N L3 ol e +2-

In addition, the operator £y satisfies
(4.84) Vs € [s0, 5],

O _
< ||p||’ys+1 +€’7 1HJ0||q s+173||p

q750
PROOF. » The identities (4.53) and Id = IIg, + Ilg; imply
B LB = BTG (Ler — 0gR) B
= %', L., P, — B ' 15 L., 115, P15, — B 15, 0)RB. .
Now using (4.68) and the fact that
f@flﬂé‘o =% ", [Hg‘o, F]=0=[lls,, F], F Fourier multiplier,

we obtain in restriction to the Cantor set &

transport

(ig) the following decomposition
B L., B, = %5, ﬂsmnso
+ %‘L %’HSO&;RETHSO + %Llnsﬁ) PBEg, .
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Hence, using also (4.73) and (4.74), one gets that in the Cantor set @y1 10 (i0),
the following identity holds
,@Ilfl;@l = (w . ap +m§’0089 + 0Ky, * -)Hé}) + Hé‘oagRsrﬂé‘o
— B g, (96 (Ver-) + QeLE, y + 06 LY, s, Bllg,

+ B Bl 09Re, 15, — e B OyRABL + B g, BE) g,
2w 9,105 + Do + %o + EL,

with

(4.85) Do & (m20p + 0pKo x )5,  E) £ 2715 BE;, .

» The estimate (4.83) is obtained gathering (4.85), (4.65), (4.76), (4.69) and Lemma
4.1-(i).

» Recalling the notations in (4.25), we can write
Do & (7Y — Vo)) dpIlg, + (Vo(c)dp + 0pKo * )11,
= (m® — Vo(a))Dpllg, — OpL(e)IL

10
Therefore, the expression (4.79) follows from the Fourier representation (4.28).

» The estimates in (4.80) are just a reformulations of (4.63)-(4.71).

» The estimates (4.81) and (4.82) are obtained by the same method as in [52,
Prop 6.3] by using some duality representations of ZF' (see [52, Lem. 6.3]). The
computations are very long but straightforward so we prefer to refer the reader to
the reference for the details. We just mention that along the calculations, in order
to get (4.81) and (4.82), we shall use in particular (4.58), (4.59), (4.70), (4.71) and
(4.72). Similarly, during these computations, we can check that the reversibility
property of %y is a consequence of (4.23), (4.57), (4.64), (4.75) and the reversibility
property of R,

» Now, we shall prove (4.84). Using (4.78), (4.25) and the product law 4.1-(iii), we
have for any s € [s, 5]7

1Lopl17:0 < llw - Bl
< (14 Cmy ||7 O)

The estimate (4.63) implies in particular ||m°[|2- < 1. Besides, from [52, Lem.
5.1], we know that

O 4 [|8pK * PllZ,ﬁ? + |0l
o+ ||0e/C «pl|7 + 106 Qa * plI 7€

109 Qa * p

28 S lellgd.

q,5 nr~

Similarly,

106K 5 pllgs™ <
Applying Lemma 4.2-(ii) together with (4.81) and (4.77), we infer
H%H}jso S H%0|Odqs(JHp| +H‘%0||Odq,

Sol3e +ev HIT0ll 82 g st lol13250-

Combining the foregoing calculatlons leads to (4.84). This ends the proof of Propo-
sition 4.4. |

qSo

The next step is to get rid of the remainder term Z,. The properties (4.81),
(4.82), (4.84) and Lemma 4.7-(v) allows to start a KAM iterative procedure similar
to [52, Prop. 6.5]. We also refer to [43, Prop. 6.4] for a brief explaination of this
method. The result reads as follows.
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PROPOSITION 4.5. Let (d, s0,S,7,q,qo,T1, 81,51, Sh, fia, 03) as in (4.2), (4.3),
(4.4), (4.49), (4.60) and Proposition 4.4. Set

(4.86) T2 (1 +d)go + 1.
For every choice of additional parameters (usa, sp) enjoying the following constraints
compatibles with (4.61) for the choice p = 47oq + 479,

3
(4.87) Ho = Ty + 2T2q + 272, Sp = —pe+35+1,

= ok
there exist g € (0,1) and o4 = o4(11,72,q,d) = o3 such that if the following
smallness condition holds

(4.88) ey 2 TING? < eo, [30ll; <1

Q;5h+04 N

then there exists an operator @ : O — E(HS NnL? ) satisfying

(4.89) Vs € [s0,5],  [|@pl

+ 5772 ”jOHq s+04 Hp| q, so

and a diagonal operator Lo, = Loo(a,w, i) in the form

(4.90) Loo = w - O,ll5, + Do,

q,s v

with Yoo = H§O QOOHSLO a reversible Fourier multiplier operator given by,

Dy =id e, d5°(a,w,io) = dg(a,w,io) + 75 (e, w, do),

(4.91) 1

sup |j]|r5°l17°° < ey
JES§

such that in restriction to the Cantor-like set

.Y, T, T2 S VY5 T1,T2
(492) ﬁremalnder (20) - m ﬁl ,J5Jost0 7
(1.d.d) €2 x (5§)2
[LISNn
(1,5)#(0,30)
with

oy 2 { (0,w) € OLdTnlio), w1+ 5% (a,w, 1) — 45 (@ ,i0)| > 22 L,

we have

(4.93) AP = Lo +E2, |E2p)|2°0 < ey 2NY2N, 12

qSOf\J

q So+1
Recall that 01 5o (i0), Lo and the frequencies (dg(a,w,io))jesc are respectively
0

given by (4.67), (4.78) and (4.79). Moreover, for two tori iy and iz both satisfying
(4.88), we have for any j € S§,

||A12TOOH’YO S ey 1||A12’LHq Shtoa’

(4.94) o
1A12d2 )70 < eyt Avzill]s)

q,Shto4”

Now, that we have completely diagonalized the operator £, in (4.53) up to
error terms, we can find an almost approximate right inverse for it. This is done by
almost inverting the operator %, in (4.90). The result is stated below and its proof
follows word by word [52, Prop. 6.6] or [43, Prop. 6.5]. Consequently, we omit the
proof and only mention that the estimates mainly follows from (4.76)-(4.89)-(4.69)-
(4.83)-(4.93) and Lemma 4.1-(ii).



352 EMERIC ROULLEY

PROPOSITION 4.6. Let (d, s, S,7,q,T1, T2, Sh, fi2,04) as in (4.2), (4.3), (4.4),
(4.49), (4.60), (4.86), (4.87) and Proposition 4.5. There exists 0 = o (11,72, q,d) >
o4 such that if the following smallness condition holds

(4.95) v IN? < eo, 1017

q, Sh+cr < 17

(i) There exists a family of operators (T”)neN defined on O satisfying
,0 -
Vs € [507 SL SIGIE HTnp”g,s /S Y 1”p”q s+T1q+T71
n

and such that for any n € N, in restriction to the Cantor set

Ty, T1 . N T, T1
ﬁm,ve;*smn(lo) - ﬂ ﬁlJ’-”;O

i d sc
(4.96) R
o & {(a,w) €0 st |w-l+d¥(o,w,ig)| > g;iz },

the following identity holds
LTy =1d+E2,
with

v80 <s<s< Sa ||E pH’y o < Ns s _1Hp||q,e+1+7—1q+7—1

This means that we have an almost approximate right inverse for the op-
erator Luo in (4.90).

(i) There exists a family of operators (Tlv”)neN defined on O satisfying for
any s € [sg, 5],

o
sup [Tl 77 (I35 + 190032 1)
n

and such that in restriction to the Cantor set
(4.97) G, 71, 72,10) = Otyioepore (i0) N O 1000 (l0) N O (o),
the following identity holds
fLTL,n =Id+ E,,

with B, satisfying for any s € [sg, 5],

[Enp|[2:C < Nso—s _1(|Ip|qs+a+5'y

q,s0

+ey NGNS el

q, s+a||p| q,so)

51730-"-0

Recall that L1, Oihibe(io) and 02020072 (ig) are respectively defined in
(4.53), (4.67) and (4.92).

(i1i) When restricted to the Cantor set 9, (7, T1,T2,10), we have also have the
following splitting required to apply the Berti-Bolle theory

oiﬂl - LL,n + RL,TM LL,nTL,n - Id7 Rl,n - EnLL,na
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with the operators L , and R, , defined in O and satisfying for any s €
[507 S]a

sup HLL,np|
neN

q 9+1 + 6772 HjO”q,s-i-o'Hp

s
q,s nr~

(17‘30-&-1’

(@) — —
IRLnpl7S S Ny~ 1(||p||qg+c,+sv 2|1 30l13: 5 101135 1)

+ey NP L ol

Qa50+0

Finally, as mentioned at the beginning of this subsection, we can apply the
Berti-Bolle theory [11] and [41, Sec. 6] to construct an approximate right inverse
for the full linearized operator d; .. % (ig, ko). For a complete proof of the result, the
reader is refered to [41, Thm. 6.1].

THEOREM 4.1. (Almost approximate right inverse)
Let (d, so,S,7,q,T1, T2, Sh, o) satisfy (4.2), (4.3), (4.4), (4.49), (4.60), (4.86) and
(4.87). Then there exists & = o(11,72,d,q) > 0 and a family of reversible op-
erators (TOW)neN such that if the smallness condition (4.95) holds, then for all

9= (91.92,93), satisfying
n(e) =91(9),  g2(=9) = —g2(0)  g3(—p) = (Fgs)(9),
the function T g satisfies

Vs € [s0,5], [ Tong

g:? 5 (”qu,.s-i—U + ||J0 q,5+o||g||q,so+a) :

Moreover Ty, is an almost-approzimate right inverse of d; .7 (1o, ko) in the Cantor
set G (v, 71,T2,40). More precisely, for all (a,w) € %, (v, 1, T2, i) we can write

dixF (g, ko) © Ty —Id = 501(71) + 52(”) + gs(n)v

where the operators éal(n), 52(”) and é”g(n) are defined in the whole set O with the
estimates
161

M (o, mo)l3 604 llg 17 e

q,50 ~~ ,S0+07

for any b > 0,
16" g]

Ne) —1ar—
a0 S Na (||g||q sotbrz + €l Tollg, 60+b+UHg”q 60+U)

and for any b € [0,S — so],

o _
H@@B(n)g”g:so 5 N b7 <||g||q so+b+0o + ey 2||J0||q,so+b+0'||g||q,50+0')

+ gy 4N'U‘2N He Hqu sp+0°

4.6. Construction of a non-trivial quasi-periodic solution. In this final
section, we construct a non-trivial zero for the functional .# defined by (4.48).
It is obtained by a Nash-Moser iteration procedure. At each step, we can find
an approximate right inverse of the linearized operator following the construction
explained in the previous subsection. The proof is technical and already detailed
in the previous works [16, 41, 52]. Here, we may use the version exposed in [52,
Prop. 7.1 and Cor. 7.1].



354 EMERIC ROULLEY

PROPOSITION 4.7. (Nash-Moser)

(i) Let (d,so0,S,q,71,72,0) as in (4.2), (4.3), (4.49), (4.60), (4.86) and The-
orem 4.1. Consider the parameters fized by

w1 = 3q(m2 +2) + 65 + 6, a; £ 6q(my +2) + 125 + 15,

(4.98) p2 = 2q(t2 +2) + 50 + 7, az £ 3q(m2 +2) + 65 + 9,
sn = 50+ 4q(me +2) + 97 + 11, by £ 2sp, — so, R )
and
(499) 0<a< m, ’Yéé‘a, Noé")/il.

We consider the finite dimensional subspaces

A

E, 2 {j —(0,1,2) st. ©=Py 0O, [=Py I, 2= Pan},

where Py is the projector defined by

Pol X guetesn )= 3T et

(1,j)EZIXZ (1,5)ezd xz
(Li)SN

There exist C, > 0 and g9 > 0 such that for any ¢ € [0,e0] we get for all
n € N the following properties,
(a) There exists a q-times differentiable function
Wy, O — E,_1 xR?xRIH
(,w) = (Tn(a,w), kp(a,w) —w,0)

satisfying Wo = 0 and if n € N*|

W, |8 5 < Cuer 'NEE,
W7 5 < CoeyTINEL,.
We set
Uy £ ((gp,0,0),w, (mw))
and if n € N*,
Up 2 U +W,, Hp2U,—U, ;.
Then
Vs € [s0, 5], [|HL[|2°9 < %C*ey_lNga,

V2 <k <n, B0 5 < Cuey TN

We also have forn > 2,

,O — —a
(4.100) a7 4, < Coty ™ N5,
(b) Define
(4.101) in 2 (90,00 +Jn,  m E(1+27") € [y, 2],

The torus i, s reversible. Define also

(4102) %’Y é O, JZ{T;Y+1 é 42777 m %n(’yn-i-la Tla 727 Zn)v
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with G, (Yn+1,T1, T2, in) as in (4.97). Consider the open sets

oy & {(a,w) €0 st dist((a,w), &))< VNTL_E},
dist(z, A) £ inf ||z —y].
ist(z, 4) 2 inf [z — |

Then we have
o3 -
1 Z (Un)llg)so" < CaeN, %

(ii) There exists g > 0 such that, for any € € (0,¢q), the following hold true.
We consider the Cantor set 9 (related to e through ) and given by

(4.103) gL () ).
neN
There exists a q-times differentiable function
Uso O — (T*xR*x H*NL3) xR x RFL

(,w) (im(a,w),mw(a,w), (a,w))

such that
V(i,w) €9), F(Us(a,w))=0.

The torus i is reversible and koo € W27V (O,R?). Furthermore, there
exists a g-times differentiable function « € (ag, 1) — w(a, ) such that

(4.104) Koo (0, w(a, €)) = —wiq(a), w(a, 5)7: —wiq (@) + 7o (@),
I17:117¢ < ev ™' Ng*
and
Va e €y, F(Uu(o,w(a,e))) =0,
where the Cantor set €5, is defined by
(4.105) ¢, 2 {a € (g, 1) st (oyw(a,e)) € 54070}

Now to conclude the proof of Theorem 1.2, it remains to prove that the Cantor
set €<, in (4.105) is not empty. Actually, we can prove a lower bound measure for
¢, which shows that when the magnitude of the perturbation tends to zero, then
the set of admissible parameters tends to be of full Lebesgue measure in (ag, aq).

PROPOSITION 4.8. Let (qo,v,a) as in Lemma 4.9, (4.60) and (4.99). Then
there exists C' > 0 such that

|<5§o’ > (o1 — ap) — Ce, implying in turn liH(l) “K;| =) — ag.
e—
PROOF. In view of (4.105) and (4.103), we can write

(4.106) €L =%, ¢iE {a € (ag, 1) st (a,w(a,e)) e %7}

neN
Hence,
(4.107) (a0, 1) \ €5 = ((a0,00) \E5) U || (2 \€541).
n=0

Observe that (4.104), (4.98) and (4.99) imply

sup  |w(@, ) + wiq(a)| < [[E[[3C < Cey T NG® = Cel e
a€(ap,01)



356 EMERIC ROULLEY

and

O0<a<

1+qa

Now by construction (4.50), the previous estimate implies for £ small enough
Va € (ag, 1), w(a,e) € B(0, Ro).

We immediately deduce that

(4.108) ©5 = (a0, 1), ’ ag,0n1) \ C, ’

L

According to the notations (4.91) and (4.79), we denote the perturbed frequencies
associated with the reduced linearized operator at state i, in the following way
(4.109) d;"" (o, €) = d5° (a,w(a,e),in) = O (a) + §rom(a,e) + 7" (s €),
with

07 (o, e) £ mP(a,e) — Vo(a), mY (o, €) £ mi°(a,w(a,e)),

7 (ae) £ 3 (e, w(a,€),in).

Now, by construction, one can write in view of (4.106), (4.102), (4.97), (4.67), (4.92)
and (4.96) for any n € N,

(4.110)

(4.111)
0),. 2) . iy
(AN B/ () BN O N/ (1 B R /A (9P
(1,5)€24 x2\{(0,0)} (1,3,30) €24 X (5§)? (t,5)€zd xsg
HISNn [ <Np, [L|<Nn
where
%l(g) (in) = {a €EC; st ’w(oz,e) 1+ jm? ’ 4%;211 } ;
L%’l(?jo(in) £ {oz €%, st ‘w ) -1+ dj""(a,e) —dj " (a, )| < %#} ,
%Z(E)( n) 2 {ae%ﬁ ‘w a,e) - 14+d57" (a, 5)‘ 7”“(])}.

Copying the proof of [52, Lem. 7.1] we can show, using in particular (4.100)-(4.80)-
(4.94), that for any n € N\ {0, 1} and any [ € Z¢ such that |I| < N,,_1, the following
properties hold.

e For j € Z with (I, 7) # (0,0), we get %" ( n) = 9.
« For (j,jo) € (55)% with (1, ) # < o), we get B, (in) = .
e For j € S, we get %l(lj (in) =

This leads to write for any n € N\ {0, 1}

0 2 .
“\Ca= U @jeu U &,
(1,7)€24xZ\{(0,0) } (1,5,d0) €24 % (S§)?
Ny 1<[l|[SNn N, _1<|lI<Npn
1) /.
(4.112) u U 2.

(1,§) €22 xS§
Ny 1 <|l|SNn

To estimate, we shall make use of Riissmann’s Lemma 4.6. First notice that

Weee(0,C) = C7H0,C),  q=qo+2,
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imply that for any n € N, the C%*! regularity for the curves

a— w(a,e) - L+ jmF(a,e), (1,5) € Z% x Z\{(0,0)},
= w(a,e) 1+ d7 " (e, e) — di " (s €), (1,7,70) € Z% x (S§)?,
a wl(a,e) - 1+d77" (a, ), (1,7) € 74 x SE.

In addition, the following perturbed Riissmann conditions hold. They are ob-
tained by a perturbative argument from the equilibrium transversality conditions
in Lemma 4.9 similarly to [52, Lem. 7.3]: for qo, Cy and pg as in Lemma 4.9, there
exist g9 > 0 small enough such that for any e € [0,&¢] we have

e For all (1,7) € Z%1\ {(0,0)} such that |j] < Cy(l), we have

Vn € N, f O (w(a,e) - 1+ jm(a, > poll),
! Oce[lcfi),al]kg[[l(?f;o]]' ( (a,€) Jmee (a 5))| !

e For all (1,7) € Z¢ x S§ such that |j| < Co(l), we have

Vn € N, inf max |8§ (w(a’g) A+ d;o’n(a75))| > po(l) .

a€lag,a1] k€[0,90] 2

e For all (1,7,70) € Z% x (S§)? such that |j — jo| < Co(l), we have

k 00,mn oo,n pol)
Vn €N, aefiif,al]k?ﬁ??oﬂw (wla,e) - 14+ d5>" (a,e) — A5 " (a,€)) | = 257

Notice that the proof of the previous transversality conditions requires in particular
the estimates (4.118) and (4.119). Thus, applying Lemma 4.6, we get for all n € N,

|2 ()| S v ()3 )75 1,3,
M| < a5 (Yo (1) e
(4.113) 2,5 (in)| S50 (G)ao (1) {, ),
1 -zt
’%ago (in)| S 97 (G = G030 ()™ (1,4 — jo).

Since (4.112) is valid for n € N\ {0, 1}, we first need to estimate the first two terms
in the right hand-side of (4.108). Fix k € {0, 1}, then we have by Lemma 4.12

ARSI I SN /4 (G5 EAD SR /N 0]
(1:3)€ZIXZ\{(0,0)} (L:4:30) €2 X (S§)2
[F1<Co (1), 11[< Ny, [7=d0ol<Co (1), ILI< Ny,

min(ljl, 130 ) <egvy, ) (D7

(4.114) + Y )e@l%_) (ik)‘~
(1,§)€Z xS
[71SCo (1), 1SNy,

Observe that for |j — jo| < Co(l) and min(|j], |jo|) < cav; ;1 ()™, then

(4.115)  max([3], [jol) < min(|jl, [jol) + 17 = jo| < cav i (D™ + Co{l) S~ (™.
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Combining (4.113), (4.114) and (4.115), we get for k € {0, 1},

1 JRP A B .

G\ G| Sym Y RO L)
(1.5)€24 x (50)¢
[71<Co (1)

1 X oL, 1 T2fl . .

+7% > (G —jo)ao ()™ (1,5 — jo)
(1,4,50)€EZE % (S§)?
[7—do|<Co (L), [lISN
min(|5],l50l) Seavj 'y (DT

T I DR () KX () BT ()

(1,5)€24 x2\{(0,0)}

151<Co (1)
Thus, by using (4.60) and (4.86), we deduce
(4.116)
max |6\ G| S 7% ( ST T Y@ ) oy (1)
kel0.1} lezd lezd lezd

S ymin(%’%il)) = 7%,
Now fix some n > 2. Using (4.112) and Lemma 4.12, we get

(0) @)
"“’ < Z "%) Z 21,50 (in)
(1,5)EL*xZ\{(0,0)} (1,3,50) €L X (S5)?
151<Co (1) Ny _1 <1< N 15 =301 Co (1), N1 <I1I<Nn

min(|5], 150D <ea, Yq (D71

(1)
T > ’%l,j (i
(1,j)EZ4 xSg
[71<Co (1), Ny 1 <[L[SNp

Therefore, we obtain from (4.113) and (4.115),

n+1‘57‘110< > (07w 4y > <l>ﬁ§3>

tezd 1ezd
[1|>N

n—1

SR DR
tezd

[LI>N,, 1

Hence, we infer

o0

(4.117) >

n=2
Plugging (4.117) and (4.116) into (4.108) and using (4.99) yields

v
n+1‘ Sy,

‘(ao,al )\ % ‘<'yq0 =g,
This achieves the proof of Proposition 4.8. (]

To conclude, it remains to prove the following lemma providing necessary con-
straints between time and space Fourier modes so that the sets in (4.111) are not
void.
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LEMMA 4.12. There exists eg such that for any € € [0,&0] and n € N the
following assertions hold true.
(i) Let (I,5) € 22 x Z\ {(0,0)}. If ) (in) # @, then |j| < Co(l).
(ii) Let (I,5,j0) € Z% x (S§)%. If %), (in) # @, then |j — jo| < Co(l).
(iii) Let (1,5) € Z¢ x S§. If &) (in) # @, then |j| < Co(l).
(iv) Let (1,7, j0) € Z% x (S§)2. There ezists co > 0 such that if min(|5], |jo|) =
C2Ypyp1 ()™, then

‘%l(?»jo (Z”) C ‘%1(,3le (Zn)

PROOF. (i) Assume that 3?1(3-) (in) # @. Then, we can find a € (ap, ) such

that

e o} 4 ”:11 1 ]
lw(a, €) - 1+ jmy’ (o, e)| < Py<l;’71<]>-

By using the triangle and Cauchy-Schwarz inequalities together with (4.101), (4.99)
and the fact that («,¢) — w(a,e) is bounded, we infer

<A (O™ + w(ase) -
<Ajlvn +C0)
< 84| + C(1).

my (e, €)1

Now, by (4.110), we can write
e (o, €) = Vo(a) + 19" (a €).
Hence, applying (4.63), (4.99) and Proposition 4.7-(i)-(a) we find

Vk€[0,q), sup sup |05r"" (o) <y Fsup [P0 7€
neN ae(ag,a1) neN
Serv™
(4.118) < glmak,

Thus, for ¢ small enough, we obtain by (4.25) and the decay property of I; K; on
(0, 00),

inf  inf  |m(a,e)| > %VO ( L ) .

neN a€(ao,o) o

Hence, a suitable choice of e small enough provides the constraint |j| < Cy(l) for
some Cy > 0.

(ii) Observe that L%’l(iz)’jo (in) = %l(_’%) (in), so the case j = jp can be included in the
previous point. Now we assume j # jo and %1(3‘), jolin) # @. There exists a € (ap, a1)
such that

wia,e) 1+ d3o™(a,e) — dS " (a,e)| < 2ol
Applying the triangle and Cauchy-Schwarz inequalities, (4.101) and (4.99), we infer
|d(;C7n(a’€) - d(;:’n(a,g” < 2’Yn+1|j - j0|<l>_T2 + |w(a7g) . l|
< 291l — Jol + C(1)
< 4e®(j = jol + C(D).
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Now, similarly to (4.118), we may obtain from (4.91)-(4.99),

Vk€[0,q], supsup sup |j|05r;7" (a,e)| <47 Fsup sup 15 15
neN jES§ ae(ap, o) neNje
S 6’)’717}9
(4.119) < glmall+h),

One obtains from the triangle inequality, Lemma 4.7-(iv), (4.118) and (4.119), up
to taking e sufficiently small

5% (@, €) — 3o ™€) = Q5 () = Q5 ()] = [r*" (e, €)11j = Jol

=[5 ()| = riy " (e €)
> (= Ce'" )i — jol
> $1j — Jol-

The foregoing inequalities together give for £ small enough, the constraint |7 — jo| <
Co(l), for some Cy > 0.

(iii) As previously, we can forget the case j = 0. Assume that j # 0 and %’l(é.) (in) #
@. There exists a € (ag, a1) such that

(e, ) 1+ A5 (o e)] < 2R

By the same techniques as in the other cases, we find
17" (0, )] < Ynra D)™™ + Jw(a,€) -1
< 2:90j1 + C ().
Now (4.109), the triangle inequality, Lemma 4.7-(iii), (4.118) and (4.119) imply
477" (@, )| = Qj| = [][r" (s e)] = 177" (v, €)]
> Qlj| - G-
Gathering the foregoing inequalities gives
(Q—Ce' ™ —2e%)|j] < CI).
Thus, for ¢ small enough we deduce the constraint |j| < Co(l), for some Cy > 0.

(iv) We can forget the case j = jo. Assume j # jo. The symmetry property doc’n =
—d;o’ implies that without loss of generality we can assume that 0 < j < jo. Takc

ae%l”( n), le.

ol )+ 57 0,) 5 )] < 2l

Putting together (4.109), (4.27) and the triangle inequality, we find
|w(e,e) - 1+ (G £ jo)m (e, €)| < |wlaye) -1+ d57 " (a,e) £d5 " (a,e) |+ 5(1 £ 1)
+ 131 (3) K5 (3) g0l (3) Ko (3) ]
+ |r;°’”(04,5) + r;:’”(a,e)|.
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Hence, we deduce

(4.120)  |w(a,e) -1+ (j % jo)mp? (v, )| < ZipldEiol 4 1(1 4 1)

+15 (3) K (3) £ dolio (5) Ko (3) |
+ ‘r;?o’"(oz,a) — r;‘f’"(a,s)‘.
It has been proved in [52, Lem. 7.2-(iv)] that

. . 4
Vo >0, [jI;(2) K, (@) + joliy (@) Ky (2)] < it

Additionally, (4.91) gives
|55 (o 8) 3y " (e, )| <O (I3 + Lol ™)

J
< l1—a '<ji'j0>' .
<O ™ Smhon

Also one has the trivial bound

1 _ (do) |
2(1£ 1) < Gmiiiimn

Inserting the foregoing estimates into (4.120) yields

L ol "
jwler.e) - 1+ (G oy (e €)| Bl 4+ O

Thus, for min(|j], |jo|) = $C, 1 (I)™, then using (4.86), we get

R o
(o, €) L+ (5 £ o)mF (o )| < Leppliiol.

This proves Lemma 4.12, taking ¢ = % O

Appendix A. Properties of modified Bessel functions

We collect here the definitions and useful properties of modified Bessel functions.
The literature is huge as regards these special functions and we may refer the reader
to [1, 73] for a nice introduction. The modified Bessel functions of first and second
kind are defined as follows, for |arg(z)| < ,

00 ( P ) v+2m
A 2
L(z) = mz::O m!T(v+m+1)’

and

we\z K2t LG s g o) 2 im K (),

2 sin(vm) v—n
Symmetry and positivity properties (see [1, p. 375)):
(A1) VneN, V>0, I_,(zr)=1I,(x)cR} and K_,(z)=K,(x)ecR}.

Derivatives and Anti-derivatives:
If we set Z,(2) £ I,(z) or €K, (2), then for all v € R, we have

(A2) Z)(2) = Z,1(2) = Z2,(2) = Zoa(2) + 2 2,(2)
and

(A.3) /z”HZy(z)dz =2""1Z,.1(2).



362 EMERIC ROULLEY

Power series extension for K, (see [1, p. 375)):

=3 (3) T (F) e () e

22

k
1/—2\"— (I)

+5 <2> kzzo(w(wr D+y(n+k+ 1))m,

where
(1) £ —~ (Euler’s constant) VmeN* Yp(m+1)= Z% — .
k=1
In particular
Ny S 6

(A4) Ko(z) = —log (3 ) Io(:) + Zgr b+ 1),

so Ky behaves like a logarithm at 0.

Decay property for the product I, K, (see [8] and [27]):
The application (z,v) — I, (x) K, (z) is strictly decreasing in each variable ,v > 0.

Asymptotic expansion of small argument (see [1, p. 375]):

(%x)" and K, (x)

(A5)  WnEN, L) ~ i T

Asymptotic expansion of large argument (see [1, p. 375]):

e’ ™
. s ~ Ko(z) ~ y—e=.
(A.6) Vn e N*,  I,(x) S Vo and (2) oo A 22¢
Asymptotic of high order (see [1, p. 377]):

1 ex\Vv T orex\ Vv
(A7) Vz>0, I,(x) o \/277/(5) and K, (z) V:oo\/;(Qy> .

Integral representations (see [59, p. 140]):

1 [.¢]
(A.8) Ve >0, VYv>0, I(x)K,(z)= 3 / Jo (2zsinh (£)) e~ ""dt,
Jo

where Jj is the classical Bessel function which is defined by

VzeC, Jo(z)2 i (=)™ (f)m

(m!)2 \2

m=0

and which admits the following integral representation (see [59, p. 115])

(A.9) Ve >0, Jo(x)= 71T/07r cos (zsin(6))df.
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Appendix B. Local bifurcation theorem and singular integrals

We recall here the Crandall-Rabinowitz’s Theorem of local bifurcation theory
which was used to find the periodic solutions in Section 3. Its proof can be found
in [25] and [55, p.15].

THEOREM B.1 (Crandall-Rabinowitz). Let X andY be two Banach spaces. Let
V' be a neighborhood of 0 in X and let

F: RxV —= Y
©@,2) — F(Qz)
be a function of classe C' with the following properties
(i) (Trivial solution) VQ € R, F(,0) = 0.
(ii) (Regularity) OqF, dyF' and Oqd,F exist and are continuous.
(i1i) (Fredholm property) d,F(0,0) is a Fredholm operator with index 0 and
ker (d, F(0,0)) = (xq).
(iv) (Transversality assumption) Oqd, F(0,0)[xo] € R (d,F(0,0)).
If x denotes any complement of ker (d, F(0,0)) in X, then there exist

e U a neighborhood of (0,0) in R x V,

e an interval (—a,a) for some a > 0,

e continuous functions ¥ : (—a,a) — R and ¢ : (—a,a) — x satisfying
¥(0) =0 and ¢(0) =0

such that the set of the zeros of F in U can be described as the following two curves
intersecting at (0,0)
{(Q,x) eU st F(Qu)= 0} = {(¢(s),sxo +s¢(s)) st |s] < a}
U {(Q, 0) U}.

Now, we also state some continuity properties of singular integral operators.
We may refer to [37, 45, 57, 61] for a proof of the following result.

LEmMA B.1. Consider a function K : T x T — C such that for some Cy > 0 we
have

e X is measurable on T x T\ {(w,w), w € T} and
Y(w, ) € T2, w#T = [Kw,7)| <Co.
e For any T € T, the application w — K(w, ) is differentiable in T\ {7} and

Co
lw — 7]

Y(w,T) € T?, w#£T = |0K(w,T)| <
Consider the operator Ty defined by

T($)w) = £ Klw.)f ()
Then, the operator Tx is continuous from L= (T) to C°(T) for any 0 < § < 1 and
there exists Cs > 0 such that

1Tk (f)llcs ) < CsColl £l Loo () -
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