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Spectral Stability of multiple periodic waves for the
Schrödinger system with cubic nonlinearity
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Abstract. Results concerning the existence and spectral stability/instability
of multiple periodic standing wave solutions for a cubic nonlinear Schrödinger
system will be shown in this manuscript. Our approach considers periodic per-
turbations that have the same period of the standing wave solution. To obtain
the quantity and multiplicity of non-positive eigenvalues for the corresponding
linearized operator, we use the comparison theorem and tools of Floquet the-
ory. The results are then obtained by applying the spectral stability theory via
Krein signature as established in [20] and [21].
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1. Introduction

In this paper, we show the spectral stability of periodic standing waves for the
cubic nonlinear Schrödinger system (NLS-system)

(1.1)

{
iut + uxx + κ1|u|2u+ γv2u = 0
ivt + vxx + κ2|v|2v + γu2v = 0.
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172 FÁBIO NATALI AND GABRIEL MORAES

Here u, v : R × (0,+∞) → C are complex-valued functions that are L-periodic in
the spatial variable, κ1 and κ2 are positive constants and γ ≥ 0.

The NLS equation (v = 0 in (1.1)) appears in many applications in physics
and engineering as in nonlinear optics, quantum mechanics and nonlinear waves
(see [4] and [10]). The cubic nonlinearity has been used as a toy model in field
theory. (see [8]). The NLS system also appears in nonlinear optics and Bose-
Einstein condensates (see [1, 17, 19, 27]).

For the NLS equation with cubic nonlinearity and periodic boundary conditions,
Angulo in [2] established the orbital stability of periodic standing waves solutions
of dnoidal type with respect to perturbations of period L. The existence of cnoidal
waves was also obtained in [2]. However, the author did not obtain spectral or
orbital stability results in the energy space H1

per for the cnoidal wave. Recently,
Natali et al. determined in [25] the orbital stability of cnoidal waves restricted to
the subspace H1

per,m of zero mean periodic functions contained in H1
per. Employing

the approaches in [13] and [14], along a non-degeneracy condition of a suitable
2 × 2 Hessian matrix, Gallay and Hărăguş in [12] showed that the cnoidal waves
are orbitally stable with respect to semi-periodic perturbations. This work gener-
alized the previous work [11] where the authors used similar arguments to prove
the orbital/spectral stability of small amplitude waves with respect to localized or
bounded perturbations. Gustafson, Le Coz and Tsai in [15] have established spec-
tral stability results for the cnoidal waves with respect to perturbations with the
same period L and orbital stability results in the space constituted by anti-periodic
functions with period L/2. The spectral stability follows by relating the coercivity of
the linearized action with the number of eigenvalues with negative Krein signature
of a certain operator JL.

Pastor in [26] considered a similar NLS-system given by{
iut + uxx − u+

(
1
9 |u|2 + 2|v|2)u+ 1

3u
2v = 0

iσvt + vxx − αv +
(
9|v|2 + 2|u|2) v + 1

9u
3 = 0,

where α and σ are real constants. First, he proved orbital stability results for
dnoidal standing wave solutions using the approaches in [13] and [14] by considering
periodic perturbations that have the same period of the standing wave solution.
Second, he used the theories in [11] and [12] to demonstrate spectral stability
results of periodic waves with respect to localized or bounded perturbations, that
is, when the study of the spectrum of a certain linearized operator JL is considered
over the space L2(R)×L2(R) or Cb(R)×Cb(R), respectively. Here, Cb(R) indicates
the space of (complex) continuous functions defined in the whole real line R that
are bounded.

In the context of NLS-system (1.1), Kawahara and Ohta in [23] showed the
orbital stability and instability of standing solitary wave solutions for the system
(1.1). In that approach, the authors studied the orbital stability properties of semi-
trivial standing wave solutions of the form

(1.2) (u(x, t), v(x, t)) = (eiωtϕω(x), 0),

where ϕω(x) =
√
2ω sech(

√
ωx) is a positive and even solution of the equation

(1.3) −ϕ′′
ω + ωϕω − ϕ3

ω = 0.

They proved that the semi-trivial standing wave solution (1.2) is orbitally stable
if γ < κ1 and orbitally unstable if γ > κ1. In addition, if γ = κ1, the authors
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concluded the orbital stability when κ2 < κ1 and orbital instability when κ2 > κ1.
Unfortunately, in the case where γ = κ1 = κ2, they did not prove the orbital
stability (see [23, Remark 2]).

In the periodic setting, Hakkaev in [16] studied the spectral stability of the
NLS-system by considering semi-trivial standing waves as in (1.2) where ϕω is an
L-periodic function with dnoidal profile which solves equation (1.3) and it is given
by

ϕω(x) =
2
√
2K(k)

L
dn

(
2K(k)

L
x, k

)
,

where k ∈ (0, 1) is the modulus of the elliptic function and K(k) is the complete
elliptic integral of the first kind. More precisely, the author showed that the semi-
trivial periodic waves are orbitally stable for γ < κ1. In addition, he also obtained
results of spectral stability and instability for the semi-trivial waves. In fact, for
κ1 < γ ≤ 3κ1, he concluded that the semi-trivial periodic waves are spectrally un-
stable and for γ = κ1 the semi-trivial periodic wave solutions of (1.7) are spectrally
stable.

Now, we give the main topics of our paper. Motivated by [16] and [23], we
consider multiple periodic standing wave solutions of (1.1) given by

(1.4) (u(x, t), v(x, t)) = (eiωtϕω(x), e
iωtϑω(x)) := (eiωtϕω(x), e

iωtBϕω(x))

where ϕω : R → R is an L-periodic function and ω ∈ R is the frequency wave.
In addition, we also assume that B ∈ R is a real constant which can be assumed
non-negative because of the reflection symmetry v �→ −v.

In our paper, we consider two kind of waves ϕ = ϕω in the periodic setting.
First, we complete the study realized in [16] by considering ϕ with (positive) dnoidal
profile. Second, equation (1.3) has periodic solutions with cnoidal profile that was
not mentioned in [16]. The cnoidal solution enjoys the zero-mean property, and
additional difficulties to apply the spectral stability theories in [20] and [21] can
arise.

Let’s start by constructing our periodic solutions. First, by substituting the
form (1.4) into (1.1) we get

(1.5)

{ −ωϕ+ ϕ′′ + (κ1 + γB2)ϕ3 = 0
−ωϕ+ ϕ′′ + (κ2B

2 + γ)ϕ3 = 0.

In order to determine the existence of multiple solutions, we need to assume
that κ1 + γB2 = κ2B

2 + γ. Thus, for κ2 	= γ, we see that B > 0 can be expressed
by

(1.6) B =

√
κ1 − γ

κ2 − γ
.

In this case and since B ∈ R, we first consider the three basic cases:

γ ∈ (0,min{κ1, κ2}), γ ∈ (max{κ1, κ2},+∞) and γ = 0.

We can also consider the case γ = κ1 or γ = κ2 in (1.5). For both, we conclude
that γ = κ1 = κ2 and B is a free real parameter that does not depend on κ1, κ2, γ
and ω.

In all cases mentioned above, the periodic wave ϕ is a solution of the ODE

(1.7) −ϕ′′ + ωϕ+ (κ1 + γB2)ϕ3 = 0.
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In the case of solutions with dnoidal profile, we can determine the explicit solution
as

(1.8) ϕ(x) =
2
√
2K(k)

L

1

(κ1 + γB2)1/2
dn

(
2K(k)

L
x, k

)
.

The frequency of the wave ω ∈ R can be expressed as

(1.9) ω =
4(2− k2)K(k)2

L2
.

By (1.9), we can see from the dependence of ω in terms of the parameter k ∈ (0, 1),

that ω ∈
(

2π2

L2 ,+∞
)
.

On the other hand, to obtain solutions with cnoidal type, we can proceed sim-
ilarly as in [2] to obtain

(1.10) ϕ(x) =

√
2ωk√

2k2 − 1

1

(κ1 + γB2)1/2
cn

(
4K(k)

L
x, k

)
.

In this case, the modulus k belongs to the interval
(

1√
2
, 1
)
and the frequency wave

ω > 0 is expressed by

(1.11) ω =
16K(k)2(2k2 − 1)

L2
.

Solution ϕ in (1.10) is an even periodic function. In our spectral stability
analysis, it is suitable to work within the complex Sobolev product spaceH1

per×H1
per

constituted by odd periodic functions. To accomplish this, we must shift the solution
ϕ defined in (1.10) by −L

4 , in order to obtain an odd periodic solution that satisfies
equation (1.7). In fact, by the formula [5, Formula 122.05], we deduce,

(1.12) ψ(x) = ϕ

(
x− L

4

)
=

√
2ωk

√
1− k2√

2k2 − 1

1

(κ1 + γB2)1/2

sn
(

4K(k)
L x, k

)
dn

(
4K(k)

L x, k
) .

In (1.12), the notation sn indicates the odd Jacobi elliptic function with snoidal
profile.

Remark 1.1. For all the solutions mentioned above, we can construct, for each
case, a smooth curve of L−periodic waves ω ∈ I �−→ ϕ ∈ H2

per that solves (1.7)
(see Theorems 2.1 and 2.2).

System (1.1) admits the conserved quantity E defined as

(1.13) E(u, v) =
1

2

∫ L

0

(
|ux|2 + |vx|2 − κ1

2
|u|4 − κ2

2
|v|4

)
dx− γ

2
Re

∫ L

0

u2v2dx.

Moreover, (1.1) has another conserved quantity F given by

(1.14) F (u, v) =
1

2

∫ L

0

(|u|2 + |v|2) dx.
Then, following similar arguments as in [6] and using standard fixed point argu-
ments, we can conclude by the conservation laws in (1.13) and (1.14) that the
NLS-system (1.1) is globally well-posed in the complex energy space H1

per × H1
per

(see, for instance, [7, 16, 28]).



MULTIPLE PERIODIC WAVES OF THE NLS SYSTEM WITH CUBIC NONLINEARITY 175

Now, we present how to obtain the spectral stability of multiple periodic waves
with respect to perturbation with the same period. In order to improve the com-
prehension of the readers, we consider the complex evolution U = (u, v) associated
with the system (1.1) of the form,

U(x, t) = (u(x, t), v(x, t)) = (Reu(x, t),Re v(x, t), Imu(x, t), Im v(x, t)).

Consequently, we can consider the stationary solution Φ = (ϕ,Bϕ, 0, 0) and the
perturbation

(1.15) U(x, t) = eiβt(Φ(x) +W (x, t))

where W (x, t) = (Rew1(x, t),Rew2(x, t), Imw1(x, t), Imw2(x, t)) ∈ R
4. Substitut-

ing (1.15) into (1.1) and neglecting all the nonlinear terms, we get the following
linearized equation:

(1.16)
d

dt
W (x, t) = JLW (x, t),

where

(1.17) J =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ ,

and L is the operator given by

(1.18) L = (−∂2
x + ω)Id− ϕ2S,

where Id ∈ M4×4(R) and S is given by

S =

⎛
⎜⎜⎝

(3κ1 + γB2) 2γB 0 0
2γB (3κ2B

2 + γ) 0 0
0 0 (κ1 − γB2) 2γB
0 0 2γB (κ2B

2 − γ)

⎞
⎟⎟⎠ .

To define the concept of spectral stability within our context, we need to con-
sider W (x, t) = eλtw(x) in the linear equation (1.16) to obtain the following spectral
problem

JLw = λw.

The definition of spectral stability in our context reads as follows.

Definition 1.2. The stationary wave Φ is said to spectrally stable by periodic
perturbations that have the same period as the standing wave solution if σ(JL) ⊂
iR. Otherwise, if there exists at least one eigenvalue λ associated with the operator
JL that has a positive real part, Φ is said to be spectrally unstable.

As far as we know, it is more convenient to work with the operator L in a
diagonal form. To do so, we need to obtain the existence of an orthogonal matrix
R and a matrix M such that

(1.19) S := RMR−1,

where R is defined as

(1.20) R =

⎛
⎜⎜⎜⎝

−κ2 + γ 1
2γ−κ1−κ2

0 0

Λ − 1
2γ−κ1−κ2

1
B 0 0

0 0 − 1
2γ−κ1−κ2

κ1 − γ

0 0 − 1
2γ−κ1−κ2

1
B Λ

⎞
⎟⎟⎟⎠ ,
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where Λ =
√
(κ1 − γ)(κ2 − γ). Since B is a real number, we see that M is a matrix

with real entries and this fact allows us to deduce that the entries of the matrix R
in (1.19) are also real numbers (by definition, an orthogonal matrix R is composed
of real number entries). The matrix M ∈ M4×4(R) is then given by

M =

⎛
⎜⎜⎝

β1 0 0 0
0 β3 0 0
0 0 β2 0
0 0 0 β4

⎞
⎟⎟⎠ ,

where constants βi ∈ R are expressed in terms of γ, κ1 and κ2 as

(1.21)
β1 =

3(γ2 − κ1κ2)

γ − κ2
, β3 =

−γ2 + 2γ(κ1 + κ2)− 3κ1κ2

γ − κ2
,

β2 =
(γ2 − κ1κ2)

γ − κ2
, β4 =

−3γ2 + 2γ(κ1 + κ2)− κ1κ2

γ − κ2
.

Substituting (1.19) into (1.18) and since R is an orthogonal matrix with real entries,
we have that L is a diagonalizable operator with

(1.22) L = R

⎛
⎜⎜⎝

L1 0 0 0
0 L3 0 0
0 0 L2 0
0 0 0 L4

⎞
⎟⎟⎠R−1 = RL̃R−1,

where Li : H
2
per → L2

per are Hill operators given by

(1.23) Li = −∂2
x + ω − βiϕ

2, i = 1, 2, 3, 4.

It is important to mention that the decomposition in (1.22) is useful to obtain
the non-positive spectrum regarding the operator L by knowing the non-positive
spectrum of Li, i = 1, 2, 3, 4, in (1.23). Such decomposition is only possible since
solutions in (1.4) are considered multiple of each other. The existence of non-
multiple periodic solutions can be obtained for certain specific parameters κ1, κ2,
and γ in equation (1.1). The challenge lies in achieving spectral stability for this
type of waves. Indeed, as it is well-known that in this case, the linearized operator
L in equation (1.18) cannot be diagonalized, and neither can the entries Vjl of the
matrix V (see (1.24) below).

We now describe our results. Let n(A) and z(A) be the number of negative
eigenvalues and the dimension of the kernel of a certain linear operator A. In our
paper, a prior understanding of these non-negative numbers is essential for obtain-
ing the spectral stability result. First, we obtain for the case of dnoidal waves that
n(L1) = 1 and n(L2) = 0 (see [2] and [16]). In addition, we have that Ker(L1) = [ϕ′]
and Ker(L2) = [ϕ]. An application of the well known comparison theorem in the
periodic context (see [9, Theorem 2.2.2]) gives the behaviour of the non-positive
spectrum concerning the operators L3 and L4 (see details in Section 4). Next, by
considering ϕ ∈ H1

per with cnoidal profile, we have n(L1) = 2 and n(L2) = 1 (see
[2]). Depending on the choice of the parameters γ, κ1, and κ2 in equation (1.1), we
cannot conclude a suitable spectral stability result as in the case of dnoidal solu-
tions, since we have too many negative eigenvalues for the operator L. The reason
for this is that we cannot apply the comparison theorem to determine the behavior
of L3 and L4 as we did in the case of dnoidal solutions.

To partially overcome this difficulty, we can take advantage of the fact that
ψ = ϕ

(· − L
4

)
is an odd function, and the translated potentials Qi = −βiψ

2 of the
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operators Li in equation (1.23) are even. Both facts give us that Li is well defined in
the space L2

per,odd constituted by odd periodic functions in L2
per for all i = 1, 2, 3, 4.

With this information in hands, we can calculate the number of non-positive eigen-
values of L3 and L4 within the subspace of odd periodic functions L2

per,odd without

further problems. In this setting, we prove that n(L1,odd) = 1, n(L2,odd) = 0,
Ker(L1,odd) = {0}, and Ker(L2,odd) = [ϕ], where Li,odd is the restriction operator
Li defined in L2

per,odd with domain H2
per,odd, i = 1, 2, 3, 4. These facts allow us to use

the comparison theorem to obtain the exact behaviour of the non-positive spectrum
for the operators L3,odd and L4,odd restricted to space L2

per,odd. A consequence of
this fact is that the study of the spectral stability of periodic waves in the space
constituted by odd periodic functions is similar as determined for positive (dnoidal)
solutions.

We now obtain our results. To do so, we need to use the methods developed by
Kapitula, Kevrekidis and Sandstede in [20] and [21]. First, we denote by L

2
per the

space

L
2
per = L2

per × L2
per × L2

per × L2
per.

If z(L) = n, consider {Θl}nl=1 ⊂ Ker(L) a linearly independent set and let V be the
n× n matrix whose entries are given by

(1.24) Vjl = (L−1JΘj , JΘl)L2
per

,

where 1 ≤ j, l ≤ n. The formula

(1.25) kr + kc + k− = n(L)− n(V ),

is given in [21] and the left-hand side of (1.25) is exactly the hamiltonian Krein
index, an important tool to decide about the spectral stability and instability of
waves. Regarding operator L in (1.18), let kr be the number of real-valued and
positive eigenvalues (counting multiplicities). The number kc denotes the number
of complex-valued eigenvalues with a positive real part and k− is the number of
pairs of purely imaginary eigenvalues with negative Krein signature of L. Since kc
and k− are always even numbers, we obtain that if the right-hand side in (1.25)
is an odd number, then kr ≥ 1 and we have automatically the spectral instability.
Moreover, if the difference n(L)−n(V ) is zero, then kc = k− = kr = 0 which implies
the spectral stability.

Summarizing the comments above, our main results concerning the spectral
stability of multiple periodic waves of the form (1.4) are then established:

Theorem 1.3 (Spectral stability/instability for the multiple wave solution with
dnoidal profile). Let L > 0 be fixed. Consider the periodic wave solution ϕ ∈ H1

per

of (1.7) with dnoidal profile given by (1.8). For B given in (1.6) and for all ω ∈(
2π2

L2 ,+∞
)
, the wave Φ = (ϕ,Bϕ, 0, 0) is spectrally unstable if γ ∈ (0,min{κ1, κ2})

and spectrally stable if γ ∈ (max{κ1, κ2},+∞) ∪ {0}. In addition, for γ = κ1 = κ2

with B being a free real parameter, we obtain that Φ is spectrally stable for all

ω ∈
(

2π2

L2 ,+∞
)
.

Theorem 1.4 (Spectral instability for the multiple wave solution with cnoidal
profile). Let L > 0 be fixed and consider ω > 0. Let ϕ ∈ H1

per be the periodic
solution of (1.7) with cnoidal profile given by (1.10). For γ = κ1 = κ2 with B being
a free real parameter, the wave Φ = (ϕ,Bϕ, 0, 0) is spectrally unstable.
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The translation ψ in (1.12) of the periodic cnoidal wave ϕ in (1.10) gives us an
odd periodic solution for the equation (1.7). In this case, it is possible to restrict
the spectral stability in the (complex) product space H1

per,odd×H1
per,odd constituted

by odd periodic functions (e, f) ∈ H1
per × H1

per. The reason for that is that the

operator L in (1.18), when restricted to L2
per,odd × L2

per,odd, has a small number
of negative eigenvalues. Therefore, it is more convenient to determine whether
the difference n(L) − n(V ) can be zero (indicating stability) or an odd number
(indicating instability). Only a few spectral stability scenarios can be determined
when ϕ represents the cnoidal solution and the operator L is considered in either
the entire space L2

per × L2
per or the space L2

per,even × L2
per,even constituted by even

periodic functions (g, h) ∈ L2
per × L2

per (see Theorem 1.4).

Theorem 1.5 (Spectral stability/instability for the multiple wave solution with
cnoidal profile and restricted to the subspace of odd functions). Let L > 0 be fixed
and consider ω > 0. Let ψ = ϕ(· − L/4) ∈ H1

per,odd be the periodic solution of

(1.7) with snoidal profile given by (1.12). For B given in (1.6), the multiple wave
Ψ = (ψ,Bψ, 0, 0) is spectrally unstable if γ ∈ (0,min{κ1, κ2}) and spectrally stable
if γ ∈ (max{κ1, κ2},+∞) ∪ {0}. In addition, for γ = κ1 = κ2 with B being a free
real parameter, we have that Ψ is spectrally stable.

To finish, we give an extension of the results obtained in [16] by showing the
spectral stability concerning the semi-trivial periodic wave solution

(u(x, t), v(x, t)) = (eiωtϕ(x), 0),

where ϕ ∈ H1
per has a cnoidal profile. Here, we also analyze the spectral properties

concerning the operator L to obtain the spectral stability results in the same setting
of parameters determined in [16]. As we have already established for the case of
multiple solutions (1.4), some difficulties appear in the spectral analysis of L. To
overcome all these difficulties, we study the case where ψ = ϕ(· − L/4) is given by
(1.12).

Theorem 1.6 (Spectral instability for the semi-trivial wave solution with cnoidal
profile). Let L > 0 be fixed and consider ω > 0. The semi-trivial wave solution
Ψ = (ψ, 0, 0, 0) is spectrally unstable when γ = κ1.

Theorem 1.7 (Spectral stability/instability for the semi-trivial wave solution
with cnoidal profile and restricted to the subspace of odd functions). Let L > 0 be
fixed and consider ω > 0. The semi-trivial wave solution Ψ = (ψ, 0, 0, 0) is spectrally
stable in L

2
per,odd provided that γ ∈ (0, κ1]. In addition, if γ ∈ (κ1, 3κ1], the solution

Ψ = (ψ, 0, 0, 0) is spectrally unstable in L
2
per,odd.

Our paper is organized as follows: In Section 2, we show the existence of a
smooth curve of periodic standing wave solutions of dnoidal and cnoidal type for
the equation (1.7). The spectral analysis for the operators L is determined in
Section 3. The spectral stability/instability for the multiple wave solutions with
dnoidal and cnoidal profile are then established in Section 4. Finally, in Section
5, we prove the spectral stability/instability result concerning the semi-trivial wave
with cnoidal profile.
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Notation: For s ≥ 0 and L > 0, the Sobolev space Hs
per := Hs

per([0, L])
consists of all periodic functions f such that

‖f‖2Hs
per

:= L

∞∑
k=−∞

(1 + k2)s|f̂(k)|2 < ∞

where f̂ is the periodic Fourier transform of f . The space Hs
per is a Hilbert space

with the inner product denoted by (·, ·)Hs . When s = 0, the space Hs
per is isomet-

rically isomorphic to the space L2([0, L]) and will be denoted by L2
per := H0

per (see,

e.g., [18]). The norm and inner product in L2
per will be denoted by ‖ · ‖L2

per
and

(·, ·)L2
per

.

For s ≥ 0, we denote

Hs
per,odd := {f ∈ Hs

per ; f is an odd function}.
endowed with the norm and inner product in Hs

per.
In addition, to facilitate the comprehension of the readers, for s ≥ 0 and (f, g) ∈

Hs
per ×Hs

per (complex), we can write (f, g) = (Re f,Re g, Im f, Im g) and

H
s
per := Hs

per ×Hs
per ×Hs

per ×Hs
per

and

H
s
per,odd := Hs

per,odd ×Hs
per,odd ×Hs

per,odd ×Hs
per,odd,

equipped with their usual norms and scalar products.
The symbols sn(·, k), dn(·, k) and cn(·, k) represent the Jacobi elliptic func-

tions of snoidal, dnoidal, and cnoidal type, respectively. For k ∈ (0, 1), F(φ, k)
and E(φ, k) denote the complete elliptic integrals of the first and second kind, re-
spectively, and we denote by K(k) = F

(
π
2 , k

)
and E(k) = E

(
π
2 , k

)
(for additional

details, see [5]).

2. Existence of a Smooth Curve of Periodic Waves

Our purpose in this section is to present the existence of L-periodic solutions
ϕ : R −→ R for the following ODE

(2.1) −ϕ′′ + ωϕ− (κ1 + γB2)ϕ3 = 0,

where ω > 0.

2.1. L-periodic wave solutions with dnoidal profile. Consider the ODE

−φ′′ + ωφ− φ3 = 0.

By [2], we obtain periodic solutions with dnoidal profile as

(2.2) φ(x) =
2
√
2K(k)

L
dn

(
2K(k)

L
x, k

)
,

where k ∈ (0, 1). The frequency ω depends smoothly on k ∈ (0, 1) and L > 0 is
defined by

(2.3) ω =
4(2− k2)K(k)2

L2
.

Then, considering the transformation

(2.4) ϕ(x) =
1

(κ1 + γB2)1/2
φ(x),
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we obtain that ϕ is an L-periodic solution for the equation (2.1) with ω given by
the relation (2.3) and defined in a subset of (0,+∞). We have the following result:

Theorem 2.1 (Smooth Curve of Dnoidal Waves). Let L > 0 be fixed and

consider ω ∈ ( 2π
2

L2 ,+∞). If ϕ = ϕω is the solution of (2.1) with the dnoidal profile
in (2.4), the family

ω ∈
(
2π2

L2
,+∞

)
�−→ ϕ ∈ H2

per,

of periodic solutions of (2.1) depends smoothly on ω.

2.2. L-periodic wave solutions with cnoidal profile. For ω > 0, Angulo
in [2] obtained that the ODE

−φ′′ + ωφ− φ3 = 0

also admits periodic solutions with cnoidal profile as

(2.5) φ(x) =

√
2ωk√

2k2 − 1
cn

(
4K(k)

L
x, k

)
,

where k ∈
(

1√
2
, 1
)
. The frequency ω ∈ R depends smoothly on k ∈

(
1√
2
, 1
)
and

L > 0. It is defined by

(2.6) ω =
16K(k)2(2k2 − 1)

L2
.

Motivated by this, we consider the same scaling transformation as in (2.4)

(2.7) ϕ(x) =
1

(κ1 + γB2)1/2
φ(x).

We obtain that ϕ is an L-periodic solution of (2.1) for ω > 0 given by (2.6) and the
similar result as in Theorem 2.1 reads as follows:

Theorem 2.2 (Smooth Curve of Cnoidal Waves). Let L > 0 be fixed and
consider ω > 0. If ϕ = ϕω is the solution of (2.1) with cnoidal profile given by
(2.7), then the family

ω ∈ (0,+∞) �−→ ϕ = ϕω ∈ H2
per,

of periodic solutions of (2.1) depends smoothly on ω ∈ (0,+∞).

Remark 2.3. Recall that by (2.7), we have

(2.8) ψ(x) = ϕ

(
x− L

4

)
=

√
2ωk

√
1− k2√

2k2 − 1

1

(κ1 + γB2)1/2

sn
(

4K(k)
L x, k

)
dn

(
4K(k)

L x, k
) .

By Theorem 2.2, we obtain that

ω ∈ (0,+∞) �−→ ψ = ψω ∈ H2
per,odd,

depends smoothly on ω ∈ (0,+∞).
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3. Spectral Analysis

In this section, we calculate the non-positive spectrum of the linear operator
L by using the information of the non-positive spectrum of the Hill operators Li,
i = 1, 2, 3, 4, given by (1.23). For the case of dnoidal solutions, we borrow the
results determined by Angulo [2] and Hakkaev [16]. On the other hand, for the
case of cnoidal solutions, we use some results given by Angulo in [2] and Natali et.
al. in [25].

3.1. Spectral analysis with dnoidal profile. Recall that operators Li =
−∂2

x + ω − βiϕ
2 can be expressed in terms of the parameters βi in (1.21). We have

L1 = −∂2
x + ω − β1ϕ

2 = −∂2
x + ω − 3(κ1 +B2γ)ϕ2 = −∂2

x + ω − 3φ2

and

L2 = −∂2
x + ω − β2ϕ

2 = −∂2
x + ω − (κ1 +B2γ)ϕ2 = −∂2

x + ω − φ2,

where φ is the solution with dnoidal profile given by (2.2). So, we can use the
spectral properties for the operators L1 and L2 as obtained in [2] and [16] to
obtain n(L1) = 1, n(L2) = 0, Ker(L1) = [ϕ′] and Ker(L2) = [ϕ]. Thus, we need to
study the spectral analysis of the operator L in some different cases:

Case I: γ ∈ (0,min{κ1, κ2}). In this case, after some calculations with the
parameters βi, i = 1, 2, 3, 4, we conclude that

(3.1) β4 < β2 < β3 < β1.

for all γ ∈ (0,min{κ1, κ2}). Then, we have the following order of operators

(3.2) L1 < L3 < L2 < L4,

where Li < Lj means that (Liu, u)L2
per

< (Lju, u)L2
per

for all u ∈ H2
per, u 	= 0 and

i, j ∈ N, i 	= j. From the comparison theorem (in the periodic context (see [9,
Theorem 2.2.2])) and the inequalities in (3.2), we have n(L3) = 1, n(L4) = 0 and
z(L3) = z(L4) = {0}.

Therefore, it follows by (1.22) that n(L) = 2 and z(L) = 2 with

Ker(L) = [(ϕ′, Bϕ′, 0, 0), (0, 0, ϕ,Bϕ)] .

Case II: γ ∈ (max{κ1, κ2},+∞). By considering γ ∈ (max{κ1, κ2},+∞), one
has

(3.3) β4 < β3 < β2 < β1.

So, we obtain by (3.3)

(3.4) L1 < L2 < L3 < L4.

Thus, using the comparison theorem and (3.4), it follows that n(L3) = n(L4) = 0
and z(L3) = z(L4) = 0.

Again, by (1.22) we get n(L) = 1 and z(L) = 2 where

Ker(L) = [(ϕ′, Bϕ′, 0, 0), (0, 0, ϕ,Bϕ)] .

Case III: γ = 0. First, we have to notice that for B > 0, we obtain B =
√

κ1

κ2
.

By the expression of the matrix S given by (1.19), we do not need to use the similar
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transformation R. Operator L has a diagonal form and given by

(3.5) L =

⎛
⎜⎜⎝

L1 0 0 0
0 L1 0 0
0 0 L2 0
0 0 0 L2

⎞
⎟⎟⎠ ,

that is, L3 = L1 and L4 = L2.
The spectral analysis can be directly determined by the behaviour of the lin-

earized operators Li, i = 1, 2, 3, 4. Since n(L1) = 1, n(L2) = 0 and z(L1) = z(L2) =
1, we have that n(L) = 2 and z(L) = 4 where

Ker(L) = [(ϕ′, 0, 0, 0), (0, ϕ′, 0, 0), (0, 0, ϕ, 0), (0, 0, 0, ϕ)] .

Case IV: γ = κ1 = κ2. In this case, we have that B is a free real parameter.
Moreover, we also use the similar transformation S = RMR−1, where S is given by
(1.19). The matrix M and R are then given respectively by

(3.6) M =

⎛
⎜⎜⎝

3(B2 + 1)γ 0 0 0
0 (B2 + 1)γ 0 0
0 0 (B2 + 1)γ 0
0 0 0 −(B2 + 1)γ

⎞
⎟⎟⎠ ,

and

(3.7) R =

⎛
⎜⎜⎝

− 1
B2+1 −B 0 0

− B
B2+1 1 0 0

0 0 1 B
B2+1

0 0 B − 1
B2+1

⎞
⎟⎟⎠ .

Thus, operator L becomes in this case

(3.8) L = R

⎛
⎜⎜⎝

L1 0 0 0
0 L2 0 0
0 0 L2 0
0 0 0 L3

⎞
⎟⎟⎠R−1,

where

L1 = −∂2
x + ω − 3(B2 + 1)γϕ2,

L2 = −∂2
x + ω − (B2 + 1)γϕ2,(3.9)

L3 = −∂2
x + ω + (B2 + 1)γϕ2.

As far as we can see, we have that (B2 + 1)γ = κ1 + B2γ. So, we obtain the
same spectral properties concerning the operators L1 and L2. In addition, being
L3 a positive operator, we have that n(L) = 1 and z(L) = 3, where

Ker(L) = [(ϕ′, Bϕ′, 0, 0), (−Bϕ,ϕ, 0, 0), (0, 0, ϕ,Bϕ)] .

3.2. Spectral analysis with cnoidal profile. Let ϕ be the solution with
cnoidal profile given by Theorem 2.2. For B > 0 given by (1.6), the transformation
R such that S = RMR−1 is also given by (1.20). As a consequence, the parameters
βi, i = 1, 2, 3, 4 are also given by (1.21) and operators L1 and L2 can be expressed
as

(3.10)
L1 = −∂2

x + ω − β1ϕ
2 = −∂2

x + ω − 3(κ1 +B2γ)ϕ2 = −∂2
x + ω − 3φ2,

L2 = −∂2
x + ω − β2ϕ

2 = −∂2
x + ω − (κ1 +B2γ)ϕ2 = −∂2

x + ω − φ2,
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where φ is the solution with cnoidal profile in (2.5). So, we can use the spectral
properties for the operators L1 and L2 as obtained in [2]. Indeed, we have n(L1) =
2, n(L2) = 1 and z(L1) = z(L2) = 1.

It is necessary to understand that when the number of negative eigenvalues is
high (compared with the case of dnoidal solutions), we obtain some difficulties to
obtain the spectral properties for the operator L in (1.18). So, we can study some
different cases:

Case I: γ ∈ (0,min{κ1, κ2}). By (3.1), we have that

L1 < L3 < L2 < L4.

Then, using the comparison theorem one has n(L3) = 2 and z(L3) = 0. In addition,

we have that β4 < 0 for all γ ∈ ( 13 (κ1 + κ2 −
√

κ2
1 − κ1κ2 + κ2

2),min{κ1, κ2}) and
this implies that n(L4) = z(L4) = 0. Therefore, we have in this case n(L) =
5 and z(L) = 2 with

Ker(L) = [(ϕ′, Bϕ′, 0, 0), (0, 0, ϕ,Bϕ)] .

Case II: γ ∈ (max{κ1, κ2},+∞). By (3.3), we obtain

L1 < L2 < L3 < L4.

Using the comparison theorem and the previous knowledge of the non-positive spec-
trum for L1 and L2, we cannot determine the behaviour of the non-positive spectrum
for L3. In fact, we can obtain only one of the following scenarios:

n(L3) = 1 and z(L3) = 0,

n(L3) = 0 and z(L3) = 1,(3.11)

n(L3) = 0 and z(L3) = 0.

Thus, the spectral analysis becomes inconclusive and we cannot obtain the required
spectral stability for the cnoidal waves in this case.

Case III: γ = 0. As in the dnoidal case, we have B =
√

κ1

κ2
and consequently,

the operator L is a diagonal operator as in (3.5). Thus, from the comparison
theorem we obtain

n(L) = 6 and Ker(L) = [(ϕ′, 0, 0, 0), (0, ϕ′, 0, 0), (0, 0, ϕ, 0), (0, 0, 0, ϕ)] .

Case IV: γ = κ1 = κ2. Here B ∈ R is a free parameter and we obtain, as
in case of dnoidal solutions, the similar transformation S = RMR−1, where M
and R are given by (3.6) and (3.7), respectively. Thus, the operator L can be also
expressed by (3.8) where the operators Li, i = 1, 2, 3, 4 are given by (3.9).

We have to notice that (B2 + 1)γ = κ1 + B2γ, n(L1) = 2 and n(L2) = 1 and
L3 being a positive operator. Summarizing all mentioned results, we get

n(L) = 4 and Ker(L) = [(ϕ′, Bϕ′, 0, 0), (−Bϕ,ϕ, 0, 0), (0, 0, ϕ,Bϕ)] .

3.3. Spectral analysis in H2
per,odd. To address the excessive number of neg-

ative eigenvalues, we must impose a suitable restriction on the operator L in (1.18).
First, by the spectral analysis for the cnoidal solution in [2], we obtain that the first
three eigenvalues and the corresponding eigenfunctions of L1 are

λ0 = (1− 6k2 − 2a(k))

(
16K(k)2

L2

)
, λ1 = −3k2

(
16K(k)2

L2

)
, λ2 = 0
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and

φ0(x) = k2sn2
(
4K(k)

L
x, k

)
− 1

3
(1 + k2 + a(k)),(3.12)

φ1(x) = cn

(
4K(k)

L
x, k

)
dn

(
4K(k)

L
x, k

)
,(3.13)

φ2(x) = ∂xcn

(
4K(k)

L
x, k

)
,(3.14)

respectively, where a(k) :=
√
1− k2 + k4. In addition, the first two eigenvalues and

the corresponding eigenfunctions for the linearized operator L2 are

λ0 =
16K(k)2(k2 − 1)

L2
φ0(x) = dn

(
4K(k)

L
x, k

)
,(3.15)

λ1 = 0 φ1(x) = cn

(
4K(k)

L
x, k

)
.(3.16)

Considering ψ as in (2.8), we have that the operators

Li,odd := Li : H
2
per,odd → L2

per,odd,

are well defined for all i = 1, 2, 3, 4. Thus, by applying the transformation f =
g(· − L/4) in all eigenfunctions given in (3.12)-(3.16), we conclude

(3.17) n(L1,odd) = 1 and n(L2,odd) = 0.

In addition,

Ker(L1,odd) = {0} and Ker(L2,odd) = [ψ].

Therefore, since we have almost the same scenario as determined for the case
of dnoidal solutions, we can use the comparison theorem without further problems.
We can analyse again the cases in this new perspective:

Case I: γ ∈ (0,min{κ1, κ2}). Since in this case, we have L1,odd < L3,odd <
L2,odd < L4,odd, we obtain by the comparison theorem and (3.17) that n(L3,odd) = 1,
n(L4,odd) = 0 and Ker(L3,odd) = Ker(L4,odd) = {0}. Therefore,

n(Lodd) = 2 and Ker(Lodd) = [(0, 0, ψ,Bψ)] .

Case II: γ ∈ (max{κ1, κ2},+∞). Here, we have L1,odd < L2,odd < L3,odd <
L4,odd. By the comparison theorem and (3.17), we obtain n(L3,odd) = n(L4,odd) = 0
and Ker(L3,odd) = Ker(L4,odd) = {0}. Thus,

n(Lodd) = 1 and Ker(Lodd) = [(0, 0, ψ,Bψ)] .

Case III: γ = 0. In this case, we have that B =
√

κ1

κ2
and

Lodd =

⎛
⎜⎜⎝

L1,odd 0 0 0
0 L1,odd 0 0
0 0 L2,odd 0
0 0 0 L2,odd

⎞
⎟⎟⎠ .

So, we get

n(Lodd) = 2 and Ker(Lodd) = [(0, 0, ψ, 0), (0, 0, 0, ψ)] .

Case IV: γ = κ1 = κ2. In this case, B ∈ R is a free parameter and we can
use the similar transformation S = RMR−1 where M and R given in (3.6) and
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(3.7), respectively (similar to the case of dnoidal waves). Thus, since L3,odd is now
positive, the operator L in (3.8) restricted to H2

per,odd satisfies

n(Lodd) = 1 and Ker(Lodd) = [(−Bψ,ψ, 0, 0), (0, 0, ψ,Bψ)] .

4. Spectral Stability for the Multiple Periodic Solutions

In this section, we obtain spectral stability results for the periodic multiple so-
lution Φ = (ϕ,Bϕ, 0, 0) considering three different scenarios: when ϕ has a dnoidal
profile, when ϕ has a cnoidal profile, and when ψ = ϕ(· −L/4) has a snoidal profile
and it is restricted to the space of odd functions H1

per,odd. To do so, we need to ob-

tain the entries of the matrix V in (1.24). In fact, we can obtain a simplified way to
obtain the matrix V using the transformation (1.22) and the fact that Θl ∈ Ker(L).
Thus, we have

Vjl = (L−1JΘj , JΘl)L2
per

= (L̃−1R−1JΘj , R
−1JΘl)L2

per
.

To determine our spectral stability result, we also consider the spectral analysis
of the operator L in (1.18) as determined in the last section. Before presenting all
possible cases of the matrix V , we need to introduce two important and well-known
facts (a remark and a lemma). Both of them are useful to improve the reader’s
understanding.

Remark 4.1. Let A be a self-adjoint operator defined in a Hilbert space H with
dense domain D(A). Suppose also that its spectrum σ(A) is constituted only by
an infinite discrete set of eigenvalues and satisfying σ(A) ⊂ [0,+∞). There exists
δ > 0 such that

(Av, v)H ≥ δ‖v‖2H
for all v ∈ D(A) satisfying v ∈ Ker(A)⊥. In fact, since H is a Hilbert space, we
have the decomposition H = Ker(A)⊕Ker(A)⊥. From Theorem 6.17 in [22, page
178], we have

σ(A) = σ
(
A∣∣

Ker(A)

)
∪ σ

(
A∣∣

Ker(A)⊥

)
.

On the other hand, we have that

σ
(
A∣∣

Ker(A)⊥

)
= σ(A) \ {0},

that is, the spectrum is bounded from below. The arguments in [22, page 279]
imply that A is also bounded from below. Therefore, there exists δ > 0 satisfying

(Av, v) ≥ δ‖v‖2L2
per

for all v ∈ H2
per ∩Ker(A)⊥.

Lemma 4.2. Let L > 0 be fixed. Consider the smooth periodic waves ϕ with
dnoidal and cnoidal profiles given by Theorem 2.1 and Theorem 2.2, respectively.
Then, it follows that d

dω‖ϕ‖2L2
per

> 0.
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Proof. Let L > 0 be fixed and consider ϕ as the dnoidal profile given by
Theorem 2.1. Then, by [5, Formula 314.02] we get∫ L

0

ϕ(x)2dx =
8K(k)2

L2(κ1 + γB2)

∫ L

0

dn2
(
2K(k)

L
x, k

)
dx

=
8K(k)

L(κ1 + γB2)

∫ K(k)

0

dn2(u, k)du

=
8

L(κ1 + γB2)
E(k)K(k).

Thus, we obtain

d

dω
‖ϕ‖2L2

per
=

d

dω

(
8

L(κ1 + γB2)
E(k)K(k)

)

=
8

L(κ1 + γB2)

d

dk
(E(k)K(k))

(
dω

dk

)−1

> 0,

for all k ∈ (0, 1).
On the other hand, let ϕ be the cnoidal profile given by Theorem 2.2. By [5,

Formula 312.02], we have∫ L

0

ϕ(x)2dx =
32k2K(k)2

L2(κ1 + γB2)

∫ L

0

cn2
(
4K(k)

L
x, k

)
dx

=
32k2K(k)

L(κ1 + γB2)

∫ K(k)

0

cn2(u, k)du

=
32

L(κ1 + γB2)

(
K(k)

(
E(k)− (1− k2)K(k)

))
.

Thus, we obtain that

d

dω
‖ϕ‖2L2

per
=

32

L(κ1 + γB2)

d

dk

[
K(k)

(
E(k)− (1− k2)K(k)

)](dω

dk

)−1

> 0

for all k ∈ (0, 1). �

Remark 4.3. The result obtained in Lemma 4.2 can be applied in the case of
odd periodic waves ψ determined in Remark 2.3.

4.1. Spectral stability for the multiple periodic wave solution with
dnoidal profile. In what follows, we consider the dnoidal wave solution ϕ deter-
mined by Theorem 2.1. Since we have separated the spectral analysis into four
cases, we need to consider the same four cases in order to establish the spectral
stability for the multiple solution Φ = (ϕ,Bϕ, 0, 0).

Case I: γ ∈ (0,min{κ1, κ2}). Since z(L) = 2 with Θ1 = (ϕ′, Bϕ′, 0, 0) and
Θ2 = (0, 0, ϕ,Bϕ), we obtain that the matrix V is 2× 2 and given by

(4.1)

V =

(
(L̃−1R−1JΘ1, R

−1JΘ1)L2
per

(L̃−1R−1JΘ1, R
−1JΘ2)L2

per

(L̃−1R−1JΘ2, R
−1JΘ1)L2

per
(L̃−1R−1JΘ2, R

−1JΘ2)L2
per

)
.

=

(
(2γ − κ1 − κ2)

2(L−1
2 ϕ′, ϕ′)L2

per
0

0 (γ − κ2)
−2(L−1

1 ϕ,ϕ)L2
per

)
,
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where we are using the similar transformation L = RL̃R−1 to obtain a more con-
venient expression for the entries of the matrix V .

Since ϕ′ ∈ (Ker(L2))
⊥ = Range(L2), there exists ξ ∈ D(L2) such that L2ξ = ϕ′.

Since L2 does not have negative eigenvalues, we obtain that ξ satisfy the conditions
of Remark 4.1, so that (L−1

2 ϕ′, ϕ′)L2
per

> 0. On the other hand, by Theorem 2.1,

we can derive the equation (1.7) with respect to ω to obtain that L1

(
d
dω

)
= −ϕ.

Thus, by Lemma 4.2 we get

(L−1
1 ϕ,ϕ)L2

per
= −

(
d

dω
ϕ, ϕ

)
L2

per

= −1

2

d

dω
‖ϕ‖2L2

per
< 0.

Thus, we have n(V ) = 1. Since n(L) = 2, we conclude that the multiple solution
Φ = (ϕ,Bϕ, 0, 0) is spectrally unstable.

Case II: γ ∈ (max{κ1, κ2},+∞). The kernel of L in this case has the same
elements as in the last case, so that the matrix V is the same as in (4.1). Since we
have n(L) = n(V ) = 1, we conclude that the multiple solution Φ = (ϕ,Bϕ, 0, 0) is
spectrally stable.

Case III: γ = 0. Since z(L) = 4 with Θ1 = (ϕ′, 0, 0, 0), Θ2 = (0, ϕ′, 0, 0),
Θ3 = (0, 0, ϕ, 0), and Θ4 = (0, 0, 0, ϕ), we obtain that the matrix V is 4 × 4 and
given by

V =

⎛
⎜⎜⎜⎝

(L−1
2 ϕ′, ϕ′)L2

per
0 0 0

0 (L−1
2 ϕ′, ϕ′)L2

per
0 0

0 0 (L−1
1 ϕ,ϕ)L2

per
0

0 0 0 (L−1
1 ϕ,ϕ)L2

per

⎞
⎟⎟⎟⎠ .

Doing the same calculations as we have already performed in the first case, we
obtain n(V ) = 2. Since n(L) = 2, we have that the difference n(L) − n(V ) is zero
and the periodic multiple solution is spectrally stable.

Case IV: γ = κ1 = κ2. Now, we have z(L) = 3 with Θ1 = (ϕ′, Bϕ′, 0, 0),
Θ2 = (−Bϕ,ϕ, 0, 0) and Θ3 = (0, 0, ϕ,Bϕ). We obtain that the matrix V is 3 × 3
and given by

V =

⎛
⎜⎝ (L−1

2 ϕ′, ϕ′)L2
per

0 0

0 (B2 + 1)2(L−1
3 ϕ,ϕ)L2

per
0

0 0 (B2 + 1)2(L−1
1 ϕ,ϕ)L2

per

⎞
⎟⎠ .

We see in this case that L3 is positive, so that (L−1
3 ϕ,ϕ)L2

per
> 0. By similar

arguments as determined in the first case, we then obtain n(V ) = 1. Since n(L) = 1,
we get that the multiple solution Φ = (ϕ,Bϕ, 0, 0) is spectrally stable.

Summarizing the above, we have proved Theorem 1.3.

Remark 4.4. The abstract theories in [13] and [14] can be used to establish
the orbital stability of periodic dnoidal waves in certain cases, where we have pre-
viously established the spectral stability as determined in this subsection. To this
end, we need to have the following set of conditions:

• n(L) = 1,
• z(L) = 2,
• n(V ) = 1 with (L−1

1 ϕ,ϕ)L2
per

< 0.
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The three requirements mentioned above occur exactly in the second case above
(Case II). In the first case (Case I), the orbital instability in the space H

1
per,even

constituted by even periodic functions in H
1
per can be established using the insta-

bility results in [13] and [14].

4.2. Spectral stability for the multiple periodic wave solution with
cnoidal profile. Here, we consider Φ = (ϕ,Bϕ, 0, 0) the periodic multiple wave
solution where ϕ has the cnoidal profile and we determine the corresponding spectral
stability. After that, we consider the translation solution ψ = ϕ(· − L/4) to study
the spectral stability in H

1
per,odd for the case where the operator L has too many

negative eigenvalues.
We have to notice that in the case of dnoidal profile, we have used Remark 4.1

to obtain that (L−1
2 ϕ′, ϕ′)L2

per
> 0. To do so, we need to use the fact that n(L2) = 0.

However, when we are considering the cnoidal profile, we obtain n(L2) = 1 and this
property does not allow us to use directly Remark 4.1 to evaluate the positiveness
of (L−1

2 ϕ′, ϕ′)L2
per

. This difficulty can be avoided by the following lemma:

Lemma 4.5. Let L > 0 be fixed and consider ϕ the periodic wave with cnoidal
profile given by Theorem 2.2. We have that

(L−1
2 ϕ′, ϕ′)L2

per
> 0.

Proof. By (3.10), we can rewrite L2 = −∂2
x + ω − φ2 where φ is the cnoidal

wave solution in (2.5). Since ϕ in (2.7) is a multiple of φ, there exists χ ∈ D(L2)
such that L2χ = φ′. To calculate the value of (L−1

2 ϕ′, ϕ′)L2
per

, it suffices to evaluate

the quantity (χ, φ′)L2
per

. To this end, we use a similar approach as in [24, Section

3] (see also [3] and [25]).
We can start by noticing that λ = 0 is a simple eigenvalue with associated

eigenfunction φ. Thus, there exists a smooth non-periodic function y satisfying the
Hill equation

(4.2) −y′′ + ωy + φ2y = 0,

and {ϕ, y} is the fundamental set of solutions for the equation (4.2). Since φ is
even, we have that y is odd and it satisfies the following⎧⎨

⎩
−y′′ + ωy − φ2y = 0
y(0) = 0
y′(0) = 1

φ(0) .

Next, we see that χ ∈ D(L2) satisfies the equation L2χ = φ′, so that

(4.3) −χ′′ + ωχ− φ2χ = φ′.

Multiplying (4.3) by y, integrating over [0, L] and using integration by parts, we
obtain

χ′(0) = −
∫ L

0
φ′(x)y(x)dx
y(L)

,

where we are using the fact that y is not periodic, so that y(L) 	= 0. The fact that
χ is an odd function gives us the following IVP:

(4.4)

⎧⎨
⎩

−χ′′ + ωχ− φ2χ = φ′

χ(0) = 0

χ′(0) = − 1
y(L)

∫ L

0
φ′(x)y(x)dx.
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Problem (4.4) is suitable to perform some numeric calculations. In fact, we can
deduce that

(χ, φ′)L2
per

=
η(k)

L

where η is a positive constant depending only on k ∈ ( 1√
2
, 1). We obtain (χ, φ′)L2

per
>

0 for all k ∈ ( 1√
2
, 1) (see Figure 1), so that

(L−1
2 ϕ′, ϕ′)L2

per
=

1

(κ1 + γB2)
(L−1

2 φ′, φ′)L2
per

= (χ, φ′)L2
per

> 0.

Figure 1. Behaviour of the quantity η(k) with k ∈ ( 1√
2
, 1).

�

Results above allow us to determine the spectral stability of the multiple pe-
riodic wave Φ = (ϕ,Bϕ, 0, 0) with cnoidal profile. The analysis is quite similar as
determined in the last subsection, and so we only give the main steps.

Case I: γ ∈ (0,min{κ1, κ2}). Since z(L) = 2, we have that V is a 2× 2 matrix
and given by

V =

(
(2γ − κ1 − κ2)

2(L−1
2 ϕ′, ϕ′)L2

per
0

0 (γ − κ2)
−2(L−1

1 ϕ,ϕ)L2
per

)
.

Using the results in Lemmas 4.2 and 4.5, we obtain respectively that (L−1
1 ϕ,ϕ) =

− d
dω‖ϕ‖2L2

per
< 0 and (L−1

2 ϕ′, ϕ′)L2
per

> 0, so that n(V ) = 1. On the other hand,

since we have n(L) = 5, we see that the difference n(L) − n(V ) = 4 is an even
number. Therefore, we can not conclude that the multiple solution Φ = (ϕ,Bϕ, 0, 0)
is spectrally stable or not.

Case II: γ ∈ (max{κ1, κ2},+∞). In this specific case, it is possible to see that
we can not decide the exact quantity of negative eigenvalues (see (3.11)) in order to
apply the results in [20] and [21]. Therefore, we can not conclude a precise result
of spectral stability for the multiple solution Φ = (ϕ,Bϕ, 0, 0).
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Case III: γ = 0. Since z(L) = 4, we can proceed as in the third case of the
last subsection to obtain

V =

⎛
⎜⎜⎜⎝

(L−1
2 ϕ′, ϕ′)L2

per
0 0 0

0 (L−1
2 ϕ′, ϕ′)L2

per
0 0

0 0 (L−1
1 ϕ,ϕ)L2

per
0

0 0 0 (L−1
1 ϕ,ϕ)L2

per

⎞
⎟⎟⎟⎠ .

Since by Lemmas 4.2 and 4.5 we have n(V ) = 2, the fact that n(L) = 6 gives us
that the spectral stability result is also inconclusive.

Case IV: γ = κ1 = κ2. Since in this case z(L) = 3, we can proceed as in the
fourth case of the last subsection with cnoidal profile instead of dnoidal profile to
obtain V as

V =

⎛
⎜⎝ (L−1

2 ϕ′, ϕ′)L2
per

0 0

0 (B2 + 1)2(L−1
3 ϕ,ϕ)L2

per
0

0 0 (B2 + 1)2(L−1
1 ϕ,ϕ)L2

per

⎞
⎟⎠ .

Using Remark 4.1 and Lemmas 4.2 and 4.5, we have n(V ) = 1 and since n(L) = 4,
we obtain that the difference n(L) − n(V ) is an odd number. Consequently, the
multiple solution Φ = (ϕ,Bϕ, 0, 0) is spectrally unstable.

Summarizing the results above, we can conclude the statement of Theorem 1.4.
4.2.1. Spectral stability of cnoidal waves in the subspace of odd functions. Here

we are going to answer some unclear points left behind concerning the spectral
stability of periodic multiple solutions Φ with cnoidal profile. The arguments will
be the same, but we need to pay attention with the spectral analysis established in
the space L

2
per,odd.

From now on, let us consider the periodic solution ψ ∈ H1
per,odd given by (2.8).

Case I: γ ∈ (0,min{κ1, κ2}). Since in this case z(Lodd) = 1, we have that V is
given in a simple way as

(4.5) V = (L−1
1 ψ,ψ)L2

per
.

By Lemma 4.2 we have n(V ) = 1 and since n(Lodd) = 2, we obtain that the
difference n(Lodd) − n(V ) = 1 is an odd number. Therefore, we conclude that the
multiple solution Ψ = (ψ,Bψ, 0, 0) is spectrally unstable.

Case II: γ ∈ (max{κ1, κ2},+∞). In this case, V is an one-dimensional matrix
given by same expression in (4.5). Since we also have n(V ) = 1 and n(Lodd) = 1,
we deduce that the multiple solution Ψ = (ψ,Bψ, 0, 0) is spectrally stable.

Case III: γ = 0. We have z(Lodd) = 2 and the matrix V is now given by

V =

(
(L−1

1 ψ, ψ)L2
per

0

0 (L−1
1 ψ, ψ)L2

per

)
.

By Lemma 4.2 and since (L−1
1 ψ,ψ)L2

per
= − 1

2
d
dω‖ψ‖2L2

per
= − 1

2
d
dω ||ϕ||2L2

per
< 0, we

conclude n(V ) = 2. On the other hand, the fact n(Lodd) = 2 gives us that the
difference n(Lodd) − n(V ) = 0 and the multiple solution Ψ = (ψ,Bψ, 0, 0) is then
spectrally stable.

Case IV: γ = κ1 = κ2. Again, we have z(Lodd) = 2 and V is given by

V =

(
(B2 + 1)2(L−1

3 ψ, ψ)L2
per

0

0 (B2 + 1)2(L−1
1 ψ,ψ)L2

per

)
.



MULTIPLE PERIODIC WAVES OF THE NLS SYSTEM WITH CUBIC NONLINEARITY 191

By Remark 4.1 and since L3 is positive, it follows that (L−1
3 ψ, ψ)L2

per
> 0. On the

other hand, by Lemma 4.2 we obtain (L−1
1 ψ, ψ)L2

per
= − 1

2
d
dω ||ψ||2L2

per
< 0 and so,

n(V ) = 1. Since n(Lodd) = 1, we deduce that the multiple solution Ψ = (ψ,Bψ, 0, 0)
is also spectrally stable.

Summarizing the above, we conclude the result in Theorem 1.5.

Remark 4.6. As we have detailed in Remark 4.4, the abstract theories in [13]
and [14] can be used to establish the orbital stability of periodic cnoidal waves in
H

1
per,odd in the second case (Case II).

5. Spectral Stability for the Semi-trivial Periodic Solution with Cnoidal
Profile

An important aspect concerning the solution (u, v) of the NLS system (1.1) is
the existence of semi-trivial solutions

(5.1) (u(x, t), v(x, t)) = (eiωtϕ(x), 0)

of (1.1). As we have already mentioned in the introduction, Hakkaev in [16] studied
the spectral stability for the semi-trivial wave solution (5.1) where ϕ has a dnoidal
profile. Our intention is to prove the spectral stability when ϕ has a cnoidal profile.

We follow as in Section 2. First, we substitute (5.1) into (1.1) to obtain the
ODE

(5.2) −ϕ′′ + ωϕ− κ1ϕ
3 = 0.

A similar result as determined in Theorem 2.2 is now presented.

Theorem 5.1. Let L > 0 be fixed. The equation (5.2) has an L-periodic solution
with cnoidal profile of the form

ϕω(x) =

√
2ωk

(2k2 − 1)

1√
κ1

cn

(
4K(k)

L
x, k

)
,

where ω > 0 is given by (1.11) depends smoothly on k ∈
(

1√
2
, 1
)

and L > 0. In

addition, the family

ω ∈ (0,+∞) �−→ ϕ = ϕω ∈ H2
per([0, L])

of L-periodic solutions of (5.2) depends smoothly on ω ∈ (0,+∞).

The spectral problem to be studied in this case is JLu = λu, where J is given
by (1.17) and L is defined as

(5.3) L =

⎛
⎜⎜⎝

L1 0 0 0
0 L3 0 0
0 0 L2 0
0 0 0 L4

⎞
⎟⎟⎠ .

Since L is a diagonal operator, we only need to analyze the spectral properties of
the operators Li, i = 1, 2, 3, 4, where

L1 = −∂2
x + ω − 3κ1ϕ

2,

L2 = −∂2
x + ω − κ1ϕ

2,

L3 = −∂2
x + ω − γϕ2,

L4 = −∂2
x + ω + γϕ2.
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As determined in Subsection 3.2, we have that

(5.4) n(L1) = 2, n(L2) = 1 and n(L4) = 0.

In addition,

(5.5) Ker(L1) = [ϕ′], Ker(L2) = [ϕ] and Ker(L4) = {0}.
Thus, the spectral analysis of the operator L changes according to the spectral
analysis of the operator L3. Here, we consider the same cases for γ as determined
in [16].

Case I: γ ∈ (0, κ1). Here, we have that

L1 < L2 < L3 < L4.

Using the comparison theorem, we can not obtain the exact values of n(L3) and
z(L3) since we obtain three different different scenarios:

n(L3) = 1 and z(L3) = 0, n(L3) = 0 and z(L3) = 1 or n(L3) = z(L3) = 0.

Thus, the spectral analysis becomes inconclusive.
Case II: γ = k1. In this case, it follows that L2 = L3 and we obtain

n(L) = 4 and Ker(L) = [(ϕ′, 0, 0, 0), (0, ϕ, 0, 0), (0, 0, ϕ, 0)] .

To determine the spectral stability result, we need to obtain n(V ). Since z(L) = 3,
one has

V =

⎛
⎜⎝ (L−1

2 ϕ′, ϕ′)L2
per

0 0

0 (L−1
1 ϕ,ϕ)L2

per
0

0 0 (L−1
4 ϕ,ϕ)L2

per

⎞
⎟⎠ .

Since L4 is a positive operator, we obtain by Remark 4.1 that (L−1
4 ϕ,ϕ)L2

per
> 0.

On the other hand, using Lemma 4.5, we also obtain (L−1
2 ϕ,ϕ)L2

per
> 0 and by

Lemma 4.2, we deduce (L−1
1 ϕ,ϕ) < 0. Gathering all informations, we conclude

that n(V ) = 1 and the difference n(L)− n(V ) = 4− 1 = 3 is an odd number. The
periodic semi-trivial solution Φ = (ϕ, 0, 0, 0) is then spectrally unstable concluding
the desired result in Theorem 1.6.

Case III: γ ∈ (κ1, 3κ1). In this case, we obtain the following inequality

L1 < L3 < L2 < L4.

From (5.4), (5.5) and using the comparison theorem, we have that n(L3) = 2 and
Ker(L3) = {0}. Thus,

n(L) = 5 and Ker(L) = [(ϕ′, 0, 0, 0), (0, 0, ϕ, 0)] .

To determine the spectral stability, we need to consider the matrix V given by

V =

(
(L−1

2 ϕ′, ϕ′)L2
per

0

0 (L−1
1 ϕ,ϕ)L2

per

)
.

Applying again Lemmas 4.2 and 4.5, we have that n(V ) = 1. Since the difference
n(L)− n(V ) = 4 is even, we can not conclude the spectral stability.

Case IV: γ = 3κ1. Here, we have L1 = L3 and

n(L) = 5 and Ker(L) = [(ϕ′, 0, 0, 0), (0, ϕ′, 0, 0), (0, 0, ϕ, 0)] .
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Since z(L) = 3, the matrix V becomes in this case

V =

⎛
⎜⎝ (L−1

2 ϕ′, ϕ′)L2
per

0 0

0 (L−1
1 ϕ,ϕ)L2

per
0

0 0 (L−1
4 ϕ′, ϕ′)L2

per

⎞
⎟⎠ .

Again, we can apply Remark 4.1, Lemma 4.2 and Lemma 4.5 to obtain n(V ) = 1.
Since the difference n(L)− n(V ) = 4 is even, we can not decide about the spectral
stability.

5.1. Spectral stability of cnoidal waves in the subspace of odd func-
tions. We consider the spectral stability for the semi-trivial wave solution Ψ =
(ψ, 0, 0, 0) where ψ in defined by (2.3). The reason for that is to fill the gaps left
by our analysis performed in the case of the cnoidal profile Φ = (ϕ, 0, 0, 0).

Since ψ ∈ H1
per,odd, we can consider the linearized operator L, i = 1, 2, 3, 4

restricted to the space L
2
per,odd as

Lodd : H2
per,odd ⊂ L

2
per,odd → L

2
per,odd

where L is given in (5.3) and also defined in L
2
per,odd. Thus, as determined in

Subsection 3.3, we have that

(5.6) n(L1,odd) = 1, n(L2,odd) = 0 and n(L4,odd) = 0.

In addition, we get

(5.7) Ker(L2,odd) = [ψ] and Ker(L1,odd) = Ker(L4,odd) = {0}.
According to (5.6), we need to observe that the number of eigenvalues of the

operator Lodd is smaller when compared to the complete operator L. This fact is
useful to use again the comparison theorem. We shall describe better our intentions
in the four cases ahead:

Case I: γ ∈ (0, κ1). In this case, we have the inequality L1,odd < L2,odd <
L3,odd < L4,odd. Using the comparison theorem and the informations in (5.6) and
(5.7), we have that n(L3,odd) = 0 and Ker(L3,odd) = {0}. Thus,

n(Lodd) = 1 and Ker(Lodd) = [(0, 0, ψ, 0)] .

To evaluate the spectral stability, we need to see that z(Lodd) = 1, so that the
matrix V is given by

V = (L−1
1 ψ,ψ)L2

per
.

By Lemma 4.2, we have that n(V ) = 1 and the difference n(Lodd)−n(V ) = 0. Thus,
we conclude that the semi-trivial wave solution Ψ = (ψ, 0, 0, 0) is spectrally stable.

Case II: γ = κ1. Here, we have L2,odd = L3,odd. Using (5.6) and (5.7), we get

n(Lodd) = 1 and Ker(Lodd) = [(0, ψ, 0, 0), (0, 0, ψ, 0)] .

Since z(Lodd) = 2, the matrix V is given by

V =

(
(L−1

1 ψ, ψ)L2
per

0

0 (L−1
4 ψ, ψ)L2

per

)
.

Since L4,odd is positive, we obtain by Remark 4.1 that (L−1
4 ψ, ψ)L2

per
> 0. In

addition, by Lemma 4.2, we see (L−1
1 ψ,ψ)L2

per
< 0, so that n(V ) = 1. Thus, the

semi-trivial periodic wave Ψ = (ψ, 0, 0, 0) is spectrally stable.
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Case III: γ ∈ (κ1, 3κ1). Here, we have the inequality L1,odd < L3,odd <
L2,odd < L4,odd. Then, by the informations in (5.6), (5.7) and the comparison
theorem, we obtain n(L3,odd) = 1, Ker(L3,odd) = {0}, n(Lodd) = 2 and Ker(Lodd) =

[(0, 0, ψ, 0)]. Again, since z(Lodd) = 1, the matrix V is given by V = (L−1
1 ψ, ψ)L2

per
.

By Lemma 4.2, we have n(V ) = 1, so that the semi-trivial solution Ψ = (ψ, 0, 0, 0)
is spectrally unstable.

Case IV: γ = 3κ1. Here, we have L1,odd = L3,odd and from (5.6) and (5.7),
we have that n(Lodd) = 2 and Ker(Lodd) = [(0, 0, ψ, 0)] . As we have determined in
the last case, we also have n(V ) = 1 and the semi-trivial solution Ψ = (ψ, 0, 0, 0) is
spectrally unstable.

Summarizing the arguments above, we have proved Theorem 1.7.

Remark 5.2. As we have mentioned in Remarks 4.4 and 4.6, the abstract
theory in [13] and [14] can be used to establish the orbital stability of periodic
cnoidal waves in H

1
per,odd in the first case (Case I). The orbital instability is deduced

from the same work in the third and fourth cases (Cases III and IV).
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