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Abstract. We establish a rigorous link between infinite-dimensional regular
Frölicher Lie groups built out of non-formal pseudodifferential operators and
the Kadomtsev-Petviashvili hierarchy. We introduce a (parameter-depending)
version of the Kadomtsev-Petviashvili hierarchy on a regular Frölicher Lie
group of series of non-formal odd-class pseudodifferential operators. We solve
its corresponding Cauchy problem, and we establish a link between the dress-
ing operator of our hierarchy and the action of diffeomorphisms and non-formal

Sato-like operators on jet spaces. In appendix, we describe the group of Fourier

integral operators in which this correspondence seems to take place. Also, mo-
tivated by Mulase’s work on the KP hierarchy, we prove a group factorization
theorem for this group of Fourier integral operators.
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1. Introduction

The Kadomtsev-Petviashvili hierarchy (KP hierarchy, for short) is a system of
nonlinear differential equations on an infinite number of dependent variables, each
of which depends on infinitely many independent variables. It reads as follows:

(1.1)
∂

∂tn
L = [(Ln)+, L] = (Ln)+ · L− L · (Ln)+ , n = 1, 2, 3, · · ·

in which

L =
∂

∂x
+ u1

(
∂

∂x

)−1

+ u2

(
∂

∂x

)−2

+ · · · ,

u1, u2, · · · are dependent variables, (Ln)+ indicates the projection of the product
Ln = L . . . L on the space of differential operators, and t1, t2, · · · denote indepen-
dent variables. An object such as L above is a formal pseudodifferential operator.
It is known that the set of formal pseudodifferential operators can be equipped with
an associative algebra structure, see [8], and therefore (1.1) makes sense, at least,
in an algebraic context. The reader is referred to [8, Chapters 1, 5] for a thorough
algebraic discussion of KP and other important hierarchies.

The KP hierarchy is related to several soliton equations: for example, it con-
tains the Korteweg-de Vries hierarchy and more generally the Gelfand-Dickey hi-
erarchies, see [8]. Moreover, it is universal. In Mulase’s words, “the KP system is
the master equation for the largest possible family of iso-spectral deformations of
arbitrary ordinary differential operators”, see [37, Section 3] and [38]; see also [8,
Corollary 6.2.8] for another expression of this universality. Solutions to KP can be
recovered from quantum field theory and algebraic geometry among other fields,
see for instance [20, 35, 37] and references therein, and (1.1) can be posed for
instance in contact geometry, see [34].

Can we solve Equation (1.1), in the Differential Equations sense of understand-
ing its associated Cauchy problem? Yes. In the 1980’s Mulase published several
fundamental papers on the algebraic structure and formal integrability properties
of the KP hierarchy, see [36, 37, 38]. A common theme in these papers was
the use of a powerful algebraic theorem on the factorization of a group of formal
pseudodifferential operators of infinite order which integrates the algebra of formal
pseudodifferential operators: this factorization —a delicate algebraic generalization
of the Birkhoff decomposition of loop groups appearing for example in [45]— al-
lowed him to solve the Cauchy problem for the KP hierarchy in an algebraic setting,
see [38, Theorem 1.4]. A review of this theorem is in [12]. We have re-interpreted
Mulase’s results and extended them in the context of (generalized) differential ge-
ometry on diffeological and Frölicher spaces, and we have used this re-interpretation
to prove well-posedness of the KP hierarchy in analytic categories, see [13, 29, 33]
and our recent review [32].

It is important to point out that in the above mentioned papers the operators
under consideration are formal pseudodifferential operators: they are not under-
stood as operators acting on smooth maps or smooth sections of vector bundles.
They differ from non-formal pseudodifferential operators by (unknown) smooth ker-
nel operators, the so-called smoothing operators. As is well-known, any classical
non-formal pseudodifferential operator A generates a formal operator (the one ob-
tained from the asymptotic expansion of the symbol of A, see [1, 2, 15]), but there
is no canonical way to recover a non-formal operator from a formal one.
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Can we introduce and discuss a version of the KP hierarchy (1.1) using classical
non-formal pseudo-differential operators? Yes. The aim of this paper is to show that
a version of Equation (1.1) can indeed be posed and solved on regular Frölicher Lie
groups built with the help of a particular class of non-formal pseudo-differential op-
erators. Our first motivation for considering this problem comes from the following
observation: pushing forward equations onto a quotient of a relation of equivalence
is easy and unambiguous (up to compatibility conditions), while pulling-back equa-
tions from a quotient space to full space can be often performed in very many ways.
As explained in the previous paragraph, the KP hierarchy can be understood as
being posed on a quotient space of classical pseudodifferential operators, and so it
is very natural to aim at proposing a version of (1.1) using the pseudodifferential
operators themselves. Our second motivation for considering non-formal pseudo-
differential operators comes from our previous work [33]. In this reference we use
versions of “dressing operators” for equation (1.1), and we obtain solutions to KP
with the help of an operator which acts on initial conditions (see [33, Section 4]). It
is natural to wonder if it is possible to understand these operators in a non-formal
setting.

What class of pseudodifferential operators can we use, in order to write down
an equation such as (1.1)? We work with odd-class classical pseudodifferential op-
erators which act on smooth sections of a given trivial (finite rank) vector bundle
S1 × V . These pseudodifferential operators were first considered by Kontsevich
and Vishik in [21, 22] in order to deal with spectral functions and renormalized
determinants. We use them in two ways:

• We take them as building blocks for our non-formal KP hierarchy. One
reason why odd-class pseudodifferential operators are natural to use in
this context is the fact that differential operators are all odd-class, and so
we can indeed hope to pose Equation (1.1) with their help.

• We build a central extension of Diff+(S
1) by a group of bounded odd-

class classical pseudodifferential operators, in which Diff+(S
1) is the

group of orientation-preserving diffeomorphisms of S1. We present this
construction because the structure of this central extension allows us to
prove rather easily a Mulase-type factorization theorem in our non-formal
context, an observation we think is interesting of its own1.

The novelty of this paper, especially compared with our previous works [29] and [32,
33], is then two-fold: first, we generalize the Kadomtsev-Petviashvili hierarchy by
considering non-formal pseudo-differential operators: to the best of our knowledge
this is the first time that an integrable hierarchy in such a setting is formulated,
studied, and proven to be well-posed; and second, we establish a link between the
dressing operator of the hierarchy and the central extension of Diff+(S

1): such a
link was unknown till the present work.

We organize our work as follows. Section 1 is this introduction. Section 2
is a short review on Frölicher Lie groups, mostly inspired by [32, 33]. In this

1Elements of this central extension are Fourier integral operators called
Diff+(S1)−pseudodifferential operators. To the best of our knowledge, groups of
Diff(S1)−pseudodifferential operators were independently described (with S1 replaced by

a compact Riemannian manifold M) in [30], in the context of differential geometry of non-
parametrized, non-linear grassmannians, and in [43] as a possible structure group on which
Chern-Weil constructions could be performed.
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paper we consider several infinite-dimensional groups built with the help of non-
formal pseudodifferential operators. Some of these groups are beyond the reach of
traditional analytic means, but they do possess Frölicher structures, and so it is
natural to begin with a review of the Frölicher setting. Section 3 is on Frölicher
Lie groups of pseudodifferential operators, following mainly [30]. References for
the analytic tools used therein are [3, 15, 46]. Then, in Section 4 we propose our
version of KP hierarchy: we consider the Lie algebra Clh,odd(S

1, V ) of formal power
series in a parameter h whose coefficients are classical odd-class pseudodifferential
operators satisfying some technical conditions. These conditions allow us to find a
regular (a notion explained in Section 2) Frölicher Lie group which integrates the Lie
algebra Clh,odd(S

1, V ). In this extended context we can pose and solve the Cauchy
problem for our version of KP. In Section 4 we also highlight a non-formal operator
Uh ∈ Clh,odd(S

1, V ) which depends on the initial condition of our KP hierarchy;
this operator generates its solutions very much in the spirit of the standard theory
of R-matrices, see [44], and also [12, 33] and references therein. In Section 5 we
show how to recover the operator Uh by analysing the Taylor expansion of functions
in the image of the twisted operator A : f ∈ C∞(S1;V ) �→ S−1

0 (f) ◦ g, in which
g ∈ Diff+(S

1) and S0 is our version of a “dressing operator” as considered for
example in [8, Chapter 6]. Finally, we include an appendix in which we introduce a
group of Fourier integral operators, the central extension ofDiff+(S

1) by the group

Cl0,∗odd(S
1, V ) of all odd-class, invertible and bounded, classical pseudodifferential

operators. As mentioned above, working with this central extension we can prove
a non-formal analogue of the Mulase decomposition of [36, 37, 38].

2. Preliminaries on categories of regular Frölicher Lie groups

In this section we recall briefly the formal setting which allows us to work
rigorously with Lie groups built with the help of pseudodifferential operators. No
new statements are given here: we follow the expositions appearing in [29, 32, 33].
We begin with the notion of a diffeological space:

Definition 2.1. Let X be a set.
• A p-parametrization of dimension p on X is a map from an open subset O of
R

p to X.
• A diffeology on X is a set P of parametrizations on X such that:

- For each p ∈ N, any constant map R
p → X is in P;

- For each arbitrary set of indexes I and family {fi : Oi → X}i∈I of compatible
maps that extend to a map f :

⋃
i∈I Oi → X, if {fi : Oi → X}i∈I ⊂ P, then f ∈ P.

- For each f ∈ P, f : O ⊂ R
p → X, and g : O′ ⊂ R

q → O, in which g is a
smooth map (in the usual sense) from an open set O′ ⊂ R

q to O, we have f ◦g ∈ P.
If P is a diffeology on X, then (X,P) is called a diffeological space and, if

(X,P) and (X ′,P ′) are two diffeological spaces, a map f : X → X ′ is smooth if
and only if f ◦ P ⊂ P ′.

The notion of a diffeological space is due to J.M. Souriau, see [47]; see also
[6] for related constructions, and [19, 48] for a contemporary point of view. Of
particular interest to us is the following subcategory of the category of diffeological
spaces.

Definition 2.2. A Frölicher space is a triple (X,F , C) such that
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- C is a set of paths R→ X,
- F is the set of functions from X to R, such that a function f : X → R is in

F if and only if for any c ∈ C, f ◦ c ∈ C∞(R,R);
- A path c : R → X is in C (i.e. is a contour) if and only if for any f ∈ F ,

f ◦ c ∈ C∞(R,R).

If (X,F , C) and (X ′,F ′, C′) are two Frölicher spaces, a map f : X → X ′ is
smooth if and only if F ′ ◦ f ◦ C ⊂ C∞(R,R).

This definition first appeared in [14]; we use terminology borrowed from Kriegl
and Michor’s book [23]. A short comparison of the notions of diffeological and
Frölicher spaces is in [28]; the reader can also see [29, 31, 33, 50] for extended
expositions. In particular, it is explained in [33] that Frölicher and Gateaux smooth-
ness are the same notion if we restrict ourselves to a Fréchet context.

Any family of maps Fg from X to R generates a Frölicher structure (X,F , C)
by setting, after [23]:

- C = {c : R→ X such that Fg ◦ c ⊂ C∞(R,R)}
- F = {f : X → R such that f ◦ C ⊂ C∞(R,R)}.
We call Fg a generating set of functions for the Frölicher structure (X,F , C).

One easily see that Fg ⊂ F . A Frölicher space (X,F , C) carries a natural topology,
the pull-back topology of R via F . In the case of a finite dimensional differentiable
manifold X we can take F as the set of all smooth maps from X to R, and C the
set of all smooth paths from R to X. Then, the underlying topology of the Frölicher
structure is the same as the manifold topology [23].

We also remark that if (X,F , C) is a Frölicher space, we can define a natural
diffeology on X by using the following family of maps f defined on open domains
D(f) of Euclidean spaces, see [28]:

P∞(F) =
∐
p∈N
{ f : D(f)→ X; F ◦ f ∈ C∞(D(f),R) (in the usual sense)}.

If X is a finite-dimensional differentiable manifold, this diffeology is called the
nébuleuse diffeology, see [47]. Now, we can easily show the following:

Proposition 2.3. [28] Let(X,F , C) and (X ′,F ′, C′) be two Frölicher spaces.
A map f : X → X ′ is smooth in the sense of Frölicher if and only if it is smooth
for the underlying diffeologies P∞(F) and P∞(F ′).

Thus, Proposition 2.3 and the foregoing remarks imply that the following im-
plications hold:

smooth manifold ⇒ Frölicher space ⇒ diffeological space

These implications can be refined. The reader is referred to the Ph.D. thesis
[50] for a deeper analysis of them.

Remark 2.4. The set of contours C of the Frölicher space (X,F , C) does not
give us a diffeology, because a diffeology needs to be stable under restriction of
domains. In the case of paths in C the domain is always R whereas the domain
of 1-plots can (and has to) be any interval of R. However, C defines a “minimal
diffeology” P1(F) whose plots are smooth parametrizations which are locally of the
type c ◦ g, in which g ∈ P∞(R) and c ∈ C. Within this setting, we can replace P∞
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by P1 in Proposition 2.3. The main technical tool needed to discuss this issue is
Boman’s theorem [23, p.26]. Related discussions are in [28, 50].

Proposition 2.5. Let (X,P) and (X ′,P ′) be two diffeological spaces. There
exists a diffeology P ×P ′ on X ×X ′ made of plots g : O → X ×X ′ that decompose
as g = f ×f ′, where f : O → X ∈ P and f ′ : O → X ′ ∈ P ′. We call it the product
diffeology, and this construction extends to an infinite product.

We apply this result to the case of Frölicher spaces and we derive (compare
with [23]) the following:

Proposition 2.6. Let (X,F , C) and (X ′,F ′, C′) be two Frölicher spaces equipped
with their natural diffeologies P and P ′ . There is a natural structure of Frölicher
space on X ×X ′ which contours C × C′ are the 1-plots of P × P ′.

We can also state the above result for infinite products; we simply take Carte-
sian products of the plots, or of the contours.

Now we consider quotients after [47] and [19, p. 27]: Let (X,P) be a diffe-
ological space, and let X ′ be a set. Let f : X → X ′ be a map. We define the
push-forward diffeology as the coarsest (i.e. the smallest for inclusion) among
the diffologies on X ′, which contains f ◦ P.

Proposition 2.7. Let (X,P) b a diffeological space and R an equivalence re-
lation on X. Then, there is a natural diffeology on X/R, noted by P/R, defined as
the push-forward diffeology on X/R by the quotient projection X → X/R.

Given a subset X0 ⊂ X, where X is a Frölicher space or a diffeological space,
we equip X0 with structures induced by X as follows:

(1) If X is equipped with a diffeology P, we define a diffeology P0 on X0

called the subset or trace diffeology, see [47, 19], by setting

P0 = {p ∈ P such that the image of p is a subset of X0} .
(2) If (X,F , C) is a Frölicher space, we take as a generating set of maps Fg on

X0 the restrictions of the maps f ∈ F . In this case, the contours (resp.
the induced diffeology) on X0 are the contours (resp. the plots) on X
whose images are a subset of X0.

Our last general construction is the so-called functional diffeology. Its existence
implies the following crucial fact: the category of diffeological spaces is Cartesian
closed, something which is certainly not true in the category of smooth manifolds.
Our discussion follows [19]. Let (X,P) and (X ′,P ′) be diffeological spaces. Let
M ⊂ C∞(X,X ′) be a set of smooth maps. The functional diffeology on S is the
diffeology PS made of plots

ρ : D(ρ) ⊂ R
k → S

such that, for each p ∈ P, the maps Φρ,p : (x, y) ∈ D(p) × D(ρ) �→ ρ(y)(x) ∈ X ′

are plots of P ′. We have, see [19, Paragraph 1.60]:

Proposition 2.8. Let X,Y, Z be diffeological spaces. Then,

C∞(X × Y, Z) = C∞(X,C∞(Y, Z)) = C∞(Y,C∞(X,Z))

as diffeological spaces equipped with functional diffeologies.
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Now, given an algebraic structure, we can define a corresponding compatible diffe-
ological (resp. Frölicher) structure, see for instance [25]. For example, see [19, pp.
66-68], if R is equipped with its canonical diffeology (resp. Frölicher structure), we
say that an R−vector space equipped with a diffeology (resp. Frölicher structure)
is a diffeological (resp. Frölicher) vector space if addition and scalar multiplication
are smooth. We state:

Definition 2.9. Let G be a group equipped with a diffeology (Frölicher struc-
ture). We call it a diffeological (Frölicher) group if both multiplication and
inversion are smooth.

Since we are interested in infinite-dimensional analogues of Lie groups, we need to
consider tangent spaces of diffeological spaces, and we have to deal with Lie algebras
and exponential maps. We state, after [10] and [7] the following definition:

Definition 2.10. (i) For each x ∈ X, we consider

Cx = {c ∈ C∞(R, X)|c(0) = x}
and we take the equivalence relation R given by

cRc′ ⇔ ∀f ∈ C∞(X,R), ∂t(f ◦ c)|t=0 = ∂t(f ◦ c′)|t=0.

Equivalence classes of R are called germs and are denoted by ∂tc(0) or
∂tc(t)|t=0. The internal tangent cone at x is the quotient iTxX =
Cx/R. If X = ∂tc(t)|t=0 ∈ iTX , we define the derivation Df(X) = ∂t(f ◦
c)|t=0 .

(ii) The internal tangent space at x ∈ X is the vector space generated by
the internal tangent cone.

The reader may compare this definition to the one appearing in [23] for man-
ifolds in the “convenient” c∞−setting. The internal tangent cone at a point x is
not a vector space in many examples; this motivates item (ii) above, see [7, 10].
Fortunately, the internal tangent cone at x ∈ X is a vector space for the objects
under consideration in this work, see Proposition 2.11 below, see also [24]; it will
be called, simply, the tangent space at x ∈ X.

Following Iglesias-Zemmour, see [19], we do not assert that arbitrary diffeo-
logical groups have associated Lie algebras; however, the following holds, see [25,
Proposition 1.6.] and [33, Proposition 2.20].

Proposition 2.11. Let G be a diffeological group. Then the tangent cone at
the neutral element TeG is a diffeological vector space.

The proof of Proposition 2.11 appearing in [33] uses explicitly the diffeologies P1

and P∞ which appear in Proposition 3 and Remark 4 of this work.

Definition 2.12. The diffeological group G is a diffeological Lie group if
and only if the Adjoint action of G on the diffeological vector space iTeG defines a
Lie bracket. In this case, we call iTeG the Lie algebra of G and we denote it by g.

Let us concentrate on Frölicher Lie groups, following [29] and [25]. If G is a
Frölicher Lie group then, after (i) and (ii) above we have that:

g = {∂tc(0); c ∈ C and c(0) = eG}
is the space of germs of paths at eG. Moreover:
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• Let (X,Y ) ∈ g2, X + Y = ∂t(c.d)(0) where c, d ∈ C2, c(0) = d(0) = eG,
X = ∂tc(0) and Y = ∂td(0).

• Let (X, g) ∈ g × G, Adg(X) = ∂t(gcg
−1)(0) where c ∈ C, c(0) = eG, and

X = ∂tc(0).
• Let (X,Y ) ∈ g2, [X,Y ] = ∂t(Adc(t)Y ) where c ∈ C, c(0) = eG, X = ∂tc(0).

All these operations are smooth and thus well-defined as operations on Frölicher
spaces, see [25, 29, 31, 33].

The basic properties of adjoint, coadjoint actions, and of Lie brackets, remain
globally the same as in the case of finite-dimensional Lie groups, and the proofs are
similar: see [25] and [10] for details.

Definition 2.13. [25] A Frölicher Lie group G with Lie algebra g is called
regular if and only if there is a smooth map

Exp : C∞([0; 1], g)→ C∞([0, 1], G)

such that g(t) = Exp(v(t)) is the unique solution of the differential equation

(2.1)

{
g(0) = e
dg(t)
dt g(t)−1 = v(t)

We define the exponential function as follows:

exp : g → G

v �→ exp(v) = g(1) ,

where g is the image by Exp of the constant path v.

When the Lie group G is a vector space V , the notion of regular Lie group
specialize to what is called regular vector space in [29] and integral vector space in
[25]; we follow the latter terminology.

Definition 2.14. [25] Let (V,P) be a Frölicher vector space. The space (V,P)
is integral if there is a smooth map∫ (.)

0

: C∞([0; 1];V )→ C∞([0; 1], V )

such that
∫ (.)

0
v = u if and only if u is the unique solution of the differential equation{

u(0) = 0
u′(t) = v(t)

.

This definition applies, for instance, if V is a complete locally convex topological
vector space equipped with its natural Frölicher structure given by the Frölicher
completion of its nébuleuse diffeology, see [19, 28, 29].

Definition 2.15. Let G be a Frölicher Lie group with Lie algebra g. Then, G
is regular with integral Lie algebra if g is integral and G is regular in the sense of
Definitions 2.13 and 2.14.

We finish this section with two structural results essentially proven in [29]. The
first one is used in the construction of regular Lie groups of non-formal pseudodiffer-
ential and Fourier operators, see [29, 30] and Section 3 below, while the second one
provides us with examples of Frölicher Lie groups. Applications of the latter theo-
rem appear in the analysis of the Cauchy problem for the Kadomtsev-Petviashvili
carried out in [29, 33] and in Section 4 below.
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Theorem 2.16. Let

1 −→ K
i−→ G

p−→ H −→ 1

be an exact sequence of Frölicher Lie groups, such that there is a smooth section
s : H → G, and such that the trace diffeology on i(K) ⊆ G coincides with the push-
forward diffeology from K to i(K). We consider also the corresponding sequence of
Lie algebras

0 −→ k
i′−→ g

p−→ h −→ 0 .

Then,

• The Lie algebras k and h are integral if and only if the Lie algebra g is
integral;

• The Frölicher Lie groups K and H are regular if and only if the Frölicher
Lie group G is regular.

Theorem 2.17. Let (An)n∈N be a sequence of integral Frölicher vector spaces
equipped with a graded smooth multiplication operation on

⊕
n∈N∗ An , i.e. a mul-

tiplication such that for each n,m ∈ N
∗, An.Am ⊂ An+m is smooth with respect to

the corresponding Frölicher structures.

• Let us define the (non unital) algebra of formal series:

A =

{ ∑
n∈N∗

an|∀n ∈ N
∗, an ∈ An

}
,

equipped with the Frölicher structure of the infinite product. Then, the
space

1 +A =

{
1 +

∑
n∈N∗

an|∀n ∈ N
∗, an ∈ An

}
is a regular Frölicher Lie group with integral Frölicher Lie algebra A.
Moreover, the exponential map defines a smooth bijection A → 1 +A.

• Let A∗0 be the Frölicher group of invertible elements of A0. Then, the space

A∗0 +A =

{∑
n∈N

an|a0 ∈ A∗0 and ∀n ∈ N
∗, an ∈ An

}
is a regular Frölicher Lie group with integral Frölicher Lie algebra.

A result similar to Theorem 2.16 is also valid for Fréchet Lie groups, see [23].

3. Preliminaries on pseudodifferential operators

We introduce the groups and algebras of non-formal pseudodifferential opera-
tors needed to set up our version of the KP hierarchy. Basic definitions are valid for
a real or complex finite-dimensional vector bundle E over S1; below (see paragraph
“Notations”) we specialize our considerations to the case E = S1×V in which V is
a finite-dimensional complex vector space. The following definition appears in [3,
Section 2.1].

Definition 3.1. The graded algebra of differential operators acting on the
space of smooth sections C∞(S1, E) is the algebra DO(E) generated by:
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• Elements of End(E), the group of smooth maps E → E leaving each fibre
globally invariant and which restrict to linear maps on each fibre. This group acts
on sections of E via (matrix) multiplication;

• The differentiation operators

∇X : g ∈ C∞(S1, E) �→ ∇Xg

where ∇ is a connection on E and X is a vector field on S1.

Multiplication operators are operators of order 0; differentiation operators and
vector fields are operators of order 1. In local coordinates, a differential operator
of order k has the form P (u)(x) =

∑
pi1···ir∇xi1

· · · ∇xir
u(x) , r ≤ k , in which

the coefficients pi1···ir can be matrix-valued. We note by DOk(S1),k ≥ 0, the
differential operators of order less or equal than k.

The algebra DO(E) is graded by order. It is a subalgebra of the algebra of
classical pseudodifferential operatorsCl(S1, E), an algebra that contains, for exam-
ple, the square root of the Laplacian, its inverse, and all trace-class operators on
L2(S1, E). Basic facts on pseudodifferential operators defined on a vector bundle
E → S1 can be found for instance in [15] and in the review [43]. A global sym-
bolic calculus for pseudodifferential operators has been defined independently by J.
Bokobza-Haggiag, see [4] and H. Widom, see [51]. In these papers is shown how
the geometry of the base manifold M furnishes an obstruction to generalizing local
formulas of composition and inversion of symbols; we do not recall these formulas
here since they are not involved in our computations.

Following [26, Section 1], see also [30], we assume henceforth that S1 is equipped
with charts such that the changes of coordinates are translations. We also restrict
our considerations to complex vector bundles over S1. It is well-known that they
are trivial, i.e. E = S1 × V. Taking this fact into account, we use the following
notational conventions:

Notations. We note by PDO(S1, V ) (resp. PDOo(S1, V ), resp. Cl(S1, V )) the
space of pseudodifferential operators (resp. pseudodifferential operators of order o,
resp. classical pseudodifferential operators) acting on smooth sections of E, and
by Clo(S1, V ) = PDOo(S1, V ) ∩ Cl(S1, V ) the space of classical pseudodifferen-
tial operators of order o. We also denote by Clo,∗(S1, V ) the group of units of
Clo(S1, V ).

A topology on spaces of classical pseudo differential operators has been de-
scribed by Kontsevich and Vishik in [21]; see also [5, 42, 46] for other descrip-
tions. We use all along this work the Kontsevich-Vishik topology. This is a Fréchet
topology such that each space Clo(S1, V ) is closed in Cl(S1, V ). We set

PDO−∞(S1, V ) =
⋂
o∈Z

PDOo(S1, V ) .

It is well-known that PDO−∞(S1, V ) is a two-sided ideal of PDO(S1, V ), see e.g.
[15, 46]. Therefore, we can define the quotients

FPDO(S1, V ) = PDO(S1, V )/PDO−∞(S1, V ),

FCl(S1, V ) = Cl(S1, V )/PDO−∞(S1, V ),

FClo(S1, V ) = Clo(S1, V )/PDO−∞(S1, V ) .
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The script font F stands for formal pseudodifferential operators. The quotient
FPDO(S1, V ) is an algebra isomorphic to the set of formal symbols, see [4], and
the identification is a morphism of C-algebras for the usual multiplication on formal
symbols (see e.g. [15]).

We note that these quotient spaces have natural diffeology structures provided
by Proposition 2.7. Moreover, we have the following result.

Theorem 3.2. The groups Diff+(S
1), Cl0,∗(S1, V ), and FCl0,∗(S1, V ), in

which FCl0,∗(S1, V ) is the group of units of the algebra FCl0(S1, V ), are regular
Fréchet Lie groups.

Indeed, it follows from [11, 41] that Diff+(S
1) is open in the Fréchet manifold

C∞(S1, S1). This fact makes it a Fréchet manifold and, following [41], a regular
Fréchet Lie group. The same result follows from the discussion appearing in [40,
Section III.3]. Also, it is noticed in [27] that the results of [16] imply that the group
Cl0,∗(S1, V ) (resp. FCl0,∗(S1, V ) ) is open in Cl0(S1, V ) (resp. FCl0(S1, V ) ) and
that it is a regular Fréchet Lie group. This fact is also discussed in [43, Proposition
4]. Our comments after Definition 2, see also Remark 2.6 in [33], imply that these
groups are also regular Frölicher Lie groups.

Definition 3.3. A classical pseudodifferential operator A on S1 is called odd
class if and only if for all n ∈ Z and all (x, ξ) ∈ T ∗S1 we have:

σn(A)(x,−ξ) = (−1)nσn(A)(x, ξ) ,

in which σn is the symbol of A.

This particular class of pseudodifferential operators has been introduced in [21,
22]; it is also called the “even-even class”, see [46]. We will follow the terminology
of the first two references: hereafter, the notation Clodd will refer to odd class
classical pseudodifferential operators.

We need the following result, essentially present in [21, 46]:

Lemma 3.4. Clodd(S
1, V ) and Cl0odd(S

1, V ) are associative algebras.

Proof. We work locally. Let A,B be two odd class pseudodifferential opera-
tors of order m and m′ respectively; then, the homogeneous pieces of the symbols
of A,B,AB are related via (see [46, Section 1.5.2, Equation(1.5.2.3)])

σm+m′−j(AB)(x, ξ) =
∑

|μ|+k+l=j

1

μ!
∂μ
ξ σm−k(A)(x, ξ)Dμ

xσm′−l(B)(x, ξ) ,

in which |μ| is the length of the multi-index μ. We have:

∂μ
ξ σm−k(A)(x,−ξ) = (−1)m−k+|μ|∂μ

ξ σm−k(A)(x, ξ)

and
Dμ

xσm′−l(B)(x,−ξ) = (−1)m′−lDμ
xσm′−l(B)(x, ξ) ,

and we easily obtain

σm+m′−j(AB)(x,−ξ)
= (−1)m+m′−j

∑
|μ|+k+l=j

1

μ!
∂μ
ξ σm−k(A)(x, ξ)Dμ

xσm′−l(B)(x, ξ)

= (−1)m+m′−jσm+m′−j(AB)(x, ξ) .
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The first claim is proven.
That Cl0odd(S

1, V ) is an associative algebra follows from the previous result
and the standard fact that zero-order classical pseudodifferential operators form an
algebra, see for instance [43]. �

Now we observe that because of the symmetry property stated in Definition
3.3, an odd-class pseudodifferential operator A has a partial symbol of non-negative
order n that reads

(3.1) σn(A)(x, ξ) = γn(x)(iξ)
n ,

where γn ∈ C∞(S1, L(V )). This consequence of Definition 3.3 allows us to check
the following result, which is of importance for the upcoming description of our KP
hierarchy:

Proposition 3.5. The space of odd class classical pseudodifferential operators
satisfies the direct sum decomposition

(3.2) Clodd(S
1, V ) = Cl−1

odd(S
1, V )⊕DO(S1, V ) .

We finish this section with a proposition which singles out an interesting Lie
group included in Clodd(S

1, V ).

Proposition 3.6. The algebra Cl0odd(S
1, V ) is a closed subalgebra of Cl0(S1, V ).

Moreover, Cl0,∗odd(S
1, V ) is

• an open subset of Cl0odd(S
1, V ) and,

• a regular Fréchet Lie group.

Proof. We note by σ(A)(x, ξ) the total formal symbol of A ∈ Cl0(S1, V ). We
let

φ : Cl0(S1, V )→ FCl0(S1, V )

defined by

φ(A) =
∑
n∈N

σ−n(x, ξ)− (−1)nσ−n(x,−ξ).

This map is smooth, and

Cl0odd(S
1, V ) = Ker(φ),

which shows that Cl0odd(S
1, V ) is a closed subalgebra of Cl0(S1, V ). Moreover, if

H = L2(S1, V ),

Cl0,∗odd(S
1, V ) = Cl0odd(S

1, V ) ∩GL(H),

which proves that Cl0,∗odd(S
1, V ) is open in the Fréchet algebra Cl0(S1, V ), and it

follows that it is a regular Fréchet Lie group by arguing along the lines of [16,
40]. �

4. The h-KP hierarchy with non-formal odd-class operators

First of all let us make some comments on the spaces just introduced. In order
to find an analogue to Equation (1.1) we need to consider a space of pseudodiffer-
ential operators which is closed with respect to taking powers of operators. Since
the space of odd-class pseudodifferential operators is an associative algebra, we can
take this space as the arena for the dependent variable appearing in Equation (1.1).
Proposition 3.5 implies that we have the diagram of Lie groups and Lie algebras
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Cl−1,∗
odd (S1, V ) → Cl∗odd(S

1, V ) → (H ?)
↓ ↓

Cl−1
odd(S

1, V ) → Clodd(S
1, V ) → DO(S1, V )

‖
Cl−1

odd(S
1, V )⊕DO(S1, V )

Is it possible to find a suitable Frölicher Lie group H? If it were possible, we
could set up an equation of the form

∂

∂tn
L = [(Ln)D, L]

for fixed n, where (.)D denotes projection into the space of differential operators,
and try to study its corresponding Cauchy problem with the help of a factorization
theorem, as in our previous papers [29, 32, 33]. Now, in these articles we find a
regular Frölicher Lie group H with Lie algebra the space of differential operators by
using formal differential operators of infinite order but, if we proceed in this way in
the present context, we would leave the framework of non-formal pseudodifferential
operators. Thus, instead of doing this, we use series, motivated by [29, 32] and
[33, Subsection 4.2].

Definition 4.1. Let h be a formal parameter. The set of odd class h-pseudo
differential operators is the set of formal series

(4.1) Clh,odd(S
1, V ) =

{∑
n∈N

anh
n | an ∈ Clnodd(S

1, V )

}
.

We have the following result on the structure of Clh,odd(S
1, V ):

Theorem 4.2. The set Clh,odd(S
1, V ) is a Fréchet Lie algebra, and its group

of units given by

(4.2) Cl∗h,odd(S
1, V ) =

{∑
n∈N

anh
n | an ∈ Clnodd(S

1, V ), a0 ∈ Cl0,∗odd(S
1, V )

}
,

is a regular Fréchet Lie group.

Proof. As we showed in Proposition 20 (and as it also follows from the work

[16] by Glöckner) the group Cl0,∗odd(S
1, V ) is a regular Fréchet Lie group since it is

open in Cl0odd(S
1, V ). According to classical properties of composition of pseudodif-

ferential operators [46], see also [21], the natural multiplication on Clh,odd(S
1, V )

is smooth for the product structure inherited from the classical Fréchet topology
on classical pseudodifferential operators, and inversion is smooth using the classical
formulas of inversion of series. In this way we conclude that Clh,odd(S

1, V ) is a
Fréchet algebra.

Moreover, the series
∑

n∈N anh
n ∈ Clh,odd(S

1, V ) is invertible if and only if

a0 ∈ Cl0,∗odd(S
1, V ), which shows that Cl∗h,odd(S

1, V ) is open in Clh,odd(S
1, V ). Now

the results appearing in [16] allow us to end the proof. �

Remark 4.3. The assumption an ∈ Clnodd in Definition 4.1 and Theorem 4.2
can be relaxed to the condition

a0 ∈ Cl0,∗odd and ∀n ∈ N
∗, an ∈ Clodd ;
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this is sufficient for having a regular Lie group. The more stringent growth condi-
tions imposed in (4.1) and (4.2) will ensure regularity and they will allow us to use
arguments borrowed from [33, Subsection 4.1] for proving existence and smoothness
of solutions to our KP hierarchy to be introduced next.

Now we need to split the algebra Clh,odd(S
1, V ). We do so in a very straight-

forward way: since an operator A ∈ Clodd(S
1, V ) splits into A = AS + AD, in

which AS ∈ Cl−1
odd(S

1, V ) and AD ∈ DO(S1, V ) (see Proposition 3.5) we have, for
A =

∑
n∈N anh

n ∈ Clh,odd(S
1, V ), the decomposition A = AS +AD with

AS =
∑
n∈N

(an)Sh
n

and

AD =
∑
n∈N

(an)Dhn .

We set DOh(S
1, V ) = {∑n∈N anh

n : an ∈ DO(S1, V )}.
We now introduce our version of the KP hierarchy with non-formal pseudodif-

ferential operators. Let us assume that t1, t2, · · · , tn, · · · , are an infinite number
of different formal variables which will become the independent variables of our
equation. We make the following definition:

Definition 4.4. Let L0 ∈ h d
dx + hCl−1

odd(S
1, V ). We say that an operator

L(t1, t2, · · · ) ∈ Clh,odd(S
1, V )[[ht1, ..., h

ntn...]]

satisfies the h−deformed KP hierarchy if and only if

(4.3)

{
L(0) = L0
d

dtn
L = [(Ln)D, L] .

Let us make some comments on Definition 4.4. We have followed Mulase, see
[36, 38], in fixing the “time dependence” of the dependent variable via series. Thus,
the dependent variable in our equation (4.3) is a series of the form

(4.4) L(t1, t2, · · · ) =
∑
s

Ls(hτ)
s ,

in which Ls ∈ Clh,odd(S
1, V ), s = (α1, α2, · · · ), αi ∈ N, αi �= 0 just for finite

number of indexes i, and we define (hτ)s = (ht1)
α1(h2t2)

α2 · · · . This series can be
understood as a smooth function from the algebraic sum

(4.5) T =
⊕
n∈N∗

(Rtn)

equipped with the product topology and product Frölicher structure, to the Fréchet
Lie algebra Clh,odd(S

1, V ), see Proposition 2.6 and [29, 33]. The “space depen-
dence”, on the other hand, is fixed with the help of a derivation on S1 which in
standard coordinates (see Section 3) reads d/dx. We also stress the fact that, in
contradistinction to Mulase’s papers [36, 38], we are using scaled variables,{

tn �→ hntn
d
dx �→ h d

dx .

Our reason to do this is that we need to work with regular Frölicher Lie groups,
and this scaling allows us to do so, as we explain in [29, 33]. Finally, we remark
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that it follows from Theorem 17 that Cl∗h,odd(S
1, V )[[ht1, ..., h

ntn...]] is a regular

Frölicher Lie group with Lie algebra Clh,odd(S
1, V )[[ht1, ..., h

ntn...]].
In this context, we have a “Mulase factorization”, in the spirit of [36, 38] and

[29, 33], which looks schematically as follows:

Cl−1,∗
h,odd(S

1, V ) → Cl∗h,odd(S
1, V ) → DO∗h(S

1, V )

↓ ↓ ↓
CId⊕ Cl−1

h,odd(S
1, V ) → Clh,odd(S

1, V ) → DOh(S
1, V )

in which

DO∗h(S
1, V ) =

{∑
n∈N

anh
n | an ∈ DO(S1, V ) , a0 ∈ DO0,∗(S1, V )

}
.

Now we solve the initial value problem (4.3) for an initial condition L0 as in
Definition 4.4. Below we need to use the operator Uh = exp

(∑
n∈N∗ hntn(L0)

n
)
:

since
∑

n∈N∗ hntn(L0)
n belongs to Clh,odd(S

1, V )[[ht1, h
2t2, · · · ]], Uh belongs to

the regular Frölicher Lie group Cl∗h,odd(S
1, V )[[ht1, ..., h

ntn...]]. Moreover, as we

explained after Definition 4.4, we can consider
∑

n∈N∗ hntn(L0)
n as a smooth func-

tion with domain T and image contained in Clh,odd(S
1, V ), and so for each fixed

(t1, ..., tn, ...) ∈ T we have Uh(t1, ..., tn, ...) ∈ Cl∗h,odd(S
1, V ).

Theorem 4.5. Let Uh(t1, ..., tn, ...) = exp
(∑

n∈N∗ hntn(L0)
n
) ∈ Cl∗h,odd(S

1, V ).
Then:

• There exists a unique pair (S, Y ) such that
(1) Uh = S−1Y,
(2) Y ∈ Cl∗h,odd(S

1, V )D
(3) S ∈ Cl∗h,odd(S

1, V ) and S − 1 ∈ Clh,odd(S
1, V )S .

Moreover, the map

(L0, t1, ..., tn, ...) ∈
(
h
d

dx
+ hCl−1

odd(S
1, V )

)
× T �→ (Uh, Y ) ∈ (Cl∗h,odd(S

1, V ))2

is smooth.
• The operator L ∈ Clh,odd(S

1, V )[[ht1, ..., h
ntn...]] given by L = SL0S

−1 =
Y L0Y

−1, is the unique solution to the hierarchy of equations

(4.6)

{
d

dtn
L = [(Ln)D(t), L(t)] = − [(Ln)S(t), L(t)]

L(0) = L0
,

in which the operators in this infinite system are understood as formal
operators, this is, as formal series of the form (4.4).

• The operator L ∈ Clh,odd(S
1, V )[[ht1, ..., h

ntn...]] given by L = SL0S
−1 =

Y L0Y
−1 is the unique solution of the hierarchy of equations

(4.7)

{
d

dtn
L = [(Ln)D(t), L(t)] = − [(Ln)S(t), L(t)]

L(0) = L0

in which the operators in this infinite system are understood as h-series
of odd-class, non-formal operators.

Proof. First of all, we consider Uh. Since

Uh(t1, ..., tn, ...) = exp

( ∑
n∈N∗

hntn(L0)
n

)
∈ Cl∗h,odd(S

1, V )[[ht1, ..., h
ntn...]] ,
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we can write, as in (4.4),

Uh =
∑
s

As(hτ)
s ,

in which here and hereafter s is a multi-index as defined after equation (4.4), and
As ∈ Cl∗h,odd(S

1, V ). In turn, for each s we can set As =
∑

n∈N asnh
n, where

asn ∈ Clnodd(S
1, V ), n ≥ 1, and as0 ∈ Cl0,∗odd(S

1, V ). Thus, we have

Uh =
∑
s

(∑
n∈N

asnh
n

)
(hτ)s .

Now we observe that, since asn ∈ Clnodd(S
1, V ), the total symbol of asn can be

written as

σ(asn) =
∑

−∞<k≤n

asnkξ
k

in which asnk : S1 → R⊗End(V ). (We recall that the pass from pseudodifferential
operators to symbols is discussed in detail in, e.g., [1, Section 2] and [2, p. 55]).
This means that we can write σ(Uh) in two ways:

σ(Uh) =
∑
s

⎛⎝∑
n∈N

⎛⎝ ∑
−∞<k≤n

asnkξ
k

⎞⎠hn

⎞⎠ (hτ)s

=
∑
n∈N

⎡⎣ ∑
−∞<k≤n

(∑
s

asnk(hτ)
s

)
ξk

⎤⎦hn

=
∑
n∈N

⎡⎣ ∑
−∞<k≤n

(∑
s

asnkτ
s

)
ξk

⎤⎦hs hn ,(4.8)

in which hs = hα1h2α2h3α3 · · · and τ s = tα1
1 tα2

2 tα3
3 · · · for s = (α1, α2, α3, · · · ), and

we also easily check that

(4.9) σ(Uh) =
∑
k∈Z

⎛⎜⎝ ∑
k+|k|

2 ≤n<∞

(∑
s

asnkτ
s

)
hnhs

⎞⎟⎠ ξk .

Equations (4.8) and (4.9) tell us that σ(Uh) belongs to the algebra Ψh(R) (see
Definition 4.3 in [33]: in that reference we use q instead of h) in which R is the
algebra of power series in τ whose coefficients belong to the differential algebra of

smooth functions C∞(S1)⊗ End(V ). (Also, we can say that σ(Uh) ∈ Ã, where Ã
is defined in Section 5.4 of [29]). Now we use that as0 ∈ Cl0,∗odd(S

1, V ) and that
therefore its total symbol is of the form

σ(as0) =
∑

−∞<k≤0

as0kξ
k = as00 +

∑
−∞<k≤−1

as0kξ
k

in which as00 is invertible:
Equation (4.9) implies that the free term of σ(Uh) is∑

0≤n<∞

(∑
s

asn0τ
s

)
hnhs = a000 +

∑
1≤n<∞

(∑
s

asn0τ
s

)
hnhs ,
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and since as00 is invertible for each s, we conclude that σ(Uh) belongs to GΨh(R)
(see again [33, Definition 4.3]; we can also say that σ(Uh) ∈ GA in the notation
of [29]). Now we recall, see [33, Equation (4.14)], that the global factorization
GΨh(R) = GR,h · Dh(R) —in which the subgroups GR,h and Dh(R) are introduced
in [33, Definition 4.3]— holds. We find that there exist unique Ssymb ∈ GR,h and
Ysymb ∈ Dh(R) such that

σ(Uh) = S−1
symb · Ysymb .

It follows that there exist power series Y and S of non-formal odd class operators,
defined up to smoothing operators, such that Ssymb = σ(S) (in which σ(S) is
defined in an obvious way by using the h valuation) and Ysymb = σ(Y ), and so we
can write

σ(Uh) = σ(S)−1 · σ(Y ) .

The series σ(Y ) is a formal series in h, t1, · · · tn, · · · of symbols of differential oper-
ators, which are in one-to-one correspondence with a series of (non-formal) differ-
ential operators. Thus, the operator Y is uniquely defined, not up to a smoothing
operator; it depends smoothly on Uh, and so does S = Y U−1

h . This ends the proof
of the first point.

The second point on the h−deformed KP hierarchy is proven along the lines of
[29, 33], since it corresponds essentially to an existence result for symbols.

Finally, we prove the third point: We have that L = Y L0Y
−1 is well-defined

and, following classical computations which can be found in e.g. [12, 33], we have:

(1) Lk = Y L k
0 Y −1

(2) Uh L
k
0 U−1

h = L k
0 since L0 commutes with Uh = exp(

∑
k h

ktk L
k
0 ).

It follows that

Lk = Y L k
0 Y −1 = SS−1Y L k

0 Y −1SS−1 = SUhL
k
0 U−1

h S−1 = SL k
0 S−1.

We take tk-derivative of Uh for each k ≥ 1. We get the equation

dUh

dtk
= −S−1 dS

dtk
S−1Y + S−1 dY

dtk

and so, using Uh = S−1 Y , we obtain the decomposition

SL k
0 S−1 = − dS

dtk
S−1 +

dY

dtk
Y −1 .

Since dS
dtk

S−1 ∈ Clh,odd(S
1, V )S and dY

dtk
Y −1 ∈ Clh,odd(S

1, V )D, we conclude that

(Lk)D =
dY

dtk
Y −1 and (Lk)S = − dS

dtk
S−1 .

Now we take tk-derivative of L:

dL

dtk
=

dY

dtk
L0Y

−1 − Y L0Y
−1 dY

dtk
Y −1

=
dY

dtk
Y −1Y L0Y

−1 − Y L0Y
−1 dY

dtk
Y −1

= (Lk)D L− L (Lk)D

= [(Lk)D, L] .

We check the initial condition: We have L(0) = Y (0)L0Y (0)−1, but Y (0) = 1 by
the definition of Uh.
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Smoothness with respect to the variables (S0, t1, ..., tn, ...) is already proved
by construction, and we have established smoothness of the map L0 �→ Y at the
beginning of the proof. Thus, the map

L0 �→ L(t) = Y (t)L0Y
−1(t)

is smooth. The corresponding equation

d

dtk
L = − [

(Lk)S , L
]

is obtained the same way.
It remains to check that the announced solution is the unique solution to the

non-formal hierarchy (4.7). This is still true at the formal level, but two solutions
which differ by smoothing operators may appear at this step of the proof. Let
(L+K)(t1, ...) be another solution, in which K is an h series of smoothing operators
depending on the variables t1, ..., and L is the solution derived from Uh. Then, for
each n ∈ N

∗ we have

(L+K)nD = Ln
D ,

which implies that K satisfies the linear equation

dK

dtn
= [Ln

D,K]

with initial conditions K|t=0 = 0. We can construct the unique solution K by
induction on n, beginning with n = 1. Let gn be such that

(g−1
n dgn)(tn) = Ln

D(t1, ...tn−1, tn, 0, ...) .

Then we get that

K(t1, ...tn, 0....) = Adgn(tn) (K(t1, tn−1, 0...)) ,

and hence, by induction,

K(0) = 0⇒ K(t1, 0...) = 0⇒ · · · ⇒ K(t1, ...tn, 0....) = 0⇒ · · · ,
which implies that K = 0. �

Remark 4.6. Usually, in the treatment of (non-h−scaled) KP hierarchy, the
operator L0 is assumed to read as L0 = S0

(
d
dx

)
S−1
0 where S0 is addressed as the

Sato operator, see [36, Section 1]. This decomposition does not fit with the choice
of an arbitrary initial value L0 as stated in our previous work [33], see also [13].
However, considering the previous proof, we remark that the Mulase decomposition,
as well as our computations involving Lk and dL

dtk
, depend only on L0 and not on

the existence of S0. We believe that our construction of the solution L may also be
applied to a more standard (non h−scaled) version of the KP hierarchy. This is
work in progress.

Remark 4.7. The reader may notice that the proof of the third item of Theo-
rem 4.5 is inspired by Reyman and Semenov-Tian-Shansky approach to integrability
via R-matrices and factorization theorems, see for instance [44, Section 1.12, The-
orem 7]. However, our result is not exactly an instance of the Reyman–Semenov-
Tian-Shansky theory since in this paper we are not considering the hamiltonian
content of Equation (4.3). What we are observing here is that techniques ap-
propriated for the study of integrability of Hamiltonian systems can be adapted
to prove well-posedness of the interesting equation (4.3). As in Mulase’s papers
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[36, 38], the crucial point of the proof is the existence of a factorization of an
infinite-dimensional Lie group, and not the possible hamiltonian character of the
equation being investigated.

5. KP equations and Diff+(S
1)

Let A0 ∈ Cl−1
odd(S

1, V ), and set S0 = exp(A0). The operator S0 ∈ Cl−1,∗
odd (S1, V )

is our version of the dressing operator of standard KP theory, see for instance [8,
Chapter 6]. We define the operator L0 by

f �→ L0(f) = h

(
S0 ◦ d

dx
◦ S−1

0

)
(f)

for f ∈ C∞(S1, V ). We note that Lk
0(f) = hkS0

dk

dxk (S
−1
0 (f)), a formula which we

will use presently. Our aim is to connect the operator

Uh = exp

( ∑
n∈N∗

hntnL
n
0

)
,

which generates the solutions of the h−deformed KP hierarchy described in Theo-
rem 4.5, with the Taylor expansion of functions in the image of the twisted operator

A : f ∈ C∞(S1, V ) �→ S−1
0 (f) ◦ g ,

in which g ∈ Diff+(S
1). We remark that A ∈ Cl−1,∗

odd (S1, V ) for each g ∈
Diff+(S

1); our decomposition theorem proven in the appendix (see Theorem 5.7)
will imply that it is also smooth with respect to g.

For convenience, we identify S1 with [0; 2π[∼ R/2πZ, assuming implicitly that
all the values under consideration are up to terms of the form 2kπ, for k ∈ Z. Set
c = S−1

0 (f) ◦ g ∈ C∞(S1, V ). We compute:

c(x0 + h) =
(
S−1
0 (f) ◦ g) (x0 + h)

∼x0

(
S−1
0 (f) ◦ g) (x0) +

∑
n∈N∗

[
hn

n!

dn

dxn

(
S−1
0 (f) ◦ g)] (x0)

=
(
S−1
0 (f)

) ◦ g(x0) +∑
n∈N∗

[
hn

n!

n∑
k=1

Bn,k(u1(x0), ..., un−k+1(x0))
dk

dxk

(
S−1
0 (f)

) ◦ g(x0)

]
,

in which we have used the classical Faá de Bruno formula for the higher chain rule
in terms of Bell’s polynomials Bn,k, and ui(x0) = g(i)(x0) for i = 1, · · ·n − k + 1.
We can rearrange the last sum and write

c(x0 + h) ∼x0

(
S−1
0 (f) ◦ g) (x0) +∑

k∈N∗

∑
n≥k

[
hn

n!
Bn,k(u1(x0), ..., un−k+1(x0))

dk

dxk

(
S−1
0 (f)

)]
(g(x0))

or,

c(x0 + h) ∼x0

∑
k∈N

[
akh

k dk

dxk

(
S−1
0 (f)

)]
(g(x0))(5.1)
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in which a0 = 1 and

ak =
∑
n≥k

hn−k

n!
Bn,k(u1(x0), ..., un−k+1(x0))

for k ≥ 1. In terms of the operator L0, Equation (5.1) means that

c(x0 + h) ∼x0 S−1
0

∑
k∈N

[
ak L

k
0(f)

]
(g(x0)) .(5.2)

We now define the sequence (tn)n∈N∗ by the formula

(5.3) log

(∑
k∈N

akX
k

)
=

∑
n∈N∗

tnX
n ,

so that both, ak and tn, are series in the variable h. We obtain

c(x0 + h) ∼x0
S−1
0 exp

( ∑
n∈N∗

tn
hn

Lk
0(f)

)
(g(x0)) .

We state the following theorem:

Theorem 5.1. Let f ∈ C∞(S1, V ) and set c = S−1
0 (f) ◦ g ∈ C∞(S1, V ). The

Taylor series at x0 of the function c is given by

c(x0 + h) ∼x0
S−1
0

(
Uh(t1/h, t2/h

2, ...)(f)
)
(g(x0)) ,

in which the times ti are related to the derivatives of g via Equation (5.3).

The coefficients of the series ak and tn appearing in (5.3) depend smoothly on
g ∈ Diff+(S

1) and x0 ∈ S1. Indeed, the map

(x, g) ∈ S1 ×Diff+(S
1) �→ (g(x), (un(x))n∈N∗) ∈ S1 × R

N
∗

is smooth due to Proposition 2.6 (more precisely, due to the generalization of Propo-
sition 2.6 to infinite products); smoothness ak then follows, while smoothness of tn
is consequence of Equation (5.3).

Remark 5.2. As a by-product of the foregoing computations, we notice the
following relation. If f ∈ C∞(S1, V ), we can write

f(x0+h) ∼x0
f(x0)+

∑
n∈N∗

(
hn

n!

(
d

dx

)n

f

)
(x0) =

(
exp

(
h
d

dx

)
f

)
(x0) ∈ J∞(S1, V )

for x0 ∈ S1.Thus, the operator exp
(
h d
dx

)
belongs to the space Clh(S

1, V ).

Appendix:the group of Diff+(S
1)−pseudodifferential operators

Now we present a restricted class of groups of Fourier integral operators which
we will call Diff+(S

1)-pseudodifferential operators following [30]. These groups
appear as central extensions of Diff+(S

1) by groups of (often bounded) pseudo-
differential operators. We do not state the basic facts on Fourier integral operators
here (they can be found in the classical paper [18]), but we recall the following
theorem, which was stated in [30] for a general base manifold M .
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Theorem 5.3. [30, Theorem 4] Let H be a regular Lie group of pseudodifferen-
tial operators acting on smooth sections of a trivial bundle E ∼ V × S1 → S1. The
group Diff(S1) acts smoothly on C∞(S1, V ), and it is assumed to act smoothly on
H by adjoint action. If H is stable under the Diff(S1)−adjoint action, then there
exists a regular Lie group G of Fourier integral operators defined through the exact
sequence:

1→ H → G→ Diff(S1)→ 1 .

If H is a Frölicher Lie group, then G is a Frölicher Lie group.

This result was proven in [30] by applying Theorem 2.16. Using the equivalence
between Gateaux-smooth and Frölicher-smooth in the Fréchet category stated after
Definition 2 and proven in [33], we have a Fréchet version of Theorem 5.3: if H is
a regular Fréchet Lie group which is stable under Diff(S1)−adjoint action, and G
is a smooth Fréchet manifold isomorphic to H ×Diff(S1) with multiplication and
inversion Frölicher (hence Fréchet) smooth, we have the equivalence:

H is a regular Fréchet Lie group ⇔ G is a regular Fréchet Lie group .

The pseudodifferential operators considered in Theorem 5.3 can be classical,
odd class, or anything else. Applying the formulas of “changes of coordinates”
(which can be understood as adjoint actions of diffeomorphisms) of e.g. [15], we
obtain that odd-class pseudodifferential operators are stable under the adjoint ac-
tion of Diff(S1). Thus, we can define the following group:

Definition 5.4. The group FCl0,∗Diff(S1),odd(S
1, V ) is the regular Fréchet Lie

group G obtained in Theorem 5.3 with H = Cl0,∗odd(S
1, V ).

Following [30], we remark that operators A in this group can be understood as

operators in Cl0,∗odd(S
1, V ) twisted by diffeomorphisms, this is,

(5.4) A = B ◦ g
for unique g ∈ Diff(S1) and unique B ∈ Cl0,∗odd(S

1, V ), and also that its Lie algebra
is isomorphic as a vector space to Cl0odd(S

1, V ) ⊕ V ect(S1), in which V ect(S1) is
the space of smooth vector fields on S1.

Remark 5.5. The diffeomorphism g appearing in (5.4) is the phase of the
operators, but here the phase (and hence the decomposition (5.4)) is unique, which
is not the case for general Fourier integral operators, see e.g. [18]. This construction
of phase functions of Diff(M)−pseudodifferential operators differs from the one
described by Omori [41] and Adams, Ratiu and Schmid [1] for the groups of Fourier
integral operators; the exact relation among these constructions still needs to be
investigated.

Now we note that the group Diff(S1) decomposes into two connected com-
ponents Diff(S1) = Diff+(S

1) ∪Diff−(S1), where the connected component of
the identity, Diff+(S

1), is the group of orientation preserving diffeomorphisms of
S1. We make the following definition:

Definition 5.6. The group FCl0,∗Diff+(S1),odd(S
1, V ) is the regular Fréchet Lie

group of all operators in FCl0,∗Diff(S1),odd(S
1, V ) whose phase diffeomorphisms lie

in the group Diff+(S
1).
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Theorem 5.7. Let U ∈ FCl0,∗Diff+(S1),odd(S
1, V ). There exists an unique pair

(S, Y ) ∈ Cl−1,∗
odd (S1, V )× (

DO0,∗(S1, V )�Diff+(S
1)

)
such that

U = S Y .

Moreover, the map U �→ (S, Y ) is smooth and, there is a short exact sequence of
Lie groups:

1→ Cl−1,∗
odd (S1, V )→ FCl0,∗Diff+(S1),odd(S

1, V )→ DO0(S1, V )�Diff+(S
1)→ 1

for which the Y -part defines a smooth global section, and which is a morphism of
groups.

Proof. We already know that U splits in an unique way as U = A0 . g , in
which g ∈ Diff+(S

1) and A0 ∈ Cl0,∗odd(S
1, V ). By Proposition 3.5, the pseudodiffer-

ential operator A0 can be written uniquely as a sum, A = AI +AD, in which AD ∈
DO0(S1, V ) ⊂ Clodd(S

1, V ). Since A0 is invertible, σ0(A0) ∈ C∞(S1, GL(V )) and
hence AD ∈ DO0,∗(S1, V ). We can write

U = A0.A
−1
D .AD.g.

We get Y = AD.g ∈ DO0,∗(S1, V ) � Diff+(S
1) and S = A0.A

−1
D ∈ Cl0,∗odd(S

1, V )
(the inverse of an odd class operator is an odd class operator). Let us compute the
principal symbol σ0(S):

σ0(S) = σ0(A0)σ0(A
−1
D ) = σ0(A0)σ0(A0)

−1 = IdV .

Thus, S ∈ Cl−1,∗
odd (S1, V ). Moreover, the maps U �→ g and A0 �→ AD are smooth,

and this observation ends the proof. �

Let us summarize our constructions. The semi-direct product of Fréchet Lie
groups

FCl0,∗Diff+(S1),odd(S
1, V ) = Cl0,∗odd(S

1, V )�Diff+(S
1)

fully described by the exact sequence

1 → Cl0,∗odd(S
1, V ) → FCl0,∗Diff+(S1),odd(S

1, V ) → Diff+(S
1) → 1

and by the associated sequence of Lie algebras

0 → Cl0odd(S
1, V ) → Cl0(S1, V )� V ect(S1) → V ect(S1) → 0 ,

in which we have used (3.1) and (3.2) in order to understand differential operators
having symbols of order 1 as elements of V ect(S1)⊗ IdV , can be completed by the
following diagram in which vertical and horizontal lines are short exact sequences
of Lie groups:

1 1
↓ ↓

1 → Cl−1,∗
odd (S1, V ) → Cl0,∗odd(S

1, V ) → DO0,∗(S1, V ) → 1
‖ ↓ ↓

1 → Cl−1,∗
odd (S1, V ) → FCl0,∗Diff+(S1),odd(S

1, V ) → DO0,∗(S1, V )�Diff+(S
1) → 1

↓ ↓
Diff+(S

1) = Diff+(S
1)

↓ ↓
1 1
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The corresponding diagram of Lie algebras, all of them embedded in Clodd(S
1, V )

is:

0 0
↓ ↓

0 → Cl−1
odd(S

1, V ) → Cl0odd(S
1, V ) → DO0(S1, V ) → 0

‖ ↓ ↓
0 → Cl−1

odd(S
1, V ) → Cl0odd(S

1, V )� V ect(S1) → DO0(S1, V )� V ect(S1) → 0
↓ ↓

V ect(S1) = V ect(S1)
↓ ↓
0 0

We end this appendix by considering exponential mappings. We can do so,
since the Lie groups Cl−1,∗

odd (S1, V ), FCl0,∗Diff+(S1),odd(S
1, V ) and DO0(S1, V ) �

Diff+(S
1) are regular (see our discussion at the beginning of this section and Defi-

nition 24). Let us consider a curve L(t) in the Lie algebra of FCl0,∗Diff+(S1),odd(S
1, V )

which, thanks to Proposition 25 and the Mulase decomposition, we can identify (as
a vector space) with Cl−1

odd(S
1, V )⊕DO1(S1, V ). Thus, we assume

L(t) ∈ C∞([0; 1], Cl−1
odd(S

1, V )⊕DO1(S1, V ))

and we write L(t) = LD(t) + LS(t). We compare the exponential exp(L)(t) ∈
C∞([0; 1], FCl0,∗Diff+(S1),odd(S

1, V )) with

exp(LD)(t) ∈ C∞
(
[0; 1], DO0,∗(S1, V ))�Diff+(S

1)
)

and

exp(LS)(t) ∈ C∞([0; 1], Cl−1,∗
odd (S1, V )) .

On the one hand, we can write

exp(L)(t) = S(t)Y (t)

according to Theorem 5.7, and we know that the paths t �→ S(t) and t �→ Y (t) are
smooth. On the other hand, using the definition of the left exponential map, we
get

d

dt
exp(L)(t) = exp(L)(t).L(t) .

Thus, gathering the last two expressions we obtain

d

dt
exp(L)(t)

=
d

dt
(S(t)Y (t))

=

(
d

dt
S(t)

)
S−1(t)S(t)Y (t) + S(t)Y (t)Y −1(t)

(
d

dt
Y (t)

)
=

(
d

dt
S(t)S−1(t)

)
exp(L)(t) + exp(L)(t)Y −1(t)

(
d

dt
Y (t)

)
= exp(L)(t)

(
Adexp(L)(t)−1

((
d

dt
S(t)S−1(t)

))
+ Y −1(t)

(
d

dt
Y (t)

))
.
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Now, Y −1(t) d
dtY (t) is a smooth path on the space of differential operators of order

1, and we have

Adexp(L)(t)−1

((
d

dt
S(t)S−1(t)

))
∈ Cl−1

odd(S
1, V ) .

These calculations allow us to prove the following:

Proposition 5.8. Let us assume that L(t) is a curve in the Lie algebra of the

group FCl0,∗Diff+(S1),odd(S
1, V ), that L(t) = LS(t)+LD(t) with LS(t) ∈ Cl−1

odd(S
1, V )

and LD(t) ∈ DO1(S1, V ), and that exp(L)(t) = S(t)Y (t). Then,

Y (t) = exp(LD)(t)

and
S(t) = exp

(
Adexp(L)(t) (LS)

)
(t) .

Proof. We have already obtained that

LD = Y (t)−1 d

dt
Y (t)

and that

LS = Adexp(L)(t)−1

((
d

dt
S(t)S−1(t)

))
because of the uniqueness of the decomposition

L = LS + LD .

We obtain the result by passing to the exponential maps on the groups Cl−1,∗
odd (S1, V )

and DO0,∗(S1, V )�Diff+(S
1). �
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https://doi.org/10.1007/s00023-020-00896-3.

[34] L. Mendoza, E. G. Reyes, Massey products, A∞-algebras, differential equations, and
Chekanov homology. J. Nonlinear Math. Phys 22, 342–360 (2015).

[35] J. Mickelsson, Current algebras and groups, Plenum monographs in Nonlinear Physics,
Springer (1989).

[36] M. Mulase, Complete integrability of the Kadomtsev-Petvishvili equation. Advances in Math.

54 (1984), 57–66.
[37] M. Mulase, Cohomological structure in soliton equations and Jacobian varieties. J. Diff.

Geom. 19 (1984), 403–430.

[38] M. Mulase, Solvability of the super KP equation and a generalization of the Birkhoff decom-
position. Invent. Math. 92 (1988), 1–46.

[39] S. Natanzon, A.V. Zabrodin, Formal solutions of the �−KP hierarchy. J. Phys. A: Math.

Theor. 49 ArticleId 145206 (2016)



260 J.-P. MAGNOT AND E.G. REYES

[40] K.-H. Neeb, Towards a Lie theory of locally convex groups Japanese J. Math. 1 (2006),

291-468

[41] H. Omori, Infinite Dimensional Lie Groups, AMS Translations of Mathematical Monographs
no 158 Amer. Math. Soc., Providence, R.I. (1997)

[42] S. Paycha, Regularised integrals, sums and traces. An analytic point of view. University

Lecture Series 59, AMS (2012).
[43] S. Paycha, Paths towards an extension of Chern-Weil calculus to a class of infinite dimen-

sional vector bundles. Geometric and topological methods for quantum field theory, 81–143,
Cambridge Univ. Press, Cambridge, (2013)

[44] A. M. Perelomov, Integrable systems of classical mechanics and Lie algebras, Birkhäuser
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