SPACES WITH COMPLEXITY ONE

ALYSON BITTNER

(communicated by John R. Klein)

Abstract

An A-cellular space is a space built from a space A and its suspensions, analogous to the way that CW-complexes are built from S^0 and its suspensions. The A-cellular approximation of a space X is an A-cellular space $CW_A X$, which is closest to X among all A-cellular spaces. The A-complexity of a space X is an ordinal number that quantifies how difficult it is to build an A-cellular approximation of X. In this paper, we study spaces with low complexity. In particular, we show that if A is a sphere localized at a set of primes then the A-complexity of each space X is at most 1.

1. Introduction

Let A be a pointed CW-complex. An A-cellular space is a space built out of copies of A via iterated pointed homotopy colimit constructions. Given a pointed space X, the A-cellular approximation of X is an A-cellular space $CW_A X$ equipped with a map $CW_A X \to X$, such that the induced map of pointed mapping complexes $Map_*(A, CW_A X) \to Map_*(A, X)$ is a weak equivalence. For example, S^0 -cellular spaces are CW-complexes and an S^0 -cellular approximation of a space X is the CW-approximation of X. Farjoun [2] showed that the A-cellular approximation of X exists for any A and X and that it is unique up to homotopy equivalence. The space $CW_A X$ is the best possible approximation of X in the class of A-cellular spaces: for any A-cellular space Y and a map $Y \to X$ there exists a map $Y \to CW_A X$, unique up to homotopy, such that the following diagram is homotopy commutative.

In [1] Chachólski, Dwyer, and Intermont introduced the concept of the A-complexity of a space X, which is the minimum ordinal number of homotopy colimits necessary to produce $CW_A(X)$ from copies of A. More precisely, starting with \mathbf{C}_0 the full subcategory of pointed spaces such that objects of \mathbf{C}_0 have the homotopy type of a retract of wedges of A, one can construct an increasing chain of categories indexed

2010 Mathematics Subject Classification: 55P60, 18C10.

Received February 5, 2018, revised September 6, 2018; published on December 19, 2018.

Key words and phrases: cellular space, complexity, mapping space. $% \left({{{\mathbf{x}}_{i}}} \right)$

Article available at http://dx.doi.org/10.4310/HHA.2019.v21.n2.a2

Copyright © 2018, Alyson Bittner. Permission to copy for private use granted.

by ordinal numbers α , where \mathbf{C}_{α} is the category of all spaces of the homotopy type of hocolim_{**D**} F for some small category **D** and a functor $F: \mathbf{D} \to \bigcup_{\beta < \alpha} \mathbf{C}_{\beta}$ and their retracts. The A-complexity of X is the minimal ordinal $\kappa_A(X)$ such that $X \in \mathbf{C}_{\kappa_A(X)}$.

A CW-approximation of a space X can be constructed as $|\operatorname{sing} X|$, which is a homotopy colimit of discrete spaces. Thus, in the case of $A = S^0$ the category \mathbf{C}_1 consists of all spaces having the homotopy type of a CW-complex, which implies that $\kappa_{S^0}(X) \leq 1$ for any space X. This is, however, not the case for other choices of A, and in general the complexity of a space need not even be finite. For example, if A = $M(\mathbb{Z}/p, n)$ is a Moore space for some $n \geq 1$ with p a prime and $X = M(\mathbb{Z}/p^{\infty}, n+1)$ then $\kappa_A(X) = \omega$ (see [1, Proposition 9.3]).

Results of Stover [7] imply that if $A = S^n$ then $\kappa_A(X) \leq 2$ for all X. Chachólski, Dwyer and Intermont observed for $A = S^1$ we have $\kappa_A(X) \leq 1$ for all X and suggested that it should be possible to similarly lower the bound for all spheres $A = S^n$ [1, §9.3]. The goal of this note is to show that this is indeed the case, and that this result holds in even greater generality:

Theorem 1.1. If A is a sphere or a sphere localized at a set of primes then $\kappa_A(X) \leq 1$ for all spaces X.

Acknowledgments

I want to express my appreciation to my advisor, Bernard Badzioch, for his helpful comments which led to the final version of paper. Additionally, I would like to thank Matthew Sartwell for several useful conversations.

2. Algebras of mapping spaces

Our proof of Theorem 1.1 will be based on the following algebraic description of mapping spaces obtained by Sartwell [5]. For pointed spaces X, Y let $\operatorname{Map}^{\Delta}_{*}(X, Y)$ denote the simplicial mapping complex of pointed maps $X \to Y$. Given a pointed CW-complex A let \mathbf{T}^{A} denote a simplicial category on objects T_{n} for $n = 0, 1, \ldots$, and such that

$$\operatorname{Hom}_{\mathbf{T}^{A}}(T_{n}, T_{m}) = \operatorname{Map}^{\Delta}_{*}\left(\bigvee^{m} A, \bigvee^{n} A\right).$$

Notice that in this category T_n is the *n*-fold product of T_1 . A \mathbf{T}^A -algebra is a product preserving simplicial functor $\mathbf{T}^A \to \mathbf{sSet}_*$ where \mathbf{sSet}_* is the category of pointed simplicial sets. Let $\mathbf{Alg}^{\mathbf{T}^A}$ denote the category of all \mathbf{T}^A -algebras with natural transformations as morphisms.

Notice that any pointed space X defines a \mathbf{T}^{A} -algebra $\Omega^{A}(X)$ such that

$$\Omega^A(X)(T_n) = \operatorname{Map}^\Delta_*\left(\bigvee^n A, X\right).$$

The resulting functor $\Omega^A \colon \mathbf{Top}_* \to \mathbf{Alg}^{\mathbf{T}^A}$ has a left adjoint B^A .

The category $\mathbf{Alg}^{\mathbf{T}^{A}}$ can be equipped with a model category structure where weak equivalences and fibrations are defined as objectwise weak homotopy equivalence

and Serre fibrations respectively. Denote also by $\mathbf{R}^{A}\mathbf{Top}_{*}$ the category \mathbf{Top}_{*} taken with the model category structure where fibrations are Serre fibrations and weak equivalences are maps $f: X \to Y$ that induce weak equivalences $f_{*}: \operatorname{Map}_{*}^{\Delta}(A, X) \to$ $\operatorname{Map}_{*}^{\Delta}(A, Y)$. In other words, $\mathbf{R}^{A}\mathbf{Top}_{*}$ is obtained by taking the right Bousfield localization of the usual model category structure on \mathbf{Top}_{*} with respect to the space A [3, 5.1.1]. Sartwell showed that the following holds:

Theorem 2.1 ([5]). Let A be a sphere or a sphere localized at a set of primes. The adjoint pair

$$B^A \colon \mathbf{Alg}^{\mathbf{T}^A} \rightleftarrows \mathbf{R}^A \mathbf{Top}_* \colon \Omega^A$$

is a Quillen equivalence.

A simplicial version of this argument can be seen in [4].

3. Proof of Theorem 1.1

Directly from the definition of an A-cellular approximation it follows that if spaces X and Y are weakly equivalent in R^A **Top** then $CW_A X$ and $CW_A Y$ are weakly homotopy equivalent, and so $\kappa_A(X) = \kappa_A(Y)$. Let A be a space as in Theorem 1.1. By Theorem 2.1 for any space X we get a weak equivalence $X \simeq B^A Q \Omega^A X$ in R^A **Top**, where $Q\Omega^A X$ denotes a cofibrant replacement of $\Omega^A X$ in the category Alg^{T^A} . Therefore, it is only necessary to show that for any space X, $\kappa_A(B^A Q \Omega^A X) \leq 1$.

The algebra $Q\Omega^A X$ can be described more explicitly as follows. Let $U: \operatorname{Alg}^{\mathbf{T}^A} \to \operatorname{sSet}_*$ denote the forgetful functor, $U(\Phi) = \Phi(T_1)$. This functor has a left adjoint $F: \operatorname{sSet}_* \to \operatorname{Alg}^{\mathbf{T}^A}$ [6, 2.3]. For a \mathbf{T}^A -algebra Φ , let $FU_{\bullet}\Phi$ be the simplicial \mathbf{T}^A -algebra defined by the adjoint pair (F, U). Explicitly:

$$FU_n\Phi := (FU)^{n+1}\Phi.$$

By [5, 2.3.3] the natural map $|FU_{\bullet}\Phi| \to \Phi$ is a cofibrant replacement of Φ in the category $\mathbf{Alg}^{\mathbf{T}^{A}}$.

In view of this fact we need to show that for any space X the A-complexity of $B^A|FU_{\bullet}\Omega^A X|$ is at most one. The functor B^A is a left adjoint and so commutes with homotopy colimits, in particular, with the geometric realization functor. The functor $B^A F$: $\mathbf{sSet}_* \to \mathbf{Top}_*$ is left adjoint to $U\Omega^A$, and since $U\Omega^A(X) = \mathrm{Map}^{\Delta}_*(A, X)$, thus for Y a (pointed) simplicial set we get $B^A F(Y) = A \wedge |Y|$. Combining these observations we obtain

$$\begin{split} B^{A}|FU_{\bullet}\Omega^{A}X| \simeq & |B^{A}FU_{\bullet}\Omega^{A}X| \simeq \operatorname{hocolim}_{n \in \Delta^{op}}|(B^{A}F)U((FU)^{n}\Omega^{A}X)| \\ \simeq & \operatorname{hocolim}_{n \in \Delta^{op}}|(B^{A}F)(FU)^{n}\Omega^{A}X(T_{1})| \\ \simeq & \operatorname{hocolim}_{n \in \Delta^{op}}A \wedge |(FU)^{n}\Omega^{A}X(T_{1})| \\ \simeq & \operatorname{hocolim}_{(n,m) \in \Delta^{op} \times \Delta^{op}}A \wedge ((FU)^{n}\Omega^{A}X(T_{1}))_{m} \\ \simeq & \operatorname{hocolim}_{(n,m) \in \Delta^{op} \times \Delta^{op}} \bigvee_{\sigma \in S^{n}_{m}} A, \end{split}$$

where S_m^n denotes the set $((FU)^n \Omega^A X(T_1))_m$.

ALYSON BITTNER

References

- W. Chachólski, W.G. Dwyer, and M. Intermont. The A-complexity of a space. J. Lond. Math. Soc. (2) 65 (2002), no. 1, 204–222.
- [2] E.D Farjoun. Cellular spaces, null spaces and homotopy localization. Lecture Notes in Math., 1622. Springer-Verlag, Berlin, 1996.
- [3] P.S. Hirschhorn. Model categories and their localizations. Math. Surveys Monogr., 99. American Mathematical Society, Providence, RI, 2003.
- [4] M. Sartwell. A P-local delooping machine. arXiv preprint arXiv:1510.08404, 2015.
- [5] M. Sartwell. Detecting Mapping Spaces and Derived Equivalences of Algebraic Theories. Ph.D. thesis, State University of New York at Buffalo, 2016.
- [6] S. Schwede. Stable homotopy of algebraic theories. Topology 40 (2001), no. 1, 1–41.
- [7] C.R. Stover. A van Kampen spectral sequence for higher homotopy groups. *Topology* 29 (1990), no. 1, 9–26.

Alyson Bittner alysonbi@buffalo.edu

Department of Mathematics, University at Buffalo, SUNY, Buffalo, NY 14260, USA