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Abstract
An exterior space is a topological space equipped with a distin-

guished quasi-filter of open subsets (closed by finite intersections) that
we call externology. For an exterior space one can consider limits,
bar-limits and different sets of end points (Steenrod, Čech, Brown-
Grossman).

In this work we analyze relations between exterior spaces and dis-
crete semi-flows. In order to do this we introduce the notion of exterior
discrete semi-flow, which is a mixture of exterior space and discrete
semi-flow. We see that any classical discrete semi-flow can be pro-
vided with the structure of an exterior discrete semi-flow by taking the
quasi-filter of right-absorbing open subsets. Such a family of open sub-
sets is used to study the relations between limits and periodic points
and connections between bar-limits and omega-limits. The different
notions of end points are used to decompose the region of attrac-
tion of an exterior discrete semi-flow as a disjoint union of basins of
end points. We also analyze the exterior discrete semi-flow structure
induced by the family of open neighborhoods of a given sub-semi-flow.

1. Introduction

The homotopy theory of exterior spaces has connections with proper homotopy and
(strong) shape theories as well as with the homotopy theory of pro-spaces and simpli-
cial sets [26, 27, 21, 5]. These theories are interrelated and some homotopy invariant
groups are usually considered in order to distinguish spaces or to characterize some
homotopy equivalences. For instance, Steenrod, Borsuk-Čech and Brown-Grossman
homotopy groups can be given in all these contexts. Moreover, exterior spaces theory
has proven to be very useful in the study of topological invariants in several set-
tings such as proper homotopy theory and its numerical invariants or shape theory
([4, 6, 8, 12, 13, 14, 15]). Also, some applications of exterior spaces have been

Partially supported by Ministerio de Economı́a y Competitividad (grant MTM2016-78647-P) and
University of La Rioja (projects: APPI16/03, EGI16/42).
Received June 19, 2018; published on December 19, 2018.
2010 Mathematics Subject Classification: 54H20, 55P57, 55P55.
Key words and phrases: discrete semi-flow, exterior space, limit space, end point, end space, exterior
discrete semi-flow.
Article available at http://dx.doi.org/10.4310/HHA.2019.v21.n2.a6

Copyright c© 2018, International Press. Permission to copy for private use granted.

http://intlpress.com/HHA/
http://intlpress.com/HHA/v21/
http://intlpress.com/HHA/v21/n2/
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developed to the study of continuous dynamical systems (flows) in [16, 17, 18].
The notion of absorbing open subset of a dynamical system (i.e., an open subset
that contains the “future part” of all the trajectories) gives one of the key points to
connect the seemingly different theories of dynamical systems and exterior spaces.
Indeed, the family of all absorbing open subsets is a quasi-filter which gives the
structure of an exterior space to the flow under study. The limit space and end
space of this exterior space are used in [16, 18] to construct limit spaces and end
spaces of a given flow. Such constructions enabled us to study relationships between
exterior-theoretic notions of a continuous flow and the usual notions of omega-limits,
first prolongational limits and several types of almost periodic points (Poisson-stable
points, non-wandering points). We can also use the exterior end points (of Freuden-
thal type, see [10]) to obtain an induced decomposition of a dynamical system as a
disjoint union of basins of end points. In [17], the theory of exterior spaces has also
been used to construct a Čr

0-completion and a Čl
0-completion of a dynamical sys-

tem. For any given flow X, two maps X → Čr
0(X) and X → Čl

0(X) are constructed
and, when one of these maps is a homeomorphism, one has the class of Čr

0-complete
and Čl

0-complete flows, respectively. The advantage of working with a complete flow
is that one has interesting relations between the topological properties (separability
properties, compactness, convergence of nets, etc.) and dynamical properties (periodic
points, omega limits, attractors, repellers, etc.). These results confirm the importance
of the purely topological behavior of a continuous dynamical system in many, radically
different in principle, situations (differential equations, non-linear analysis, transfor-
mation groups, etc.). As known, the topological techniques in dynamical systems were
initially introduced by Poincaré [24, 25] and Birkhoff [3].

Taking into account the deep relations between exterior spaces and continuous
dynamical systems, commented in the paragraph above, we have set as the main
general objective of this paper to find out new links between exterior spaces and the
dynamical properties of discrete dynamical systems. Discretization processes and the
suspension of the Poincaré first return map and other constructions give a nice inter-
dependence of the properties of discrete and continuous dynamical systems, see [9]. As
a consequence, many of the properties, results and applications given in [16, 17, 18]
must have a counterpart of notions and results that can be developed and proved
for discrete dynamical systems. We may consider four important notions: continu-
ous flows, continuous semi-flows, discrete flows and discrete semi-flows. It is worth
mentioning some obvious differences between the properties of these structures: In a
semi-flow, we are dealing with a semi-group of continuous maps instead of a group of
homeomorphisms. This fact implies that for semi-flows the construction and proper-
ties of left omega-limits are quite different to those of right omega-limits. A continuous
flow has the nice property that all the points in a trajectory are in the same path
component; however, we cannot ensure such a nice property for discrete semi-flows.
These differences have to be taken into account when one analyzes the interrelations
between the theory of exterior spaces and the theory of discrete semi-flows. Subse-
quently, one has some similarities with the results and tools given in [16, 17, 18], but
new (non-analogous) techniques ought to be developed for a better analysis of discrete
semi-flows. For instance, it is interesting to remark that, for continuous dynamical
systems an analogue of the Borsuk-Čech invariant π̌0 has played an important role in
order to divide a continuous flow into a disjoint union of basins of end points given by
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the functor π̌0. Nevertheless, for discrete semi-flows it is better to use the analogue of
the Brown-Grossman invariant πBG0 instead of that of the functor π̌0. The notion of
Brown-Grossman end points is more natural for discrete semi-flows but this technique
was not introduced in the previous applications of exterior spaces to continuous flows.

The techniques presented in this paper give a nice connection between notions
associated to an exterior space and dynamic notions associated to a discrete semi-
flow. Indeed, for exterior discrete semi-flows we have the region of attraction of its
externology as well as the limit and bar-limit of its externology. We also have different
notions of end points (at least, one can consider three types of end points which are
given by the analogues of the 0-dimensional homotopy invariants of types: Borsuk-
Čech π̌0, Steenrod πS0 and Brown-Grossman groups πBG0 ). But, in discrete dynamic
systems, one also has the classical notion of region of attraction of a right-invariant
subset, the omega-limit of a point, periodic points, basins of n-cycles, etc. Then, we
have discovered the existence of strong links between the regions of attraction of an
externology and the regions of attraction of a right-invariant subset (see Theorem 5.6
and Theorem 5.7), between the notion of limit and the subset of periodic points
(see Theorem 7.5), between the bar-limit and the notion of omega-limit (see Theo-
rem 7.12), between the basin of an end point of Borsuk- Čech type and the basin of a
fixed point and, finally, between the basin of an end point of Brown-Grossman type
and the basin of a periodic point and of an n-cycle.

There are some other interesting interrelations of exterior spaces and discrete semi-
flows that have not been analyzed in this first approach of our present study. However,
we think that the use of adequate quasi-filters of open subsets will also permit us to
study questions relating to sensitivity to the initial conditions, stability problems
and other dynamical questions connected to higher dimension homotopy groups of
exterior spaces.

2. Preliminaries

2.1. Exterior spaces

In this subsection we recall some definitions and properties related to exterior
spaces. For a deeper study of the category of exterior spaces we refer the reader to
[11, 19].

Given a topological space X with a topology tX and a subset A ⊂ X, the closure
of A in X is denoted by A and the interior by Å or Int(A).

Definition 2.1. Let X be a topological space. An externology on X is a non-empty
collection ε(X) of open subsets which is closed under finite intersections and such
that, if E ∈ ε(X) and U is an open subset such that E ⊂ U , then U ∈ ε(X). If an
open subset is a member of ε(X), then it is said to be an exterior open subset.

An exterior space (X, ε(X)) consists of a topological space X together with an
externology ε(X). When it is clear from the context, we will shorten the notation by
just writing X instead of (X, ε(X)).

A map f : (X, ε(X))→ (X ′, ε(X ′)) is said to be an exterior map if it is continuous
and f−1(E′) ∈ ε(X), for all E′ ∈ ε(X ′).
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For a topological space X we can consider the co-compact externology

εc(X) = {E ⊂ X | X \ E is closed compact}.

We denote R, R+ and N the exterior spaces determined by the usual topology and
co-compact externology on the sets of real numbers R, non-negative real numbers R+

and natural numbers N = {0, 1, 2, . . . }, respectively.
The category of exterior spaces and exterior maps is denoted by E, and the category

of topological spaces and continuous maps by Top.
An important role in this paper will be played by the following construction: Let

(X, ε(X), tX) be an exterior space, and let (Y, tY , τ) be a set Y endowed with two
topologies tY , τ such that tY ⊂ τ . For y ∈ Y we denote by τy the family of open neigh-
borhoods of (Y, τ) at y. Given the topological spaces (X, tX), (Y, tY ), we consider on
X × Y the product topology which is denoted by tX×Y and the externology ε(X×̄τY )
given by those E ∈ tX×Y such that for each y ∈ Y there exists Uy ∈ τy and T y ∈ ε(X)
such that T y × Uy ⊂ E. The resulting exterior space (X × Y, ε(X×̄τY ), tX×Y ) will
be denoted by X×̄τY .

In some contexts, for instance working with exterior homotopies, it is frequent to
take τ = tY . For these cases, we will use the shorter notation

X×̄Y = (X × Y, ε(X×̄tY Y ), tX×Y ) = X×̄tY Y.

Therefore, for these cases we have an induced functor:

(·)×̄(·) : E×Top→ E, (X,Y ) 7→ X×̄Y.

When Y is a compact space, we have that E is an exterior open subset of X×̄Y
if and only if it is an open subset and there exists G ∈ ε(X) such that G× Y ⊂ E.
Furthermore, if Y is a compact space and ε(X) = εc(X), then ε(X×̄Y ) coincides with
εc(X × Y ) the externology of the complements of closed-compact subsets of X × Y .
We also note that if Y is a discrete space, then E is an exterior open subset of X×̄Y if
and only if it is open and for each y ∈ Y there is T y ∈ ε(X) such that T y × {y} ⊂ E.

Given f, g : X → Y in E, it is said that f is exterior homotopic to g if there is an
exterior homotopy H : X×̄I → Y from f to g. Denote by πE and πTop the exterior
homotopy category and the usual homotopy category corresponding to E and Top,
respectively. Given X,Y two exterior spaces, the set of exterior homotopy classes
from X to Y will be denoted by πE(X,Y ). Its elements [f ] are homotopy equivalence
classes of exterior maps f : X → Y . Similar notation is used in the case of topological
spaces.

We recall that, for a topological space Y , π0(Y ) denotes the set of path components
of Y and we have a quotient map Y → π0(Y ). Note that a continuous map f : Y → Y ′

induces a natural map π0(f) : π0(Y )→ π0(Y ′).
An inverse system of sets (or topological spaces) is a functor Z : I → Sets, where I

is a directed set and Sets is the category of sets (resp., considering Top). The functor
Z carries i > j, i, j ∈ I, to Zij : Zi → Zj . The inverse limit of Z = {Zi} is denoted by
limi∈I Zi (or just by limZi). An element of the inverse limit can be represented
by an element (zi)i∈I of the product

∏
i∈I Zi satisfying that Zij(zi) = zj , i > j. We

also have that if {Yi} is an inverse system of topological spaces, then {π0(Yi)} is
an inverse system of sets and one can consider the inverse limit limi∈I π0(Yi). An
element of limi∈I π0(Yi) is given by (Ci)i∈I , where Ci is a path component of Yi such
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that Y ij (Ci) ⊂ Cj for i > j. For more results and properties about inverse systems,
we refer the reader to [5].

Definition 2.2. Given an exterior space X, its externology ε(X) can be considered
as an inverse system of topological spaces, and we have the following notions:

The topological subspace

L(X) = lim
E∈ε(X)

E =
⋂

E∈ε(X)

E

will be called the limit space of X and

L̄(X) = lim
E∈ε(X)

E =
⋂

E∈ε(X)

E

will be called the bar-limit space of X.

The π̌0-end set of X is given by

π̌0(X) = lim
E∈ε(X)

π0(E).

The ˇ̄π0-end set of X is given by

ˇ̄π0(X) = lim
E∈ε(X)

π0(E).

The πBG
0 -end set of X is given by

πBG
0 (X) = πE(N, X).

The πS
0 -end set of X is given by

πS
0 (X) = πE(R+, X).

2.2. Discrete semi-flows

Next, we recall some basic notions about discrete semi-flows. These notions can be
given for a set or for a topological space.

Definition 2.3. A discrete semi-flow on a (topological space) set X is a (contin-
uous) map φ : N×X → X such that:

(i) φ(0, x) = x, ∀x ∈ X;

(ii) φ(n, φ(m,x)) = φ(n+m,x), ∀x ∈ X, ∀n,m ∈ N.

A discrete semi-flow on X will be denoted by (X,φ) and, when no confusion is
possible, we will use X and n · x = φ(n, x) for short. Similarly, for a subset S ⊂ N we
will denote S · x = {n · x | n ∈ S}.

Given two discrete semi-flows (X,φ) and (Y, ψ), a discrete semi-flow morphism
f : (X,φ)→ (Y, ψ) is a (continuous) map f : X → Y such that f(n · x) = n · f(x),
for every (n, x) ∈ N×X. The category of discrete semi-flows (defined on topological
spaces) will be denoted by F(N).

Remark 2.4. Note that giving a discrete semi-flow (X,φ) on a (topological space) set
X is equivalent to giving a (continuous) map f = φ1 : X → X.
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Given a discrete semi-flow φ : N×X → X, n0 ∈ N, x0 ∈ X, we have the induced
maps φn0 : X → X, φn0(x) = φ(n0, x) and φx0

: N→ X, φx0
(n) = φ(n, x0).

For a discrete semi-flow (X,φ), a subset A ⊂ X is said to be right invariant if
φ1(A) ⊂ A and it is said to be left invariant if (φ1)−1(A) ⊂ A. A subset which is
left-invariant and right-invariant it is said to be completely invariant.

Given two points x, y ∈ X, we have the following equivalence relation: x ∼ y if
there are k, l ∈ N such that φk(x) = φl(y). If [x] is the equivalence class of x, note
that [x] is a completely invariant subset. Denote by X/∼ the quotient set which has
a trivial induced action. The subset [x] of X is the big orbit of x and the subset
N · x is the trajectory of x.

Definition 2.5. Let X be a discrete semi-flow and x a point of X.

(i) x is a fixed point if, for every n ∈ N, n · x = x.

(ii) x is a periodic or cyclic point if there is n ∈ N, n 6= 0, such that n · x = x.

(iii) x is an m-periodic point if m · x = x.

(iv) x is an m-cyclic point if m · x = x and if for 0 < k < m, then k · x 6= x.

The right-invariant subsets of fixed, periodic, m-periodic and m-cyclic points of X
are denoted by Fix(X), P (X), Pm(X) and Cm(X), respectively. From the definition,
it is clear that Cm(X) ⊂ Pm(X).

A net of a topological space X is denoted by xi, where we suppose that i describes a
directed set. In this paper, [n,+∞) denotes the subset {m ∈ N | m > n} and similarly
(n,+∞) = {m ∈ N | m > n}. The following notions are given for topological spaces
with a given semi-flow structure:

Definition 2.6. For a discrete semi-flow (X,φ), the omega-limit set of a point
x ∈ X (or right-limit set, or positive limit set) is given as follows:

Λ(x) = {y ∈ X | there exists a net ni → +∞, ni ∈ N, such that ni · x→ y}.

We note that the subset Λ(x) admits the alternative definition

Λ(x) =
⋂
n>0

[n,+∞) · x.

For a given subspace S ⊂ X, the set Λ(S) =
⋃
x∈S Λ(x) is called the omega-limit

set of S.
A point x ∈ X is said to be Poisson stable (or positively Poisson stable) if x ∈

Λ(x). We will denote by Poisson(X) the right-invariant subset of Poisson stable points
of X.

Note that P (X) ⊂ Poisson(X) ⊂ Λ(X). It is also easy to check that Λ(x) and Λ(X)
are right-invariant subsets of X and one also has that, for x ∈ X, x and φ1(x) have
the same omega-limit.

Lemma 2.7. Let (X,φ) be a discrete semi-flow and let S ⊂ X. Then:

(i) φ1(Λ(x)) ⊂ Λ(x),

(ii) φ1(Λ(S)) ⊂ Λ(S),

(iii) Λ(φ1(x)) = Λ(x).
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Remark 2.8. Observe that, if X satisfies the first axiom of countability (for instance,
when X is metrizable), then we can consider sequences instead of nets in Defini-
tion 2.6.

Definition 2.9. Let (X,φ) be a discrete semi-flow and x ∈ X. It is said that X is
Lagrange stable at x (or positively Lagrange stable at x) if N · x is a compact
subset. X is Lagrange stable if, for every x ∈ X, X is Lagrange stable at x.

Definition 2.10. Let (X,φ) be a discrete semi-flow and let S ⊂ X.
The region of pseudo-attraction of S is defined by

PA(S) = {x ∈ X | Λ(x) ⊂ S}.

The region of weak-attraction of S is defined by

WA(S) = {x ∈ X | Λ(x) ∩ S 6= ∅}.

The region of attraction of S is defined by

A(S) = {x ∈ X | ∅ 6= Λ(x) ⊂ S}.

Lemma 2.11. Let (X,φ) be a discrete semi-flow and let S ⊂ X. Then:

(i) PA(S) = PA(∅) ∪A(S), ∅ = PA(∅) ∩A(S);

(ii) A(S) = PA(S) ∩WA(S);

(iii) PA(S),WA(S),A(S) are completely invariant;

(iv) If X is Lagrange stable at every point of PA(S), then

PA(∅) = ∅ and PA(S) = A(S).

Proof. (i) and (ii) follow from the definition and (iii) from the identity Λ(x) =
Λ(φ1(x)), for every x ∈ X. (iv) follows from the Lagrange stability of X and the
fact that Λ(x) is a non-empty compact subset of X, for any x ∈ X.

3. Natural transformations for limit and end spaces of exterior
spaces

In subsection 2.1, for an exterior space, the notions of limit, bar-limit and different
sets of end points were introduced. Now, we analyze some relationships between them.

Given an exterior space (X, ε(X)), the canonical maps

E ⊂ E, E → π0(E), E → π0(E)

induce a commutative diagram

L(X)
e //

��

π̌0(X)

��
L̄(X)

ē // ˇ̄π0(X)

We can consider the shift map s : N→ N, given by s(i) = i+ 1, i ∈ N. This exterior
map induces the canonical map S : πBG

0 (X)→ πBG
0 (X), S([α]) = [αs], for any given

exterior map α : N→ X.
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The inclusion map in : N→ R+ induces a natural transformation

RX : πS
0 (X)→ πBG

0 (X),

given by RX([α]) = [α|N] for an exterior map α : R+ → X. Then we can consider the
diagram

πS
0 (X)

RX // πBG
0 (X)

Id //
S
// πBG

0 (X),

where the image of RX is the equalizer of the identity and shift maps (see [19]).

Remark 3.1. In fact, there is a very interesting exact sequence of homotopy groups
associated to an exterior space X with a base ray α : R+ → X (i.e., α is an exterior
map)

· · · // πS
q (X) // πBG

q (X)
Id−S // πBG

q (X) // πS
q−1(X) // · · ·

ending at dimension zero in the above diagram. These higher exterior homotopy
invariants are powerful tools for the study and classification of exterior spaces, see
[5, 8, 19]. In the next sections we will only consider the zero dimensional part of
this sequence for the study of end points (and their basins) of an exterior discrete
semi-flow. Similar exact sequences in the context of shape theory or pro-spaces can
be seen in [26, 20].

The connection between the set of πS
0 -end points and the set of π̌0-end points of

an exterior space is given by the natural transformation

ηX : πS
0 (X)→ π̌0(X),

where ηX is defined by ηX([α]) = π̌0(α)(+∞) (observe that π̌0(R+) = {+∞}).
There is also a relationship between the sets of π̌0-end points and πBG

0 -end points
of X, but we need exterior spaces with some additional conditions.

Definition 3.2. An exterior space (X, ε(X)) is said to be first-countable at infinity
if ε(X) contains a countable base E0 ⊃ E1 ⊃ E2 ⊃ · · · ; that is, each Ei ∈ ε(X) and,
for every E ∈ ε(X), there is i ∈ N such that Ei ⊂ E.

Proposition 3.3. Let (X, ε(X)) be a first-countable at infinity exterior space. Then
there is a canonical injective map θX : π̌0(X)→ πBG

0 (X) such that the image of this
map is the set {a ∈ πBG

0 (X) | S(a) = a}. Moreover, ηX is surjective and the map RX
factorizes as

πS
0 (X)

RX //

ηX && &&

πBG
0 (X)

π̌0(X)
88 θX

88

Consequently, for exterior spaces which are first-countable at infinity, θX : π̌0(X)→
πBG

0 (X) is the equalizer of the identity and the shift map.

Proof. Since X is first-countable at infinity, we have a countable base: E0 ⊃ E1 ⊃
E2 ⊃ · · · . By the definition of π̌0(X), it follows that π̌0(X) = limπ0(Ei). Therefore
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an end point a ∈ π̌0(X) can be represented by a sequence of path components C0 ⊃
C1 ⊃ C2 ⊃ · · · . For every i ∈ N, take a point xi ∈ Ci and define a map α : N→ X by
α(i) = xi. Then the map θX : π̌0(X)→ πBG

0 (X) is given by θX(a) = [α]. It is easy to
check that the definition of θX does not depend on the chosen base nor the chosen
points and that it is injective.

Now if xi, xi+1 ∈ Ci, then there is path Fi : I → Ci from xi to xi+1. The exte-
rior homotopy F : N×̄I → X given by F (i, t) = Fi(t) satisfies that F (i, 0) = xi and
F (i, 1) = xi+1. This implies that S(θX(a)) = θX(a). Conversely, take α : N→ X and
suppose that S([α]) = [αs] = [α]. Then there is an exterior homotopy F : N×̄I → X
from α to αs and we can define an exterior map β : R+ → X by β(r) = F (E(r),
r − E(r)), where E(r) is the integer part of r > 0. It is easy to check that
θX(π̌0(β)(+∞)) = [α]. The rest of the proof follows in a straightforward way.

Remark 3.4. In order to obtain a more complete description of the relations between
constructions and invariants associated to an exterior space and distinguished subsets
of discrete semi-flows, the authors think that some further work needs to be done by
using the following new notions: Given two exterior spaces (X, ε(X)), (X ′, ε(X ′)) a
bar-exterior map f : (X, ε(X))→ (X ′, ε(X ′)) is a continuous map f : X → X ′ such
that for every E′ ∈ ε(X ′), there is E ∈ ε(X) such that f(E) ⊂ E′. Note that an
exterior map is always a bar-exterior map. This yields to a large category Ē, a new
homotopy category π(Ē) and new invariants:

1. The π̄BG
0 -end set of X is given by π̄BG

0 (X) = π(Ē)(N, X).

2. The π̄S
0 -end set of X is given by π̄S

0 (X) = π(Ē)(R+, X).

It is interesting to observe that taking the categories Ē and π(Ē), there is a new
exact sequence of homotopy groups associated to an exterior space X with a base ray
α : R+ → X

· · · // π̄S
q (X) // π̄BG

q (X)
Id−S // π̄BG

q (X) // π̄S
q−1(X) // · · · .

The new “bar-invariants” can be related to invariants above using the exact sequences
associated to the pairs (E,E)E∈ε(X) that will reflect the differences between the two
types of invariants.

In the present paper, we add some remarks about some possible new results con-
nected with the notion of bar-exterior map. The new notions are related to pure
topological versions of Julia and Fatou sets and a more complete study needs to be
done to clarify these interesting connections.

4. Exterior discrete semi-flows

In this section we introduce the notion of exterior discrete semi-flow, which com-
bines the notions of exterior space and discrete semi-flow.

Definition 4.1. Let X be an exterior space. An exterior discrete semi-flow is
a discrete semi-flow φ : N×X → X such that, for any n ∈ N, φn : X → X is exterior
(this is equivalent to the simpler condition φ1 : X → X is exterior).

An exterior discrete semi-flowX is said to be d-exterior if it satisfies that φx : N→
X is exterior, for every x ∈ X.
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An exterior discrete semi-flow morphism of exterior discrete semi-flows
f : X → Y is a discrete semi-flow morphism such that f is exterior.

Remark 4.2. The condition which asserts that φx : N→ X is exterior for every x ∈ X
can be replaced by the requirement that φ : N×̄dX → X is exterior, where d stands
for the discrete topology on X (remember the general construction X×̄τY given at
the preliminaries). Observe that this second topology d considered on X is just used
in order to give the corresponding structure of exterior space on N×̄dX. This is the
reason for choosing the terminology “d-exterior” in the definition above.

Denote by EF(N) the category of exterior discrete semi-flows and by EdF(N), the
full subcategory of d-exterior discrete semi-flows.

We adopt the following notational convention: an exterior discrete semi-flow will
be denoted by a triplet (X,φ, ε(X)). Nevertheless, sometimes when the action φ or
the externology are clear in a particular context, we will shorten the notation and we
will use (X, ε(X)) or (X,φ); moreover, in many cases the notation will be reduced to
X.

We have defined above the limit space of an exterior space. In particular, since
an exterior discrete semi-flow X is an exterior space, we can consider the limit space
L(X) and the bar-limit space L̄(X).

Proposition 4.3. Let (X,φ, ε(X)) be an exterior discrete semi-flow. Then L(X) and
L̄(X) are right-invariant.

Proof. Denote f = φ1. Since f is an exterior map, it follows that f−1(E) ∈ ε(X) for
every E ∈ ε(X). Then one has that

f−1(L(X)) = f−1

 ⋂
E∈ε(X)

E

 =
⋂

E∈ε(X)

f−1(E) ⊃
⋂

E∈ε(X)

E = L(X).

This implies that f(L(X)) ⊂ L(X). For L̄(X), the proof is similar using also the fact
that if f is continuous, f(E) ⊂ f(E) for every E ∈ ε(X).

For an exterior discrete semi-flow X, one has that the exterior map φ1 : X → X
induce the maps πS0 (φ1), πBG

0 (φ1), π̌0(φ1), ˇ̄π0(φ1) that give canonical discrete semi-
flow structures on the corresponding sets πS0 (X), πBG

0 (X), π̌0(X), ˇ̄π0(X). Therefore,
the exterior homotopy invariants πS0 (X), πBG

0 (X), π̌0(X), ˇ̄π0(X) can be enriched with
a discrete semi-flow structure.

5. The regions of attraction of an exterior discrete semi-flow

Now, suppose that (X,φ, ε(X)) is an exterior discrete semi-flow. Consider

D(X) = {x ∈ X | φxis exterior}.

In a similar way, one can define D̄(X) as the set of points x ∈ X such that, for every
E ∈ ε(X), there is nE ∈ N such that, for every n > nE , φn(x) ∈ E. The subspace
D̄(X) has many similar properties to those of the subspace D(X), whose proofs are
left to the reader. However, the most difficult proofs relating to D̄(X) will be included
in this paper.
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Proposition 5.1. For an exterior discrete semi-flow X = (X,φ, ε(X)), the subspace
D(X) is completely invariant and, with the relative externology (i.e., the family of
intersections of the form D(X) ∩ E, E ∈ ε(X)), is a d-exterior discrete semi-flow.

Proof. Denote D = D(X). Observe that φφ1(x) = φx s, where the shift s, s(n) =
n+ 1, is an exterior map. This implies that, if x ∈ D, then φ1(x) ∈ D.

Now, in order to prove that D is left-invariant, suppose that φ1(x) = y and y ∈ D.
Given an exterior open subset E, there is n > 1 such that φm(y) ∈ E, for every m > n.
Then φk(x) ∈ E, for every k > n+ 1. This implies that x ∈ D.

Finally, since X is an exterior discrete semi-flow, taking on D the relative exter-
nology, it follows that φn : D → D is exterior, for every n ∈ N. By the definition of D
one has that φx : D → D is exterior, for every x ∈ D. Therefore, D with the relative
externology is a d-exterior discrete semi-flow.

Definition 5.2. Suppose that X = (X,φ, ε(X)) is an exterior discrete semi-flow. The
d-exterior discrete semi-flow D(X) is said to be the region of pseudo-attraction
of the externology ε(X). The exterior discrete semi-flow D̄(X) is said to be the
region of pseudo-bar-attraction of the externology ε(X).

Sometimes, if X is an exterior discrete semi-flow, we say that D(X) is the region
of pseudo-attraction of X (instead of ε(X)) and similarly for D̄(X).

Remark 5.3. Notice that the canonical functor EF(N)→ EdF(N), which carries X
to D(X), is right adjoint to the inclusion functor EdF(N)→ EF(N).

Remark 5.4. Using the notion of bar-exterior map mentioned in Remark 3.4 one has
the following alternative definition of D̄(X) for an exterior discrete semi-flow X,
D̄(X) = {x ∈ X | φx is bar-exterior}.

If X = (X,φ, ε(X)) is an exterior discrete semi-flow, the inclusion D(X) ⊂ X of
exterior spaces induces the transformation L(D(X))→ L(X).

Proposition 5.5. If X = (X, φ, ε(X)) is an exterior discrete semi-flow, then
L(D(X)) = L(X) (similarly, L̄(D̄(X)) = L̄(X)).

For an exterior discrete semi-flow, some relations between regions of attraction
associated to its externology and standard regions of attraction as a discrete semi-
flow as the following:

Theorem 5.6. Suppose that X = (X,φ, ε(X)) is an exterior discrete semi-flow. Then:

(i) D(X) ⊂ D̄(X) ⊂ PA(L̄(X));

(ii) If (X,φ) is Lagrange stable at every point in D̄(X), then D̄(X) ⊂ A(L̄(X));

(iii) If (X,φ) is Lagrange stable at every point in A(L(X)), then A(L(X)) ⊂ D(X);

(iv) If (X,φ) is Lagrange stable at every point in PA(L(X)), then PA(L(X)) ⊂
D(X);

(v) If (X,φ) is Lagrange stable at every point in PA(L(X)) and L(X) = L̄(X), then
D(X) = PA(L(X)) = A(L(X)).

Proof.

(i) Obviously, D(X) ⊂ D̄(X). If x ∈ D̄(X) and E ∈ ε(X), there is nE ∈ N, such
that [nE ,∞) · x ⊂ E. Then [n,∞) · x ⊂ E. This implies that Λ(x) ⊂ E, for every
E ∈ ε(X). Hence, Λ(x) ⊂ L̄(X).
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(ii) If (X,φ) is Lagrange stable at a point x, we also have that Λ(x) 6= ∅.
(iii) Suppose that x ∈ A(L(X)) and φx is not exterior. Then there is E ∈ ε(X) and

an increasing sequence n1 < n2 < · · · such that φnk(x) ∈ X \ E. Since X is
Lagrange stable at x, there is a sub-net nki such that nki · x→ y ∈ X \ E. But
we also have that y ∈ Λ(x) \ L(X) and this is a contradiction.

(iv) This can be proved in a similar way.

(v) This is a consequence of previous results and Lemma 2.11(iv).

Theorem 5.7. Suppose that X = (X,φ, ε(X)) is an exterior discrete semi-flow and
(X,φ) is Lagrange stable at every point in PA(L̄(X)). Then:

(i) PA(L̄(X)) \WA( L̄(X) \ L(X) ) ⊂ D̄(X),

(ii) If, in addition, WA(L̄(X) \ L(X)) = ∅, one has that

A(L̄(X)) = D̄(X).

Proof.

(i) Suppose that x ∈ PA(L̄(X)) \WA(L̄(X) \ L(X)) and x /∈ D̄(X). Then there is
E ∈ ε(X) and an increasing sequence n1 < n2 < · · · such that φnk(x) ∈ X \ Ē.
Since X is Lagrange stable at x, there is a sub-net nki such that nki · x→ y ∈
X \ E. Then y ∈ Λ(x) \ L(X) and x ∈WA(L̄(X) \ L(X)), which is a contradic-
tion.

(ii) It follows by (i), Theorem 5.6(i) and Lemma 2.11.

6. Basins associated to end points in a region of attraction

We note that, for an exterior discrete semi-flow X = (X,φ, ε(X)), each trajectory
of a point of D(X) has an end point given as follows:

If x ∈ D(X), we have the exterior map φx : N→ X, φx(n) = φ(n, x), which deter-
mines an end point [φx] ∈ πBG

0 (X). Then the following canonical map is obtained

ω : D(X)→ πBG
0 (X),

where ω(x) = [φx].
Recall the map ηX : πS0 (X)→ π̌0(X) given by ηX([α]) = π̌0(α)(+∞).

Definition 6.1. Let X = (X,φ, ε(X)) be an exterior discrete semi-flow.

• An end a ∈ πBG
0 (X) is said to be ω-representable if there is x ∈ D(X) such

that ω(x) = a. Denote by ωπBG
0 (X) the set of ω-representable ends of X.

• An end a ∈ π̌0(X) is said to be ω̌-representable if there is x ∈ D(X) such
that, for every E ∈ ε(X), there is nE ∈ N satisfying that, for every n > nE ,
φn(x) ∈ CE , where CE is the path component of a in E. Denote by ωπ̌0(X) the
set of ω̌-representable ends of π̌0(X) and by Ď(X) the set of points x ∈ D(X)
such that there is a ∈ π̌0(X) satisfying that, for every E ∈ ε(X), there is nE
such that, for every n > nE , φn(x) ∈ CE .

• An end a = [α] ∈ πS0 (X), with α : R+ → X an exterior map, is said to be ω̌-
ηX -representable if ηX(a) is ω̌-representable. Denote by ωπS0 (X) the set of
ω̌-ηX -representable ends of πS0 (X) and by DS(X) the set of points x ∈ D(X)
such that there is a = [α] ∈ πS0 (X) such that [α|N] = [φx].
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From the definition of Ď(X), it easy to see that there is an induced map

ω̌ : Ď(X)→ π̌0(X),

which maps x ∈ Ď(X) to the unique end point a ∈ π̌0(X) such that, for every E ∈
ε(X), there is nE satisfying that, for every n > nE , φn(x) ∈ CE , where CE is the
path component of a in E.

Remark 6.2. Let X = (X,φ, ε(X)) be an exterior discrete semi-flow which is first-
countable at infinity. Observe that we have a natural inclusion L(X)→ D(X) (see
Proposition 5.5). In general, the diagram

L(X)
e //

��

π̌0(X)

θX��
D(X)

ω // πBG
0 (X)

is not commutative. Nevertheless, the diagram commutes if we have an additional
condition: “for every x ∈ L(X) and for every E ∈ ε(X), the points x, φ1(x) are in the
same path component of E” (for instance, when L(X) ⊂ Fix(X)). Note that, under
this condition, e agrees with ω̌ on Ď(X) ∩ L(X) and the restriction to Ď(X) ∩ L(X)
gives a commutative diagram.

Recall that the maps πS0 (φ1), π̌0(φ1) and πBG
0 (φ1) induce on πS0 (X), π̌0(X) and

πBG
0 (X) the structure of a discrete semi-flow (set), respectively. In a similar way,

ωπS0 (φ1), ωπ̌0(φ1) and ωπBG
0 (φ1) induce on ωπS0 (X), ωπ̌0(X) and ωπBG

0 (X) the struc-
ture of a discrete semi-flow (set), respectively.

In the following proposition, the analogues of the results of section 3 for repre-
sentable ends are established and therefore they will be stated without proof:

Proposition 6.3. Let X = (X,φ, ε(X)) be an exterior discrete semi-flow and con-
sider the restrictions of the natural transformations RX and ηX to the subsets of
ω-representable ends.

(i) In the following diagram

ωπS
0(X)

ωRX // ωπBG
0 (X)

Id //
ωS

// ωπBG
0 (X)

the image of ωR is the equalizer of Id and ωS.

(ii) If X is first-countable at infinity, the following diagram is commutative

ωπ0
S(X)

ωRX //

ωηX
'' ''

ωπBG
0 (X)

ωπ̌0(X)
77 ωθX

77

where ωRX = ωθX ◦ ωηX is a canonical factorization of ωRX as the composition
of an epimorphism and a monomorphism. In this case, ωπ̌0(X) is the equalizer
of Id and ωS.

Now we study some relations between the different subsets of pseudo-attraction
associated to an externology given in Definition 5.2 and the different types of repre-
sentable end points.
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Proposition 6.4. Suppose that X = (X,φ, ε(X)) is an exterior discrete semi-flow.
Then:

(i) There are natural inclusions DS(X) ⊂ Ď(X) ⊂ D(X). Moreover, Ď(X) is com-
pletely invariant and DS(X) is right-invariant.

(ii) The maps ω : D(X)→ πBG
0 (X), ω̌ : Ď(X)→ π̌0(X) are discrete semi-flow mor-

phisms (between discrete semi-flow sets) which induce discrete semi-flow epi-
morphisms ω : D(X)→ ωπBG

0 (X), ω̌ : Ď(X)→ ωπ̌0(X).

(iii) If π0(φ1) is injective, then ωπBG
0 (φ1) is injective. If, in addition, φ1 is surjective,

then ωπBG
0 (X) has the structure of a discrete flow set.

(iv) The action induced on ωπ̌0(X) is trivial, that is, ωπ̌0(X) ⊂ Fix(π̌0(X)).

(v) S πBG
0 (φ1) = πBG

0 (φ1)S, ωπBG
0 (X) ⊂ {a ∈ πBG

0 (X) | S(a) = πBG
0 (φ1)(a)}.

Proof.

(i) It is straightforward to check.

(ii) Given x ∈ D(X), we have φφ1(x)(n) = φ1φx(n). Then ω(φ1(x)) = [φφ1(x)] =
[φ1φx] = πBG

0 (φ1)[φx] = πBG
0 (φ1)ω(x). There is a similar proof for ω̌.

(iii) Suppose that πBG
0 (φ1)[φx] = πBG

0 (φ1)[φx′ ]. Then we have that φ1(x) is in the
same path component as φ1(x′). Taking into account that π0(φ1) is injective,
we have that there is a continuous path from x to x′. Using this path and
an exterior homotopy from φ1

φ1(x) to φ1
φ1(x′), we can construct a new exterior

homotopy from φx to φx′ .
Now suppose that φ1 is surjective. Then, given y ∈ D(X), we can take x ∈ X
such that φ1(x) = y. Then x ∈ D(X) and one has that πBG

0 (φ1)[φx] = [φy]. This
implies that πBG

0 (φ1) is surjective.

(iv) Just consider that ω̌(φ1(x)) = ω̌(x), x ∈ Ď(X). It follows that the action is
trivial.

(v) If [α] ∈ πBG
0 (X), then SπBG

0 (φ1)[α] = [(φ1α)s] = [φ1(αs)] = πBG
0 (φ1)S[α]. Be-

sides, if x ∈ D(X), then Sω(x) = S[φx] = [φ1φx] = πBG
0 (φ1)ω(x).

Now we introduce the basins of end points and we consider special end points
whose basins are open subsets of X. Some local stability notions with respect to end
points are also considered.

Definition 6.5. Given an exterior discrete semi-flow X = (X,φ, ε(X)) and an ele-
ment a ∈ ωπBG

0 (X), the subspace ω−1(a), denoted by Da, will be called the ω-basin
of a. Similarly, given an element a ∈ ωπ̌0(X), the subspace ω̌−1(a), denoted by Ďa,
will be called the ω̌-basin of a.

When a ∈ ωπS0 (X), the subspace DS
a = DS(X) ∩ ĎηX(a) will be called the imme-

diate basin of a.

Definition 6.6. Let X be an exterior discrete semi-flow.

(i) An end point a ∈ ωπBG
0 (X) is said to be an ω-attractor if its basin Da is an

open subset of X. We write ω
Aπ

BG
0 (X) = {a ∈ ωπBG

0 (X) | a is an ω-attractor}
and ω

Nπ
BG
0 (X) = ωπBG

0 (X) \ ωAπBG
0 (X).

(ii) An end point a ∈ ωπ̌0(X) is said to be an ω̌-attractor if its basin Ďa is an
open subset of X. We write ω

Aπ̌0(X) = {a ∈ ωπ̌0(X) | a is an ω̌-attractor} and
ω
N π̌0(X) = ωπ̌0(X) \ ωAπ̌0(X).
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(iii) A point x ∈ D(X) is locally ω-stable if there is an open neighborhood U such
that U ⊂ D(X) and, for every y ∈ U , ω(y) = ω(x).

(iv) A point x ∈ Ď(X) is locally ω̌-stable if there is an open neighborhood U such
that U ⊂ Ď(X) and, for every y ∈ U , ω̌(y) = ω̌(x).

We have the following basic properties which are immediately deduced from the
definitions:

Lemma 6.7. Let X = (X,φ, ε(X)) be an exterior discrete semi-flow and let x ∈
D(X). The following statements hold:

(i) If the end ω(x) is an ω-attractor, then x is locally ω-stable.

(ii) If a ∈ ωπBG
0 (X) and x ∈ Da, x is locally ω-stable if and only if x ∈ D̊a. If, for

every y ∈ Da, y is locally ω-stable, then a is an ω-attractor.

(iii) If the end ω̌(x) is an ω̌-attractor, then x is locally ω̌-stable.

(iv) If a ∈ ωπ̌0(X) and x ∈ Ďa, x is locally ω̌-stable if and only if x ∈ ˚̌Da. If, for
every y ∈ Ďa, y is locally ω̌-stable, then a is an ω̌-attractor.

The maps ω and ω̌ permit us to divide an exterior discrete semi-flow:

Corollary 6.8. Let X = (X,φ, ε(X)) be an exterior discrete semi-flow and denote
D = D(X), Ď = Ď(X), DS = DS(X). Then we have the following induced partitions
of X:

X = (X \D) t

 ⊔
a∈ωπBG

0 (X)

Da

 ,

X = (X \ Ď) t

 ⊔
a∈ωπ̌0(X)

Ďa

 ,

X = (X \DS) t

 ⊔
a∈ωπS

0 (X)

DS
a

 ,

where X \D, X \ Ď and Ďa are completely invariant and DS
a is right-invariant.

In general Da is not right invariant. However, some notable unions of these basins
are completely invariant subsets:

Proposition 6.9. Let X = (X,φ, ε(X)) be an exterior discrete semi-flow. Then:

(i) If a ∈ ωπBG
0 (X) and [a] is the completely invariant big orbit (see subsection 2.2)

of a in ωπBG
0 (X), then

⊔
a′∈[a]Da′ is completely invariant.

(ii) If π0(φ1) is injective and φ1 : X → X is a surjective open map, then ω
Aπ

BG
0 (X) is

completely invariant in ωπBG
0 (X),

⊔
a∈ω

Aπ
BG
0 (X)Da is an open completely invari-

ant subset of X and
⊔
a∈ω

Nπ
BG
0 (X)Da is completely invariant and closed in D(X).

(iii) If X is first-countable at infinity, then the following diagram is commutative:

Ď(X)
ω̌ //

��

ωπ̌0(X)

θX��
D(X)

ω // ωπBG
0 (X)
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Proof. A simple inspection proves (i) and (iii).
It only remains to check (ii). By Proposition 6.4(ii)–(iii), we have a commutative
diagram

D(X)
ω //

φ1

��

ωπBG
0 (X)

ωπBG
0 (φ1)��

D(X)
ω
// ωπBG

0 (X)

where ωπBG
0 (φ1) is bijective. So ω−1(ωπBG

0 (φ1)(a)) = φ1(ω−1(a)), for a ∈
ωπBG

0 (X). Since φ1 is a continuous open map, it follows that ωAπ
BG
0 (X) is com-

pletely invariant and also gives the rest of the assertion.

Using the subset of end points which are attractors and its complement, under the
conditions given in Proposition 6.9, one can divide the region of pseudo-attraction of
the externology as the union of a completely invariant open subset and its comple-
ment:

Definition 6.10. Given an exterior discrete semi-flow X = (X,φ, ε(X)),

AD(X) =
⊔

a∈ω
Aπ

BG
0 (X)

Da, ND(X) =
⊔

a∈ω
Nπ

BG
0 (X)

Da

are the ωπBG
0 -attracting basin and the ωπBG

0 -non-attracting basin of X, respec-
tively. Similarly,

AĎ(X) =
⊔

a∈ω
Aπ̌0

(X)

Ďa, N Ď(X) =
⊔

a∈ω
N π̌0

(X)

Ďa

are the ωπ̌0-attracting basin and the ωπ̌0-non-attracting basin of X.

The intersection with the limit sets

AL(X) = AD(X) ∩ L(X), NL(X) = ND(X) ∩ L(X),

AĽ(X) = AĎ(X) ∩ L(X), N Ľ(X) = N Ď(X) ∩ L(X)

are the corresponding attracting (non-attracting) limit of X.

Remark 6.11. In a similar way, we can consider canonical maps

ω̄ : D̄(X)→ π̄BG
0 (X),

and basins of the form

D̄a = ω̄−1(a), a ∈ ωπ̄BG
0 (X).

The new sets of end points and bar-limits can be divided with the corresponding
notions of attracting end points. The authors suggest that subsets of the following
type

N L̄(X) = N D̄(X) ∩ L̄(X),

N
ˇ̄L(X) = N

ˇ̄D(X) ∩ L̄(X)

can be used to give pure topological analogues of Julia sets in a topological semi-flow.
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7. The externology of right-absorbing open subsets

For a given discrete semi-flow, X = (X,φ), we can consider the externology εr(X)
given by all the open subsets E such that, for every x ∈ X, there is n ∈ N satisfying
that, for m > n, φm(x) ∈ E. For this externology, one has that (X,φ, εr(X)) is a
d-exterior discrete semi-flow and therefore we have that D(X) = X.

Definition 7.1. For a given discrete semi-flow (X,φ), the externology εr(X) is said
to be the right-absorbing externology of (X,φ) (or just the right externology)
and an open E ∈ εr(X) is said to be an r-exterior open subset of X.

In this section we consider the following basic properties:

Lemma 7.2. Let (X,φ, ε(X)) be an exterior discrete semi-flow. Then the following
statements are equivalent:

(i) ε(X) ⊂ εr(X).

(ii) (X,φ, ε(X)) is a d-exterior discrete semi-flow.

(iii) D(X) = X.

It is important to note that one has a canonical functor F(N)→ EdF(N) which
carries (X,φ) to (X,φ, εr(X)). We will use the reduced notation X = (X,φ) and
Xr = (X,φ, εr(X)). Using this canonical construction all the different constructions
(limits, end sets, etc.) given for exterior discrete semi-flows can be applied to a discrete
semi-flow.

In the next subsections, some relations between constructions associated to an
exterior space and dynamic properties of a discrete semi-flow are analyzed. In par-
ticular, we see the relation between limits and periodic points, as well as between
bar-limits and omega-limits.

7.1. Periodic points
The relation of the limit space of an exterior discrete semi-flow and the sub-flow

of periodic points is analyzed in the following results.

Lemma 7.3. If X = (X,φ, ε(X)) is a d-exterior discrete semi-flow, then P (X) ⊂
L(X). In particular, if X is a discrete semi-flow, then P (X) ⊂ L(Xr).

Proof. Take a periodic point x and an arbitrary E ∈ ε(X). Since φx : N→ X is exte-
rior we have that φ−1

x (E) is an exterior subset of N. In other words, there exists
n ∈ N such that (n,+∞) · x ⊂ E. From the fact that x is periodic, we have the
equality (n,+∞) · x = N · x and, taking into account that x ∈ N · x, we conclude that
x ∈ E.

Lemma 7.4. Let X be a discrete semi-flow and suppose that X is a T1-space. Then,
for every x ∈ X, the following statements are equivalent:

(i) x is a non-periodic point.

(ii) X \ {x} is an r-exterior open subset of X.

Proof. In order to prove that (i) implies (ii), take y ∈ X; if (N · y) ∩ (N · x) = ∅, then,
for every n ∈ N, (n,+∞) · y ⊂ X \ {x}. If (N · y) ∩ (N · x) 6= ∅, considering that x is
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not periodic, one can find n ∈ N such that (n,+∞) · y ⊂ X \ {x}. Then one has that
X \ {x} ∈ εr(X). Conversely, suppose that x is a periodic point. Then, by Lemma 7.3
above, X \ {x} is not r-exterior.

Using these two lemmas, we obtain the following result:

Theorem 7.5. Let X be a discrete semi-flow and suppose that X is a T1-space. Then

L(Xr) = P (X).

Proof. Let x ∈ X \ P (X). Then, by Lemma 7.4, one has that X \ {x} ∈ εr(X) and

P (X) = X \

 ⋃
x/∈P (X)

{x}

 =
⋂

x/∈P (X)

X \ {x} ⊃
⋂

E∈εr(X)

E = L(Xr).

Now, the result follows from Lemma 7.3.

Taking into account the theorem above, if X is a T1 discrete semi-flow, in the
diagram of distinguished sub-flows

P (X) ⊂ Poisson(X) ⊂ Λ(Xr)

we have identified the first sub-flow as a limit set:

L(Xr) = P (X) ⊂ Poisson(X) ⊂ Λ(Xr) ⊂ X.

7.2. Limits and omega-limits
In the following result we analyze the relationship between the omega-limit and

the bar-limit induced by an externology.

Lemma 7.6. If X = (X,φ, ε(X)) is an exterior discrete semi-flow, then

Λ(D(X)) ⊂ Λ(D̄(X)) ⊂ Λ(D̄(X)) ⊂ L̄(X).

Proof. If E ∈ ε(X), then, for every x ∈ D̄(X), there exists n ∈ N such that (n,+∞) ·
x ⊂ E and therefore (n,+∞) · x ⊂ E. By definition, this implies that Λ(x) ⊂ L̄(X),
for every x ∈ D̄(X). Hence, Λ(D̄(X)) ⊂ L̄(X). Taking into account that L̄(X) is a

closed subset, we also have Λ(D̄(X)) ⊂ L̄(X).

And now let us present some technical results:

Lemma 7.7. Let (X, ε(X)) be an exterior space and x ∈ X. Then there exists an
open neighborhood Vx at x such that X \ V x ∈ ε(X) if and only if x /∈ L̄(X).

Proof. If X \ V x ∈ ε(X), then, taking into account that Vx ∩ (X \ V x) = ∅, we have

that x /∈ X \ V x. Therefore we have that x /∈
⋂
E∈ε(X)E = L̄(X).

Conversely, if x /∈ L̄(X), then there exists E ∈ ε(X) such that x /∈ E. Now, taking
Vx = X \ E = Int(X \ E), we have that X \ V x = Int(X \ Vx) = Int(E) ⊃ E. Conse-
quently, X \ V x ∈ ε(X).

Lemma 7.8. Let X = (X,φ, ε(X))be an exterior discrete semi-flow and let x be in
X. If there exists an open neighborhood Vx at x such that X \ V x ∈ ε(X), then x /∈
Λ(D̄(X)).
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Proof. This is a consequence of Lemma 7.7 and Lemma 7.6.

Proposition 7.9. Let X be a discrete semi-flow and x ∈ X. If there exists an open
neighborhood Vx at x such that X \ V x is r-exterior, then x /∈ Λ(X).

Proof. This is a consequence of Lemma 7.8 and Lemma 7.2.

Lemma 7.10. Let X be a discrete semi-flow which is a locally compact regular space.
If x /∈ Λ(X), then there exists an open neighborhood Vx at x such that X \ V x is r-
exterior.

Proof. Suppose that x /∈ Λ(X). Since X is locally compact, there is a compact neigh-
borhood K at x such that K ∩ Λ(X) = ∅. Take y ∈ X and assume that, for every
m ∈ N, (m,+∞) · y ∩K 6= ∅. Then there is a sequence mn → +∞ such that mn · y ∈
K. As K is compact, one can take a sub-net mni

→ +∞ such that mni
· y → u ∈ K.

This fact implies that u ∈ K ∩ Λ(y) ⊂ K ∩ Λ(X), which is a contradiction. Therefore,
there is m ∈ N such that (m,+∞) · y ∩K = ∅. By the regularity of X, there exists
an open neighborhood Vx at x such that V x ⊂ K and X \ V x is r-exterior.

Corollary 7.11. Let X be a discrete semi-flow. If X is a locally compact regular
space, then L̄(Xr) ⊂ Λ(X).

Proof. If x /∈ Λ(X), by the lemma above there exists an open neighborhood Vx at x
such that X \ V x is r-exterior. By Lemma 7.7, it follows that x /∈ L̄(Xr).

By the corollary above and Lemma 7.6, we obtain the following result:

Theorem 7.12. Let X be a discrete semi-flow. If X is a locally compact regular
space, then L̄(Xr) = Λ(X).

Corollary 7.13. Let X be a discrete semi-flow. If X is a locally compact T3 space,
then

L(Xr) = P (X) ⊂ Poisson(X) ⊂ Λ(X) ⊂ Λ(X) = L̄(Xr).

Proof. This is a consequence of Theorem 7.5 and Theorem 7.12.

8. Other externologies and examples

If we take a right-invariant subset S of a discrete semi-flow X, new families of
externologies can be analyzed: for instance, we can consider the externology ε(X,S)
formed by all the open neighborhoods of S in X.

As an example of the notions and constructions developed in this paper, we ana-
lyze the decompositions given by the externologies ε(X,P1) and ε(X,P2) induced by
the right-invariant subsets of 1-periodic (fixed) points P1 and 2-periodic points P2,
respectively, when we consider on the Riemann sphere X = C ∪ {∞} the discrete
semi-flow induced by the polynomial function h(z) = z2 − 1 (h(∞) =∞).

The dynamics of quadratic polynomials has been profusely studied through tech-
niques and notions of complex dynamics. In the following paragraphs, for the partic-
ular case (X,h), we express the regions of attraction of the externologies as union of
attraction basins and the set of Brown-Grossman ends as subsets of periodic points.

The fixed points of h are∞ and the two golden numbers p1 = 1−
√

5
2 and p2 = 1+

√
5

2 .
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If we consider the exterior discrete semi-flow X1 = (C ∪ {∞}, h, ε(X,P1)), we have
the induced map

ω1 : D(X1)→ ωπBG
0 (X1)

from the region of attraction D(X1) to the set of omega-representable end points of
Brown-Grossman type. In this case, one has a canonical isomorphism ωπBG

0 (X1) ∼= P1.
The externology ε(X,P1) induces a decomposition of the following form:

X = (X \D(X1)) t ω−1
1 (∞) t ω−1

1 (p1) t ω−1
1 (p2),

which can be seen in the Figure 1.

Figure 1: On the left, the basin of the attracting infinity point in brown (grey in the
printed version) and, on the right, a point of the basin of the repelling fixed point p1.

The basin of ∞ is displayed using brown color (grey in the printed version), the
golden numbers are repulsing points and their basins are not visible in the figure on
the left. Nevertheless, when we apply a zoom effect, it is possible to see some points
in the basins of the end points associated to the golden numbers: the central point in
the figure on the right is a point of the basin of a golden number p1. The black color
corresponds to points which are not in basins of fixed points; that is, to X \D(X1).

When the 2-periodic points of h are studied, one obtains: P2 = {∞,−1, p1, 0, p2}.
For the exterior discrete semi-flow X2 = (C ∪ {∞}, h, ε(X,P2)) and the induced map

ω2 : D(X2)→ ωπBG
0 (X2)

from the region of attraction D(X2) to the set of omega-representable end points of
Brown-Grossman type, one has a canonical isomorphism ωπBG

0 (X2) ∼= P2. For X2, it
is interesting to check that ωπ̌0(X2) ∼= ωπS0 (X2) ∼= P1. The cyclic point −1 generates
the Brown-Grossman end point represented by the sequence (−1, 0,−1, 0, . . . ) and
the cyclic point 0 induces the end point represented by (0,−1, 0,−1 . . . ).

To compare the decompositions induced by P1 and P2, one has to analyze the
diagram

D(X1)
ω1 //

��

ωπBG
0 (X1)

��
D(X2)

ω2 // ωπBG
0 (X2)
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where D(X1)→ D(X2) is the inclusion:

ω−1
1 (∞) t ω−1

1 (p1) t ω−1
1 (p2) ⊂ ω−1

2 (∞) t ω−1
2 (−1) t ω−1

2 (p1) t ω−1
2 (0) t ω−1

2 (p2).

It is interesting to note that, in Figure 2, the black part associated to ω1 has been
divided into the union of the basins of the new 2-cyclic attracting points of h. The
immediate basins DS

−1 and DS
0 form the path component of the basin containing the

2-cyclic points −1 and 0, respectively.

Figure 2: The basins of the new 2-cyclic points correspond to the black part of Fig-
ure 1.

Figure 3: The basins of D(X1) and D(X2) with new colors (mid and dark grey in the
printed version) on the Riemann sphere.

Remark 8.1. The figures of this section have been obtained by using graphic tools of
a computational project developed by the authors (see [7]) which studies attraction
basins of branched self-coverings.

9. Future applications

The authors think that it would be interesting to develop a deeper study of exter-
nologies associated to a right-invariant subspace S of a discrete semi-flow X given by
all the open neighborhoods of S in X.

The results obtained for the example given in the above section suggest that some
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of the particular properties analyzed can be proven for more general discrete semi-
flows. For externologies given by open neighborhoods of an invariant subset S, one
can prove that, under good conditions, the region of attraction of the externology
is the region of attraction of S. In some cases, the limit of the externology agrees
with S and the set of end points of Borsuk-Čech type is related to the connected
components of S. Moreover, the omega-representable end points of Borsuk-Čech type
are related to the fixed points of S, and the basins of end points, under suitable
conditions, correspond to basins of fixed points. The basin of a representable end
point of Steenrod type is related to the immediate component of the basin of a fixed
point. The basins of omega-representable end points of Brown-Grossman type are
related to the basins of periodic points which are contained in S.

It is worth pointing out that the open neighborhoods of a subset S on a manifold
can also be taken as a resolution (in the sense of shape theory) of S and this fact
gives the possibility of applying techniques of shape theory, like shape Conley index
(see [1, 2, 28]), algebraic characterization of shape equivalences, etc. We can also
use these externologies/resolutions to compare techniques and results coming from
exterior homotopy theory and from shape theory. For instance, exterior spaces can
also be used for the study of the exterior homotopy type of attractors and repellers of
discrete and continuous flows and to compare them with their corresponding shapes,
see [22, 23, 29, 30].

The study of semi-flows of the form (M,h), where M is a manifold and h : M →M
is a branched covering (see [7]), can be also analyzed with the techniques developed
in this paper, by either taking externologies given by open neighborhoods of suitable
subsets of periodic points or taking the right-absorbing externology. Many questions
arise, such as the study of Brown-Grossman end points associated to points in the
singular subset of the branched covering.

The discretization processes (the first return Poincaré map, the discretization of
a continuous semi-flow, etc.) and anti-discretization constructions (suspension, pro-
longation and telescopes, see [9]) can also be analyzed by means of externologies
associated to continuous and discrete semi-flows. This will permit us to connect the
theory of basins of end points developed in [16] for continuous flows with the basins
of end points of discrete semi-flows.

Finally, it is important to say that the problem of sensitivity with respect to
the initial conditions can be studied by taking the externology of open subsets that
capture the “future part” of “tubes” generated by trajectories of neighborhoods at
each point.
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