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Abstract
In this paper, we study the general properties of commuta-

tive differential graded algebras in the category of representa-
tions over a reductive algebraic group with an injective central
cocharacter. Besides describing the derived category of differ-
ential graded modules over such an algebra, we also provide a
criterion for the existence of a t-structure on the derived cate-
gory together with a characterization of the coordinate ring of
the Tannakian fundamental group of its heart.

1. Introduction

In [11], Kriz and May developed a general theory about Adams graded commuta-
tive differential graded algebras (cdga) over Q. Given an Adams graded cdga A, they

considered the bounded derived category Df
A of A-modules and proved a number of

formal properties of it. Under the assumption that A is cohomologically connected,
that is, its negative cohomological degree part vanishes and its zero-th degree part is
isomorphic to Q, they showed that Df

A has a t-structure with heart Hf
A. Moreover,

they used the reduced bar construction (see Section 9) to give a description of this
heart. Since the reduced bar construction B̄(A) of A is a differential graded Hopf
algebra, taking the zero-th cohomology gives us a Hopf algebra H0(B̄(A)), which
corresponds to a pro-affine group scheme over Q with Gm-action, denoted by GA.
Then Hf

A is equivalent to the category of graded representations of GA.
Given any field k, let us take A to be Bloch’s cycle complex Nk. The theory

of Kriz and May implies that if Nk is cohomologically connected (e.g. k a number

field), then the heart Hf
Nk

exists. It turns out that this heart coincides with an earlier
construction of Bloch and Kriz of mixed Tate motives [3]. For the definition of Bloch’s

cycle complex Nk, we refer to [12]. Later on Spitzweck relates Df
Nk

to Voevodsky’s
motives by constructing a functor

θk : Df
Nk

→ DMT (k,Q)

over any field k [14], where DMT (k,Q) is the full rigid tensor subcategory of Voevod-
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sky’s triangulated category of geometric motives generated by Tate objects. The pre-
cise definition of DMT (k,Q) can be found in [12].

If we identify Adams cdgas with cdgas in the category of representations over Gm,
the above example serves as a motivation to study more general motives by replacing
Gm by a reasonably general reductive group. Using the theory of cdgas over GL2, we
generalize Spitzweck’s equivalence to the case of motives for an elliptic curve without
complex multiplication in [5].

We now state our main results and describe the outline of this paper. Assume G
is a reductive group with an injective central cocharacter and A a cdga over G (see
Definition 2.4). As in the case of Adams graded cdgas, we defined the derived category
of dg A-modules over G, denoted by DG

A , and studied their properties, which are the
contents of Section 2 to Section 7. If we further assume that A is cohomologically
connected and let us denote by DG,f

A the full subcategory of DG
A consisting of compact

objects, then we proved:

Theorem 1.1 (Theorem 8.3 and Theorem 11.2). Suppose A is cohomologically con-

nected. There exists a non-degenerate t-structure on DG,f
A with heart HG,f

A . Further-
more,

• There is a functor ρ : Db(HG,f
A ) −→ DG,f

A .

• The functor ρ constructed above is an equivalence of triangulated categories if
and only if A is 1-minimal.

The proof of the first part of the theorem is contained in Section 8. The next two
sections are denoted to the proof of the second part. In it, we used the reduced bar
construction to give several equivalent descriptions of Hf

A. The proof is completed
in Section 11. For the case G = Gm, the above theorem reduces to that of Kriz
and May. One observation is that Hf

A is a special kind of Tannakian category (see
Definition 12.3), whose Tannakian fundamental group is a semidirect product of a
prounipotent algebraic group and a reductive group. In the final section, we gave
a description of the corresponding coordinate rings of the Tannakian fundamental
groups of these special Tannakian categories by framed objects [1].
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2. Basic definitions

Convention 2.1. Let G be a reductive algebraic group over Q and w : Gm → G be a
central cocharacter – that is, the image of w is contained in the center ofG. We assume
that w is injective. Using the map w, we can define the weight of representations of G.
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Definition 2.2. Let V be a rational G-representation. For any r ∈ Z, define the
weight r part of V to be a sub representation of V :

V {r} = {x ∈ V | w(λ) · x = λrx for any λ ∈ Gm(k)}.
A rational G-representation V is called pure of weight r if V {r} = V .

Convention 2.3. In order to be compatible with the Adams grading in May and
Kriz’s theory, we define the Adams degree for a pure weight r representation W of
G over Q is defined to be −r. Caution: To distinguish the symbol of the weight,
given a complex of linear G-representations A∗, we denote the Adams degree r part
of A∗ by A∗(r). We call the category of linear G-representations over Q simply as
the category of G-representations, denote it by Rep(G). ∨ is used to denote the dual
object according to the context.

Definition 2.4. A cdga (A∗, d, ·) over G consists of a complex (A∗, d) in the category
of G-representations, where d = ⊕nd

n : An → An+1 is a homomorphism between G-
representations, satisfying:

• there exists a homomorphism of complexes of G-representations: · : A∗ ⊗A∗ →
A∗, which is unital, graded commutative and associative.

• dn+m(a · b) = dna · b+ (−1)na · dmb, where a ∈ An, b ∈ Am.

• the Adams grading gives a decomposition of A∗ into A∗ = ⊕r∈ZA
∗(r) (as sub-

complexes) and Q (the trivial G-representation) is a direct summand of A∗(0).
A∗ is called Adams connected if the Adams decomposition satisfies A∗ = ⊕r�0A

∗(r)
and A∗(0) = Q. Furthermore, A∗ is called connected (resp. cohomologically con-
nected) ifAn = 0 for n < 0 andA0 =Q (resp.Hn(A∗) = 0 for n < 0 andH0(A∗) =Q).

For x ∈ An(r), we call n the cohomological degree of x, denoted by n = deg(x),
and r the Adams degree of x, denoted by r = |x|.
Definition 2.5. Let A be a cdga over G. A dg A-module (M∗, d) over G consists
of a complex M∗ of G-representations with the differential d, together with a map
A∗ ⊗M∗ → M∗, a⊗m → a ·m, which makes M∗ into an A∗-module, and satisfies
the Leibniz rule

d(a ·m) = da ·m+ (−1)degaa · dm; a ∈ A∗,m ∈ M∗.

Remark 2.6. We fix a finite dimensional faithful representation F of G with positive
weights. For the existence of such F, we refer to Corollary 2.5 in [7]. By definition,
there exists a decomposition of M∗ into subcomplexes M∗ = ⊕sM

∗(s) satisfying
A∗(r) ·M∗(s) ⊂ M∗(r + s), which is called the Adams decomposition of M∗.

Definition 2.7. Let M and N be two dg A-modules. A morphism f between M and
N is a morphism between the underlying complexes of G-representations of M and
N such that a · f(m) = f(a ·m) for any a ∈ A and m ∈ M .

Example 2.8. Let A[n] denote the A∗-module which is Am+n in degree m, with a
natural action of A∗ by multiplication. Given A∗ a cdga over G, we let A〈r〉[n] be A∗-
module which is

⊕
t∈Z A

m+n(t)⊗ F⊗r(s− t) in bi-degree (m, s), with the action given
by multiplication. More generally, given any G-representation W , A[n]⊗W , with⊕

t∈Z A
m+n(t)⊗W (s− t) in degree (m, s), is also a dg A-module over G. When W
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is a rational representation of G, A[n]⊗W is called the generalized sphere A-modules
for any n ∈ Z.

Definition 2.9. A dg A-module M is a cell module if

1. There is an isomorphism of A-modules in the category of G-representations:

⊕j∈JA[−nj ]⊗ Vj → M,

where all the Vj are rational representations of G and all nj are integers. That
is, there is a set J and elements bj ∈ Mnj ⊗ (Vj)

∨, j ∈ J such that the maps

A[−nj ]⊗ Vj
·bj−−→ M ⊗ (Vj)

∨ ⊗ Vj
idM×ev−−−−−→ M

induce the above isomorphism, where ev is the evaluation map (Vj)
∨ ⊗ Vj → Q.

2. There is a filtration on the index set J : J−1 = ∅ ⊂ J0 ⊂ J1 · · · ⊂ J such that
J =

⋃∞
n=0 Jn and for j ∈ Jn, dbj =

∑
i∈Jn−1

aijbi, where bi ∈ Mnj+1 ⊗ (Vi)
∨ for

some Vi and aij ∈ A⊗ (Vk)
∨ for those k such that Vj ⊂ Vi ⊗ Vk as G-modules.

Here d as a differential map onM ⊗ (Vj)
∨ is the tensor product of the differential

map on M and the identity map on (Vj)
∨.

A finite cell module is a cell module with finite index set J .

Remark 2.10. Given M a cell module, using the condition 1 and 2 in Definition 2.9,
we can construct a filtration of sub cell modules Mn, where Mn is isomorphic to
⊕j∈Jn

A[−nj ]⊗ Vj as complexes of G-representations{Mn}n∈Z�0
is called the sequen-

tial filtration of M .

We denote the category of dg A-modules over G by MG
A, the category of cell

A-modules by CMG
A and the category of finite cell modules by CMG,f

A .

3. The derived category of dg modules

Let A be a cdga over G and let M and N be dg A-modules. Let HomA(M,N) be
the dg A-module over G with HomA(M,N)n consisting of linear maps f : M → N
with f(Ma) ⊂ Na+n, f(am) = (−1)npaf(m) for a ∈ Ap and m ∈ Ma, and with the
differential d defined by df(m) = d(f(m))− (−1)nf(dm) for f ∈ HomA(M,N)n.

Definition 3.1. For f : M → N a morphism of dg A-modules, we let Cone(f) be the
dg A-module with:

Cone(f)n(r) = Nn(r)⊕Mn+1(r)

and the differential is given by d(n,m) = (dn+ f(m),−dm).

Given M a dg A-module, we let M [1] denote a dg A-module such that M [1]n =
Mn+1 with the differential −d, where d is the differential of M . Then we have the
following sequence:

M
f−→ N

i−→ Cone(f) → M [1],

which is called a cone sequence.
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Definition 3.2. We let KG
A denote the homotopy category of the category of dg

A-modules over G. The objects are the same as MG
A and

HomKG
A
(M,N) = HomG(Q, H0(HomA(M,N))).

The derived category DG
A of dg A-modules over G is the localization of KG

A with
respect to quasi-isomorphisms between dgA-modules, which are defined as morphisms
M → N being quasi-isomorphic on the underlying complexes of Q-vector spaces.

Given M,N ∈ MG
A (resp. CMG

A), we can define their direct sum to be the direct
sum M ⊕N of the chain complexes of G-representations which is equipped with a
natural A-module structure (resp. cell A-module structure). Furthermore, the infinite
direct sum exists in both MG

A and CMG
A.

Lemma 3.3. The infinite direct sums defined above is the categorical sum in KG
A.

Convention 3.4. Let I be the complex Q
δ−→ Q⊕Q with a free Q-generator [I] in

degree −1, two free Q-generators [0], [1] in degree 0 and δ[I] = [0]− [1]. We have two
inclusions i0, i1 : Q → I sending 1 to [0], [1], respectively.

For M a dg A-module, we let CM = Cone(idM ). Notice that the cone CM is the
quotient module M ⊗ (I/Q[1]).

Using the same idea of the proof in [11], we can show the following theorems.

Theorem 3.5. Let L be a cell A-submodule of a cell A-module M . Let e : N → P be
a quasi-isomorphism of dg A-modules. Then given maps f : M → P, g : L → N , and
h : L⊗ I → P such that f |L = h ◦ i0 and e ◦ g = h ◦ i1, there are maps ĝ, ĥ that make
the following diagram commute.

L
i0 ��

��

L⊗ I

��

h

��

L
i1��

��

g

��
P N

e��

M
i0 ��

f

��

M ⊗ I

ĥ

��

M
i1��

ĝ

		

Proof. Using Remark 2.10, we do the induction on the length of the sequential filtra-
tion {Mn} on M . Because L is a sub cell A-module, we may get a compatible sequen-
tial filtration {Ln} on L. The way of constructing Ln+1 → Mn+1 from Ln → Mn is
to attach the cells not in L to Mn+1. So we may assume that M ∼= C(A[n]⊗W ) and
L ∼= A[n]⊗W . Then using the semi-simplicity of the category of G-representations,
we can further assume that W is an irreducible G-representation. We denote the
generator of W by wn.

Let u = wn ⊗ [0] and v = wn ⊗ [I] be the generators of C(A[n]⊗W ). By defini-
tion, we have d(v) = (−1)nu. We also have: e ◦ g(wn) = h(wn ⊗ [1]) and f(u) = h(u).
Therefore
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d(h(wn ⊗ [I])− f(v)) = hd(wn ⊗ [I])− f(dv)

= h(d(wn)⊗ [I] + (−1)nh(wn ⊗ ([0]− [1])))− (−1)nf(u)

= (−1)nh(wn ⊗ [0]) + (−1)n+1h(wn ⊗ [1])− (−1)nf(u)

= (−1)n+1h(wn ⊗ [1]) = (−1)n+1e ◦ g(wn).

Because e ◦ g(wn) is a coboundary and e induces a quasi-isomorphism, we know
that g(wn) is also a coboundary, i.e., there exist ñ ∈ Nn−1 such that d(ñ) = g(wn).
Then p = e(ñ) + h(wn ⊗ [I])− f(v) is a cocycle. Then using the quasi-isomorphism
at n− 1, there exist a cocycle n ∈ N and a chain q ∈ P such that d(q) = p− e(n).

We define ĝ(j) = (−1)n(ñ− n) and ĥ(j ⊗ [I]) = q.

Theorem 3.6 (Whitehead). If M is a cell A-module and e : N → P is a quasi-
isomorphism of A-modules, then

e∗ : HomKG
A
(M,N) → HomKG

A
(M,P )

is an isomorphism. So a quasi-isomorphism between cell A-modules is a homotopy
equivalence.

Proof. The surjectivity is coming from Theorem 3.5, when we take L = 0. The injec-
tivity can be checked when we replace M and L by M ⊗Q I and M ⊗Q (∂I) respec-
tively. When N,P are both cell A-modules, taking M = P , we get a map f : P → N
which corresponds to idP . From the functoriality, f is the homotopy inverse of e.

Corollary 3.7. Let M,N be two dg A-modules, and f : M → N be a morphism
between dg A-modules. Let M̂ and N̂ be two cell A-modules such that M̂

rM−−→ M
and N̂

rN−−→ N are quasi-isomorphisms. Then there exists a morphism between cell
A-modules, up to homotopy f̂ ∈ KG

A : M̂ → N̂ lifting f .

Proof. From Theorem 3.6, we know that rN∗ : HomKG
A
(M̂, N̂) → HomKG

A
(M̂,N) is

an isomorphism. Therefore f ◦ rM ∈ KG
A(M̂,N) have a preimage, which is just f̂ .

Remark 3.8. From the above proof, we also know that: Given a cell module M and
an arbitrary dg A-module N , we have:

HomDG
A
(M,N) ∼= HomKG

A
(M, N̂) ∼= HomKG

A
(M,N),

where N̂ is a cell module and N̂ → N is a quasi-isomorphism between dg A-modules.

Theorem 3.9 (Approximation by cell modules). For any dg A-module M , there is
a cell A-module N and a quasi-isomorphism e : N → M .

Proof. We will construct a sequential filtrationNn and compatible maps en : Nn →M
inductively. More precisely, we need to construct cell modules Nn, whose index set is
denoted by Jn, satisfy the condition 2 in the definition of cell modules. For every
pair (q, r), we decompose Hq(M)(r) ∼= ⊕iVi as the direct sum of irreducible G-

representations Vi with the Adams degree r. Choosing a splitting of Ker(Mq(r)
d−→

Mq+1(r)) � Hq(M)(r), we think Vi as sub G-representations in Mq(r), because
of the semi-simplicity of the category of G-representations. Then we take N1 =
⊕(q,r) ⊕i A[−q]⊗ Vi with trivial differential. There is a morphism between dg A-
modules: N1 → M , which is epimorphic on the cohomologies. Inductively, assume
that en : Nn → M has been constructed. Consider the set of the pair of cocycles
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consisting the pairs of unequal cohomology classes on Nn and mapping under (en)
∗

to the same element of H∗(M). Choose a pair W q
1 (r) and W q

2 (r) that live in the
bidegree (q, r) satisfying the above condition, i.e., we can view W q

1 (r)⊕W q
2 (r) as

the kernel of the morphism (en)
∗ on the cohomology of bidegree (q, r). (Here one

needs to take a sign for the second component.) Simply denote W q
1 (r)⊕W q

2 (r) by
W1. There is a morphism between dg A-modules A[−q]⊗W1 to Nn extending the
map between G-representations W1 → Hq(N)(r). Take Nn+1 to be the pushout of
Nn and A[−q]⊗W1 ⊕A[−q]⊗W1[1] over A[−q]⊗W1. Then we have 0 → W1 →
Hq(Nn)(r) → Hq(Nn+1)(r) → 0. We get Nn+1 by attaching Nn with a generalized
sphere dg A-module A[−q]⊗W1[1], which implies Nn+1 is a cell A-module. It is easy
to see the differentials on Nn+1 satisfy the condition 2 in the definition of cell mod-

ules. Now we have a distinguished triangle of dg A-modules: A[−q]⊗W1
i−→ Nn →

Nn+1 → (A[−q]⊗W1)[1].
Note that HomA(A[−q]⊗W1,M) ∼= HomD(G)(W1,M [q]) ∼= HomG(W1, H

q(M)).
Therefore we have:

HomA(Nn+1,M)→ HomA(Nn,M)
i−→ HomA(A[−q]⊗W1,M)∼=HomG(W1, H

q(M)).

Because W1 as a G-representation maps to zero in the cohomology group Hq(M)(r),
i.e., i(en) = 0 in HomG(W1, H

q(M)), one may find en+1 ∈ HomA(Nn+1,M), which
extends en. Let N be the direct limit of the Nn. Then N is a cell module and the
morphism N → M is a quasi-isomorphism by the construction.

Putting together with all previous results, we get:

Theorem 3.10. Let A be a cdga over G. Then the functor KCMG
A → DG

A is an equiv-
alence of triangulated categories.

Definition 3.11. We define DG,f
A to be the full subcategory of DG

A whose objects are
quasi-isomorphic to some finite cell A-module in DG

A .

Remark 3.12. From the proof of Theorem 3.10, we can know that KCMG,f
A → DG,f

A

is an equivalence of triangulated categories.

Example 3.13. Let A = Q, then KCMG,f
A is just the bounded derived category of the

category of rational representations of G, denoted by Db(G).

4. The weight filtration for dg modules

In this section, we assume that A is an Adams connected cdga over G.

Definition 4.1. A dgA-moduleM is called almost free, if there exists a family of irre-
ducibleG-representations {Vj}j∈J and morphisms of gradedA-modules φj : A⊗ Vj →
M , such that the induced morphism: ⊕j∈JA⊗ Vj

⊕φj−−−→ M is an isomorphism of
graded A-modules, which means that, forgetting the differentials, this is an isomor-
phism betweenG-representations. We call such {Vj , φj}j∈J the generating data forM .

Example 4.2. All cell A-modules are almost free. Conversely, any cell A-module is
obtained from the generating data together with suitable differentials.

We let M be an almost free dg A-module with a fixed generating data {Vj , φj}j∈J .
Given a (Vj , φj), we assume that I is the smallest index subset of J such that
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d(φj(Vj)) ⊂ ⊕i∈Iφi(A⊗ Vi). Here we restrict φj to A∗(0)⊗ Vj
∼= Vj . Because the dif-

ferential map has Adams degree zero, the Adams degree |Vj | of the left hand side is
larger than or equal to the Adams degree of the right hand side |Vi|. Hence we have
the subcomplex W J

nM = ⊕{j,|Vj |�n}φj(A⊗ Vj) of M .

Remark 4.3. The subcomplex of W J
nM is independent of the choice of the family

{Vj , φj}j∈J . This is because if we choose another generating data {Vj′ , φj′}j′∈J ′ and
if |Vj′ | = n, then there exists I ⊂ J such that φj′(Vj′) ⊂ φi(A⊗ Vi) with |Vi| � |Vj′ |.
It follows that φj′(Vj′) ∈ W J

nM and hence W J ′
n M ⊂ W J

nM . By symmetry, we get the
result. So we delete the J in the definition.

This gives us the increasing filtration as a dg A-module W∗M : · · · ⊂ WnM ⊂
Wn+1M ⊂ · · · ⊂ M with M = ∪nWnM . In the same way, we can define Wn/n′M as
the cokernel of the inclusion Wn′M → WnM for n � n′. Write grWn for Wn/n−1 and

W>n for W∞/n. Wn defines an endofunctor in CMG
A. Furthermore, {Wn}n∈Z form a

functorial tower of endofunctors on KCMG
A: · · · → Wn → Wn+1 → · · · → id.

Remark 4.4. • The endofunctor Wn is exact for all n.

• For m � n � ∞, the sequence of endofunctors Wm → Wn → Wn/m can extend

to a distinguished triangle of endofunctors, i.e., for any M ∈ KCMG
A, we have

a distinguished triangle WmM → WnM → Wn/mM → in KCMG
A.

• Using the isomorphism of categories between KCMG
A and DG

A , we could define
the tower of exact endofunctors on DG

A : · · · → Wn → Wn+1 → · · · → id. Simi-
larly we define Wn/n′ , gr

W
n and W>n on DG

A .

5. Derived tensor product

Recall that the Hom functor HomA(M,N) defines a bi-exact bi-functor:

HomA : (KCMG
A)

op ⊗KCMG
A → DG

A ,

which gives a well-defined derived functor of HomA between derived categories of dg
A-modules (also the derived categories of finite cell modules) by Proposition 3.10:

RHomA : (DG
A)

op ⊗DG
A → DG

A .

Given two dg A-modules M and N , we let M ⊗A N be the dg A-module with under-
lying module M ⊗A N and with differential d(m⊗ n) = dm⊗ n+ (−1)degmm⊗ dn.
The tensor product functor defines a bi-exact bi-functor:

⊗A : KCMG
A ⊗KCMG

A → KCMG
A.

Via Theorem 3.9, we get a well-defined derived functor of ⊗A:

⊗L
A : DG

A ⊗DG
A → DG

A .

Remark 5.1. We collect some facts without the proof.

• These bi-functors are adjoint, i.e.,

RHomA(M ⊗L
A N,K) ∼= RHomA(M,RHomA(N,K)).

• The derived tensor product makes DG
A into a triangulated tensor category with

unit A and DG,f
A as a triangulated tensor subcategory of DG

A .
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These properties allow us to apply the category duality theory developed in [13].

Convention 5.2. Denote M∨ = RHomA(M,A).

Definition 5.3. An object M ∈ DG
A is called rigid, if there exists an N ∈ DG

A and
morphisms δ : A → M ⊗L

A N and ε : N ⊗L
A M → A such that:

(idM ⊗ ε) ◦ (δ ⊗ idM ) = idM , (idN ⊗ δ) ◦ (ε⊗ idN ) = idN .

Definition 5.4. An object M ∈ DG
A is finite if there is a coevaluation map η̃ : A →

M ⊗L M∨ such that the diagram

A
η̃ ��

η

��

M ⊗L M∨

γ

��
RHomA(M,M) M∨ ⊗L M

μ��

commutes. Here η and μ are given by the adjunction. γ changes the places of these
two modules.

Remark 5.5. By Theorem 1.6 of [13], M is rigid if and only if the function

ε∗ : HomDG
A
(W,Z ⊗L

A N) → HomDG
A
(W ⊗L

A M,Z)

is a bijection for all W and Z, where ε∗(f) is the composite

W ⊗L
A M

f⊗1−−−→ Z ⊗L
A N ⊗L

A M
1⊗ε−−→ Z ⊗L

A A ∼= Z.

These conditions are also equivalent to saying that M is finite.

In the following, we will discuss the relations between finite objects in DG
A and

finite cell modules.

Definition 5.6. We say that a cell module N is a summand of a cell module M in
DG

A if there is a homotopy equivalence of A-modules between M and N ⊕N ′ for some
cell A-module N ′.

Following the same proof as Theorem 5.7 in Part III of [11], we can get:

Lemma 5.7. A cell module M is rigid if and only if it is a summand of a finite cell
module in DG

A .

Remark 5.8. Let FCMG
A be the full subcategory of CMG

A whose objects are the
direct summands up to homotopy of finite cell A-modules. Then the homotopy cat-
egory KFCMG

A is the idempotent completion of DG,f
A . The above lemma implies

that KFCMG
A is the largest rigid tensor subcategory of the derived category DG

A .

See section 5 in Part III of [11]. In particular, DG,f
A is a rigid tensor subcategory of

KFCMG
A.

Theorem 5.9. Let A be an Adams connected cdga over G. Then M ∈ DG
A is rigid if

and only if M ∈ DG,f
A , which implies that there is an equivalence between DG,f

A and

KFCMG
A.

Proof. It depends on the following lemma.
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Lemma 5.10. Assume that A is an Adams connected cdga over G. Let M be a finite
cell A-module. Suppose N is a summand of M in DG

A . Then there is a finite A-cell
module M ′ with N ∼= M ′ in DG

A .

Proof. Via Theorem 3.9, we assume further that N is a cell module. By our assump-
tion, we have M = N ⊕N ′ in KCMG

A. Since M is finite, there is a minimal n such
that WnM �= 0. Thus Wn−1N is homotopy equivalent to zero. We may assume that
Wn−1N = 0 in CMG

A. Similarly we assume that M = Wn+rM,N = Wn+rN in CMG
A

for some r � 0. Now we proceed by induction on r.
Choose generating data {Vj , φj}j∈J for WnM . Let us prove that WnM = A⊗ V

for a finite complex of G-representations V . In fact, by the definition of the weight
functor and Wn−1M = 0, we can get an isomorphism: WnM = ⊕|Vj |=nφj(A⊗ Vj).
Notice that d(φj(Vj)) ⊂ ⊕iφi(A⊗ Vi) and all these |Vi|’s have the same value. Using
A∗(0) = Q, we get d(φj(Vj)) ⊂ ⊕φi(Vi). Set V = ⊕j∈Jφj(Vj), which is a complex of
G-representations. So we have WnM = A⊗ V as dg A-modules. Because the category
of G-representations is semisimple, we can assume that all differentials of V are zero.
Let p : M → M be the composition of the projection M → N and the inclusion N →
M . Then we can see Wnp = id⊗ q, where q : V → V is an idempotent. V is a direct
sum of G-representations with some shifts. Thus WnN ∼= A⊗ im(q). We finish the
case of r = 0. Using the distinguished triangle WnN → N → Wn+r/nN → WnN [1],
we can replace N with the shifted cone of the map Wn+r/nN → A⊗ im(q)[1]. Since
Wn+r/nN is a summand of Wn+r/nM , by induction, we get that Wn+r/n is homo-
topy equivalent to a finite cell module. So the cone of Wn+r/nN → A⊗ im(q) is also
homotopy equivalent to a finite cell module.

Corollary 5.11. Assume A is an Adams connected cdga over G. Then DG,f
A is idem-

potent complete.

6. Base change

Lemma 6.1. Let N be a cell module. Then the functor M ⊗A N preserves exact
sequences and quasi-isomorphisms in the variable M .

Proof. By the induction of the sequential filtration of the cell module N , we reduce
to the case that N is a generalized sphere module. Lemma 6.1 is true for generalized
sphere modules trivially.

We let φ : A → B be a homomorphism of cdgas over G. Then there is a func-
tor ⊗AB : MG

A → MG
B , which induces a functor on cell modules and the homotopy

category φ∗ : KCMG
A → KCMG

B . So we have a base change functor on the derived
categories level: φ∗ : DG

A → DG
B .

Remark 6.2. The restriction of φ∗ on finite objects gives the functor on the bounded
case.

Proposition 6.3. If φ is a quasi-isomorphism, then φ∗ is an equivalence of tensor
triangulated categories.

Proof. There is an isomorphism: HomMG
B
(B ⊗A M,N) ∼= HomMG

A
(M,φ∗N), forM ∈

MG
A and N ∈ MG

B . Here φ∗ is the pullback functor, which means that, for a given
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dg B-module, there is a natural dg A-module structure. Then we have: HomKG
B
(B ⊗A

M,N) ∼= HomKG
A
(M,φ∗N). Using Remark 3.8, we get:

HomDG
B
(B ⊗A M,N) ∼= HomKG

B
(B ⊗A M̂,N) ∼= HomKG

A
(B ⊗A M̂, φ∗N)
∼= HomDG

A
(B ⊗A M,φ∗N),

where M̂ is a cell A-module quasi-isomorphic to M .
Next we check that the unit of the adjunction and the counit are both quasi-

isomorphisms. For the unit of the adjunction, given M a cell dg A-module, we
need to show that φ⊗ Id : M ∼= A⊗A M → φ∗(B ⊗A M) is a quasi-isomorphism
of A-modules. Assume that M = A firstly. By assumption, we know that φ∗B is
quasi-isomorphic to A as a dg A-module. Then assume M = A[n]⊗W for W a G-
representation. φ∗(B ⊗A A[n]⊗W ) is the same as φ∗(B[n]⊗W ). The latter is nat-
urally quasi-isomorphic to A[n]⊗W . If M is a cell module, using the induction on
the length of its sequential filtration, we can get the desired quasi-isomorphism. For
the counit part, given N a dg B-module, and choosing a quasi-isomorphism of dg B-
module N̂ → N , where N̂ is a cell B-module, then we have B ⊗A N̂ → B ⊗B N ∼= N ,
which is also a quasi-isomorphism.

Corollary 6.4. Assume that A and B are Adams connected cdgas over G. If φ is
a quasi-isomorphism, then φ∗ : DG,f

A → DG,f
B is an equivalence of triangulated tensor

categories.

Proof. Notice that an equivalence between tensor triangulated categories induces
an equivalence on the subcategories of rigid objects. By Proposition 6.3, we know
that DG

A and DG
B are equivalent. Then by Theorem 5.9, we know that φ induces an

equivalence between DG,f
A and DG,f

B .

Remark 6.5. For any cdga A over G, we have a morphism δ : Q → A, which sends
A∗(0) to A. Then, for any M ∈ MG

Q and N ∈ MG
A, we have: HomDG

A
(A⊗M,N) ∼=

HomDG
Q
(M, δ∗N). Here δ∗ is the forgetful functor, which forgets the A-module struc-

ture.

7. Minimal models

In the rest of this paper, we always assume that the cdgas are Adams connected,
which implies that these cdgas take Q in Adams degree zero as a direct summand.

Definition 7.1. A cdga A over G is said to be generalized nilpotent if:

• A is a free commutative graded algebra over G, i.e., A = Sym∗E for some Z>0-
graded G-representations E. (Or a complex of G-representations concentrated
in positive degrees and with zero differentials).

• For n � 0, let A〈n〉 ⊂ A be the subalgebra generated by the elements of degree
� n. Set A〈n+ 1, 0〉 = A〈n〉 and for q � 0 define A〈n+ 1, q + 1〉 inductively as
the subalgebra generated by A〈n〉 and A〈n+ 1, q + 1〉n+1 = {x ∈ A〈n+ 1〉|dx ∈
A〈n+ 1, q〉}. Then for all n � 0, A〈n+ 1〉 = ∪q�0A〈n+ 1, q〉.

A cdga A over G is called nilpotent, if for each n � 1, there is a qn ∈ Z�0 such that
A〈n〉 = A〈n, qn〉 in the second condition above.
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Definition 7.2. A connected cdga A over G is minimal if it is a free commutative
graded algebra over G with decomposable differential: d(A) ⊂ (IA)

2
. IA is the fun-

damental ideal, i.e., IA = Ker(A → Q ∼= A0(0)).

Convention 7.3. For a cdga A over G, we let QA be IA/(IA · IA).

Proposition 7.4. If a connected cdga A over G is generalized nilpotent, then it is
minimal. Conversely, if A is a minimal connected cdga over G and Aq(r) = 0 unless
2r � q, then A is generalized nilpotent.

Proof. The proof is the same as Proposition 2.3 in Part of IV of [11].

Definition 7.5. Let A be a cdga over G. Given a positive integer n, an n-minimal
model of A over G is a map of cdgas over G:

s : A{n} −→ A,

with A{n} generalized nilpotent and generated as an algebra in degrees � n, such
that s induces an isomorphism on Hm for 1 � m � n and an injection on Hn+1. Here
n is also allowed to be ∞. In this case, we mean that there is a map of cdgas over G:
A{∞} s−→ A with A{∞} generalized nilpotent and s a quasi-isomorphism.

Proposition 7.6. Let A be a cohomologically connected cdga over G. Then for each
n = 1, 2, . . . ,∞, there is an n-minimal model A{n} over G: A{n} → A.

Proof. Following the idea of Proposition 2.4.9 in [12], we proceed by a double induc-
tion, first with respect to the Adams degree and then with respect to the coho-
mological degree. Because A is Adams connected, we have a canonical decomposi-
tion A = Q⊕ IA, where IA is the kernel of the canonical map between cdgas over
G : A → Q. Let E10(1) ⊂ I1(1) be the G-representation H1(I)(1), thought of as a
sub-module of I1(1). We give it cohomological degree 1 and Adams degree 1. Then
we have a natural inclusion E10(1) → A, which extends to Sym∗E10(1) → A using
the algebra structure of A. In fact, this is a map between cdgas over G and induces an
isomorphism on H1(−)(1). Then one can adjoin elements in cohomological degree 1
and Adams degree 1 to kill elements in the kernel of the map on H2(−)(1). So we have
a Z-graded G-representation E1(1) of Adams degree 1 and cohomological degree 1,
a generalized nilpotent cdga A1,1 = Sym∗E1(1) over G and a map of cdgas over G:
A1,1 → A, which induces an isomorphism on H1(−)(1) and an injection on H2(−)(1).

We have a canonical decomposition of A1,1 = Q⊕ I1,1. Note that Hp(I1,1(r)) = 0
for r > 1, p � 1. This is because that the lowest degree of cohomology of I1,1(r) is com-
ing from SymrE1(1) and all the elements of E1(1) have cohomological degree 1. Iterat-
ing this process, one can construct the Adams degree � 1 part of the n-minimal model
in case n > 1. This gives us a generalized nilpotent cdga over G: A1,n = Sym∗En(1),
with En(1) in Adams degree 1 and cohomological degrees 1, 2, . . . , n together with a
map over G: A1,n → A, which induces an isomorphism on Hi(−)(1) for 1 � i � n and
an injection for i = n+ 1. In addition, letting A1,n = Q⊕ I1,n, we have H

p(I1,n(r)) =
0 for r > 1, p � 1.

Suppose by induction we have constructed Z-graded G-representations:

En(1) ⊂ En(2) ⊂ · · · ⊂ En(m),

where En(j) have Adams degrees 1, . . . , j and cohomological degrees 1, . . . , n, a
differential on An,m = Sym∗En(m) making Am,n a generalized nilpotent cdga over G,
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and a map Am,n → A of cdgas over G that is an isomorphism on Hi(−)(j) for 1 � i �
n, j � m, and an injection for i = n+ 1, j � m. We decompose Am,n = Q⊕ Im,n and
then Hp(Im,n(r)) = 0 for r > m, p � 1. Extending En(m) to En(m+ 1) by repeating
the construction for En(1) above. Then one can check the above conditions still
hold. The induction goes through. Taking En = ∪mEn(m), we have a differential
on A{n} = Sym∗En making A{n} a generalized nilpotent cdga over G, and a map
A{n} → A of cdgas over G that is an isomorphism on Hi(−) for 1 � i � n and an
injection for i = n+ 1.

Remark 7.7. If f : A → B is a quasi-isomorphism of cdgas over G, and s : A{n} →
A, t : B{n} → B are n-minimal models, then there is an isomorphism of cdgas over
G: g : A{n} → B{n} such that g ◦ s is homotopic to t ◦ f . The proof is the same as
the case without G-action in Chapter 4 of [4].

8. The t-structure of DG,f
A

The aim of this section is to define a t-structure on DG,f
A if A is a cohomologically

connected cdga overG. There is a canonical augmentation ε : A → Q by the projection
onto A0(0) = Q. So we have a functor q = ε∗ : CMG

A → MG
Q defined by q(M) = M ⊗A

Q and an induced exact tensor functor q : DG
A → DG

Q .

Remark 8.1. We recall that DG,f
Q is the derived category of finite dimensional G-

representations. There is a canonical t-structure for DG,f
Q . The idea is to use q to

get the induced t-structure for DG,f
A when A is a cohomologically connected cdga

over G, which comes from the following general fact: Let φ : A → B be a map of
cohomologically connected cdgas over G. Then φ∗ : DG,f

A → DG,f
B is conservative, i.e.,

φ∗(M) ∼= 0 implies M ∼= 0.

Proof. Take a non-zero object M ∈ DG,f
A . Then we can find a cell module P and

a quasi-isomorphism P → M such that Wn−1P = 0, but WnP is not acyclic. We
choose generating data {Vj , φj}j∈J for P , such that |Vj | � n for j ∈ J . Because n is
the minimal integer of the possible Adams degree, the same proof of Lemma 5.10,
implies that WnP ⊗A Q is not acyclic. Notice that Wn(P ⊗A B) = WnP ⊗A B and
WnP ⊗A Q = (WnP ⊗A B)⊗B Q. Therefore P ⊗A B is not isomorphic to zero in

KCMG
B and φ∗M is non-zero in DG,f

B .

Define full subcategories DG,f,�0
A ,DG,f,�0

A and HG,f
A of DG,f

A :

DG,f,�0
A = {M ∈ DG,f

A |Hn(qM) = 0 for n > 0},
DG,f,�0

A = {M ∈ DG,f
A |Hn(qM) = 0 for n < 0},

HG,f
A = {M ∈ DG,f

A |Hn(qM) = 0 for n �= 0}.

Remark 8.2. The functor q above coincides with the functor grW∗ =
∏

n∈Z gr
W
n . See

Remark 1.9.1 in [12]. Then M ∈ DG,f,�0
A if and only if Hm(grWn M) = 0 for all m > 0

and n.
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Theorem 8.3. Suppose A is cohomologically connected. Then (DG,f,�0
A ,DG,f,�0

A ) is

a non-degenerate t-structure on DG,f
A with heart HG,f

A .

Proof. The proof is close to the corresponding proof of Theorem 1.1. 26 in [12]. Using
Proposition 7.6 and Corollary 6.4, we can assume that A is connected after replacing
by its minimal model. The proof will divide into the following lemmas.

Lemma 8.4. Suppose that A is connected. Let M ∈ DG,f,�0
A (resp. M ∈ DG,f,�0

A ).

Then there is a cell A-module P ∈ CMG,f
A with generating data {Vj , φj}j∈J such that

deg(φj) � 0 for all j ∈ J(resp. deg(φj) � 0 for all j ∈ J) and a quasi-isomorphism
P → M .

Proof. We prove the case M ∈ DG,f,�0
A firstly. Choose a quasi-isomorphism Q → M

with Q ∈ CMG,f
A . Let {Vj , φj}j∈J be generating data for Q. We can decompose dQ

with two parts d0Q and d+Q, where d0Q maps φj(Vj) to the submodule whose generat-

ing data (φi, Vi) have the Adams degree |Vj | and d+Q map to the complement part.
After choosing suitable generating data, we may assume the collection S0 of (Vj , φj)
with deg(φj) = 0 and d0Q(φj(Vj)) = 0 forms a basis of ker(d0 : ⊕deg(φj)=0 φj(Vj) →
⊕deg(φi)=1φi(Vi)). Let τ�0Q be the sub A-module of Q with the generating data of
S = {(Vj , φj)|deg(φj) < 0}⋃S0.

Claim: τ�0Q is a subcomplex of Q. Given {Vα, φα}, then
dQ(φα(Vα)) = d0Q(φα(Vα))⊕ d+Q(φα(Vα)).

Using the connected condition of A, we know that:

1. If there exists φβ(Vβ) ⊂ d+Q(φα(Vα)), then deg(φβ) � deg(φα); or

2. If there exists φβ(Vβ) ⊂ d0Q(φα(Vα)), then deg(φβ) = deg(φα) + 1.

If (Vα, φα) ∈ S with deg(φα) � −1, via (d0Q)
2 = 0 every summand of d0Q(φα(Vα))

lies in S0. So we only need to consider elements in S0. Suppose that (Vα, φα) ∈ S0.
Then we have:

dQ(φα(Vα)) ⊂
⊕

deg(φβ)=0

φβ(A⊗ Vβ)⊕
⊕

deg(φγ)�−1

φγ(A⊗ Vγ).

Using d2Q(φα(Vα)) = 0, we know that d0(φβ(Vβ)) = 0 for deg(φβ) = 0. This implies

that dQ(φα(Vα)) ⊂ τ�0Q. Next we show that τ�0Q → Q is a quasi-isomorphism. Via
Remark 8.1, we need only to check that qτ�0Q → qQ is a quasi-isomorphism. This
is clear because of qQ ∼= qM and M ∈ Df,�0

A . For the case M ∈ DG,f,�0
A , we need to

check the proof of Theorem 3.9 carefully, where one may add the extra conditions on
the degrees of the generating data. See Lemma 1.6.2 in [12].

Lemma 8.5. Suppose that A is connected. Then HomDG,f
A

(M,N [−1]) = 0 for M ∈
DG,f,�0

A and N ∈ DG,f,�0
A .

Proof. By Lemma 8.4, we may assume that M and N [−1] are cell A-modules with
the generating data {(Vα, φα)}deg(φα)�0 and {(Vβ , φβ)}deg(φβ)�1. Recall that we have:

HomDG,f
A

(M,N [−1]) = HomKCMG,f
A

(M,N [−1]).

If φ : M → N [−1], then deg(φ) = 0. Therefore f(φα(Vα)) ⊂ ⊕βφβ(A⊗ Vβ). If we
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compute the cohomological degrees of both sides, since Ai = 0 when i < 0, this is
impossible.

Lemma 8.6. Suppose that A is connected. For M ∈ DG,f
A , there is a distinguished tri-

angle M�0 → M → M>0 → M�0[1] with M�0 ∈ DG,f,�0 and M>0 ∈ DG,f,�0[−1].

Proof. Via the same proof of Lemma 8.4, we can get a cell sub A-module τ�0M of
M such that:

• τ�0M have generating data {(Vα, φα)}deg(φα)�0.

• The map qτ�0M → qM gives an isomorphism on Hn for n � 0.

Let M�0 = τ�0M and let M>0 be the cone of τ�0M → M . This gives us the dis-
tinguished triangle in DG

A : M
�0 → M → M>0 → M�0[1]. Because M ∈ DG,f

A , then

grWn M ∈ DG,f
Q for all n and is isomorphic to zero for all but finitely many n. The

distinguished triangle and our assumption implies that grWn M�0, grWn M>0 ∈ DG,f
Q

and these graded quotients are isomorphic to zero for all but finitely many n. Via
the weight filtration and by induction, we know that M�0 and M>0 are all in DG,f

A .
(Lemma 1.9.2 in [12].) By construction, M�0 ∈ DG,f,�0. Then applying the functor q
to the distinguished triangle, we have qM�0 → qM → qM>0 → qM�0[1]. The second
condition of τ�0M and Remark 8.2 implies that M>0 ∈ DG,f,�0[−1].

The only thing left to check is non-degeneracy for the t-structure. If we take M ∈⋂
n�0 D�n, then Hn(qM) = 0 for all n, i.e., qM ∼= 0 in DG,f

Q . By the conservative

property of the functor q, we know that A ∼= 0 in DG,f
A . Another case is similar.

Proposition 8.7. HG,f
A is a neutral Tannakian category over Q.

Proof. The derived tensor product makes HG,f
A into an abelian tensor category. First

we give a description about HG,f
A .

Lemma 8.8. HG,f
A is the smallest abelian subcategory of HG,f

A containing the objects
A⊗ V , where V is any rational G-representation, and closed under extensions in
HG,f

A .

Proof. (Induction on the weight filtration.) Let HG,T
A be the full abelian subcategory

containing all the objects A⊗ V , where V is any rational G-representation, and closed
under extensions in HG,f

A . Let M ∈ HG,f
A and N = min{n|WnM �= 0}. Then we have

an exact sequence:

0 → grWN M → M → W>NM → 0.

By Lemma 5.10, we have grWN M ∼= A⊗ C, where C is in Db(G). Because the category
of representations of G is semisimple, we view C as a direct sum of rational G-
representations with some shifts. Assume there exists a summand W [i] of C with
shift i �= 0. Then applying q, we get that 0 �= Hi(q(grWN M)) ⊂ Hi(qM), which is

a contradiction of our choice of M ∈ HG,f
A . This implies that grWN M ∈ HG,T

A . By

induction on the length of the weight filtration, W>NM is in HG,T
A . So M ∈ HG,T

A

and HG,T
A = HG,f

A .



160 JIN CAO

Since (A⊗ V )∨ = A⊗ V ∨, where V ∨ is the dual representation of V , it follows

from the above description that M → M∨ restricts from DG,f
A to an exact involution

on HG,f
A . HG,f

A is rigid because DG,f
A is rigid. The identity for the tensor product

is A and HG,f
A is Q-linear. Furthermore we have a rigid tensor functor q : HG,f

A →
HG,f

Q . Notice that HG,f
Q is equivalent to the category of rational representations of G.

Because there is a faithful forgetful functor w : HG,f
Q → V ecQ, to show the existence

of a fiber functor on HG,f
A is sufficient to prove that q is faithful.

Recall that we can identify q with grW∗ =
∏

grWn . Let f : M → N be a map in

Hf
A such that grWn (f) = 0 for all n. We need to show that f = 0. Again do the

induction on the length of the weight filtration. We may assume that Wnf = 0,
where n is the minimal integer such that WnM ⊕WnN �= 0. Thus f is given by a
map f̃ : W>nM → grWn N . We claim that f̃ = 0. Using the induction on the weight
filtration, it is enough to show the following statement: Given V and W pure weight
rational G-representations such that |V | > |W |, then we have:

HomHG,f
A

(A⊗ V,A⊗W ) ∼= 0.

In fact, since A is connected, then H0(A⊗W ⊗ V ∨) ∼= W ⊗ V ∨. The latter is a ratio-
nal representation of G with Adams degree strictly smaller than zero, which implies
that HomG(Q, H0(A⊗W ⊗ V ∨)) ∼= 0. Using

HomHG,f
A

(A⊗ V,A⊗W ) ∼= HomDG,f
A

(A⊗ V,A⊗W )
∼= HomD(G)(V,A⊗W ) ∼= HomG(Q, H0(A⊗W ⊗ V ∨)) ∼= 0,

we know that q is faithful.

9. The bar construction

Let A be a cdga over G and let M,N be two dg A-modules. Then we define:

TG(N,A,M) = N ⊗ T (A)⊗M,

where T (A) = Q⊕A⊕ (A⊗A)⊕ · · · = ⊕r�0T
r(A) is the tensor algebra generated

by A. It is spanned by the elements of the form n[a1| · · · |ar]m. Note that TG(N,A,M)
is a simplicial graded abelian group withN ⊗ T r(A)⊗M in degree r, whose face maps
are:

δ0(n[a1| · · · |ar]m) = na1[a2| · · · |ar]m,

δi(n[a1| · · · |ar]m) = na1[a2| · · · |aiai+1| · · · |ar]m, 1 � i � r − 1,

δr(n[a1| · · · |ar−1|ar]m) = n[a1| · · · |ar−1]arm,

and degeneracies are: si(n[a1| · · · |ar]m) = n[a1| · · · |ai−1|1|ai| · · · |ar]m. We define:

δ =
∑

0�i�r

(−1)iδi : N ⊗ T r(A)⊗M → N ⊗ T r−1(A)⊗M.

Let DG(N,A,M) be the degenerate elements, those elements are spanned by the
images of the si for every i.

Definition 9.1. Define the bar complex of M and N to be:

BG(N,A,M) = TG(N,A,M)/DG(N,A,M).
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Note that BG(N,A,M) is a bicomplex. The total differential is defined by

d(n[a1| · · · |ar]m) = ∂(n[a1| · · · |ar]m))
+ (−1)deg(n)+deg(m)+

∑
deg(ai)δ(n[a1| · · · |ar]m),

where ∂ denotes the usual differential of A. We will consider the following special case
that M = N = Q, which is denoted by B̄G(A), called the reduced bar construction.
The properties of reduced bar construction such as the shuffle product, coproduct and
involution ([12] Section 1.2) make B̄G(A) a graded-commutative differential graded
Hopf algebra in the category of G-representations. Similarly χA = H0(B̄G(A)) is an
Adams graded Hopf algebra over G i.e., a graded Hopf algebra object in RepG.

Definition 9.2. Define γA = IχA
/(IχA

)2, where IχA
is the augmentation ideal of χA.

Lemma 9.3. γA determines a structure of a cdga over G.

Remark 9.4. Recall the definition of co-Lie algebras firstly. A co-Lie algebra is a k-
module γ with a cobracket map γ → γ ⊗ γ such that the dual γ∨ is a Lie algebra via
the dual homomorphism. Sullivan showed that (Lemma 2.7 in [11] or p.279 in [15]):
A co-Lie algebra γ determines and is determined by a structure of DGA on ∧(γ[−1]).
The proof of the above lemma comes from this fact directly.

Lemma 9.5. Let A be a cdga over G. Then H∗(B̄G(A)) and χA is functorial in A
and is a quasi-isomorphism invariant in A.

Proof. Use the Eilenberg-Moore spectral sequence. See Lemma 2.21 in [3].

Theorem 9.6. If A is a cohomologically connected cdga over G, then the 1-minimal
model A{1} of A is isomorphic to ∧(γA[−1]).

Proof. Follow the proof of [3]. From Lemma 9.5, we can assume that A is a generalized
nilpotent cdga over G. A generalize nilpotent cdga A over G is a direct limit (Aα)
of nilpotent cdga’s. So we can assume that A is a nilpotent cdga over G with a free
generator E which is a complex of G-representations. We need to use the following
lemma, whose proof is totally the same as Lemma 2.32 in [3].

Lemma 9.7. Assume that A is as above with free generator G-representation V . Fix
an integer s > 0. We let the decreasing filtration F kB̄G(A) on B̄G(A) be

〈x11 · · ·x1n1 ⊗ · · · ⊗ xm1 · · ·xmnm |s
∑

deg xij + s
∑

nj − (2s− 1)m � k〉.
Then, for a sufficiently large s depending on A, the resulting spectral sequence satisfies

∧(V [1]) ∼= E2s
∼= E∞ ∼= GrFH

∗(B̄G(A)). (1)

Let us prove the theorem via the lemma. Consider the projection πn : B̄
G(A) →

A⊗n, which maps A⊗m to 0 if m �= n. By definition of the differential map of the
reduces bar construction, the boundaries of the reduced bar construction are the
direct sums of the boundaries of the complex A⊗n and decomposable elements. Via
Proposition 7.4 and our assumption, A is minimal, i.e., the boundaries of A are
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decomposable. Then π1 induces a map φ : H∗(B̄G(A)) → (QA)[1]. Hence we get a
map between (graded) vector spaces:

φ : QH∗(B̄G(A)) → (QA)[1].

Using the isomorphism (1) in the above lemma and taking the indecomposable parts
of both hands sides of it, we know that φ induces an isomorphism between vector
spaces:

φ̃ : QH0(B̄G(A)) → (QA)[1].

Moreover, this is an isomorphism between co-Lie algebras. Note that the co-Lie alge-
bra structure of LHS is obtained from the coproduct of the Hopf algebra structure of
H0(B̄G(A)) and the co-Lie algebra structure of RHS is obtained from the quadratic
part of the differential map on A with respect to the generator space QA. We can
use the commutative diagram in Theorem 6.3 (iii) in [11] to check that φ̃ is an iso-
morphism between the co-Lie algebras. Then we have a map:

γA[−1] = QH0(B̄G(A))[−1] → QA,

hence a map ∧(γA[−1]) → A, which is just the 1-minimal model of A.

10. Alternative identifications of the heart

In this section, we collect the different identifications of the category HG,f
A based

on the construction in the usual Adams graded case.

Definition 10.1. An Adams degree bounded below cell A-module is minimal if it is
almost free and d(M) ⊂ (IA)M .

Definition 10.2. Let M be an Adams degree bounded below A-module. We define
the nilpotent filtration {FtM} by letting F0M = 0 and inductively letting FtM be
the sub A-module generated by Ft−1M ∪ {m|dm ∈ Ft−1M}.
Remark 10.3. The minimal cell modules have the similar properties as the connected
minimal cdgas. We can also define the generalized nilpotent A-modules. Since the
proof of the following properties is the same as Part IV, section 3 in [11], we only list
the main properties:

• A bounded below A-module M is generalized nilpotent if and only if it is a
minimal cell A module.

• Let N be a dg A-module. Then there is a quasi-isomorphism e : M → N , where
M is a minimal A-module. This is unique up to the homotopy.

Next we want to use another way to describe cell A-modules, which is called the
connection matrix. See [11] (called the twisting matrix also) or [12].

Definition 10.4. Let (M,dM ) be a complex of G-representations. An A-connection
for M is a map Γ: M → IA⊗M of G representations and cohomological degree 1.
We say Γ is flat if dΓ + Γ2 = 0. Here dΓ = dIA⊗M ◦ Γ + Γ ◦ dM and we extend Γ to
Γ: IA⊗M → IA⊗M by the Leibniz rule.
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Remark 10.5. Given a connection Γ: M → IA⊗M , we define

d0 : M → A⊗M = M ⊕ IA⊗M,m → dMm⊕ Γm

and extend d0 to dΓ : A⊗M → A⊗M by the Leibniz rule. The above equation is
equivalent to saying that d2Γ = 0.

Definition 10.6. We call an A-connection Γ for M nilpotent if M admits a filtra-
tion by complexes of G-representations: 0 = M−1 ⊂ M0 ⊂ · · · ⊂ Mn ⊂ · · · ⊂ M such
that M = ∪nMn and such that dM (Mn) ⊂ Mn−1 and Γ(Mn) ⊂ IA⊗Mn−1 for every
n � 0.

Remark 10.7. Let Γ: M → IA⊗M be a flat nilpotent connection. Then the dg A-
module (A⊗M,dΓ) is a cell module.

Lemma 10.8. Let Γ: M → IA⊗M be a flat connection. Suppose there is an integer
r0 such that |m| � r0 for all m ∈ M . Then Γ is nilpotent.

Proof. The proof is the same as Lemma 1.13.3 in [12].

Definition 10.9. A morphism f : (M,dM ,ΓM ) → (N, dN ,ΓN ) is a map of complexes
of G-representations: f = f0 + f+ : M → A⊗N = N ⊕ IA⊗N such that dΓN

f =
fdΓM

.

Definition 10.10. We denote the category of flat nilpotent connections over A by
ConnG

A and denote the full subcategory of flat nilpotent connections on M with M

a bounded complex of rational G-representations by ConnG,f
A .

We can define a tensor operation on ConnA by

(M,Γ)⊗ (M ′,Γ′) = (M ⊗M ′,Γ⊗ id+ id⊗ Γ′).

Complexes of Q-vector spaces act on ConnA by: (M,Γ)⊗K = (M,Γ)⊗ (K, 0). We

recall that I is the complex Q
δ−→ Q⊕Q with Q in degree −1 and with connection 0.

We have the two inclusions i0, i1 : Q → I.

Definition 10.11. Two maps f, g : (M,Γ) → (M ′,Γ′) are homotopic if there is a map
h : (M,Γ)⊗ I → (M ′,Γ′) satisfying f = h ◦ (id⊗ i0), g = h ◦ (id⊗ i1).

Definition 10.12. Denote the homotopy category of ConnG
A by HConnG

A, which has
the same objects as ConnG

A and morphisms are homotopy classes of maps in ConnG
A.

Remark 10.13. When we pass to homotopy classes and given a cell A-module M , it
is totally determined by the underlying G-representation M0, i.e., M0 = M ⊗A Q.

We list the main properties of flat connections. The proof is the same as in Sec-
tion 1.14 in [12].

(A) The category of A-cell modules is equivalent to the category of flat nilpotent
A-connections.

(B) The equivalence in (A) passes to an equivalence of HConnG
A with the homotopy

category KCMG
A as triangulated tensor categories.

(C) If A is connected, the equivalence in (B) defines an equivalence of Tannakian cat-

egoriesHG,f
A and the category of flat connections on G-representations ConnG,f

A .

Assume that A is a generalized nilpotent connected cdga over G. Let M be a complex
of rational G-representations and Γ: M → IA⊗M a flat connection. The argument
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after Remark 1.14.6 in [12] implies that Γ is a map M → A1 ⊗M . The flatness
of Γ makes M into an Adams graded co-module for the co-Lie algebra γA over G.
In this case, one can show that there is an equivalence ConnG,f

A
∼= co− repG,f (γA)

(See Remark 1.14.8 in [12]), hence using the equivalence in (C), we have HG,f
A

∼=
ConnG,f

A
∼= co− repG,f (γA). Since HG,f

A and co− repG,f (γA) are invariant under
quasi-isomorphisms of cohomologically connected cdga′s, if we assume that A is coho-
mologically connected, then we get an equivalence HG,f

A
∼= co− repG,f (γA).

11. The main theorem

Lemma 11.1. Let D be a triangulated category with t-structure (D�0,D�0). We
denote its heart by H. Assume that there is a triangulated functor ρ : Db(H) → D
such that:

• ρ|H[i] is an inclusion for any i ∈ Z;

• D is bounded, i.e., for any M ∈ D, there exist a � b ∈ Z satisfying M ∈ D[a,b] =
D�a ∩ D�b;

• For any M,N ∈ H and n ∈ Z, ρ induces an isomorphism

HomDb(H)(M,N [n])
∼−→ HomD(ρ(M), ρ(N)[n]).

Then ρ is an equivalence between triangulated categories.

Proof. We do the induction on the length of the object. Given an object A in D,
there exist the minimal a and maximal b such that A ∈ D�a ∩ D�b. Then we define
the length of A to be b− a. Firstly, we prove the following: For any A,B ∈ Db(H)
and n ∈ Z, we have:

HomDb(H)(M,N [n])
∼−→ HomD(ρ(M), ρ(N)[n]). (2)

By induction we assume that, for any A ∈ Db(H)a,b, B ∈ Db(H)c,d and max{b−
a, d− c} � m− 1, the above is true. Take any A with the length smaller than m, and
B with the length m = b− a. There is a distinguished triangle: τ�aτ�b−1B → B →
τ�bτ�bB → τ�aτ�b−1B[1] →. Then we have a long exact sequence:

Hom(A, τ�aτ�b−1B) → Hom(A,B) → Hom(A, τ�bτ�bB)
→ Hom(A, τ�aτ�b−1B[1]) → · · · .

Compare the above sequence with:

Hom(ρ(A), ρ(τ�aτ�b−1B)) → Hom(ρ(A), ρ(B)) → Hom(ρ(A), ρ(τ�bτ�bB))
→ Hom(ρ(A), ρ(τ�aτ�b−1B[1])) → · · · .

We know (2) holds for A,B by the five lemma and induction. Then we assume both
A and B have length m. Using the similar method and induction again, we can know
that (2) is true, i.e., ρ is fully faithful.

Next we want to use induction to show that ρ is essentially surjective. It is enough
to show that, for any object B ∈ D, there exists A ∈ Db(H) such that ρ(A) ∼= B. Take
any element B ∈ D with length m. Then we have: τ�aτ�b−1B → B → τ�bτ�bB →
τ�aτ�b−1B[1] →, i.e., τ�bτ�bB[−1]

f−→ τ�aτ�b−1B → B → τ�bτ�bB →. By assump-
tion, we have A1 and A2 ∈ Db(H) map to τ�bτ�bB[−1] and τ�aτ�b−1B respectively.
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By (2), we know that there exists a map g from A1 to A2, whose image under ρ is
just f . We take A = cone(g). Then by the axiom of triangulated categories, there
exists a map ρ(A) → B. By the five lemma and Yoneda lemma, applying the functor
of type Hom(B̃, ), where B̃ ∈ D, we know that ρ(A) ∼= B.

Theorem 11.2. Let A be a cohomologically connected cdga over G. Then

• There is a functor: ρ : Db(HG,f
A ) −→ DG,f

A .

• The functor ρ constructed above is an equivalence of triangulated categories if
and only if A is 1-minimal.

Proof. Construct the functor ρ first. Let M∗ = {Mn, δn : Mn → Mn+1} be in HG,f
A .

Assume that each Mn is minimal. Furthermore, we assume that Mn is given by
generating data {Vjnm , φjnm}jnm∈Jn and the connection matrix is denoted by Γn. Then
we define ρM∗ with generating data {Vjnm

, φjnm
[n]}jnm∈Jn and its differential given

by: d|φjnm
[n](Vjnm

) = Γn[n] + δn[n]. If f∗ : M∗ → N∗ is a quasi-isomorphism of chain

complexes, then ρ(f∗) is a quasi-isomorphism of A-modules.
For the second statement, we assume that A is 1-minimal, i.e., A ∼= ∧∗(γ[−1]),

where γ is the co-Lie algebra consisted by indecomposable elements of H0(B̄G(A)).

In order to apply the above result to our case (D = DG,f
A and H = HG,f

A ), we need to
check the conditions in Lemma 11.1. The first and second condition are automatic.
We check the third condition. Notice that HG,f

A can be identified with the category
of co-representations of γ in the category of G-representations. In fact, given a finite
dimensional co-representation V , we can associate it with a cell module A⊗ V .

We recall the following basic facts (Lemma 23.1, Example 1 (p. 315) and pp. 319,
320 in [8]). Given a differential graded Lie algebra L, we have:

ExtnL(Q,Q) ∼= ExtnUL(Q,Q) ∼= Hn((∧∗(L[−1]))∨),

ExtnL(Q, V ) ∼= ExtnUL(Q, V ) ∼= Hn((∧∗(L[−1]))∨ ⊗ V ).

UL is the universal enveloping Lie algebra of L and V is any L-module. L[−1]k =
Lk−1. Applying to the co-Lie algebra γ, we get: Extnγ (Q,Q) ∼= Hn(∧∗(γ[−1])). In
fact, the proof of this isomorphism can be extended to the following case. Given
a co-Lie algebra γ over G and a γ co-representation V , we have: Extnγ (Q, V ) ∼=
HomG(Q, Hn(∧∗(γ[−1])⊗ V )). Notice that the left-hand side computes the exten-
sion groups in the category of γ-representations. Therefore we have:

HomDb(HG,f
A )(∧∗(γ[−1])⊗ V,∧∗γ[−1]⊗W [n])

∼= ExtnHG,f
A

(∧∗(γ[−1])⊗ V,∧∗(γ[−1])⊗W ) ∼= Extnγ (Q, V ∨ ⊗W )

∼= HomG(Q, Hn(∧∗(γ[−1])⊗ V ∨ ⊗W )) ∼= HomG(Q, H0(∧∗(γ[−1])⊗ V ∨ ⊗W [n]))
∼= HomDG,f

A
(Q,∧∗(γ[−1])⊗ V ∨ ⊗W [n])

∼= HomDG,f
A

(∧∗(γ[−1])⊗ V,∧∗(γ[−1])⊗W [n]).

One can check that the composition of these isomorphisms is ρ : Db(HG,f
A ) −→ DG,f

A .
Conversely, we assume that ρ is an equivalence. Without loss of generality, we

assume that A is generalized nilpotent. The above computation tells us that Hn(A⊗
V )(0) ∼= Extnγ (Q, V ), where γ is the co-Lie algebra consisting of the indecomposable

elements in H0(B̄(A)). Let us consider the map A → ∧∗(γ[−1]), Applying the functor
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HomG(V [n], ·) for any n ∈ Z and any G-representation V , we get: HomG(V [n], A) ∼=
Hn(A⊗ V )(0) ∼= Extnγ (Q, V ) ∼= HomG(V [n],∧∗(γ[−1])). This implies that, viewed as
G-representations, the map is a quasi-isomorphism. Therefore A is 1-minimal.

Corollary 11.3. Let A be a cohomologically connected cdga over G. Then

• There is a functor: ρ : Db(co− repG,f
Q (χA)) −→ DG,f

A . Furthermore, ρ induces

a functor on the hearts H(ρ) : co− repG,f (χA) → HG,f
A , which is an equivalence

of Tannakian categories.

• The functor ρ is an equivalence of triangulated categories if and only if A is
1-minimal.

12. Split Tannakian categories over a reductive group

In this section, we describe a special kind of Tannakian categories. Fix a reductive
group R.

Definition 12.1. We say that C is a neutral Tannakian category over R if C is a
neutral Tannakian category over Q and there exists an exact faithful Q-linear tensor
functor ω̃ : C → Rep(R), whose composition with the forgetful functor F : Rep(R) →
V ecQ is the fiber functor ω : C → V ecQ.

Example 12.2. Assume thatR satisfies Convection 2.1 and that A is a cohomologically
connected cdga over R. From Theorem 8.3, we know the existence of the heartHR,f

A of

DR,f
A , which is a neutral Tannakian category over R. Another example is the relative

completion G with respect a given map from an abstract group Γ
ρ−→ R(Q). For the

definition of the relative completion, we refer to [9].

Motivated by the above examples, we define:

Definition 12.3. A neutral Tannakian category C over R is split if the full subcat-
egory of C consisting of semi-simple objects is isomorphic to Rep(R).

Remark 12.4. The Tannakian fundamental group of a neutral Tannakian category C
with a tensor generator is isomorphic to a linear proalgebraic group. See Proposi-
tion 2.20 in [7]. If we assume further that this Tannakian category is split over G and
its Tannakian fundamental group is connected, then it will be the form U �R, where
U is a prounipotent algebraic group. Example 12.2 satisfy these conditions.

In the end, we want to use the method of framed objects (Section 6 of [3] for
example) to give a description of the coordinate ring of the Tannakian fundamental
group of any split neutral Tannakian category C with a tensor generator. We assume
that the Tannakian fundamental group is connected. As explained in Remark 12.4,
it is enough to determine the coordinate ring of the prounipotent radical as a Hopf
algebra object in Rep(R).

Definition 12.5. A framed object in C is an object X in C together with an element
u ∈ HomR(V, ω̃(X)) (called the frame vector) and an element of v ∈ HomR(ω̃(X),Q)
(called the frame covector), where V is an irreducible R-representation. We denote
this object by (X,u, v).

Definition 12.6. Two framed objects X,Y ∈ C are identified if there is a mapping
X → Y compatible with the framing.
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Notice that such pairs X,Y define a relation R on the set of all framed objects.
Then χC is defined as the set of equivalence classes of the smallest equivalence relation
containing R. By our definition χC is graded over the irreducible rational represen-
tations of G. For a given rational R- representation V , we denote the V -graded piece
of χC by χC(V ).

Claim 12.7. χC is a Hopf algebra in Rep(R).

In order to explain our claim, first we recall a fundamental result – Proposition 3.1
in [9]. If (Vα)α is a set of irreducible rational R-representations, viewed right R-
modules, then, as an (R,R) bimodule, O(R) is canonically isomorphic to

⊕
α(Vα)

∨ �
Vα. In other words, there exists a Hopf algebraic structure on

⊕
α(Vα)

∨ � Vα. If we
denote the generator of (Vα)

∨ � Vα by v∨α � vα, then:

(1) Let m be the product map of the Hopf algebra. Then we have

m((v∨α � vα)⊗ (v∨β � vβ)) = ⊕γm
γ
α,β(v

∨
γ � vγ),

where mγ
α,β is the corresponding multiplicity. In fact, the index set runs through

the irreducible representations Vγ appearing in the tensor product of Vα ⊗ Vβ .

(2) Let Δ be the coproduct map of the Hopf algebra. Then we have

Δ(v∨α � vα) =
∑
β,γ

nβ,γ
α ((vβ)

∨ � vβ)⊗ ((vγ)
∨ � vγ), (3)

where nβ,γ
α is the corresponding multiplicity.

Now we move to our claim.

• The sum on χC is the Baer sum.

• The product is defined by the tensor product of underlying objects together
with the tensor product of the framings. Let (X1, u1, v1), (X2, u2, v2) be two
framed objects, which represent two classes [(X1, u1, v1)] and [(X2, u2, v2)] in
χC(Vα) and χC(Vβ) respectively. Then we define: [(X1, u1, v1)] · [(X2, u2, v2)] =
[(X1 ⊗X2, u1 ⊗ u2, v1 ⊗ v2)] ∈ χC(Vα ⊗ Vβ).

• The coproduct ψ = ⊕αψα = ⊕α ⊕β,γ ψβ,γ
α , where ψβ,γ

α : χC(Vα) → χC(Vβ)⊗
χC(Vγ), the first index set α runs over all irreducible representations Vα and
the second index set β, γ is the same as the index set appearing in the coprod-
uct (3), is defined as follows. We let [(M,u, v)] ∈ χC(Vα) and let

∑
xi ⊗ yi = 1 ∈

HomR(ω̃(M), Vγ)⊗HomR(Vγ , ω̃(M)). Here 1 denotes the identity map under
the isomorphism:

HomR(ω̃(M), Vγ)⊗HomR(Vγ , ω̃(M)) ∼= End(HomR(Vγ , ω̃(M))).

Then we put ψβ,γ
α ([(M,u, v)]) =

∑
β,γ n

β,γ
α [(M ⊗ (Vγ)

∨, u, xi)]⊗ [(M, yi, v)]. We

view u on the right-hand side as the adjunction of Vβ ⊗ Vγ → Vα
u−→ M .

• The involution S : χC(Vα) → χC(Vα) is defined by sending [(M,u, v)] to [(M∨ ⊗
Vα, v, u)].

One may check these operations satisfy the axioms of a Hopf algebra. Motivated by
the result in Section 1.6 of [1], we have:

Proposition 12.8. Let C be a split neutral Tannakian category over R with a ten-
sor generator and the Tannakian fundamental group of C is connected. Then C is
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equivalent to the category of finite dimensional χC-comodules in Rep(R).

Proof. Because Rep(R) is a full subcategory of C, we consider V ∈ Rep(R) as an
element in C. Given any object M ∈ C, we assign it to a χC-comodule Φ(M) such
that:

• the underlying R-mod structure is

Φ(M) =
⊕
α

Φ(M)(Vα) =
⊕
α

HomR(Vα, ω̃(M))⊗ Vα,

where the index set α runs through all the isomorphic classes of irreducible
R-representations.

• the χC-comodule structure is defined by the map Φ(M)⊗ Φ(M)∨ → χC , which
sends u⊗ v to [(M,u, v)]. If v doesn’t lie in HomR(Q, ω̃(M)), then consider it
to be zero.

This defines a functor Φ from C to the category of finite dimensional χC-comodules
in Rep(R). Notice that the coproduct on χC is conilpotent. For the definition of a
conilpotent coproduct, we refer to Section 3.8 in [6]. Using Theorem 3.9.1 in [6], we
know that UC , which is defined to be Spec(χC), is a prounipotent algebraic group
over Q. On the other hand, C is isomorphic to the category of representations over
a linear proalgebraic group G, which is a semi-product of a prounipotent algebraic
group U with R. Hence Φ induces a map from Hi(U) ∼= Hi(u) → Hi(UC) ∼= Hi(uC),
where u (resp. uC) is the Lie algebra of U (resp. UC).

We recall the following basic properties about extension groups in C or the category
of finite dimensional G-representations (Section 5.1 in [10]). We have an isomorphism
in Rep(R):

Hi(u) ∼= Hi(U) ∼=
⊕
α

Hi(G, (Vα)
∨)⊗ Vα

∼=
⊕
α

ExtiC(1, (Vα)
∨)⊗ Vα,

where the index set runs over all irreducible R-representations.
Note that uC ∼= Hom(IC/(IC)

2,Q) where IC is the fundamental ideal of χC .
Using Chevalley-Eilenberg cochains, one may show that Φ induces an isomorphism
H1(uC) ∼=

⊕
α Ext1C(1, (Vα)

∨)⊗ Vα. Then following the same idea in the proof of
Theorem A.6 in appendix of [10], Φ induces an embedding from

⊕
α Ext2C(1, (Vα)

∨)⊗
Vα toH2(uC). Via Proposition 2.1 in [10], we know that: Φ: uC → u is aR-equivariant
isomorphism between pronilpotent Lie algebras. Therefore Φ induces an equivalence of
Tannakian categories between C and the category of finite dimensional χC-comodules
in Rep(R).

Remark 12.9. If we assume that R satisfies Convention 2.1, then one can prove Propo-
sition 12.8 via the properties of mixed categories developed in Section 2 of [2] without
difficulty.

Example 12.10. Let F be a field finitely generated over a prime field and let l be a
prime number. The category MTMF,l of mixed Tate representations of Gal(F̄ /F ) is
a split neutral Tannakian category over Gm. Proposition 12.8 implies that MTMl,F

is isomorphic to the category of finite dimensional χMTMl,F
comodules in Rep(Gm).

This has been shown in [1]. If F is a number field, the abelian category MTM(F,Q)
of mixed Tate motives with rational coefficients over F exists which is a split neutral
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Tannakian category over Gm. One can use Proposition 12.8 to describe such category.
Moreover, the full rigid tensor subcategory of the abelian category of mixed motives
generated by the motive of a fixed smooth projective variety is conjecturally a split
neutral Tannakian categories over some reductive group.
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