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A MOMENT-ANGLE MANIFOLD WHOSE COHOMOLOGY HAS

TORSION

XIAOMENG LI and GEFEI WANG

(communicated by Nicholas J. Kuhn)

Abstract
In this paper we give a method to construct moment-angle

manifolds whose cohomology has torsion. We also give method
to describe the corresponding simplicial sphere by its non-faces.

1. Introduction

Corresponding to every abstract simplicial complex L on the vertex set [m] =
{1, 2, . . . ,m}, there are the real and complex moment-angle complexes RZL and ZL

(cf. [3, 4]). They are defined as
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The cohomology groups of RZL and ZL are given by Hochster’s theorem: Corre-
sponding to every abstract simplicial complex L on the vertex set [m] = {1, 2, . . . ,m},
there are the real and complex moment-angle complexes RZL and ZL (cf. [3, 4]).
They are defined as

RZL =
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The cohomology groups of RZL and ZL are given by Hochster’s theorem:

Theorem 1.1 ([1, 3, 4]). Let L be a simplicial complex on the vertex set [m], then

H∗(RZL) ∼=
⊕

I⊂[m]

H̃∗−1(L|I),

H∗(ZL) ∼=
⊕

I⊂[m]

H̃∗−|I|−1(L|I),
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where L|I is the full subcomplex of L on subset I and I runs over all the subsets
of [m].

From [5, 6, 7] we know that both RZL and ZL are topological manifolds if L
is a simplicial sphere, referred to as moment-angle manifolds. Furthermore if L is
a polytopal sphere (the boundary complex of a simplicial polytope), then ZL is a
transverse intersection of real quadratic hypersurfaces (cf. [2]), while both RZL and
ZL are framed differentiable manifolds.

Bosio and Meersseman in [2] announced that the cohomology groups of differen-
tiable complex moment-angle manifolds may have any torsion Z/m. Furthermore if
L is Z/2 colourable, Cai, Choi and Park in [8, 9] proved that the small cover under
RZL may have any torsion Z/m.

From Hochster’s theorem, it is easy to construct a moment-angle complex whose
cohomology has torsion. But it is harder to construct such moment-angle manifolds, at
least, the cohomology of all the moment-angle manifolds corresponding to dimensional
1, 2 and 3 simplicial spheres are torsion free (cf. [2, Corollary 11.1]).

Based on Hochster’s theorem, our goal is to find a simplicial complex K whose
cohomology has torsion and K is embedded in a polytopal sphere L as a full sub-
complex. Then both the real and complex moment-angle complexes corresponding to
L are differentiable manifolds and the cohomology of RZL and ZL have H̃∗(K) as a
summand and then have torsion.

Theorem 3.2 (Construction). Let K be a subcomplex (not a full subcomplex) of a
simplicial sphere L0 on the vertex set [m], M = {σ1, σ2, . . . , σs} be the set of miss-
ing faces of K, which are also simplices of L0. On L0, make stellar subdivisions at
σ1, σ2, . . . , σs one by one as follows

L1 = ssσ1
L0, L2 = ssσ2

L1, . . . , Ls = ssσs
Ls−1.

Then K becomes a full subcomplex of Ls, K = Ls|[m].

In fact, after making stellar subdivision on a polytopal (simplicial) sphere, it is still
polytopal (simplicial) (see [10]). If L0 is also a polytopal sphere, we thus obtain a
polytopal sphere Ls by Theorem 3.2 such that K is a full subcomplex of Ls. The real
and complex moment-angle complexes corresponding to Ls are differentiable mani-
folds. By Hochster’s theorem both H∗(RZLs

) and H∗(ZLs
) have torsion if H̃∗(K)

has torsion.

At last in Section 4, we give a differentiable moment-angle manifold whose coho-
mology has Z/3 as a summand. This is done as follows:

Triangulate the mod 3 Moore spaceK which has 8 vertices, 17 2-dimensional facets
and 22 missing faces (see Figure 3). It can be embedded in ∂∆7 = L0. After making
22 stellar subdivisions on it, K becomes a full subcomplex of the polytopal sphere
L22. Then L22 is a 6-dimensional polytopal sphere with 30 vertices. ZL22

is a 37-

dimensional differentiable manifold and H11(ZL22
) has H̃2(K) = Z/3 as a summand.

It is notable that Bosio and Meersseman’s construction in [2, Theorem 11.12]
applied to the same example does not give a moment-angle manifold whose cohomol-
ogy has Z/3 torsion.
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2. Simplicial complement

An abstract simplicial complex K on the vertex set I is a collection of simplices
that satisfies: for any simplex (face) σ ∈ K, all of its proper subsets (proper faces)
are simplices of K.

An abstract simplicial complex K could also be given by all of its non-faces

A = 2I \K

and

K = 2I \ A

that satisfies: if σ ∈ A is not a simplex of K and σ′ ⊃ σ then σ′ ∈ A is not a simplex
of K.

A simplex σ = (i1, i2, . . . , ik) ∈ 2I is called a missing face (or minimal non-face)
of K if it is not a face of K, but all of its proper subsets are faces of K, i.e. σ /∈ K but
every σj = (i1, . . . , îj , . . . , ik) ∈ K, j = 1, 2, . . . , k. An abstract simplicial complex
could also be given by its set of missing faces

M = {σ ∈ 2I | σ is a missing face of K}

and

K = {τ ∈ 2I | τ does not contain any σ ∈ M}.

A subset σ′ of I is not a simplex of K if and only if it contains a missing face σ ∈ M

as a subset.

Definition 2.1. Let K be a simplicial complex on the vertex set I and M, A be
the sets of missing faces and non-faces of K respectively. We define a simplicial
complement of K, denoted by

P = {σ1, σ2, . . . , σs},

to be a collection of non-faces that includes all the missing faces M i.e.

M ⊆ P ⊆ A.

Similar to the set of missing faces M, given a simplicial complement P (collection
of non-faces) on the vertex set I, one can obtain a simplicial complex KP on I by:

KP(I) = {τ ⊂ I | τ does not contain any σi ∈ P} (1)

or by all of its non-faces

2I \KP(I) = {τ ⊂ I | τ contains a σi ∈ P}.

A subset σ of I is not a simplex of KP(I) if and only if it contains a non-face σi in
the simplicial complement P.
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Definition 2.2. Let P,P′ be two simplicial complements on the vertex set I, if they
can obtain the same simplicial complex i.e. KP(I) = KP′(I), we say that P and P

′ are
equivalent, denoted by P ≃ P

′.

It is easy to see that: Two simplicial complements P, P
′

on I are equivalent if and
only if for every non-face σ ∈ P there exists a σ′ ∈ P

′ such that σ′ ⊆ σ and for every
non-face σ′ ∈ P

′ there exists a σ ∈ P such that σ ⊆ σ′.

Proposition 2.3. Let P = {σ1, σ2, . . . , σs} be a simplicial complement of K on I.
For a non-face σj ∈ P if there exists a σi ∈ P, i 6= j such that σi ⊆ σj, then we can
remove σj from P and the resulting simplicial complement

P
′ = {σ1, σ2, . . . , σ̂j , . . . , σs}

is equivalent to P. In this case we call that P is reduced to P
′.

Every simplicial complement of K could be reduced to the set of missing faces by
removing all the larger non-faces.

Example 2.4. The simplicial complex K is determined by the maximal simplices
(1, 3), (2, 3), (1, 2, 4), (1, 2, 5), (1, 4, 5), (2, 4, 5) and their proper subsets on the vertex
set [5] = {1, 2, 3, 4, 5} (see Figure 1)

1

2

3

4 5

Figure 1: The simplicial complex K

P =

{
σ1 = (1, 2, 4, 5), σ2 = (1, 2, 3), σ3 = (3, 4),
σ4 = (3, 5), σ5 = (1, 3, 4), σ6 = (3, 4)

}

is a simplicial complement of K on the vertex set [5] where σ3 = (3, 4) = σ6 appeared
twice and σ3 = (3, 4) ⊂ σ5 = (1, 3, 4). So σ5 = (1, 3, 4) and σ6 = (3, 4) could be re-
moved from P to reduce to the set of missing faces M = {(1, 2, 4, 5), (1, 2, 3), (3, 4),
(3, 5)}.

The readers should be aware that the empty simplex {∅} (only the empty set is a
simplex) is different from the empty complex ∅ (the empty set is not a simplex of ∅).
M = {(1), (2), . . . , (m)} is the set of missing faces of the empty simplex {∅} while
M1 = {∅} is the set of missing faces of the empty complex ∅.
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Let K be a simplicial complex on the vertex set I and σ be a simplex of K. The
link and star of σ are defined to be the simplicial complexes

linkKσ ={τ ∈ K | σ ∪ τ ∈ K,σ ∩ τ = ∅}, starKσ ={τ ∈ K | σ ∪ τ ∈ K}.

The interior (open) star is defined to be the set of simplices (do not contain their
proper faces)

IntstarKσ = {τ ∈ K | σ ⊂ τ}

and the boundary of star is the simplicial complex (cf. [12, Lemma 62.6])

∂starKσ = starKσ \ IntstarKσ = {τ ∈ K | σ ∪ τ ∈ K,σ 6⊂ τ}.

Let K1 and K2 be two simplicial complexes on the vertex set I and J , where
I ∩ J = ∅. The join of K1 and K2 is defined to be the simplicial complex on the
vertex set I ∪ J

K1 ∗K2 = {σ ∪ τ ∈ 2I∪J | σ ∈ K1, τ ∈ K2}.

Let P = {σ1, σ2, . . . , σs} be a simplicial complement of K on the vertex set I and
σ ∈ K be a simplex. We define

P− σ = {σ1 \ σ, σ2 \ σ, . . . , σs \ σ}

which is a sequence of subsets on I \ σ.

Lemma 2.5. Let P = {σ1, σ2, . . . , σs} be a simplicial complement of K on the vertex
set I. Then

1. P− σ = {σ1 \ σ, σ2 \ σ, . . . , σs \ σ} is a simplicial complement of linkKσ on the
vertex set I \ σ, i.e. by (1)

linkKσ = KP−σ(I \ σ) = {τ ⊂ (I \ σ) | σ does not contain any σi \ σ ∈ P− σ}.

2. If we consider P− σ as a sequence of non-faces on the vertex set I, then it is a
simplicial complement of starKσ on I, i.e. by (1)

starKσ = KP−σ(I) = {τ ⊂ I | σ does not contain any σi \ σ ∈ P− σ}.

Proof. We prove this lemma by showing that they have the same non-faces

2I\σ \ linkKσ =2I\σ \KP−σ(I \ σ) = {τ ⊂ (I \ σ) | τ contains a σi \ σ ∈ P− σ}

and

2I \ starKσ = 2I \KP−σ(I) = {τ ⊂ I | τ contains a σi \ σ ∈ P− σ}.

1. From its definition, we know that a simplex τ on the vertex set I \ σ is not a
simplex of linkKσ if and only if σ ∪ τ is not a simplex of K. In other words,
there exists a σi ∈ P such that σi ⊆ τ ∪ σ. This is equivalent to say that σi \ σ ⊆
τ ∪ σ \ σ = τ , every non-face τ ∈ 2I\σ \ linkKσ is a non-face of KP−σ(I \ σ), i.e.
τ ∈ 2I\σ \KP−σ(I \ σ), so

2I\σ \ linkKσ ⊆ 2I\σ \KP−σ(I \ σ).

2. If a simplex τ on the vertex set I \ σ contains a σi \ σ, then τ ∪ σ ⊇ (σi \ σ) ∪
σ ⊇ σi, so such τ is not a simplex of linkKσ. This is equivalent to say that every
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non-face τ ∈ 2I\σ \KP−σ(I \ σ) is a non-face of linkKσ, i.e. τ ∈ 2I\σ \ linkKσ,
so

2I\σ \KP−σ(I \ σ) ⊆ 2I\σ \ linkKσ.

Thus P− σ = {σ1 \ σ, σ2 \ σ, . . . , σs \ σ} is a simplicial complement of linkKσ on
the vertex set I \ σ.

Similarly, if we consider P− σ as a simplicial complement on the vertex set I, then

2I \ starKσ = 2I \KP−σ(I) = {τ ⊂ I | τ contains a σi \ σ ∈ P− σ}.

The lemma follows.

Example 2.6. In Example 2.4, the link of the simplex (1, 2) is the pair of vertices
linkK(1, 2) = {(4), (5)} and starK(1, 2) is composed of two 2-simplices (1, 2, 4),
(1, 2, 5) and its proper subsets.

M− (1, 2) = {(1, 2, 4, 5) \ (1, 2), (1, 2, 3) \ (1, 2), (3, 4) \ (1, 2), (3, 5) \ (2)}

= {(4, 5), (3), (3, 4), (3, 5)}

≃ {(4, 5), (3)}

is a simplicial complement of linkK(1, 2) on the vertex set {3, 4, 5}. Consider M− σ as
a sequence of non-faces on the vertex set [5] = {1, 2, 3, 4, 5}, it becomes the simplicial
complement of starK(1, 2).

Let P1 = {σ1, σ2, . . . , σs} and P2 = {τ1, τ2, . . . , τt} be the simplicial complements
of K1 and K2 on the vertex set I. We define their join P1 ∗ P2 to be

P1 ∗ P2 = {σi ∪ τj | σi ∈ P1, τj ∈ P2},

which is a sequence of subsets on I.

Lemma 2.7. Let K1 and K2 be two simplicial complexes on the vertex set I, P1 =
{σ1, σ2, . . . , σs} and P2 = {τ1, τ2, . . . , τt} be simplicial complements of K1 and K2

respectively. Then P1 ∗ P2 = {σi ∪ τj | σi ∈ P1, τj ∈ P2} is a simplicial complement of
K1 ∪K2 on the vertex set I,

K1 ∪K2 = KP1∗P2
(I) = {τ ⊂ I | τ does not contain any σi ∪ τj ∈ P1 ∗ P2}.

Proof. We prove this lemma in the same way as the proof of Lemma 2.5.

1. It is easy to see that a simplex τ on the vertex set I is not a simplex of K1 ∪K2

if and only if it is not a simplex of either K1 or K2. This implies that there
exists a σi ∈ P1 such that σi ⊆ τ and also exists a τj ∈ P2 such that τj ⊆ τ .
This is equivalent to say that σi ∪ τj ⊆ τ , every non-face τ of K1 ∪K2 contains
a σi ∪ τj ∈ P1 ∗ P2, so

2I \K1 ∪K2 ⊆ 2I \KP1∗P2
(I).

2. If a simplex τ on I contains a non-face σi ∪ τj ∈ P1 ∗ P2, then σi ⊆ τ and τj ⊆ τ .
This τ is neither a simplex of K1 nor a simplex of K2, so

2I \KP1∗P2
(I) ⊆ 2I \K1 ∪K2.

The lemma follows.
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Corollary 2.8. If the simplicial complement P is equivalent to P
′, then for any sim-

plex σ and simplicial complement P2

P− σ ≃P
′ − σ, P ∗ P2 ≃P

′ ∗ P2.

Let σ be a simplex of a simplicial complex K on [m]. The stellar subdivision at σ
on K is defined to be the union of the simplicial complexes K \ IntstarKσ and the
cone cone∂starKσ along their boundary ∂starKσ, denoted by

ssσK = (K \ IntstarKσ) ∪ (cone∂starKσ),

where

K \ IntstarKσ = {τ ∈ K | σ 6⊂ τ}

and

cone∂starKσ = (m+ 1) ∗ ∂starKσ.

After stellar subdivision, one more vertex is added which is the vertex of the cone
(cf. [2]).

In [4, Definition 2.7.1], the stellar subdivision is defined to be

ssσK = (K \ starKσ) ∪ (cone∂starKσ),

where K \ starKσ is not a simplicial complex. Note that

K \ starKσ = (K \ IntstarKσ) \ ∂starKσ

and

(K \ IntstarKσ) ∩ (cone∂starKσ) = ∂starKσ,

so our definition coincides with that in [4].

Theorem 2.9. Let P = {σ1, σ2, . . . , σs} be a simplicial complement of K. Then
{P, σ, (P− σ) ∗ (m+ 1)} is a simplicial complement of ssσK on the vertex set [m+ 1],
where

(P− σ) ∗ (m+ 1) ={(σ1 \ σ,m+ 1), (σ2 \ σ,m+ 1), . . . , (σs \ σ,m+ 1)}.

Proof. First we prove that {σ,P− σ} is a simplicial complement of cone∂starKσ on
the vertex set [m+ 1] = {1, 2, . . . ,m,m+ 1}.

From Lemma 2.5 we know that P− σ is a simplicial complement of starKσ on the
vertex set [m].

A simplex τ on the vertex set [m] is not a simplex of ∂starKσ = starKσ \ IntstarKσ
if and only if τ ∈ IntstarKσ or τ /∈ starKσ, i.e. σ ⊂ τ or there exists a σi \ σ such
that σi \ σ ⊂ τ , so

2[m] \ ∂starKσ = 2[m] \K{σ,P−σ}([m]),

{σ,P− σ} is a simplicial complement of ∂starKσ on the vertex set [m].
Take the cone of ∂starKσ on the vertex set [m+ 1], a simplex τ ⊂ [m] or (τ,m+

1) ⊂ [m+ 1] is not a simplex of cone∂starKσ = (m+ 1) ∗ ∂starKσ if and only if τ is
not a simplex of ∂starKσ, i.e.

2[m+1] \ cone∂starKσ = 2[m+1] \K{σ,P−σ}([m+ 1]),

{σ,P− σ} is a simplicial complement of cone∂starKσ on the vertex set [m+ 1].
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Second, we prove that {P, σ, (m+ 1)} is a simplicial complement of K \ IntstarKσ
on the vertex set [m+ 1].

A simplex τ on the vertex set [m] is not a simplex of K \ IntstarKσ if and only if
τ /∈ K or τ ∈ IntstarKσ, i.e. there exists a σi ∈ P such that σi ⊂ τ or σ ⊂ τ . {P, σ}
is a simplicial complement of K \ IntstarKσ on the vertex set [m].

Consider K \ IntstarKσ as a simplicial complex on the vertex set [m+ 1], (m+ 1)
does not appear in K \ IntstarKσ. It is a ghost vertex and (m+ 1) is a missing face.
So

{P, σ, (m+ 1)}

is a simplicial complement of K \ IntstarKσ on the vertex set [m+ 1].

From Lemma 2.7, we know that {P, σ, (m+ 1)} ∗ {σ,P− σ} is a simplicial comple-
ment of ssσK = (K \ IntstarKσ) ∪ (cone∂starKσ), where

{P, σ, (m+ 1)} ∗ {σ,P− σ} =





P ∗ σ, P ∗ {P− σ},
σ ∗ σ, σ ∗ {P− σ},
(m+ 1) ∗ σ, (m+ 1) ∗ {P− σ}



 .

At last, we complete the proof by showing that the simplicial complement {P, σ,
(m+ 1)} ∗ {σ,P− σ} is equivalent to {P, σ, {P− σ} ∗ (m+ 1)}, i.e.

ssσK = K{P,σ,(m+1)}∗{σ,P−σ}([m+ 1]) = K{P,σ,{P−σ}∗(m+1)}([m+ 1]),

First,

σ ∗ σ = σ ∈ {P, σ, (m+ 1)} ∗ {σ,P− σ}.

Every subset σi ∪ σ ∈ P ∗ σ, (σ,m+ 1) ∈ (m+ 1) ∗ σ and σ ∪ (σi \ σ) ∈ σ ∗ {P− σ}
contain σ. They could be removed from {P, σ, (m+ 1)} ∗ {σ,P− σ}, so

{P, σ, (m+ 1)} ∗ {σ,P− σ} ≃





P ∗ {P− σ},
σ,
(m+ 1) ∗ {P− σ}



 .

Then for any σi ∈ P, one has σi \ σ ∈ P− σ. So

σi = σi ∪ (σi \ σ) ∈ P ∗ {P− σ}.

Any other σi ∪ (σj \ σ) ∈ P ∗ {P− σ} contains σi, they could be removed from P ∗
{P− σ}. Thus P ∗ {P− σ} is equivalent to P and {P, σ, (m+ 1)} ∗ {σ,P− σ} could
be reduced to

{P, σ, {P− σ} ∗ (m+ 1)} = {P, σ, (σ1 \ σ,m+1), (σ2 \ σ,m+1), . . . , (σs \ σ,m+1)}.

The theorem follows.

Remark 2.10. If σ is not a simplex of K, we still have {P, σ, {P− σ} ∗ (m+ 1)} as
a simplicial complement of a simplicial complex ssσK. In that case, there exists a
σi ∈ P such that σi ⊆ σ. So σ could be removed from {P, σ, {P− σ} ∗ (m+ 1)} and
σi \ σ = ∅ ∈ P− σ. Thus (σi \ σ,m+ 1) = (m+ 1) ∈ {P− σ} ∗ (m+ 1) and all the
other (σj \ σ,m+ 1) could be removed from {P, σ, {P− σ} ∗ (m+ 1)}. That is to say
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that (m+ 1) is a missing face and

{P, σ, {P− σ} ∗ (m+ 1)} ≃ {P, (m+ 1)}

is still a simplicial complement of ssσK = K but on the vertex set [m+ 1] and a
ghost vertex (m+ 1) is added.

We still call it the stellar subdivision at σ on K.

Example 2.11. In Example 2.4, we make stellar subdivision at σ = (1, 2) on K (see
Figure 2).

1

2

3

4 5

ssσK

1

2

3

4 5

6

Figure 2: The stellar subdivision at σ on K

P = {(1, 2, 4, 5), (1, 2, 3), (3, 4), (3, 5)} is a simplicial complement of K, σ = (1, 2),
so

{P− σ} ∗ (6) = {(4, 5), (3), (3, 4), (3, 5)} ∗ (6) ={(4, 5, 6), (3, 6), (3, 4, 6), (3, 5, 6)}.

{P, σ, {P− σ} ∗ (6)} =





(1, 2, 4, 5), (1, 2, 3), (3, 4), (3, 5),
(1, 2) = σ,
(4, 5, 6), (3, 6), (3, 4, 6), (3, 5, 6)





is a simplicial complement of ssσK. The maximal simplices of ssσK are
{

(1, 3), (2, 3), (1, 4, 5), (2, 4, 5),
(1, 4, 6), (1, 5, 6), (2, 4, 6), (2, 5, 6)

}
.

3. Construction

After given the simplicial complement of stellar subdivision, we construct our
moment-angle manifolds whose cohomology has torsion.

Lemma 3.1. Let K be a simplicial complex on the vertex set [m] and

P = {σ1, σ2, . . . , σs}

be a simplicial complement of it. Let I be a subset of the vertex set [m]. Then

P|I = {σi ∈ P | σi ⊂ I}

is a simplicial complement of the full subcomplex K|I on the vertex set I.
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Proof. From its definition, we know that the full subcomplex

K|I = {σ ∈ K | σ ⊂ I}

is a simplicial complex on the vertex set I. A subset τ on the vertex set I is not a
simplex of K|I if and only if τ is not a simplex of K, i.e. there exists a non-face σi ∈ P

such that τi ⊂ τ . Note that τ ⊂ I, τi ⊂ τ ⊂ I. The lemma follows.

Theorem 3.2 (Construction). Let K be a subcomplex (not a full subcomplex) of a
simplicial sphere L0 on the vertex set [m], M = {σ1, σ2, . . . , σs} be the set of miss-
ing faces of K, which are also simplices of L0. On L0, make stellar subdivisions at
σ1, σ2, . . . , σs one by one as follows

L1 = ssσ1
L0, L2 = ssσ2

L1, . . . , Ls = ssσs
Ls−1.

Then K becomes a full subcomplex of Ls, K = Ls|[m].

Proof. Let P0 = {τ1, τ2, . . . , τr} be a simplicial complement of L0 on [m]. From The-
orem 2.9 we know that

P1 = {P0, σ1,P
′
1}

is a simplicial complement of L1 = ssσ1
L0 on [m+ 1], where

P
′

1 = {P0 − σ1} ∗ (m+ 1).

By induction, we get a simplicial complement of Ls = ssσs
Ls−1 on [m+ s] as

Ps = {Ps−1, σs,P
′
s}

= {P0, σ1, σ2, . . . , σs,P
′
1,P

′
2, . . . ,P

′
s},

where

P
′
i = {Pi−1 − σi} ∗ (m+ i).

Note that every non-face in P
′
i contains (m+ i) as a vertex. From Lemma 3.1 we

know that

Ps|[m] = {P0, σ1, σ2, . . . , σs}

is a simplicial complement of the full subcomplex Ls|[m].
Finally, we consider the simplicial complement Ps|[m]. Note that K is a subcomplex

of L0, every non-face τi ∈ P0 is not a simplex of K, so there exists a σj ∈ M such
that σj ⊆ τi. Then τi could be removed from {P0, σ1, σ2, . . . , σs}.

Thus

Ps|[m] = {P0, σ1, σ2, . . . , σs} ≃ {σ1, σ2, . . . , σs} = M

which is the set of missing faces of K. The theorem follows.

Remark 3.3. If L0 is also a polytopal sphere, the stellar subdivision of L0 is also
polytopal. It has been proved in a geometric sense by Ewald and Shephard in [10].

Let L̃0 be the simplicial polytope and its boundary ∂L̃0 = L0 be the polytopal
sphere. If σ is a simplex of L0 and σ is the intersection of the facets (maximal simplices
of L0) Fi1 , Fi2 , . . . , Fir , one can take any point p beyond the facets Fi1 , Fi2 , . . . , Fir

and beneath the other facets (See [11, p. 78] for the definitions of “beyond” and
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“beneath”). The stellar subdivision ssσ∂L̃0 is the boundary of the convex hall of

L̃′
0 = conv(L̃0 ∪ p).
It could also be proved from the duality of polytopes.
Let L̃0 be the simplicial polytope corresponding to L0, and P0 be the dual simple

polytope, (the vertex of L0 corresponding to the facet while the facet of L0 corre-
sponding to the vertex of P0). Let σ = (i1, i2, . . . , ik) be a simplex of L0, make a
stellar subdivision at σ on L0 is equivalent, though the duality of polytopes, to cut-
ting off the face σ∗ = Fi1 ∩ Fi2 ∩ · · · ∩ Fik in P0 by a generic hyperplane. The cutting

off operation on a simple polytope is still simple, so ssσ∂L̃0 is polytopal.

4. Application

Proposition 4.1. The cohomology of differentiable moment-angle manifolds may
have torsion of any order.

Proof. Let L0 be a polytopal sphere and K be a subcomplex of L0, whose coho-
mology has torsion. Construct a new polytopal sphere Ls by Theorem 3.2, then K
becomes a full subcomplex of Ls, while both RZLs

and ZLs
are framed differentiable

manifolds. From Hochster’s Theorem, the cohomology of RZLs
and ZLs

has H̃∗(K)
as a summand and then have torsion.

At least, every simplicial complex K with m vertexes is a subcomplex of the
polytopal sphere ∂∆m−1. So the cohomology of differentiable moment-angle manifolds
could have any torsion.

Here is an example.

Example 4.2. Let K be the triangulated mod 3 Moore space (see Figure 3) which
can be embedded in 6-dimensional polytopal sphere

L0 = ∂∆7 = ∂(1, 2, 3, 4, 5, 6, 7, 8).

1

23

2 3

4

1

23

5

6

7

8

1

Figure 3: The triangulated mod 3 Moore space

The set of missing faces of L0 is

P0 = {(1, 2, 3, 4, 5, 6, 7, 8)}.
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The set of missing faces of K is

M =





(1, 2, 3), (1, 2, 6), (1, 2, 8), (1, 3, 4),
(1, 4, 5), (1, 4, 6), (1, 4, 7), (1, 5, 6), (1, 7, 8),
(2, 3, 5), (2, 4, 5), (2, 4, 6), (2, 4, 7), (2, 4, 8), (2, 6, 7),
(3, 4, 6), (3, 4, 8), (3, 5, 6),
(3, 7), (5, 8), (5, 7), (6, 8)





(2)

and the set of maximal simplices of K is




(1, 2, 4), (1, 2, 5), (1, 2, 7), (1, 3, 5),
(1, 3, 6), (1, 3, 8), (1, 4, 8), (1, 6, 7),
(2, 3, 4), (2, 3, 6), (2, 3, 8), (2, 5, 6), (2, 7, 8),
(3, 4, 5), (4, 5, 6), (4, 6, 7), (4, 7, 8)





.

Making 22 stellar subdivisions at missing faces of K on ∂∆7, we thus obtain a 6-
dimensional polytopal sphere L22 with 30 vertices which has K as a full subcomplex.
The real moment-angle manifold corresponding to L22 is of 6-dimensional while the
complex one is of 37-dimensional where H3(RZL22

) and H11(ZL22
) has H̃2(K) = Z/3

as a summand.
Passing to the dual, ∆7 is the dual simple polytope of ∂∆7 with facets numbered

as vertexes of ∂∆7. Making stellar subdivision on ∂∆7 at σ = (i1, i2, . . . , ir) is dual
to cutting off face Fi1 ∩ Fi2 ∩ · · · ∩ Fir in ∆7,

K ∂∆7 = ∂(∆7∗)
s.s.

L22

∆7 cut off
P22.

After cutting off the faces Fi1 ∩ Fi2 ∩ · · · ∩ Fir numbered at M in (2), one gets a
simple polytope P22. The cohomology of the moment-angle manifold corresponding
to P22 has H2(K) = Z/3 as a summand and then has torsion. If we only cut off
{1, 2, . . . , 8} \ σ for every maximal simplex σ of K in ∆7 as Bosio and Meersseman
did in [2, Theorem 11.12], we do not get torsion.

Compute the missing faces after making stellar subdivision at (1, 2, 3) and (3, 7)
on ∂∆7 in different sequence, one has

1. We make stellar subdivision at (1, 2, 3) on L0 = ∂∆7 at first, then make stellar
subdivision at (3, 7).
From Theorem 2.9 we know that,

P0 = {(1, 2, 3, 4, 5, 6, 7, 8)},

σ1 = (1, 2, 3),

(P0 − σ1) ∗ (9) = {(4, 5, 6, 7, 8, 9)}

is a simplicial complement of L1 = ss(1,2,3)L0. After removing the larger non-
faces (1, 2, 3, 4, 5, 6, 7, 8), we get the set of missing faces of L1

M1 = {(1, 2, 3), (4, 5, 6, 7, 8, 9)} .

Then we make stellar subdivision at (3, 7) on L1 and get the set of missing faces
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of L2 = ss(3,7)L1

M2 = {(1, 2, 3), (4, 5, 6, 7, 8, 9), (3, 7), (1, 2, 10), (4, 5, 6, 8, 9, 10)} .

2. Similarly, we make stellar subdivision at (3, 7) on L0 at first, then make stellar
subdivision at (1, 2, 3), the resulting set of missing faces of L′

2 is

M
′
2 = {(3, 7), (1, 2, 4, 5, 6, 8, 9), (1, 2, 3), (7, 10), (4, 5, 6, 8, 9, 10)} .

It is easy to see that two simplicial complexes K and K ′ on the vertex set I are
combinatorially equivalent if and only if their sets of missing faces M and M

′ are
equivalent, i.e. there exists a one to one correspondence φ : I → I that gives a one to
one correspondence between M and M

′.

Comparing with these two sequences, we can find that L2 has one 2-vertex missing
faces (3, 7) while L′

2 has two (3, 7), (7, 10). This implies that L2 is not combinatorially
isomorphic to L′

2 and this difference might persist during the later stellar subdivisions.

Remark 4.3. Though K will be a full subcomplex of Ls in every sequence of making
stellar subdivisions at K’s missing faces, the combinatorial structure of Ls may not
be combinatorially isomorphic in different sequences.
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