A MOMENT-ANGLE MANIFOLD WHOSE COHOMOLOGY HAS TORSION

XIAOMENG LI and GEFEI WANG

(communicated by Nicholas J. Kuhn)

Abstract

In this paper we give a method to construct moment-angle manifolds whose cohomology has torsion. We also give method to describe the corresponding simplicial sphere by its non-faces.

1. Introduction

Corresponding to every abstract simplicial complex L on the vertex set $[m]=$ $\{1,2, \ldots, m\}$, there are the real and complex moment-angle complexes $\mathbb{R} \mathcal{Z}_{L}$ and \mathcal{Z}_{L} $(c f .[\mathbf{3}, \mathbf{4}])$. They are defined as

$$
\begin{aligned}
\mathbb{R} \mathcal{Z}_{L} & =\bigcup_{\sigma \in L} \prod_{i \in \sigma} D_{i}^{1} \times \prod_{i \notin \sigma} S_{i}^{0} \subseteq D_{1}^{1} \times D_{2}^{1} \times \cdots \times D_{m}^{1} \\
\mathcal{Z}_{L} & =\bigcup_{\sigma \in L} \prod_{i \in \sigma} D_{i}^{2} \times \prod_{i \notin \sigma} S_{i}^{1} \subseteq D_{1}^{2} \times D_{2}^{2} \times \cdots \times D_{m}^{2}
\end{aligned}
$$

The cohomology groups of $\mathbb{R} \mathcal{Z}_{L}$ and \mathcal{Z}_{L} are given by Hochster's theorem: Corresponding to every abstract simplicial complex L on the vertex set $[m]=\{1,2, \ldots, m\}$, there are the real and complex moment-angle complexes $\mathbb{R} \mathcal{Z}_{L}$ and $\mathcal{Z}_{L}(c f .[\mathbf{3}, 4])$. They are defined as

$$
\begin{aligned}
\mathbb{R} \mathcal{Z}_{L} & =\bigcup_{\sigma \in L} \prod_{i \in \sigma} D_{i}^{1} \times \prod_{i \notin \sigma} S_{i}^{0} \subseteq D_{1}^{1} \times D_{2}^{1} \times \cdots \times D_{m}^{1} \\
\mathcal{Z}_{L} & =\bigcup_{\sigma \in L} \prod_{i \in \sigma} D_{i}^{2} \times \prod_{i \notin \sigma} S_{i}^{1} \subseteq D_{1}^{2} \times D_{2}^{2} \times \cdots \times D_{m}^{2}
\end{aligned}
$$

The cohomology groups of $\mathbb{R} \mathcal{Z}_{L}$ and \mathcal{Z}_{L} are given by Hochster's theorem:
Theorem $1.1([\mathbf{1}, \mathbf{3}, \mathbf{4}])$. Let L be a simplicial complex on the vertex set $[m]$, then

$$
\begin{aligned}
H^{*}\left(\mathbb{R} \mathcal{Z}_{L}\right) & \cong \bigoplus_{I \subset[m]} \widetilde{H}^{*-1}\left(\left.L\right|_{I}\right) \\
H^{*}\left(\mathcal{Z}_{L}\right) & \cong \bigoplus_{I \subset[m]} \widetilde{H}^{*-|I|-1}\left(\left.L\right|_{I}\right),
\end{aligned}
$$

[^0]where $\left.L\right|_{I}$ is the full subcomplex of L on subset I and I runs over all the subsets of $[m]$.

From $[\mathbf{5}, \mathbf{6}, \mathbf{7}]$ we know that both $\mathbb{R} \mathcal{Z}_{L}$ and \mathcal{Z}_{L} are topological manifolds if L is a simplicial sphere, referred to as moment-angle manifolds. Furthermore if L is a polytopal sphere (the boundary complex of a simplicial polytope), then \mathcal{Z}_{L} is a transverse intersection of real quadratic hypersurfaces (cf. [2]), while both $\mathbb{R} \mathcal{Z}_{L}$ and \mathcal{Z}_{L} are framed differentiable manifolds.

Bosio and Meersseman in [2] announced that the cohomology groups of differentiable complex moment-angle manifolds may have any torsion \mathbb{Z} / m. Furthermore if L is $\mathbb{Z} / 2$ colourable, Cai, Choi and Park in $[\mathbf{8}, \mathbf{9}]$ proved that the small cover under $\mathbb{R} \mathcal{Z}_{L}$ may have any torsion \mathbb{Z} / m.

From Hochster's theorem, it is easy to construct a moment-angle complex whose cohomology has torsion. But it is harder to construct such moment-angle manifolds, at least, the cohomology of all the moment-angle manifolds corresponding to dimensional 1, 2 and 3 simplicial spheres are torsion free ($c f$. [2, Corollary 11.1]).

Based on Hochster's theorem, our goal is to find a simplicial complex K whose cohomology has torsion and K is embedded in a polytopal sphere L as a full subcomplex. Then both the real and complex moment-angle complexes corresponding to L are differentiable manifolds and the cohomology of $\mathbb{R} \mathcal{Z}_{L}$ and \mathcal{Z}_{L} have $\widetilde{H}^{*}(K)$ as a summand and then have torsion.

Theorem 3.2 (Construction). Let K be a subcomplex (not a full subcomplex) of a simplicial sphere L_{0} on the vertex set $[m], \mathbb{M}=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{s}\right\}$ be the set of missing faces of K, which are also simplices of L_{0}. On L_{0}, make stellar subdivisions at $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{s}$ one by one as follows

$$
L_{1}=s s_{\sigma_{1}} L_{0}, \quad L_{2}=s s_{\sigma_{2}} L_{1}, \quad \ldots, \quad L_{s}=s s_{\sigma_{s}} L_{s-1}
$$

Then K becomes a full subcomplex of $L_{s}, K=\left.L_{s}\right|_{[m]}$.
In fact, after making stellar subdivision on a polytopal (simplicial) sphere, it is still polytopal (simplicial) (see [10]). If L_{0} is also a polytopal sphere, we thus obtain a polytopal sphere L_{s} by Theorem 3.2 such that K is a full subcomplex of L_{s}. The real and complex moment-angle complexes corresponding to L_{s} are differentiable manifolds. By Hochster's theorem both $H^{*}\left(\mathbb{R} \mathcal{Z}_{L_{s}}\right)$ and $H^{*}\left(\mathcal{Z}_{L_{s}}\right)$ have torsion if $\widetilde{H}^{*}(K)$ has torsion.

At last in Section 4, we give a differentiable moment-angle manifold whose cohomology has $\mathbb{Z} / 3$ as a summand. This is done as follows:

Triangulate the mod 3 Moore space K which has 8 vertices, 17 2-dimensional facets and 22 missing faces (see Figure 3). It can be embedded in $\partial \Delta^{7}=L_{0}$. After making 22 stellar subdivisions on it, K becomes a full subcomplex of the polytopal sphere L_{22}. Then L_{22} is a 6 -dimensional polytopal sphere with 30 vertices. $\mathcal{Z}_{L_{22}}$ is a 37 dimensional differentiable manifold and $H^{11}\left(\mathcal{Z}_{L_{22}}\right)$ has $\widetilde{H}^{2}(K)=\mathbb{Z} / 3$ as a summand.

It is notable that Bosio and Meersseman's construction in [2, Theorem 11.12] applied to the same example does not give a moment-angle manifold whose cohomology has $\mathbb{Z} / 3$ torsion.

Acknowledgments

The authors are grateful to Professor Zhi Lü for his helpful suggestion during this research. This work was done under the supervision of Professor Xiangjun Wang.

2. Simplicial complement

An abstract simplicial complex K on the vertex set I is a collection of simplices that satisfies: for any simplex (face) $\sigma \in K$, all of its proper subsets (proper faces) are simplices of K.

An abstract simplicial complex K could also be given by all of its non-faces

$$
\mathbb{A}=2^{I} \backslash K
$$

and

$$
K=2^{I} \backslash \mathbb{A}
$$

that satisfies: if $\sigma \in \mathbb{A}$ is not a simplex of K and $\sigma^{\prime} \supset \sigma$ then $\sigma^{\prime} \in \mathbb{A}$ is not a simplex of K.

A simplex $\sigma=\left(i_{1}, i_{2}, \ldots, i_{k}\right) \in 2^{I}$ is called a missing face (or minimal non-face) of K if it is not a face of K, but all of its proper subsets are faces of K, i.e. $\sigma \notin K$ but every $\sigma_{j}=\left(i_{1}, \ldots, \widehat{i_{j}}, \ldots, i_{k}\right) \in K, j=1,2, \ldots, k$. An abstract simplicial complex could also be given by its set of missing faces

$$
\mathbb{M}=\left\{\sigma \in 2^{I} \mid \sigma \text { is a missing face of } K\right\}
$$

and

$$
K=\left\{\tau \in 2^{I} \mid \tau \text { does not contain any } \sigma \in \mathbb{M}\right\}
$$

A subset σ^{\prime} of I is not a simplex of K if and only if it contains a missing face $\sigma \in \mathbb{M}$ as a subset.

Definition 2.1. Let K be a simplicial complex on the vertex set I and \mathbb{M}, \mathbb{A} be the sets of missing faces and non-faces of K respectively. We define a simplicial complement of K, denoted by

$$
\mathbb{P}=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{s}\right\}
$$

to be a collection of non-faces that includes all the missing faces \mathbb{M} i.e.

$$
\mathbb{M} \subseteq \mathbb{P} \subseteq \mathbb{A}
$$

Similar to the set of missing faces \mathbb{M}, given a simplicial complement \mathbb{P} (collection of non-faces) on the vertex set I, one can obtain a simplicial complex $K_{\mathbb{P}}$ on I by:

$$
\begin{equation*}
K_{\mathbb{P}}(I)=\left\{\tau \subset I \mid \tau \text { does not contain any } \sigma_{i} \in \mathbb{P}\right\} \tag{1}
\end{equation*}
$$

or by all of its non-faces

$$
2^{I} \backslash K_{\mathbb{P}}(I)=\left\{\tau \subset I \mid \tau \text { contains a } \sigma_{i} \in \mathbb{P}\right\}
$$

A subset σ of I is not a simplex of $K_{\mathbb{P}}(I)$ if and only if it contains a non-face σ_{i} in the simplicial complement \mathbb{P}.

Definition 2.2. Let $\mathbb{P}, \mathbb{P}^{\prime}$ be two simplicial complements on the vertex set I, if they can obtain the same simplicial complex i.e. $K_{\mathbb{P}}(I)=K_{\mathbb{P}^{\prime}}(I)$, we say that \mathbb{P} and \mathbb{P}^{\prime} are equivalent, denoted by $\mathbb{P} \simeq \mathbb{P}^{\prime}$.

It is easy to see that: Two simplicial complements $\mathbb{P}, \mathbb{P}^{\prime}$ on I are equivalent if and only if for every non-face $\sigma \in \mathbb{P}$ there exists a $\sigma^{\prime} \in \mathbb{P}^{\prime}$ such that $\sigma^{\prime} \subseteq \sigma$ and for every non-face $\sigma^{\prime} \in \mathbb{P}^{\prime}$ there exists a $\sigma \in \mathbb{P}$ such that $\sigma \subseteq \sigma^{\prime}$.

Proposition 2.3. Let $\mathbb{P}=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{s}\right\}$ be a simplicial complement of K on I. For a non-face $\sigma_{j} \in \mathbb{P}$ if there exists a $\sigma_{i} \in \mathbb{P}, i \neq j$ such that $\sigma_{i} \subseteq \sigma_{j}$, then we can remove σ_{j} from \mathbb{P} and the resulting simplicial complement

$$
\mathbb{P}^{\prime}=\left\{\sigma_{1}, \sigma_{2}, \ldots, \widehat{\sigma}_{j}, \ldots, \sigma_{s}\right\}
$$

is equivalent to \mathbb{P}. In this case we call that \mathbb{P} is reduced to \mathbb{P}^{\prime}.
Every simplicial complement of K could be reduced to the set of missing faces by removing all the larger non-faces.

Example 2.4. The simplicial complex K is determined by the maximal simplices $(1,3),(2,3),(1,2,4),(1,2,5),(1,4,5),(2,4,5)$ and their proper subsets on the vertex set $[5]=\{1,2,3,4,5\}$ (see Figure 1)

Figure 1: The simplicial complex K

$$
\mathbb{P}=\left\{\begin{array}{l}
\sigma_{1}=(1,2,4,5), \sigma_{2}=(1,2,3), \sigma_{3}=(3,4) \\
\sigma_{4}=(3,5), \sigma_{5}=(1,3,4), \sigma_{6}=(3,4)
\end{array}\right\}
$$

is a simplicial complement of K on the vertex set [5] where $\sigma_{3}=(3,4)=\sigma_{6}$ appeared twice and $\sigma_{3}=(3,4) \subset \sigma_{5}=(1,3,4)$. So $\sigma_{5}=(1,3,4)$ and $\sigma_{6}=(3,4)$ could be removed from \mathbb{P} to reduce to the set of missing faces $\mathbb{M}=\{(1,2,4,5),(1,2,3),(3,4)$, $(3,5)\}$.

The readers should be aware that the empty simplex $\{\emptyset\}$ (only the empty set is a simplex) is different from the empty complex \emptyset (the empty set is not a simplex of \emptyset). $\mathbb{M}=\{(1),(2), \ldots,(m)\}$ is the set of missing faces of the empty simplex $\{\emptyset\}$ while $\mathbb{M}_{1}=\{\emptyset\}$ is the set of missing faces of the empty complex \emptyset.

Let K be a simplicial complex on the vertex set I and σ be a simplex of K. The link and star of σ are defined to be the simplicial complexes

$$
\operatorname{link}_{K} \sigma=\{\tau \in K \mid \sigma \cup \tau \in K, \sigma \cap \tau=\emptyset\}, \quad \operatorname{star}_{K} \sigma=\{\tau \in K \mid \sigma \cup \tau \in K\}
$$

The interior (open) star is defined to be the set of simplices (do not contain their proper faces)

$$
\text { Intstar }_{K} \sigma=\{\tau \in K \mid \sigma \subset \tau\}
$$

and the boundary of star is the simplicial complex (cf. [12, Lemma 62.6])

$$
\partial \operatorname{star}_{K} \sigma=\operatorname{star}_{K} \sigma \backslash \text { Intstar }_{K} \sigma=\{\tau \in K \mid \sigma \cup \tau \in K, \sigma \not \subset \tau\}
$$

Let K_{1} and K_{2} be two simplicial complexes on the vertex set I and J, where $I \cap J=\emptyset$. The join of K_{1} and K_{2} is defined to be the simplicial complex on the vertex set $I \cup J$

$$
K_{1} * K_{2}=\left\{\sigma \cup \tau \in 2^{I \cup J} \mid \sigma \in K_{1}, \tau \in K_{2}\right\}
$$

Let $\mathbb{P}=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{s}\right\}$ be a simplicial complement of K on the vertex set I and $\sigma \in K$ be a simplex. We define

$$
\mathbb{P}-\sigma=\left\{\sigma_{1} \backslash \sigma, \sigma_{2} \backslash \sigma, \ldots, \sigma_{s} \backslash \sigma\right\}
$$

which is a sequence of subsets on $I \backslash \sigma$.
Lemma 2.5. Let $\mathbb{P}=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{s}\right\}$ be a simplicial complement of K on the vertex set I. Then

1. $\mathbb{P}-\sigma=\left\{\sigma_{1} \backslash \sigma, \sigma_{2} \backslash \sigma, \ldots, \sigma_{s} \backslash \sigma\right\}$ is a simplicial complement of link $_{K} \sigma$ on the vertex set $I \backslash \sigma$, i.e. by (1)
$\operatorname{link}_{K} \sigma=K_{\mathbb{P}-\sigma}(I \backslash \sigma)=\left\{\tau \subset(I \backslash \sigma) \mid \sigma\right.$ does not contain any $\left.\sigma_{i} \backslash \sigma \in \mathbb{P}-\sigma\right\}$.
2. If we consider $\mathbb{P}-\sigma$ as a sequence of non-faces on the vertex set I, then it is a simplicial complement of $\operatorname{star}_{K} \sigma$ on I, i.e. by (1)

$$
\operatorname{star}_{K} \sigma=K_{\mathbb{P}-\sigma}(I)=\left\{\tau \subset I \mid \sigma \text { does not contain any } \sigma_{i} \backslash \sigma \in \mathbb{P}-\sigma\right\}
$$

Proof. We prove this lemma by showing that they have the same non-faces

$$
2^{I \backslash \sigma} \backslash \operatorname{link}_{K} \sigma=2^{I \backslash \sigma} \backslash K_{\mathbb{P}-\sigma}(I \backslash \sigma)=\left\{\tau \subset(I \backslash \sigma) \mid \tau \text { contains a } \sigma_{i} \backslash \sigma \in \mathbb{P}-\sigma\right\}
$$

and

$$
2^{I} \backslash \operatorname{star}_{K} \sigma=2^{I} \backslash K_{\mathbb{P}-\sigma}(I)=\left\{\tau \subset I \mid \tau \text { contains a } \sigma_{i} \backslash \sigma \in \mathbb{P}-\sigma\right\}
$$

1. From its definition, we know that a simplex τ on the vertex set $I \backslash \sigma$ is not a simplex of $\operatorname{link}_{K} \sigma$ if and only if $\sigma \cup \tau$ is not a simplex of K. In other words, there exists a $\sigma_{i} \in \mathbb{P}$ such that $\sigma_{i} \subseteq \tau \cup \sigma$. This is equivalent to say that $\sigma_{i} \backslash \sigma \subseteq$ $\tau \cup \sigma \backslash \sigma=\tau$, every non-face $\tau \in 2^{I \backslash \sigma} \backslash \operatorname{link}_{K} \sigma$ is a non-face of $K_{\mathbb{P}-\sigma}(I \backslash \sigma)$, i.e. $\tau \in 2^{I \backslash \sigma} \backslash K_{\mathbb{P}-\sigma}(I \backslash \sigma)$, so

$$
2^{I \backslash \sigma} \backslash \operatorname{link}_{K} \sigma \subseteq 2^{I \backslash \sigma} \backslash K_{\mathbb{P}-\sigma}(I \backslash \sigma)
$$

2. If a simplex τ on the vertex set $I \backslash \sigma$ contains a $\sigma_{i} \backslash \sigma$, then $\tau \cup \sigma \supseteq\left(\sigma_{i} \backslash \sigma\right) \cup$ $\sigma \supseteq \sigma_{i}$, so such τ is not a simplex of $\operatorname{link}_{K} \sigma$. This is equivalent to say that every
non-face $\tau \in 2^{I \backslash \sigma} \backslash K_{\mathbb{P}-\sigma}(I \backslash \sigma)$ is a non-face of $\operatorname{link}_{K} \sigma$, i.e. $\tau \in 2^{I \backslash \sigma} \backslash \operatorname{link} k_{K} \sigma$, so

$$
2^{I \backslash \sigma} \backslash K_{\mathbb{P}-\sigma}(I \backslash \sigma) \subseteq 2^{I \backslash \sigma} \backslash \operatorname{link}_{K} \sigma
$$

Thus $\mathbb{P}-\sigma=\left\{\sigma_{1} \backslash \sigma, \sigma_{2} \backslash \sigma, \ldots, \sigma_{s} \backslash \sigma\right\}$ is a simplicial complement of $\operatorname{link}_{K} \sigma$ on the vertex set $I \backslash \sigma$.

Similarly, if we consider $\mathbb{P}-\sigma$ as a simplicial complement on the vertex set I, then

$$
2^{I} \backslash \operatorname{star}_{K} \sigma=2^{I} \backslash K_{\mathbb{P}-\sigma}(I)=\left\{\tau \subset I \mid \tau \text { contains a } \sigma_{i} \backslash \sigma \in \mathbb{P}-\sigma\right\}
$$

The lemma follows.
Example 2.6. In Example 2.4, the link of the simplex $(1,2)$ is the pair of vertices $\operatorname{link}_{K}(1,2)=\{(4),(5)\}$ and $\operatorname{star}_{K}(1,2)$ is composed of two 2 -simplices $(1,2,4)$, $(1,2,5)$ and its proper subsets.

$$
\begin{aligned}
\mathbb{M}-(1,2) & =\{(1,2,4,5) \backslash(1,2), \quad(1,2,3) \backslash(1,2), \quad(3,4) \backslash(1,2), \quad(3,5) \backslash(2)\} \\
& =\{(4,5),(3), \quad(3,4), \quad(3,5)\} \\
& \simeq\{(4,5),(3)\}
\end{aligned}
$$

is a simplicial complement of $\operatorname{link}_{K}(1,2)$ on the vertex set $\{3,4,5\}$. Consider $\mathbb{M}-\sigma$ as a sequence of non-faces on the vertex set $[5]=\{1,2,3,4,5\}$, it becomes the simplicial complement of $\operatorname{star}_{K}(1,2)$.

Let $\mathbb{P}_{1}=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{s}\right\}$ and $\mathbb{P}_{2}=\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{t}\right\}$ be the simplicial complements of K_{1} and K_{2} on the vertex set I. We define their join $\mathbb{P}_{1} * \mathbb{P}_{2}$ to be

$$
\mathbb{P}_{1} * \mathbb{P}_{2}=\left\{\sigma_{i} \cup \tau_{j} \mid \sigma_{i} \in \mathbb{P}_{1}, \tau_{j} \in \mathbb{P}_{2}\right\}
$$

which is a sequence of subsets on I.
Lemma 2.7. Let K_{1} and K_{2} be two simplicial complexes on the vertex set $I, \mathbb{P}_{1}=$ $\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{s}\right\}$ and $\mathbb{P}_{2}=\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{t}\right\}$ be simplicial complements of K_{1} and K_{2} respectively. Then $\mathbb{P}_{1} * \mathbb{P}_{2}=\left\{\sigma_{i} \cup \tau_{j} \mid \sigma_{i} \in \mathbb{P}_{1}, \tau_{j} \in \mathbb{P}_{2}\right\}$ is a simplicial complement of $K_{1} \cup K_{2}$ on the vertex set I,

$$
K_{1} \cup K_{2}=K_{\mathbb{P}_{1} * \mathbb{P}_{2}}(I)=\left\{\tau \subset I \mid \tau \text { does not contain any } \sigma_{i} \cup \tau_{j} \in \mathbb{P}_{1} * \mathbb{P}_{2}\right\}
$$

Proof. We prove this lemma in the same way as the proof of Lemma 2.5.

1. It is easy to see that a simplex τ on the vertex set I is not a simplex of $K_{1} \cup K_{2}$ if and only if it is not a simplex of either K_{1} or K_{2}. This implies that there exists a $\sigma_{i} \in \mathbb{P}_{1}$ such that $\sigma_{i} \subseteq \tau$ and also exists a $\tau_{j} \in \mathbb{P}_{2}$ such that $\tau_{j} \subseteq \tau$. This is equivalent to say that $\sigma_{i} \cup \tau_{j} \subseteq \tau$, every non-face τ of $K_{1} \cup K_{2}$ contains a $\sigma_{i} \cup \tau_{j} \in \mathbb{P}_{1} * \mathbb{P}_{2}$, so

$$
2^{I} \backslash K_{1} \cup K_{2} \subseteq 2^{I} \backslash K_{\mathbb{P}_{1} * \mathbb{P}_{2}}(I)
$$

2. If a simplex τ on I contains a non-face $\sigma_{i} \cup \tau_{j} \in \mathbb{P}_{1} * \mathbb{P}_{2}$, then $\sigma_{i} \subseteq \tau$ and $\tau_{j} \subseteq \tau$. This τ is neither a simplex of K_{1} nor a simplex of K_{2}, so

$$
2^{I} \backslash K_{\mathbb{P}_{1} * \mathbb{P}_{2}}(I) \subseteq 2^{I} \backslash K_{1} \cup K_{2}
$$

The lemma follows.

Corollary 2.8. If the simplicial complement \mathbb{P} is equivalent to \mathbb{P}^{\prime}, then for any simplex σ and simplicial complement \mathbb{P}_{2}

$$
\mathbb{P}-\sigma \simeq \mathbb{P}^{\prime}-\sigma, \quad \mathbb{P} * \mathbb{P}_{2} \simeq \mathbb{P}^{\prime} * \mathbb{P}_{2}
$$

Let σ be a simplex of a simplicial complex K on $[m]$. The stellar subdivision at σ on K is defined to be the union of the simplicial complexes $K \backslash$ Intstar $_{K} \sigma$ and the cone cone $\partial s t a r_{K} \sigma$ along their boundary $\partial s t a r_{K} \sigma$, denoted by

$$
s s_{\sigma} K=\left(K \backslash \text { Intstar }_{K} \sigma\right) \cup\left(\text { coneдstar }_{K} \sigma\right)
$$

where

$$
K \backslash \operatorname{Intstar}_{K} \sigma=\{\tau \in K \mid \sigma \not \subset \tau\}
$$

and

$$
\operatorname{cone}^{2} \operatorname{star}_{K} \sigma=(m+1) * \partial \operatorname{star}_{K} \sigma .
$$

After stellar subdivision, one more vertex is added which is the vertex of the cone (cf. [2]).

In [4, Definition 2.7.1], the stellar subdivision is defined to be

$$
s s_{\sigma} K=\left(K \backslash \operatorname{star}_{K} \sigma\right) \cup\left(\text { coneдstar }_{K} \sigma\right)
$$

where $K \backslash \operatorname{star}_{K} \sigma$ is not a simplicial complex. Note that

$$
K \backslash \operatorname{star}_{K} \sigma=\left(K \backslash \text { Intstar }_{K} \sigma\right) \backslash \partial \operatorname{star}_{K} \sigma
$$

and

$$
\left(K \backslash \text { Intstar }_{K} \sigma\right) \cap\left(\text { cone }^{2 s t a r_{K}} \sigma\right)=\partial \operatorname{star}_{K} \sigma
$$

so our definition coincides with that in [4].
Theorem 2.9. Let $\mathbb{P}=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{s}\right\}$ be a simplicial complement of K. Then $\{\mathbb{P}, \sigma,(\mathbb{P}-\sigma) *(m+1)\}$ is a simplicial complement of $s s_{\sigma} K$ on the vertex set $[m+1]$, where

$$
(\mathbb{P}-\sigma) *(m+1)=\left\{\left(\sigma_{1} \backslash \sigma, m+1\right),\left(\sigma_{2} \backslash \sigma, m+1\right), \ldots,\left(\sigma_{s} \backslash \sigma, m+1\right)\right\}
$$

Proof. First we prove that $\{\sigma, \mathbb{P}-\sigma\}$ is a simplicial complement of cone $\operatorname{star}_{K} \sigma$ on the vertex set $[m+1]=\{1,2, \ldots, m, m+1\}$.

From Lemma 2.5 we know that $\mathbb{P}-\sigma$ is a simplicial complement of $\operatorname{star}_{K} \sigma$ on the vertex set $[m]$.

A simplex τ on the vertex set $[m]$ is not a simplex of $\partial \operatorname{star}_{K} \sigma=\operatorname{star}_{K} \sigma \backslash$ Intstar $_{K} \sigma$ if and only if $\tau \in$ Intstar $_{K} \sigma$ or $\tau \notin \operatorname{star}_{K} \sigma$, i.e. $\sigma \subset \tau$ or there exists a $\sigma_{i} \backslash \sigma$ such that $\sigma_{i} \backslash \sigma \subset \tau$, so

$$
2^{[m]} \backslash \partial s t a r_{K} \sigma=2^{[m]} \backslash K_{\{\sigma, \mathbb{P}-\sigma\}}([m])
$$

$\{\sigma, \mathbb{P}-\sigma\}$ is a simplicial complement of $\partial \operatorname{star}_{K} \sigma$ on the vertex set $[m]$.
Take the cone of $\partial \operatorname{star}_{K} \sigma$ on the vertex set $[m+1]$, a simplex $\tau \subset[m]$ or $(\tau, m+$ $1) \subset[m+1]$ is not a simplex of conedstar $_{K} \sigma=(m+1) * \partial \operatorname{star}_{K} \sigma$ if and only if τ is not a simplex of $\partial s t a r_{K} \sigma$, i.e.

$$
2^{[m+1]} \backslash \text { coneдstar }_{K} \sigma=2^{[m+1]} \backslash K_{\{\sigma, \mathbb{P}-\sigma\}}([m+1]),
$$

$\{\sigma, \mathbb{P}-\sigma\}$ is a simplicial complement of coneวstar ${ }_{K} \sigma$ on the vertex set $[m+1]$.

Second, we prove that $\{\mathbb{P}, \sigma,(m+1)\}$ is a simplicial complement of $K \backslash$ Intstar $_{K} \sigma$ on the vertex set $[m+1]$.

A simplex τ on the vertex set $[m]$ is not a simplex of $K \backslash$ Intstar $_{K} \sigma$ if and only if $\tau \notin K$ or $\tau \in$ Intstar $_{K} \sigma$, i.e. there exists a $\sigma_{i} \in \mathbb{P}$ such that $\sigma_{i} \subset \tau$ or $\sigma \subset \tau .\{\mathbb{P}, \sigma\}$ is a simplicial complement of $K \backslash$ Intstar $_{K} \sigma$ on the vertex set $[m]$.

Consider $K \backslash$ Intstar $_{K} \sigma$ as a simplicial complex on the vertex set $[m+1],(m+1)$ does not appear in $K \backslash \operatorname{Intstar}_{K} \sigma$. It is a ghost vertex and $(m+1)$ is a missing face. So

$$
\{\mathbb{P}, \sigma,(m+1)\}
$$

is a simplicial complement of $K \backslash$ Intstar $_{K} \sigma$ on the vertex set $[m+1]$.
From Lemma 2.7, we know that $\{\mathbb{P}, \sigma,(m+1)\} *\{\sigma, \mathbb{P}-\sigma\}$ is a simplicial complement of $s s_{\sigma} K=\left(K \backslash\right.$ Intstar $\left._{K} \sigma\right) \cup\left(\right.$ coneдstar $\left._{K} \sigma\right)$, where

$$
\{\mathbb{P}, \sigma,(m+1)\} *\{\sigma, \mathbb{P}-\sigma\}=\left\{\begin{array}{ll}
\mathbb{P} * \sigma, & \mathbb{P} *\{\mathbb{P}-\sigma\} \\
\sigma * \sigma, & \sigma *\{\mathbb{P}-\sigma\} \\
(m+1) * \sigma, & (m+1) *\{\mathbb{P}-\sigma\}
\end{array}\right\}
$$

At last, we complete the proof by showing that the simplicial complement $\{\mathbb{P}, \sigma$, $(m+1)\} *\{\sigma, \mathbb{P}-\sigma\}$ is equivalent to $\{\mathbb{P}, \sigma,\{\mathbb{P}-\sigma\} *(m+1)\}$, i.e.

$$
s s_{\sigma} K=K_{\{\mathbb{P}, \sigma,(m+1)\} *\{\sigma, \mathbb{P}-\sigma\}}([m+1])=K_{\{\mathbb{P}, \sigma,\{\mathbb{P}-\sigma\} *(m+1)\}}([m+1]),
$$

First,

$$
\sigma * \sigma=\sigma \in\{\mathbb{P}, \sigma,(m+1)\} *\{\sigma, \mathbb{P}-\sigma\}
$$

Every subset $\sigma_{i} \cup \sigma \in \mathbb{P} * \sigma,(\sigma, m+1) \in(m+1) * \sigma$ and $\sigma \cup\left(\sigma_{i} \backslash \sigma\right) \in \sigma *\{\mathbb{P}-\sigma\}$ contain σ. They could be removed from $\{\mathbb{P}, \sigma,(m+1)\} *\{\sigma, \mathbb{P}-\sigma\}$, so

$$
\{\mathbb{P}, \sigma,(m+1)\} *\{\sigma, \mathbb{P}-\sigma\} \simeq\left\{\begin{array}{l}
\mathbb{P} *\{\mathbb{P}-\sigma\} \\
\sigma, \\
(m+1) *\{\mathbb{P}-\sigma\}
\end{array}\right\}
$$

Then for any $\sigma_{i} \in \mathbb{P}$, one has $\sigma_{i} \backslash \sigma \in \mathbb{P}-\sigma$. So

$$
\sigma_{i}=\sigma_{i} \cup\left(\sigma_{i} \backslash \sigma\right) \in \mathbb{P} *\{\mathbb{P}-\sigma\}
$$

Any other $\sigma_{i} \cup\left(\sigma_{j} \backslash \sigma\right) \in \mathbb{P} *\{\mathbb{P}-\sigma\}$ contains σ_{i}, they could be removed from $\mathbb{P} *$ $\{\mathbb{P}-\sigma\}$. Thus $\mathbb{P} *\{\mathbb{P}-\sigma\}$ is equivalent to \mathbb{P} and $\{\mathbb{P}, \sigma,(m+1)\} *\{\sigma, \mathbb{P}-\sigma\}$ could be reduced to

$$
\{\mathbb{P}, \sigma,\{\mathbb{P}-\sigma\} *(m+1)\}=\left\{\mathbb{P}, \sigma,\left(\sigma_{1} \backslash \sigma, m+1\right),\left(\sigma_{2} \backslash \sigma, m+1\right), \ldots,\left(\sigma_{s} \backslash \sigma, m+1\right)\right\}
$$

The theorem follows.

Remark 2.10. If σ is not a simplex of K, we still have $\{\mathbb{P}, \sigma,\{\mathbb{P}-\sigma\} *(m+1)\}$ as a simplicial complement of a simplicial complex $s s_{\sigma} K$. In that case, there exists a $\sigma_{i} \in \mathbb{P}$ such that $\sigma_{i} \subseteq \sigma$. So σ could be removed from $\{\mathbb{P}, \sigma,\{\mathbb{P}-\sigma\} *(m+1)\}$ and $\sigma_{i} \backslash \sigma=\emptyset \in \mathbb{P}-\sigma$. Thus $\left(\sigma_{i} \backslash \sigma, m+1\right)=(m+1) \in\{\mathbb{P}-\sigma\} *(m+1)$ and all the other $\left(\sigma_{j} \backslash \sigma, m+1\right)$ could be removed from $\{\mathbb{P}, \sigma,\{\mathbb{P}-\sigma\} *(m+1)\}$. That is to say
that $(m+1)$ is a missing face and

$$
\{\mathbb{P}, \sigma,\{\mathbb{P}-\sigma\} *(m+1)\} \simeq\{\mathbb{P},(m+1)\}
$$

is still a simplicial complement of $s s_{\sigma} K=K$ but on the vertex set $[m+1]$ and a ghost vertex $(m+1)$ is added.

We still call it the stellar subdivision at σ on K.
Example 2.11. In Example 2.4, we make stellar subdivision at $\sigma=(1,2)$ on K (see Figure 2).

Figure 2: The stellar subdivision at σ on K

$$
\begin{gathered}
\mathbb{P}=\{(1,2,4,5),(1,2,3),(3,4),(3,5)\} \text { is a simplicial complement of } K, \sigma=(1,2), \\
\{\mathbb{P}-\sigma\} *(6)=\{(4,5),(3),(3,4),(3,5)\} *(6)=\{(4,5,6),(3,6),(3,4,6),(3,5,6)\} \\
\{\mathbb{P}, \sigma,\{\mathbb{P}-\sigma\} *(6)\}=\left\{\begin{array}{l}
(1,2,4,5),(1,2,3),(3,4),(3,5), \\
(1,2)=\sigma, \\
(4,5,6),(3,6),(3,4,6),(3,5,6)
\end{array}\right\}
\end{gathered}
$$ so

is a simplicial complement of $s s_{\sigma} K$. The maximal simplices of $s s_{\sigma} K$ are

$$
\left\{\begin{array}{l}
(1,3),(2,3),(1,4,5),(2,4,5), \\
(1,4,6),(1,5,6),(2,4,6),(2,5,6)
\end{array}\right\}
$$

3. Construction

After given the simplicial complement of stellar subdivision, we construct our moment-angle manifolds whose cohomology has torsion.

Lemma 3.1. Let K be a simplicial complex on the vertex set $[m]$ and

$$
\mathbb{P}=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{s}\right\}
$$

be a simplicial complement of it. Let I be a subset of the vertex set $[m]$. Then

$$
\left.\mathbb{P}\right|_{I}=\left\{\sigma_{i} \in \mathbb{P} \mid \sigma_{i} \subset I\right\}
$$

is a simplicial complement of the full subcomplex $\left.K\right|_{I}$ on the vertex set I.

Proof. From its definition, we know that the full subcomplex

$$
\left.K\right|_{I}=\{\sigma \in K \mid \sigma \subset I\}
$$

is a simplicial complex on the vertex set I. A subset τ on the vertex set I is not a simplex of $\left.K\right|_{I}$ if and only if τ is not a simplex of K, i.e. there exists a non-face $\sigma_{i} \in \mathbb{P}$ such that $\tau_{i} \subset \tau$. Note that $\tau \subset I, \tau_{i} \subset \tau \subset I$. The lemma follows.

Theorem 3.2 (Construction). Let K be a subcomplex (not a full subcomplex) of a simplicial sphere L_{0} on the vertex set $[m], \mathbb{M}=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{s}\right\}$ be the set of missing faces of K, which are also simplices of L_{0}. On L_{0}, make stellar subdivisions at $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{s}$ one by one as follows

$$
L_{1}=s s_{\sigma_{1}} L_{0}, \quad L_{2}=s s_{\sigma_{2}} L_{1}, \quad \ldots, \quad L_{s}=s s_{\sigma_{s}} L_{s-1}
$$

Then K becomes a full subcomplex of $L_{s}, K=\left.L_{s}\right|_{[m]}$.
Proof. Let $\mathbb{P}_{0}=\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{r}\right\}$ be a simplicial complement of L_{0} on $[m]$. From Theorem 2.9 we know that

$$
\mathbb{P}_{1}=\left\{\mathbb{P}_{0}, \sigma_{1}, \mathbb{P}_{1}^{\prime}\right\}
$$

is a simplicial complement of $L_{1}=s s_{\sigma_{1}} L_{0}$ on $[m+1]$, where

$$
\mathbb{P}_{1}^{\prime}=\left\{\mathbb{P}_{0}-\sigma_{1}\right\} *(m+1)
$$

By induction, we get a simplicial complement of $L_{s}=s s_{\sigma_{s}} L_{s-1}$ on $[m+s]$ as

$$
\begin{aligned}
\mathbb{P}_{s} & =\left\{\mathbb{P}_{s-1}, \sigma_{s}, \mathbb{P}_{s}^{\prime}\right\} \\
& =\left\{\mathbb{P}_{0}, \sigma_{1}, \sigma_{2}, \ldots, \sigma_{s}, \mathbb{P}_{1}^{\prime}, \mathbb{P}_{2}^{\prime}, \ldots, \mathbb{P}_{s}^{\prime}\right\}
\end{aligned}
$$

where

$$
\mathbb{P}_{i}^{\prime}=\left\{\mathbb{P}_{i-1}-\sigma_{i}\right\} *(m+i)
$$

Note that every non-face in \mathbb{P}_{i}^{\prime} contains $(m+i)$ as a vertex. From Lemma 3.1 we know that

$$
\left.\mathbb{P}_{s}\right|_{[m]}=\left\{\mathbb{P}_{0}, \sigma_{1}, \sigma_{2}, \ldots, \sigma_{s}\right\}
$$

is a simplicial complement of the full subcomplex $\left.L_{s}\right|_{[m]}$.
Finally, we consider the simplicial complement $\left.\mathbb{P}_{s}\right|_{[m]}$. Note that K is a subcomplex of L_{0}, every non-face $\tau_{i} \in \mathbb{P}_{0}$ is not a simplex of K, so there exists a $\sigma_{j} \in \mathbb{M}$ such that $\sigma_{j} \subseteq \tau_{i}$. Then τ_{i} could be removed from $\left\{\mathbb{P}_{0}, \sigma_{1}, \sigma_{2}, \ldots, \sigma_{s}\right\}$.

Thus

$$
\left.\mathbb{P}_{s}\right|_{[m]}=\left\{\mathbb{P}_{0}, \sigma_{1}, \sigma_{2}, \ldots, \sigma_{s}\right\} \simeq\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{s}\right\}=\mathbb{M}
$$

which is the set of missing faces of K. The theorem follows.
Remark 3.3. If L_{0} is also a polytopal sphere, the stellar subdivision of L_{0} is also polytopal. It has been proved in a geometric sense by Ewald and Shephard in [10].

Let \widetilde{L}_{0} be the simplicial polytope and its boundary $\partial \widetilde{L}_{0}=L_{0}$ be the polytopal sphere. If σ is a simplex of L_{0} and σ is the intersection of the facets (maximal simplices of $\left.L_{0}\right) F_{i_{1}}, F_{i_{2}}, \ldots, F_{i_{r}}$, one can take any point p beyond the facets $F_{i_{1}}, F_{i_{2}}, \ldots, F_{i_{r}}$ and beneath the other facets (See [11, p. 78] for the definitions of "beyond" and
"beneath"). The stellar subdivision $s s_{\sigma} \partial \widetilde{L}_{0}$ is the boundary of the convex hall of $\widetilde{L}_{0}^{\prime}=\operatorname{conv}\left(\widetilde{L}_{0} \cup p\right)$.

It could also be proved from the duality of polytopes.
Let \widetilde{L}_{0} be the simplicial polytope corresponding to L_{0}, and P_{0} be the dual simple polytope, (the vertex of L_{0} corresponding to the facet while the facet of L_{0} corresponding to the vertex of $\left.P_{0}\right)$. Let $\sigma=\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ be a simplex of L_{0}, make a stellar subdivision at σ on L_{0} is equivalent, though the duality of polytopes, to cutting off the face $\sigma^{*}=F_{i_{1}} \cap F_{i_{2}} \cap \cdots \cap F_{i_{k}}$ in P_{0} by a generic hyperplane. The cutting off operation on a simple polytope is still simple, so $s s_{\sigma} \partial \widetilde{L}_{0}$ is polytopal.

4. Application

Proposition 4.1. The cohomology of differentiable moment-angle manifolds may have torsion of any order.

Proof. Let L_{0} be a polytopal sphere and K be a subcomplex of L_{0}, whose cohomology has torsion. Construct a new polytopal sphere L_{s} by Theorem 3.2, then K becomes a full subcomplex of L_{s}, while both $\mathbb{R} \mathcal{Z}_{L_{s}}$ and $\mathcal{Z}_{L_{s}}$ are framed differentiable manifolds. From Hochster's Theorem, the cohomology of $\mathbb{R} \mathcal{Z}_{L_{s}}$ and $\mathcal{Z}_{L_{s}}$ has $\widetilde{H}^{*}(K)$ as a summand and then have torsion.

At least, every simplicial complex K with m vertexes is a subcomplex of the polytopal sphere $\partial \Delta^{m-1}$. So the cohomology of differentiable moment-angle manifolds could have any torsion.

Here is an example.
Example 4.2. Let K be the triangulated mod 3 Moore space (see Figure 3) which can be embedded in 6 -dimensional polytopal sphere

$$
L_{0}=\partial \Delta^{7}=\partial(1,2,3,4,5,6,7,8)
$$

Figure 3: The triangulated mod 3 Moore space
The set of missing faces of L_{0} is

$$
\mathbb{P}_{0}=\{(1,2,3,4,5,6,7,8)\} .
$$

The set of missing faces of K is

$$
\mathbb{M}=\left\{\begin{array}{l}
(1,2,3),(1,2,6),(1,2,8),(1,3,4), \tag{2}\\
(1,4,5),(1,4,6),(1,4,7),(1,5,6),(1,7,8), \\
(2,3,5),(2,4,5),(2,4,6),(2,4,7),(2,4,8),(2,6,7), \\
(3,4,6),(3,4,8),(3,5,6), \\
(3,7),(5,8),(5,7),(6,8)
\end{array}\right\}
$$

and the set of maximal simplices of K is

$$
\left\{\begin{array}{l}
(1,2,4),(1,2,5),(1,2,7),(1,3,5), \\
(1,3,6),(1,3,8),(1,4,8),(1,6,7), \\
(2,3,4),(2,3,6),(2,3,8),(2,5,6),(2,7,8), \\
(3,4,5),(4,5,6),(4,6,7),(4,7,8)
\end{array}\right\}
$$

Making 22 stellar subdivisions at missing faces of K on $\partial \Delta^{7}$, we thus obtain a 6dimensional polytopal sphere L_{22} with 30 vertices which has K as a full subcomplex. The real moment-angle manifold corresponding to L_{22} is of 6 -dimensional while the complex one is of 37-dimensional where $H^{3}\left(\mathbb{R} \mathcal{Z}_{L_{22}}\right)$ and $H^{11}\left(\mathcal{Z}_{L_{22}}\right)$ has $\widetilde{H}^{2}(K)=\mathbb{Z} / 3$ as a summand.

Passing to the dual, Δ^{7} is the dual simple polytope of $\partial \Delta^{7}$ with facets numbered as vertexes of $\partial \Delta^{7}$. Making stellar subdivision on $\partial \Delta^{7}$ at $\sigma=\left(i_{1}, i_{2}, \ldots, i_{r}\right)$ is dual to cutting off face $F_{i_{1}} \cap F_{i_{2}} \cap \cdots \cap F_{i_{r}}$ in Δ^{7},

After cutting off the faces $F_{i_{1}} \cap F_{i_{2}} \cap \cdots \cap F_{i_{r}}$ numbered at \mathbb{M} in (2), one gets a simple polytope P_{22}. The cohomology of the moment-angle manifold corresponding to P_{22} has $H^{2}(K)=\mathbb{Z} / 3$ as a summand and then has torsion. If we only cut off $\{1,2, \ldots, 8\} \backslash \sigma$ for every maximal simplex σ of K in Δ^{7} as Bosio and Meersseman did in [2, Theorem 11.12], we do not get torsion.

Compute the missing faces after making stellar subdivision at $(1,2,3)$ and $(3,7)$ on $\partial \Delta^{7}$ in different sequence, one has

1. We make stellar subdivision at $(1,2,3)$ on $L_{0}=\partial \Delta^{7}$ at first, then make stellar subdivision at $(3,7)$.
From Theorem 2.9 we know that,

$$
\begin{aligned}
\mathbb{P}_{0} & =\{(1,2,3,4,5,6,7,8)\} \\
\sigma_{1} & =(1,2,3), \\
\left(\mathbb{P}_{0}-\sigma_{1}\right) *(9) & =\{(4,5,6,7,8,9)\}
\end{aligned}
$$

is a simplicial complement of $L_{1}=s s_{(1,2,3)} L_{0}$. After removing the larger nonfaces $(1,2,3,4,5,6,7,8)$, we get the set of missing faces of L_{1}

$$
\mathbb{M}_{1}=\{(1,2,3),(4,5,6,7,8,9)\}
$$

Then we make stellar subdivision at $(3,7)$ on L_{1} and get the set of missing faces

$$
\begin{aligned}
\text { of } L_{2}= & s s_{(3,7)} L_{1} \\
& \mathbb{M}_{2}=\{(1,2,3),(4,5,6,7,8,9),(3,7),(1,2,10),(4,5,6,8,9,10)\}
\end{aligned}
$$

2. Similarly, we make stellar subdivision at $(3,7)$ on L_{0} at first, then make stellar subdivision at $(1,2,3)$, the resulting set of missing faces of L_{2}^{\prime} is

$$
\mathbb{M}_{2}^{\prime}=\{(3,7),(1,2,4,5,6,8,9),(1,2,3),(7,10),(4,5,6,8,9,10)\}
$$

It is easy to see that two simplicial complexes K and K^{\prime} on the vertex set I are combinatorially equivalent if and only if their sets of missing faces \mathbb{M} and \mathbb{M}^{\prime} are equivalent, i.e. there exists a one to one correspondence $\phi: I \rightarrow I$ that gives a one to one correspondence between \mathbb{M} and \mathbb{M}^{\prime}.

Comparing with these two sequences, we can find that L_{2} has one 2-vertex missing faces $(3,7)$ while L_{2}^{\prime} has two $(3,7),(7,10)$. This implies that L_{2} is not combinatorially isomorphic to L_{2}^{\prime} and this difference might persist during the later stellar subdivisions.

Remark 4.3. Though K will be a full subcomplex of L_{s} in every sequence of making stellar subdivisions at K 's missing faces, the combinatorial structure of L_{s} may not be combinatorially isomorphic in different sequences.

References

[1] I.V. Baskakov, Cohomology of K-powers of spaces and the combinatorics of simplicial divisions, Uspekhi Mat. Nauk 57 (2002), no. 5, 147-148 (Russian), Russian Math. Surveys, 57 (2002), no. 5, 898-990 (English translation).
[2] F. Bosio and L. Meersseman, Real quadrics in \mathbb{C}^{n}, complex manifolds and convex polytopes, Acta Math. 197 (2006), no. 1, 53-127.
[3] V.M. Buchstaber and T.E. Panov, Torus actions and their applications in topology and combinatorics, Univ. Lecture Ser., vol. 24, Amer. Math. Soc., Providence, RI, 2002.
[4] V.M. Buchstaber and T.E. Panov, Toric topology, Math. Surveys Monogr., vol. 204, Amer. Math. Soc., Providence, RI, 2015.
[5] V.M. Buchstaber, T.E. Panov and N. Ray, Spaces of polytopes and cobordism of quasitoric manifolds, Mosc. Math. J. 7 (2007), no. 2, 219-242.
[6] V.M. Buchstaber and N. Ray, Tangential structures on toric manifolds, and connected sums of polytope, Int. Math. Res. Not. IMRN (2001), no. 4, 193219.
[7] L. Cai, Norm minima in certain Siegel leaves, Algebr. Geom. Topol. 15 (2015), no. 1, 445-466.
[8] L. Cai and S. Choi, On the topology of a small cover associated to a shellable complex, preprint (2016) arXiv:1604.06988
[9] S. Choi and H. Park, On the cohomology and their torsion of real toric objects, Forum Math. 29 (2017), no. 3, 543-553
[10] G. Ewald and G.C. Shephard, Stellar Subdivisions of Boundary Complexes of Convex Polytopes, Math. Ann. 210 (1974), 7-16
[11] B. Grünbaum, Convex Polytopes, Grad. Texts in Math., vol. 221 SpringerVerlag 2003.
[12] J.R. Munkres, Elements of Algebraic Topology, Addision-Wesley Publishing Company 1984.
[13] X. Wang and Q. Zheng, The homology of simplicial complements and the cohomology of polyhedral products, Forum Math. 27 (2015), no. 4, 2267-2299.

Xiaomeng Li lxmnku1992@163.com
Henan Experimental High School, Zhengzhou, Henan 450000, P. R. China

Gefei Wang 1412640@mail.nankai.edu.cn
School of Mathematical Science, Nankai University, Tianjin 300071, P. R. China

[^0]: This project is supported by NSFC No. 11471167, No. 11871284 and No. 11761072.
 Received July 3, 2018, revised September 26, 2018; published on February 27, 2019.
 2010 Mathematics Subject Classification: 13F55, 05A19, 05E40, 52B05, 52B10.
 Key words and phrases: moment-angle manifold, stellar subdivision, full subcomplex, missing face and simplicial complement.
 Article available at http://dx.doi.org/10.4310/HHA.2019.v21.n2.a11
 Copyright © 2019, International Press. Permission to copy for private use granted.

