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GLOBAL MODEL STRUCTURES FOR ∗-MODULES

BENJAMIN BÖHME

(communicated by J.P.C. Greenlees)

Abstract
We extend Schwede’s work on the unstable global homotopy

theory of orthogonal spaces and L-spaces to the category of ∗-
modules (i.e., unstable S-modules). We prove a theorem which
transports model structures and their properties from L-spaces to
∗-modules and show that the resulting global model structure for
∗-modules is monoidally Quillen equivalent to that of orthogonal
spaces. As a consequence, there are induced Quillen equivalences
between the associated model categories of monoids, which identify
equivalent models for the global homotopy theory of A∞-spaces.

1. Introduction

Global homotopy theory is equivariant homotopy theory with respect to compatible
actions of the family of all compact Lie groups. Many equivariant spaces and spectra
are defined in a uniform way for all such groups G, and the idea of organizing the
full functoriality in G in a “global” object goes back to [11, Chapter II] and [7, §5].
Important examples of global spaces include global classifying spaces [16, Def. 1.1.27]
and different global versions of the space BO [16, §2.4]; many of these admit the extra
structure of a global monoid space. Moreover, all orbispaces in the sense of [6] provide
examples of unstable global homotopy types, as explained in [15].

Schwede [16, 15] established various Quillen equivalent models for unstable global
homotopy theory. Two of these are the categories IU and LU of orthogonal spaces
and L-spaces, respectively. The former is a category of diagram spaces indexed on real
inner product spaces, the latter is the category of spaces equipped with continuous
actions of the topological monoid L(1) of linear isometric embeddings R∞ → R∞

(i.e., the space of unary operations in the linear isometries operad).
The category of orthogonal spaces admits a “global” model structure that is com-

patible with the symmetric monoidal structure given by Day convolution. The model
structure lifts to the associated category of monoids and thus models the unstable
global homotopy theory of A∞ spaces. The same is true for the category of L-spaces,
up to a small defect: The operadic box product ⊠L only defines a “weak” symmet-
ric monoidal product that is unital up to global equivalence. The full subcategory
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M∗ ⊆ LU of ∗-modules is spanned by objects such that the unital transformation is
an isomorphism, and is thus symmetric monoidal in the usual sense. It is the unstable
analogue of the category of S-modules [5].

Main results: Our first main result, Theorem 3.8, establishes a symmetric mo-
noidal model structure on the category of ∗-modules with weak equivalences the
underlying global equivalences of L-spaces, together with explicit (weak) monoidal
Quillen equivalences to both orthogonal spaces and L-spaces. Theorem 3.8 is a direct
consequence of a more general “Transport Theorem” (Theorem 5.1) that transports
model structures on L-spaces with global equivalences and well-behaved cofibrations
to the category of ∗-modules. It was first proven in the author’s (unpublished) Mas-
ter’s thesis [2]. A key step in the proof is that the category of ∗-modules can be
identified with a category of algebras over a monad, which has previously been used
in [5, 1] to construct non-equivariant model structures on S-modules and ∗-modules,
respectively.

Our second main result, Theorem 4.6, lifts the above global model structure on
∗-modules to a model structure on the category of monoids in ∗-modules. It is Quillen
equivalent to Schwede’s global model structure on monoids in orthogonal spaces. In
other words, monoids in orthogonal spaces and in ∗-modules form equivalent models
for the global homotopy theory of A∞-spaces.

The global model structure on orthogonal spaces also lifts to commutative monoids.
It remains to be seen whether the analogous result is true for ∗-modules, i.e., whether
∗-modules model the global homotopy theory of E∞ spaces.

Relation to other work: Orthogonal spaces, L-spaces and ∗-modules are the
unstable counterparts of the category of orthogonal spectra, the category of L-spectra,
and the category of S-modules, respectively. We refer to [12] for a discussion of non-
equivariant model structures, the relationship with the classical unstable and stable
homotopy categories and further references. Our main source for properties of L-
spaces and ∗-modules is the discussion by Blumberg, Cohen and Schlichtkrull in
Section 4 of [1].

For a fixed group G, orthogonal spectra and S-modules with additional structure
encoding the G-action have been studied equivariantly, see e.g., [13, 9, 14]. These
additional data are not necessary in global homotopy theory. For each compact Lie
group G, the G-equivariant homotopy groups of an ordinary orthogonal spectrum can
be defined by evaluating only at G-representations. This idea gives rise to the global
homotopy theory of orthogonal spectra and orthogonal spaces developed by Schwede
in his monograph [16]. Schwede’s work includes variants that don’t take into account
all compact Lie groups, but only a certain family of groups. Hausmann [8] gave an
equivalent description in the case of all finite groups, using symmetric spectra as a
model.

Organization: Section 2 provides background material on orthogonal spaces, L-
spaces and relevant functors. In Section 3, we discuss Schwede’s global model structure
for L-spaces and our global model structure on ∗-modules, assuming the statement
of the Transport Theorem (Theorem 5.1). We lift our model structure and Quillen
equivalences to the level of monoids in Section 4. Finally, the proof of the Transport
Theorem and other technical details are given in Section 5.

Conventions: We work over the category U of compactly generated weak Haus-
dorff spaces. A model category is a Quillen model category as defined in [4, Def. 3.3].
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The definition does not require functorial factorizations. A monoidal model category
satisfies the pushout product axiom and the unit axiom, see [10, Def. 4.2.6]. An
h-cofibration in a model category tensored over U is a map that satisfies the homo-
topy extension property. In diagrams, the upper or left arrow of an adjunction is the
left adjoint.
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2. Preliminaries

This section provides some background on the categories of L-spaces, ∗-modules
and orthogonal spaces, as well as on G-universes and universal subgroups. It does
not contain any original results. The main sources are Schwede’s preprint [15], his
monograph [16] and the article [1] by Blumberg, Cohen and Schlichtkrull.

2.1. L-spaces and ∗-modules

Let L(V,W ) be the space of linear isometric embeddings V →W between two
real inner product spaces of finite or countable dimension, topologized as a sub-
space of U(V,W ). Write R∞ :=

⊕
N R for the standard inner product space of count-

able dimension. The operad of linear isometric embeddings L is given by spaces
L(n) = L((R∞)n,R∞), and structure maps induced by direct sum and composition
of maps. It is a (symmetric) E∞-operad with Σn-actions via permutation of the n
summands of (R∞)n. The space of unary operations L(1) is a topological monoid
under composition, and we will study L(1)-equivariant homotopy theory.

Definition 2.1. An L-space is a space X ∈ U together with a continuous action from
the monoid L(1). We write LU for the category of L-spaces and L(1)-equivariant
maps.

The category LU is bicomplete where (co-)limits are taken in the category U

of spaces and equipped with the respective (co-)limit action, because the forgetful
functor to spaces has both adjoints. Moreover, LU is enriched, tensored and co-
tensored over U .

The box product of L-spaces X and Y is the balanced product

X ⊠L Y := L(2)×L(1)2 (X × Y )

with respect to the right L(1)2-action on L(2) given by precomposition on either
summand of R∞ ⊕ R∞. The space X ⊠L Y is an L-space via the left L(1)-action on
L(2) given by postcomposition.
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Lemma 2.2 (Hopkins’ lemma, see [5], Lemma I.5.4). For all m,n > 1, the space
L(m+ n) is a split coequalizer of the diagram

L(2)× L(1)2 × (L(m)× L(n)) L(2)× (L(m)× L(n)),

hence L(m)⊠L L(n) ∼= L(m+ n) as L-spaces.

The box product admits coherent associativity and commutativity isomorphisms
and a right adjoint F⊠L

(Y,−) for the functor−⊠L Y : LU → LU , see [1, Sect. 4.1] and
[2, Def. 2.19]; cf. also [5, Sect. I.5]. We will give an explicit description of F⊠L

(Y,−)
in Lemma 5.4 and record some of its properties in Proposition 5.5. There is a natural
transformation

λX,Y : X ⊠L Y = L(2)×L(1)2 (X × Y ) → X × Y,

[ψ1 ⊕ ψ2, (x, y)] 7→ (ψ1 · x, ψ2 · y),

which restricts to a unital transformation

λX : X ⊠L ∗ = L(2)×L(1)2 (X × ∗) → X,

[ψ1 ⊕ ψ2, (x, ∗)] 7→ ψ1 · x.

Here we used that each linear isometric embedding ψ : R∞
⊕

R∞ → R∞ is given as
ψ1 ⊕ ψ2, where the ψi ∈ L(1) have orthogonal images. Unfortunately, λ fails to be an
isomorphism for all L-spaces: For instance, all linear maps in the image of λL(1) have
an infinite-dimensional orthogonal complement, hence it is not surjective.

However, λX is always a weak equivalence of underlying spaces, see [1, Sect. 4.1],
and it satisfies an even stronger, equivariant notion of equivalence, see Proposition 3.2.
In order to be able to refer to this situation, we make the following definition.

Definition 2.3. A relative category (C,W) is called a weak (closed) symmetric mo-
noidal category if it is (closed) symmetric monoidal in the usual sense except that
the left and right unital transformations are only required to lie in the class of weak
equivalences W, not necessarily in the class of isomorphisms.

Remark 2.4. Note that the usual definition of a monoid in a symmetric monoidal
category in terms of two commutative diagrams still makes sense in a weak symmetric
monoidal category. By a slight abuse of terminology, we will simply call such an
object a “monoid” instead of a “weak monoid”. Similarly, it makes sense to speak of
monoidal functors between weak symmetric monoidal categories, and monoidal model
structures on weak symmetric monoidal categories.

Definition 2.5. A ∗-module is an L-space M such that λM is an isomorphism of
L-spaces.

Surprisingly, the quotient ∗⊠L ∗ = L(2)/L(1)2 is trivial, see [5, Lemma I.8.1].
Consequently, the functor −⊠L ∗ on L-spaces takes values in ∗-modules, and the
box product restricts to a well-defined product on M∗, which we denote by the same
symbol ⊠L. So the category LU is a weak closed symmetric monoidal category, and
then M∗ is a symmetric monoidal category in the usual sense. The latter is also
closed, as follows formally from Proposition 2.6 below.

Dually, we let M∗ be the full subcategory of those L-spaces such that the adjoint
λ̄Y : Y → F⊠L

(∗, Y ) is an isomorphism, and refer to its objects as co-unital L-spaces
or co-∗-modules. The functor F⊠L

(∗,−) on LU takes values in M∗.
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The following collection of statements from [1, Sect. 4.3] is an easy exercise in
elementary category theory. It is the unstable analogue of a similar “mirror image”
argument for S-modules, cf. [5, Sect. II.2].

Proposition 2.6. The categories M∗ and M∗ of unital and co-unital L-spaces,
respectively, are “mirror image subcategories” in the following sense:

a) All pairs of functors in the diagram below form adjunctions (where upper arrows
and arrows on the left-hand side are left adjoints).

LU
−⊠L∗

−⊠L∗F⊠L
(∗,−)

M∗

F⊠L
(∗,−)

M∗
−⊠L∗

LU

−⊠L∗F⊠L
(∗,−)

F⊠L
(∗,−)

b) The subdiagrams of left-adjoint (respectively right-adjoint) functors commute up
to natural equivalence.

c) The categories M∗ and M∗ are bicomplete. Colimits in M∗ are created in LU ,
limits are obtained by applying −⊠L ∗ to limits in LU ; dually for M∗.

d) The diagonal adjunction (co-)restricts to an equivalence of categories

M∗
−⊠L∗

M∗.
F⊠L

(∗,−)

2.2. Completely universal subgroups
In this short section, we recall that every compact Lie group is isomorphic to an

actual subgroup of L(1), a so-called completely universal subgroup. Thus, all compact
Lie groups act simultaneously on each L-space X; these actions are compatible in the
sense that they all are restrictions of the same action of L(1) on X.

Definition 2.7. Let UG be an orthogonal G-representation of countable dimension.
We say that UG is:

i) a G-universe if it contains a 1-dimensional trivial subrepresentation and has the
property that for each finite-dimensional G-representation V that embeds into
UG, the representation

⊕
N V also embeds into UG,

ii) a complete G-universe if it is a G-universe that contains one copy, and hence
countably many copies of each irreducible G-representation.

Definition 2.8 ([15, Def. 1.4]). A compact subgroup G 6 L(1) is called completely
universal if it admits the structure of a compact Lie group (necessarily unique, see
[3, Prop. 3.12]) such that under the tautological action, R∞ becomes a complete
G-universe.

Remark 2.9. In [15], the completely universal subgroups are just called “universal
subgroups”, but we will use the more precise terminology.

Lemma 2.10 (cf. [15, Prop. 1.5]). The equivalence classes of completely universal
subgroups of L(1) under conjugation by invertible elements of L(1) biject with the
isomorphism classes of compact Lie groups.
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In Section 3, we will introduce various notions of equivalences and fibrations
detected on G-fixed points for all completely universal subgroups G 6 L(1).

2.3. Orthogonal spaces
Write I for the category of finite-dimensional real inner product spaces with mor-

phisms the linear isometric embeddings. It is enriched over spaces, see the beginning
of Subsection 2.1.

Definition 2.11. An orthogonal space is a continuous functor Y : I → U . We write
IU for the category of orthogonal spaces and natural transformations.

The category IU is bicomplete, with (co-)limits taken objectwise. Moreover, it is
tensored and co-tensored over U where, for Y ∈ IU , A ∈ U , the tensor orthogonal
space Y ×A sends V ∈ I to (Y ×A)(V ) := Y (V )×A. Equivalently, we can regard
A as the constant orthogonal space with value A and form the product in IU .

The category of orthogonal spaces is a closed symmetric monoidal category under
the box product, which is the Day convolution product with respect to direct sum of
vector spaces in I and the product in U , see [16, Sect. 1.3, App. C] for further details.
A unit is given by the constant one-point orthogonal space.

Following Schwede, we take global equivalences of orthogonal spaces to be those
morphisms that, for each compact Lie group G, induce G-weak equivalences on homo-
topy colimits along G-representations. The precise definition is given in more elemen-
tary terms, cf. [16, Rem. 1.1.4].

Definition 2.12 ([15, Def. 3.4]). A morphism f : X → Y of orthogonal spaces is a
global equivalence if for any compact Lie group G, any orthogonal G-representation
V of finite dimension, any k > 0 and any commuting square

Sk−1 α

incl

X(V )G

f(V )G

Dk

β
Y (V )G

there is a finite-dimensional G-representation W , a G-equivariant linear isometric
embedding ϕ : V →W and a map λ : Dk → X(W )G such that in the extended dia-
gram

Sk−1 α

incl

X(V )G
X(ϕ)G

X(W )G

f(W )G

Dk

β

λ

Y (V )G
Y (ϕ)G

Y (W )G

the upper triangle commutes strictly and the lower triangle commutes up to homotopy
relative to Sk−1.

Theorem 2.13 (Global model structures for orthogonal spaces, cf. [16, Thm. 1.2.21,
Prop. 1.2.23]). The global equivalences are part of two proper, topological, cofibrantly
generated model structures on the category of orthogonal spaces, the (absolute) global
model structure (IU)abs and the positive global model structure (IU)pos.

We omit the description of the (co-)fibrations in the two global model structures
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since we will not make use of them explicitly. As usual, the positive variant has a
better behaviour with respect to commutative monoids, and for different reasons, it is
also necessary for us to work with the positive global model structure throughout the
paper, see Remark 3.7. The absolute model structure will only appear in Section 4.

Note that both global model structures are monoidal with respect to the box prod-
uct of orthogonal spaces: The pushout product axiom is proven in [16, Prop. 1.4.12
iii), iv)], while the unit axiom follows from [16, Thm. 1.3.2 ii)].

The categories IU and LU can be connected by an adjoint pair of functors. By
general theory, the right exact enriched functors (i.e., those which preserve colimits
and tensors) DU → C out of a category of diagram spaces into a category C that
is enriched and cocomplete in the enriched sense agree with the enriched functors
Dop → C up to isomorphism of categories; see [13, Sect. I.2] and note that the results
also apply in the unbased case.

Lind [12, Def. 8.2] defines a functorQ∗ : Iop →LU that sends V to L(V ⊗R∞,R∞);
it is strong symmetric monoidal by Lemma 2.2. The results of [13] then yield an
adjunction

IU
Q

LU ,
Q#

where the left adjoint Q is given as an enriched coend Q∗ ⊗I (−) and the right adjoint
is Q#X(V ) = LU(Q∗(V ), X). The first is strong, the latter lax symmetric monoidal.

The functor Q∗ : Iop → LU can be replaced by Q∗
∗ : V 7→ L(V ⊗ R∞,R∞)⊠L ∗.

Then Q∗
∗ takes values in ∗-modules and yields an adjunction

IU
Q∗

M∗,
Q#

∗

defined in the same way as before. Again, the left adjoint is strong, the right adjoint
lax symmetric monoidal. By [12, Lemma 8.6], this pair of functors agrees, up to
natural equivalence, with the composition of adjunctions

IU
Q

LU
Q#

−⊠L∗

M∗.
F⊠L

(∗,−)

Remark 2.14. There is another interesting choice of a functor IU → LU . For an
orthogonal space Y , the colimit Y (R∞) := colimV Y (V ) taken over all finite-dimen-
sional inner product subspaces V ⊆ R∞ (or equivalently, all standard Euclidean
spaces Rn) has a canonical L-space structure, see [15, Constr. 3.2]. The resulting
functor O : IU → LU is induced by O∗ : Iop → LU sending V ∈ I to L(V,R∞), see
[12, Lemma 9.6]. In unpublished work, Schwede proved that O is strong symmet-
ric monoidal. It follows formally that its rightadjoint is a lax symmetric monoidal
functor.

Any choice of a one-dimensional subspace of R∞ defines a linear isometric embed-
ding V → V ⊗ R∞, hence a natural transformation ξ∗ : Q∗(V ) = L(V ⊗ R∞,R∞) →
L(V,R∞) ∼= O∗(V ) which in turn determines a natural map ξ = ξ∗ ⊗I (−) : Q → O.
The latter is symmetric monoidal; moreover, it is a global equivalence on cofibrant
objects in the absolute model structure on orthogonal spaces, see [15, Prop. 3.7].
A precursor of the last statement was [12, Lemma 9.7].
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3. Global model structures for LU and M∗

We recall Schwede’s model structures for L-spaces from [15] and derive our first
main result, Theorem 3.8. It establishes the global model structure for ∗-modules
which is Quillen equivalent to orthogonal spaces via the functor Q∗.

The following notions of equivalences and fibrations of L-spaces will also be used
for maps of ∗-modules by viewing them as maps in LU .

Definition 3.1 ([15, Def. 1.6, Def. 1.8]). Let CL denote the set of all compact Lie
subgroups of L(1). A map f : X → Y of L-spaces is called:

• a CL-equivalence (respectively CL-fibration) if the map fG : XG → Y G is a weak
homotopy equivalence (respectively Serre fibration) of spaces for all compact Lie
subgroups G 6 L(1);

• a global equivalence if fG : XG → Y G is a weak homotopy equivalence of spaces
for all completely universal subgroups G 6 L(1);

• a strong global equivalence if the map f , considered as a map of G-spaces, is
a G-equivariant homotopy equivalence for all completely universal subgroups
G 6 L(1).

Proposition 3.2. The natural map of L-spaces λX,Y : X ⊠L Y → X × Y is a strong
global equivalence for all X,Y ∈ LU . Consequently, so is the adjoint map λ̄X : X →

F⊠L
(∗, X). Both functors (−)⊠L ∗ and F⊠L

(∗,−) preserve and reflect (strong) global
equivalences. For all Z ∈ LU , the functor (−)⊠L Z preserves (strong) global equiva-
lences.

Proof. The first part is [15, Thm. 1.21]. In combination with the 2-out-of-3 property
and the following diagram, it implies the second statement; the third then follows
immediately.

X ⊠L ∗
λX

∼

∼=λ̄X⊠L∗

X

λ̄X

F⊠L
(∗, X)⊠L ∗

∼

λF
⊠L

(∗,X)

F⊠L
(∗, X)

Now let Z ∈ LU be arbitrary. If f is a (strong) global equivalence, then so is f × Z,
hence also f ⊠L Z.

Recall that for anyG 6 L(1), the L-space L(1)/G represents the fixed point functor
(−)G : LU → U . The collection of fixed point functors associated to G ∈ CL gives rise
to the following model structure on L-spaces.

Proposition 3.3 (CL-projective model structure for L-spaces, [15, Prop. 1.11]).
There is a proper topological model structure (LU)CL on the category of L-spaces
with weak equivalences and fibrations the CL-equivalences and CL-fibrations. It is
cofibrantly generated with sets of generating (acyclic) cofibrations obtained by ten-
soring the standard generating (acyclic) cofibrations for spaces Sn−1 → Dn (respec-
tively Dn × 0 → Dn × I) with L-spaces of the form L(1)/G, where G runs through
all compact Lie subgroups of L(1).
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The CL-projective model structure seems unlikely to be Quillen equivalent to IU

with its positive global model structure, but one can perform a left Bousfield localiza-
tion such that the weak equivalences become precisely the class of global equivalences.
This detour is necessary in order to guarantee that the adjunction to orthogonal spaces
becomes a Quillen adjunction. We refer the reader to [15, Section 1] for a detailed
discussion of this Bousfield localization and an explicit description of the local objects.

Theorem 3.4 (Global model structure for L-spaces, see [15, Thm. 1.20]). There is
a cofibrantly generated proper topological model structure (LU)gl on the category of
L-spaces with weak equivalences the global equivalences and cofibrations as in (LU)CL .
Every CL-cofibration is an h-cofibration of L-spaces and a closed embedding of under-
lying spaces.

Proposition 3.5. The model structure (LU)gl is a monoidal model category.

Proof. The pushout product axiom is proven in [15, Prop. 1.22], the unit axiom
follows from Proposition 3.2.

The global model structures for orthogonal spaces and L-spaces model the same
homotopy theory.

Theorem 3.6 ([15, Thm. 3.9]). The adjunction

(IU)pos
Q

(LU)gl

is a Quillen equivalence.

Remark 3.7. The functor Q# is not a right Quillen functor anymore if we use the
absolute model structure on orthogonal spaces instead: If Q#X is fibrant in the
absolute model structure, then [16, Def. 1.2.12] (for G the trivial group and V →W
the inclusion 0 → R) implies that the inclusion of fixed points XL(1) → X must be a
weak homotopy equivalence of spaces. It seems very unlikely that this could be true
for all fibrant L-spaces X.

Assuming the Transport Theorem (Theorem 5.1), we will now prove the following:

Theorem 3.8 (Global model structure for ∗-modules). There is a cofibrantly gener-
ated proper topological model structure on the category M∗ of ∗-modules, the global
model structure (M∗)gl. Its weak equivalences are the global equivalences of underly-
ing L-spaces, its fibrations are detected by the functor F⊠L

(∗,−) : M∗ → (LU)gl. Let
I and J be any sets of generating (acyclic) cofibrations for (LU)gl, then I ⊠L ∗ and
J ⊠L ∗ are generating (acyclic) cofibrations for (M∗)gl.

Moreover, the global model structure for M∗ is monoidal and satisfies the monoid
axiom [17, Def. 3.3] with respect to ⊠L. It fits into the following commutative (up to
natural isomorphism) triangle of monoidal Quillen equivalences:

(IU)pos
Q

Q∗

(LU)gl

(M∗)gl

F⊠L
(∗,−)



222 BENJAMIN BÖHME

Proof. The global model structure obviously satisfies the requirements of the Trans-
port Theorem (Theorem 5.1), which immediately implies the existence and properties
of the model structure (M∗)gl. It also proves that the vertical adjunction is a Quillen
equivalence. The horizontal adjunction is a Quillen equivalence by Theorem 3.6, and
we have already seen that all adjunctions are monoidal.

Remark 3.9. There is a variant of Theorem 3.8 with respect to the functor O : IU →

LU introduced in Remark 2.14: It is possible to establish a model structure on L-
spaces with weak equivalences the global equivalences and such that O is a left Quillen
equivalence with respect to the absolute global model structure on orthogonal spaces.
This model structure also satisfies the hypotheses of the Transport Theorem, but is
harder to work with as the cofibrations cannot only be characterized in terms of fixed
points of group actions. It also lifts to monoids and the analogue of Theorem 4.6
holds. Details can be found in the author’s (unpublished) Master’s thesis [2].

Remark 3.10. The diagram in Theorem 3.8 can be extended to the right: By a version
of Elmendorf’s theorem, (LU)gl is Quillen equivalent to a model category of “systems
of global fixed point sets”. As usual, these are diagram spaces indexed on the opposite
of a suitable “global” orbit category. We refer to [15, Section 2] for details.

4. Monoids and modules in global homotopy theory

Monoids with respect to ⊠L and their modules have been described non-equivari-
antly by Blumberg, Cohen and Schlichtkrull, see [1, Thm. 4.18]. We describe “global”
analogues of their result and prove our second main result, Theorem 4.6.

Recall from Section 2 that L denotes the operad of linear isometric embeddings of
R∞. The following identifications are a consequence of Hopkins’ Lemma 2.2.

Proposition 4.1 ([1, Prop. 4.7]). The category of A∞-spaces structured by L (con-
sidered as a non-symmetric operad) is isomorphic to the category of ⊠L-monoids in
LU . The category of E∞-spaces structured by L (considered as a symmetric operad)
is isomorphic to the category of commutative ⊠L-monoids in LU .

Corollary 4.2 ([1, Sect. 4.4]). The ⊠L-monoids in M∗ are those A∞-spaces which
are ∗-modules. The functor −⊠L ∗ : LU → M∗ takes ⊠L-monoids in LU to ⊠L-
monoids in M∗ and the natural map λX : X ⊠L ∗ → X is a map of ⊠L-monoids
if X is a ⊠L-monoid. The analogous statement is true for commutative monoids and
E∞-spaces.

In [17], Schwede and Shipley describe sufficient conditions for a cofibrantly gener-
ated monoidal model structure to lift to the associated categories of R-modules and
R-algebras, respectively, where R is any (commutative) monoid. When applied to the
global model structure on ∗-modules, this yields:

Theorem 4.3. Consider the category of ∗-modules equipped with the global model
structure and let R be a ⊠L-monoid in M∗. Call a morphism of R-algebras a weak
equivalence (respectively fibration) if it is a weak equivalence (respectively fibration)
of underlying ∗-modules. With respect to these classes of morphisms, the following
hold:

1) The category of left R-modules is a cofibrantly generated model category.
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2) If R is commutative, then the category of R-modules is a cofibrantly generated
model category satisfying the pushout product axiom and the monoid axiom.

3) If R is commutative, then the category of R-algebras is a cofibrantly generated
model category. If the source of a cofibration of R-algebras is cofibrant as an R-
module, then the map is a cofibration of R-modules.

In all cases, sets of generating cofibrations and acyclic cofibrations are given by the
images of generating sets for M∗ under the free functor.

For R = ∗, the category of R-algebras is the category of ⊠L-monoids. It has a
cofibrantly generated model structure by part 3) of the theorem.

Proof. We check the hypotheses of [17, Thm. 4.1]. As explained in [17, Rem. 4.2],
the smallness assumption can be weakened; it then follows from the fact that the
forgetful functors from R-modules and monoids, respectively, commute with filtered
colimits, and from Lemma 5.6.

By part h) of Theorem 5.1, (M∗)gl satisfies the monoid axiom as defined in [17,
Def. 3.3].

Theorem 4.4. The analogue of Theorem 4.3 with respect to the monoidal model
category (LU)gl is true.

Proof. A close inspection of the proof of [17, Thm. 4.1] shows that the first two
statements do not require that the unital transformation is an isomorphism, so these
hold because (LU)gl satisfies the monoid axiom, see part h) of Theorem 5.1. The
proof of the third statement makes use of the unital isomorphism in order to verify
that all relative JT -cell complexes are weak equivalences. We will give an alternative
proof of this fact instead:

Here, T : X 7→
∐

n>0X
⊠Ln is the composition of the free monoid functor with the

forgetful functor, J is any set of generating acyclic cofibrations for (LU)gl, and JT
denotes its image under T . All maps in J are h-cofibrations (i.e., have the homotopy
extension property) and global equivalences. For each Z ∈ LU , the left adjoint functor
Z ⊠L (−) : LU → LU preserves these properties by Proposition 3.2 and Lemma 5.2.
Thus, for a map j : A→ B in J and n > 2, we can write the n-th summand j⊠Ln of
T (j) as a composition

(j ⊠L A
⊠L(n−1)) ◦ (B ⊠L j ⊠L A

⊠L(n−2)) ◦ . . . ◦ (B⊠L(n−1)
⊠L j).

of maps which are both h-cofibrations and global equivalences. These properties are
stable under composition and coproducts, hence T (j) has both properties. Moreover,
the class of h-cofibrations which are global equivalences is closed under cobase change
and transfinite composition, thus each morphism in JT − cell is a global equivalence.
Smallness is not an issue because all L-spaces are small relative to closed embeddings
(Lemma 5.6), and so relative to all images of cofibrations under T .

Theorem 4.5. The analogue of Theorem 4.3 with respect to the monoidal model
categories (IU)abs and (IU)pos is true.

Proof. Every acyclic cofibration in the positive global model structure on IU is an
acyclic cofibration in the absolute global model structure. The latter satisfies the
monoid axiom, see [16, Prop. 1.4.13], hence so does the former. Again, [17, Thm. 4.1]
applies.
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We can now state our second main result.

Theorem 4.6 (Global model structure for monoids in ∗-modules). The triangle of
monoidal Quillen equivalences from Theorem 3.8 gives rise to a triangle of Quillen
equivalences between the respective model structures on categories of monoids.

Proof. For all three categories, the forgetful functors from monoids preserve and
reflect fibrations and weak equivalences. Thus for all three adjunctions from Theo-
rem 3.8, the lifted right adjoints are always right Quillen functors, and it remains to
show that they are Quillen equivalences.

The induced adjunction between monoids in LU and M∗ is a Quillen equivalence
because the functor −⊠L ∗ preserves and reflects global equivalences and the counit
F⊠L

(∗, X)⊠L ∗ → X is an isomorphism for all X ∈ M∗, see Proposition 2.6.
Now consider the Quillen adjunction between monoids in IU and LU . We will

show that the derived adjunction is an equivalence of categories. More precisely, we
will mimick parts of the proof of [15, Thm. 3.9] and show that:

(I) the derived right adjoint reflects isomorphisms, and

(II) the unit of the derived adjunction is a natural isomorphism.

Since we are working with model structures on monoids created by the forgetful func-
tor, statement (I) immediately follows from fact (a) in the proof of [15, Thm. 3.9].
In order to prove statement (II), it suffices to show that for all positively cofibrant
monoidsM in IU and some (hence any) fibrant replacement (−)f,mon in the category
of monoids in LU , the underlying map of orthogonal spaces M → Q#((Q(M))f,mon)
is a global equivalence. The monoidal unit in IU is absolutely cofibrant, hence the
underlying orthogonal space of any positively cofibrant monoid M is absolutely cofi-
brant, see Theorem 4.5 and part 3) of Theorem 4.3. Now fact (b) in the proof of
loc. cit. asserts that for all positively cofibrant orthogonal spaces A and some (hence
any) fibrant replacement (−)f in LU , the map of orthogonal spaces A→ Q#((Q(A))f )
is a global equivalence. Moreover, the proof given in loc. cit. works without changes for
absolutely cofibrant orthogonal spaces A. As any fibrant replacement of monoids in
LU is also a fibrant replacement of the underlying L-spaces, we see that our statement
(II) follows.

Finally, the adjunction between monoids in IU and M∗ is a Quillen equivalence
as the composition of two Quillen equivalences.

In light of Proposition 4.1, Theorem 4.6 states that there is an unambiguous global
homotopy theory of A∞-spaces. We don’t know if this statement is true for E∞-
spaces: The positive global model structure (IU)pos lifts to commutative monoids,
see [16, Thm. 2.1.15], but it remains open whether the same holds for (M∗)gl. The
difficulty is in showing that the functor (−)⊠Ln/Σn takes acyclic cofibrations to global
equivalences.

5. The Transport Theorem

We, finally, give a precise statement and proof of the Transport Theorem. Through-
out this section, let F denote the functor F⊠L

(∗,−) : LU → M∗ and let R be its right
adjoint, the forgetful functor M∗ → LU .
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Theorem 5.1 (Transport Theorem). Let (LU)a be any model structure on the cate-
gory LU of L-spaces such that:

i) it is cofibrantly generated, with sets of generating cofibrations and acyclic cofi-
brations denoted by I and J , respectively

ii) all morphisms in I (and hence in J) are closed embeddings of underlying spaces

iii) the class W of weak equivalences contains all strong global equivalences (in the
sense of Definition 3.1)

iv) the class of morphisms which are simultaneously weak equivalences and closed
embeddings is closed under transfinite composition.

Then the category of ∗-modules M∗ admits a model structure (M∗)a satisfying the
following properties:

a) It is cofibrantly generated, with sets of generating cofibrations and acyclic cofibra-
tions given by I ⊠L ∗ and J ⊠L ∗, respectively.

b) The weak equivalences are precisely those morphisms of ∗-modules which are sent
to W under the forgetful functor to LU .

c) Fibrations are detected by the functor F⊠L
(∗,−) : M∗ → (LU)a.

d) The adjunction

(LU)a
−⊠L∗

(M∗)a
F⊠L

(∗,−)

is a Quillen equivalence.

Moreover:

e) If (LU)a is right proper, then so is (M∗)a. If (LU)a is a topological model category,
then so is (M∗)a.

f) If (LU)a satisfies the pushout product axiom with respect to the box product, then
so does (M∗)a.

Assume in addition that all elements of I are h-cofibrations in LU and W is a class
of equivalences detected by a family of fixed point functors to spaces. Then:

g) Both (LU)a and (M∗)a are left proper.

h) Both (LU)a and (M∗)a satisfy the unit axiom and monoid axiom [17, Def. 3.3].

Before turning to the proof, we record some technical, but very useful results.

Lemma 5.2 ([16, Cor. A.30]). Let C, C′ be two cocomplete categories which are en-
riched and tensored over spaces. Let G : C → C′ be a continuous functor that preserves
pushouts along h-cofibrations and commutes with taking tensors with the unit inter-
val I. Then G takes h-cofibrations in C to h-cofibrations in C′.

Lemma 5.3 (Gluing lemma). Consider the following pushout diagram in LU or M∗,
where one of the maps f or g is an h-cofibration.

X
f

g

Y
h

Z
k

W
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If f is a global equivalence, then so is k. The statement remains true if “global equiv-
alence” is replaced with any class of weak equivalences detected by a family of fixed
point functors to spaces.

Proof. Colimits in M∗ are created in LU . Since one of the legs of the pushout is an h-
cofibration, it is a closed embedding of spaces. Thus, taking fixed points with respect
to any closed subgroup of L(1) preserves the pushout. Moreover, by Lemma 5.2,
taking fixed points sends h-cofibrations in LU (or M∗, respectively) to h-cofibrations
of spaces. Now the claim follows from the gluing lemma for h-cofibrations and weak
homotopy equivalences in spaces.

The next observation is obtained by composing several standard adjunctions.

Lemma 5.4. The underlying L-space of F⊠L
(Y,Z) is given by LU(Y,LU(L(2), Z))

with actions as follows: The space of L(1)-equivariant maps LU(L(2), Z) is formed
with respect to the left L(1)-action on L(2) induced by post-composition of linear
maps. This mapping space is an L-space via the right L(1)-action on L(2) induced
by pre-composition on the second summand of (R∞)2. Finally, the L(1)-action on
F⊠L

(Y,Z) comes from the right L(1)-action on L(2) induced by pre-composition on
the first summand of (R∞)2.

Proposition 5.5. Let Y be any L-space and consider the functor F⊠L
(Y,−) : LU →

LU . Then the following hold:

i) If f is a closed embedding, then so are LU(Y, f) and F⊠L
(Y, f).

ii) The functor LU(L(2),−) takes sequential colimits along closed embeddings to
sequential colimits along closed embeddings.

iii) The functor F⊠L
(∗,−) preserves sequential colimits along closed embeddings.

iv) If W is a class of weak equivalences satisfying the assumptions of Theorem 5.1,
then F⊠L

(∗,−) preserves and reflects W.

Proof. Ad i): The functor LU(Y,−) preserves closed embeddings because LU(Y,Z) is
topologized as a closed subspace of U(Y,Z). The functor F⊠L

(Y,−) is a composition
of LU(L(2),−) and LU(Y,−).

Ad ii): Any choice of linear isometry R∞ ∼= (R∞)2 induces an isomorphism of L-
spaces L(2) ∼= L(1), thus the underlying space of LU(L(2), Z) is naturally isomorphic
to Z. It follows that for any sequence of closed embeddings of L-spaces

Z0 → Z1 → Z2 → . . . ,

the canonical map

colim
i

LU(L(2), Zi) → LU(L(2), colim
i

Zi)

is a homeomorphism of spaces. Moreover, it is equivariant with respect to the L(1)-
action induced by precomposition on the first summand of (R∞)2.

Ad iii): By part ii) and Lemma 5.4, it suffices to show that LU(∗,−) preserves
sequential colimits along sequences of closed embeddings. This is true because it is
just the fixed point functor LU(L(1)/L(1),−) ∼= (−)L(1).
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Ad iv): Let f : X → Y be in W. In the diagram of L-spaces

X

f

λ̄
F⊠L

(∗, X)

F⊠L
(∗,f)

Y
λ̄

F⊠L
(∗, Y )

both horizontal maps are strong global equivalences by Proposition 3.2. The strong
global equivalences are contained in the class of weak equivalences W by assump-
tion iii) of Theorem 5.1, thus F⊠L

(∗, f) is a weak equivalence if and only if f is.

Lemma 5.6. All L-spaces, co-∗-modules and ∗-modules are small with respect to
sequences of closed embeddings in the sense of [10, Def. 2.1.3].

Proof. The forgetful functors M∗ → LU and LU → U both have left adjoints, so
colimits in either category can be formed in U . Consequently, all L-spaces and ∗-
modules are small with respect to sequences of closed embeddings. Colimits inM∗ are
computed by applying F = F⊠L

(∗,−) to a colimit formed in LU . By Proposition 5.5,
F preserves sequential colimits along closed embeddings, thus the smallness statement
for M∗ follows from the one for LU .

In order to prove Theorem 5.1, we construct an intermediate model structure
(M∗)a on co-∗-modules, thus exploiting the fact that, up to equivalence of categories,
M∗ is a category of algebras over a well-behaved monad. This approach was used by
Blumberg, Cohen and Schlichtkrull to transport their non-equivariant model structure
in [1, Sect. 4.6], and goes back to [5]. Consider the following diagram:

LU
F

LU [F] ∼= M∗

R

−⊠L∗

M∗

F⊠L
(∗,−)

(5.7)

We have seen in Proposition 2.6 that the adjunction on the right-hand side is an
equivalence of categories. The proof of the identification LU [F] ∼= M∗ is identical
with the proof of [5, Prop. II.2.7], where F denotes the monad F = RF associated to
the adjunction on the left-hand side.

The proof of Theorem 5.1 is built around a standard result which transports model
structures along adjunctions and is sometimes referred to as “Kan’s transfer theorem”.
The formulation below is a slight variation of [17, Lemma 2.3]. Our condition (R3) is
more general than that of Schwede-Shipley, but may be harder to verify in general.
In the case of interest in this paper, it comes for free.

Theorem 5.8 (Lifting of model structures). Let C be a cofibrantly generated model
category and I (respectively J) a set of generating (acyclic) cofibrations. Let T be a
monad on C and denote by IT and JT the images of I and J , respectively, under the
free T -algebra functor. Assume that:

(R1) the domains of IT and JT are small relative to IT -cell and JT -cell, respectively

(R2) every morphism in JT -cell is sent to a weak equivalence in C under the forgetful
functor

(R3) the category C [T ] of T -algebras is cocomplete.

Then C [T ] is a cofibrantly generated model category with generating sets of (acyclic)
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cofibrations IT (respectively JT ), and weak equivalences and fibrations detected by the
forgetful functor to C.

Corollary 5.9. Given a model category (LU)a as in Theorem 5.1, the category of
co-∗-modules admits a cofibrantly generated model structure (M∗)a with weak equiv-
alences and fibrations detected by the forgetful functor R : M∗ → (LU)a. Sets of gen-
erating cofibrations and acyclic cofibrations are given by F⊠L

(∗, I) and F⊠L
(∗, J),

respectively.

Proof. We verify the requirements of Theorem 5.8. All colimits exist since the forget-
ful functor to L-spaces has a left adjoint. The smallness statement is a special case
of Lemma 5.6. We now prove (R2): Let j : A→ B be a morphism in J . Let Y be
the pushout of the left-hand square of co-∗-modules and let Y0 be the pushout in the
right-hand square of L-spaces:

F (A)

F (j)

X

g

A

j

RX

g0

F (B) Y B Y0

Under the functor F , the right-hand square is taken to the pushout square

F (A)

F (j)

(FR)(X) ∼= X

F (g0)

F (B) F (Y0),

but (FR)(X) ∼= X, hence F (Y0) ∼= Y by uniqueness of the pushout, and the maps g
and F (g0) agree under this isomorphism. The map j is an acyclic cofibration and a
closed embedding by assumption. Both of these properties are stable under cobase
change, hence g0 is an acyclic cofibration and a closed embedding. Then by Proposi-
tion 5.5, the map g ∼= F (g0) is a closed embedding and a weak equivalence.

Finally, we claim that the collections of maps that are simultaneously closed embed-
dings and weak equivalences is closed under transfinite composition in M∗. This is
true in LU by assumption iv) of Theorem 5.1, but colimits in M∗ are not con-
structed in LU . More precisely, they are obtained by applying F to a colimit formed
in LU . Since F preserves the class of weak equivalences by Proposition 5.5, the claim
follows. Altogether, we have shown that all relative JT -cell complexes are weak equiv-
alences.

We are now ready to give the

Proof of Theorem 5.1. The model structure (M∗)a from Corollary 5.9 transports
along the equivalence of categories

M∗
−⊠L∗

M∗

F⊠L
(∗,−)

to a model structure (M∗)a with weak equivalences and fibrations detected by the
composite R ◦ F⊠L

(∗,−) : M∗ → LU , which proves c). Sets of generating (acyclic)
cofibrations are given by the images of I (resp. J) under F⊠L

(∗,−)⊠L ∗ : LU →

M∗, which is naturally equivalent to the functor (−)⊠L ∗ by Proposition 2.6, thus
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proving part a). Hypothesis iii) and Proposition 3.2 imply that F⊠L
(∗,−) preserves

and reflects the weak equivalences W; now b) follows immediately. In order to show
d), it suffices to show that the left-hand adjunction in (5.7) is a Quillen equivalence.
It is a Quillen adjunction by construction. It is a Quillen equivalence because RF
preserves and reflects weak equivalences and because the unit λ̄ : X → RF (X) is a
strong global equivalence, see Proposition 5.5 and Proposition 3.2, respectively.

Now we prove the enhancements e) through h):
Ad e): Assume that (LU)a is right proper. Then so is (M∗)a since the right adjoint

R ◦ F⊠L
(∗,−) : M∗ → LU preserves pullbacks, and preserves and reflects weak equiv-

alences and fibrations.
Now assume that (LU)a is topological. Let f : X → Y be a generating cofibration

for (LU)a and i : A→ B any cofibration in U . By assumption, the pushout product

f✷i : P = Y ×A ∪X×A X ×B → Y ×B

is again a cofibration in (LU)a. The map f ⊠L ∗ is a generating cofibration in (M∗)a
whose pushout product with i is isomorphic to

(f✷i)⊠L ∗ : P ⊠L ∗ → (Y ×B)⊠L ∗.

As −⊠L ∗ : (LU)a → (M∗)a is a left Quillen functor, this map is a cofibration in
M∗. If f is a generating acyclic cofibration or i any acyclic cofibration, then f✷i is
an acyclic cofibration in LU , hence so is (f ⊠L ∗)✷i ∼= (f✷i)⊠L ∗ in M∗.

Ad f): There are natural isomorphisms

(X ⊠L ∗)⊠L (X ′
⊠L ∗) ∼= (X ⊠L X

′)⊠L ∗

for all L-spaces X and X ′. Similar reasoning as in the proof of g) then shows that
for two generating cofibrations f : A→ B and f ′ : A′ → B′ for (LU)a, the pushout
product of f ⊠L ∗ and f ′ ⊠L ∗ is isomorphic to (f✷f ′)⊠L ∗, hence is a cofibration in
M∗, and acyclic if f or f ′ is a generating acyclic cofibration.

Ad g): Left properness follows immediately from Lemma 5.3.
Ad h): The box product is weakly equivalent to the categorical product by Propo-

sition 3.2 and the assumption that any strong global equivalence is a weak equivalence
in (LU)a. As the weak equivalences are detected by fixed point functors, the functor
(−)⊠L Z preserves weak equivalences, where Z ∈ LU is any L-space. The unit axiom
follows immediately.

Let A denote the class of morphisms j ⊠L Z where j is an acyclic cofibration and
Z ∈ LU is arbitrary. All cofibrations in (LU)a are h-cofibrations. As just observed,
the functor (−)⊠L Z preserves weak equivalences. Because of Lemma 5.2, it always
preserves h-cofibrations, too. Moreover, the class of weak equivalences which are h-
cofibrations is stable under cobase changes (by Lemma 5.3), transfinite composition,
and retracts. Thus, all relative A-complexes are weak equivalences.

The same proof applies to (M∗)a.
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