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Abstract
We investigate a new case of rigidity in stable homotopy

theory which is the rigidity of the K(1)-local stable homotopy
category Ho(LK(1)Sp) at p = 2. In other words, we show that
recovering higher homotopy information by just looking at the
triangulated structure of Ho(LK(1)Sp) is possible, which is a
property that only a few interesting stable model categories are
known to possess.

1. Introduction

Model categories were introduced to create a better tool in order to describe homo-
topy. This enabled us to transform algebraic topology from the study of topological
spaces into a wider setting useful in many areas of mathematics. In brief, a model
structure on a category C is a choice of three distinguished classes of morphisms: weak
equivalences (

∼
−→), fibrations (։), and cofibrations (), satisfying certain axioms.

We can pass to the homotopy category Ho(C) associated to a model category C
by inverting the weak equivalences, i.e., by making them into isomorphisms. While
the axioms allow us to define the homotopy relations between classes of morphisms
in C, the classes of fibrations and cofibrations provide us with a solution to the
set-theoretic issues arising in general localisations of categories. Even though it is
sometimes sufficient to work in the homotopy category, looking at the homotopy
level alone does not provide us with enough higher order structure information. For
example, homotopy (co)limits are not usually a homotopy invariant, and in order
to define them we need the tools provided by the model category. This is where
the question of rigidity may be asked: if we just had the structure of the homotopy
category, how much of the underlying model structure can we recover?

This question of rigidity has been investigated during the last decade, and some
examples have been studied, but there are still a lot of open questions regarding this
fascinating subject. Starting with the stable homotopy category Ho(Sp), that is the
homotopy category of spectra, Schwede [Sch07] showed that if Ho(Sp) is equivalent
as a triangulated category to the homotopy category of a stable model category C,
then the model category of spectra is Quillen equivalent to C. In other words, Ho(Sp)
is rigid.
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Now, the next question could be if there is a similar result for Bousfield locali-
sations of the stable homotopy category with respect to certain homology theories.
If we look at the part of the stable homotopy category that is readable by a given
homology theory, will that structure give us a rigid example? Particularly interesting
localisations are the ones with respect to Morava K-theories K(n) with coefficient
ring

K(n)∗ ∼= Fp[vn, v
−1
n ], |vn| = 2pn − 2,

as well as with respect to Johnson-Wilson theories E(n), with

E(n)∗ ∼= Z(p)[v1, v2, . . . , vn, v
−1
n ], |vi| = 2pi − 2.

Both theories at n = 1 are related to complex K-theory in different ways. More pre-
cisely, by the Adams splitting, the spectrum E(1) is a summand of complex K-theory
localised at p

K(p)
∼=

p−2
∨

i=0

Σ2iE(1),

while K(1) is a summand of mod-p complex K-theory [Rav94, Proposition 1.5.2].
In our case of interest in this article, p = 2, we have that mod-2 K-theory coincides
with K(1) since there is only one such summand.

Starting with the Johnson-Wilson theories E(n), for a fixed prime p, the localisa-
tion of spectra with respect to it is denoted Ln(Sp) (the prime p is omitted from the
notation). If we look at the case where n = 1, and p = 2, then it has been shown in
[Roi07] that Ho(L1Sp) is rigid. However, if we consider the case where n = 1 and
p > 5, the situation is different since in [Fra96], Franke constructed an exotic alge-
braic model for the E(1)-local stable homotopy category Ho(L1Sp) at p > 5, i.e., a
model category that realises the same homotopy category but is not Quillen equiv-
alent to L1Sp. For p = 3, there is an equivalence, but the question whether it is
triangulated remains open, more details about this is discussed in [Pat17b].

Now, if we look at Ln(Sp) for other values of n and p, little is known about it. For
2p− 2 > n2 + n, it has been shown in [Fra96] that a potential exotic model exists
for E(n)-local spectra, although what is known so far is that we have a triangulated
equivalence only for n = 1 and p > 5. However, for 2p− 2 6 n2 + n, it is still an open
question whether we will have rigidity or an exotic model, except the case n = 1 and
p = 2 which has been shown to be rigid by Roitzheim in [Roi07]. In particular, for n =
2 and p = 2 or p = 3, the question whether we have rigidity or an exotic model remains
unanswered. For further examples of exotics models see [Sch02, DS09, Pat17a], and
for other cases of rigidity see [Sch01, BR14, Pat16, PR17].

Another interesting localisation of spectra that we wish to know more about is the
localisation with respect to Morava K-theory K(n). In that case, nothing is known
about the rigidity Ho(LK(n)Sp) or whether we have exotic models. For a fixed prime
p, K(n)-local spectra can be viewed as the difference between Ln(Sp) and Ln−1(Sp).
More precisely, we have

Ln = LK(0)∨K(1)∨···∨K(n),

therefore

L1(Sp) = LK(0)∨K(1)(Sp).
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Since

LK(0) = L0 = LHQ

is rationalisation, the question is whether anything can be said about the rigidity of
the K(1)-local spectra for p = 2.

In this article, we investigate one of the open questions mentioned above, which is
the rigidity of the K(1)-local stable homotopy category Ho(LK(1)Sp) at p = 2. While
the case of the E(1)-local stable homotopy category is related to the K(1)-local case,
there are a lot of technical differences to keep in mind while studying the K(1)-local
case. Firstly, unlike the K(1)-localisation, the E(1)-localisation is smashing, which
result in having different compact generators: the local sphere L1S

0 is a compact
generator for the E(1)-local case, while a compact generator of Ho(LK(1)Sp) is given
by the K(1)-local mod-2 Moore spectrum LK(1)M . Adding to that, while K(1)-
locality implies E(1)-locality, the converse is not true i.e., E(1)-locality does not
imply K(1)-locality. Therefore a key theorem used in the proof of the rigidity of
Ho(LE(1)Sp), which is the “v1-periodicity theorem” cannot be used in the K(1)-local
case. Our main result is thus

Theorem 1.1 (K(1)-local Rigidity Theorem). Let C be a stable model category,
p = 2, and let Φ be an equivalence of triangulated categories

Φ: Ho(LK(1)Sp) −→ Ho(C).

Then the underlying model categories LK(1)Sp and C are Quillen equivalent.

This paper is organised as follows. In the first two sections we recall some definitions
surrounding stable model categories and Bousfield localisation. We then start setting
up the necessary ingredients to construct the desired Quillen equivalence. The starting
point is finding a new characterisation related to v1-self maps to detect K(1)-locality.
In literature, this is stated for K-local spectra, but we can modify it to show that
under certain assumptions, it actually proves that a spectrum is K(1)-local, which is
a stronger statement. After that, we construct a Quillen functor

LK(1)Sp→ C

by proving that the Quillen functor

Sp→ C,

constructed by the Universal Property of Spectra [SS02, 5.1], can be extended to
LK(1)Sp since the right adjoint sends fibrant objects to K(1)-local objects. Lastly, we
prove that the constructed Quillen functor is a Quillen equivalence by reducing the
argument to endomorphisms of the compact generator of Ho(LK(1)Sp).
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2. Stable model categories

We assume that the reader is familiar with basic notions regarding model cate-
gories, for example consult [Hov99] and [DS95].

Definition 2.1. Let C be a pointed model category and X ∈ C. First construct Xc,
a cofibrant replacement of X. One can define a suspension of X denoted ΣX as the
pushout of the diagram

∗ ←−− Xc ∐Xc Xc ∧ I,

where Xc ∧ I is a very good cylinder object of Xc.
Dually, one can define a loop object ΩX of X by the pullback of the diagram

(X f)
I
−−։ (X f)× (X f)←− ∗,

where (X f)
I
is a very good path object for a fibrant replacement X f of X.

These constructions are not functorial nor adjoint on C, but they become functorial
and adjoint in the homotopy category, and they form an adjunction

Σ: Ho(C) ⇄ Ho(C) :Ω.

Notation. Throughout this paper, we use the following convention: for an adjoint
functor pair F : C ⇄ D :G, the top arrow denotes the left adjoint and the bottom
arrow the right adjoint.

Definition 2.2. A pointed model category C is called stable if Σ and Ω are inverse
equivalences of homotopy categories.

Stable model categories are interesting to study since they carry more structure in
their homotopy categories. More precisely, the homotopy category Ho(C) of a stable
model category C is a triangulated category, where the exact triangles are given by
the fiber and cofiber sequences, since in this case they coincide up to sign [Hov99,
7.1.6]. Furthermore, Quillen functors between stable model categories induce exact
functors on the respective homotopy categories, i.e., functors that respect the trian-
gulated structure. In particular, since the category of spectra Sp with the Bousfield-
Friedlander model structure [BF78] is stable, its homotopy category Ho(Sp) is a
triangulated category.

Notation. We denote the morphisms in a triangulated category T by [A,B]T . This is
a group since triangulated categories are, in particular, additive. By [A,B]Tn we mean
[ΣnA,B]T . If T = Ho(C) for some stable model category, we write [A,B]C instead of
[A,B]Ho(C).

Let C be a fixed stable model category (for example C = Sp), and D any stable
model category. Assuming that there is an equivalence of triangulated categories on
their homotopy level

Φ: Ho(C)
∼
−→ Ho(D),

are C and D Quillen equivalent?

• If the answer is affirmative, then we say that Ho(C) is rigid. For example, for
C = Sp, Schwede showed that Ho(Sp) is rigid [Sch07].
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• If the answer is negative, and we have a counterexample where rigidity is not
verified, then we say that D is an exotic model for C.

Definition 2.3. Let T be a triangulated category with infinite coproducts, and T ′

a full triangulated subcategory of T with shift and triangles induced from T . The
subcategory T ′ is called localising if it is closed under coproducts in T .

Definition 2.4. A set G of objects of a triangulated category T is called a set of
generators if the only localising subcategory containing the objects of G is T itself.

Definition 2.5. We say that an object A of a triangulated category T is compact
(also called small or finite) if the functor [A,−]T from T to groups commutes with
arbitrary coproducts, i.e., for any family of objects {Ai}i∈I whose coproduct exists,
the canonical map

⊕

i∈I

[A,Ai]
T
→ [A,

∐

Ai]
T

is an isomorphism.

Note that objects of a stable model category are called “generators” or “compact” if
they are so when considered as objects of the triangulated homotopy category. For a
list of interesting examples of compact generators see [SS03, Examples 2.3].

The next theorem tells us what criterion should be satisfied by a set of compact
objects, in order to become generators of a triangulated category.

Theorem 2.6 ([SS03, Lemma 2.2.1]). Let T be a triangulated category with infinite
coproducts, and G a set of compact objects. Then the following are equivalent:

(i) The set G generates T in the sense of Definition 2.4.

(ii) The objects of G detect isomorphisms, meaning that a morphism X → Y in T
is an isomorphism if and only if [G,X]T → [G,Y ]T is an isomorphism for all
G ∈ G.

The previous theorem will consist an important step in the proof of the main result
in this article. Briefly speaking, if we want to prove that a criterion is true for all the
objects in a certain triangulated category, then it is often sufficient to prove it true
for a compact generator.

Remark 2.7. Note that in Theorem 2.6, the point (i) implies (ii) even without the
hypotheses of compactness. In other words, the objects of a set of generators detect
isomorphisms.

3. Chromatic homotopy theory

Definition 3.1. A spectrum X is a sequence of pointed simplicial sets (X0, X1, . . .)
together with structure maps

σX
n : ΣXn → Xn+1, or equivalently

σ̄X
n : Xn → ΩXn+1.

A morphism f : X → Y of spectra is a collection of morphisms of pointed sets

fn : Xn → Yn
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that commute with the structure maps, that is,

fn+1 ◦ σ
X
n = σY

n ◦ Σfn, for all n > 0.

A spectrum X is called a suspension spectrum (respectively an Ω-spectrum) if σX
n

(respectively σ̄X
n ) is a weak homotopy equivalence for all n.

Notation. Throughout this paper, Sp denotes the category of spectra with the stable
Bousfield-Friedlander model structure [BF78]. The mod-pMoore spectrum is denoted
M(Z/p), and is the cone of multiplication by p on the sphere spectrum, i.e., it is part
of a distinguished triangle in Ho(Sp)

S0
.p
−−→ S0

incl
−−−→M(Z/p)

pinch
−−−−→ ΣS0.

Here, incl is the inclusion of the bottom cell, and pinch is the map that “pinches” off
the bottom cell so that only the top cell is left.

Bousfield localisation restricts attention to the part of the stable homotopy theory
visible to a given homology theory E∗, which makes this tool very useful in studying
the stable homotopy category. The main references for such constructions are [Bou79]
and [Rav84]. This construction becomes particularly interesting when looking at
some very special homology theories that give information about the structure of the
p-local stable homotopy category for some prime p. In our case, we are interested
in localisation with respect to Morava K-theory K(1) at p = 2, with the following
model structure:

Let Sp be the category of spectra with the Bousfield-Friedlander model structure.
Then there is a model category LK(1)Sp with the same objects as Sp and with the
following model structure.

• The weak equivalences are the K(1)∗-equivalences.

• The cofibrations are the cofibrations of Sp.

• The fibrations are the maps with the right lifting property with respect to
cofibrations that are K(1)∗-equivalences.

Remark 3.2. The model categories Sp and LK(1)Sp have the same cofibrant objects,
but the fibrant objects in LK(1)Sp are the one which are fibrant in Sp andK(1)∗-local.
The set of homotopy classes of maps in Ho(LK(1)Sp) is denoted

[X,Y ]LK(1)Sp = [LK(1)X,LK(1)Y ]Sp ∼= [X,LK(1)Y ]Sp.

Definition 3.3. Localisation at E is said to be smashing if for every spectrum X,
the map

Id ∧ ηS0 : X → X ∧ LES
0

is an E-localisation.

A nice feature of the functors Ln is that they are smashing unlike the functors
LK(n).

Theorem 3.4 (Smash product theorem [Rav94, Theorem 7.5.6]). For any spec-
trum X,

LnX ≃ X ∧ LnS
0.
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Remark 3.5. The E-localisation functor LE is triangulated and preserves generators.
However, it does not preserve compactness in general, because the functor LE does
not commute with arbitrary coproducts. However, if the localisation is smashing then
the functor LE commutes with arbitrary coproducts [Rav84, Proposition 1.27(d)],
and the image of a compact generator is again a compact generator. Therefore, the
spectrum LES

0 is a generator in Ho(LESp), but it is compact for a smashing locali-
sation like LE(n).

On the other hand, localisation with respect to the nth-Morava K-theory is not
smashing for n > 0. Although the K(n)-local sphere is still a generator, it is not a
compact one. However, the following result provides us with a compact generator for
Ho(LK(1)Sp).

Lemma 3.6 ([HS99, Theorem 7.3]). For a fixed prime p, the spectrum LK(1)M(Z/p)
is a compact generator for the K(1)-local stable homotopy category Ho(LK(1)Sp).

Definition 3.7. The localisation of a spectrum X with respect to the mod-p Moore
spectrum M(Z/p) is the p-completion of X denoted X∧

p , i.e.

X∧
p = LM(Z/p)X.

If a spectrum is M(Z/p)-local, then we call it a p-complete spectrum.

Proposition 3.8 ([Bou79, Proposition 2.5]).

(a) For X ∈ Ho(Sp), its p-completion is the function spectrum:

X∧
p = LM(Z/p)X ≃ F (ΩM(Z/p∞), X),

where Z/p∞ can be defined as the factor group Z[1/p]/Z, or as the colimit of
the groups Z/pn under multiplication by p. Additionally, there is a split short
exact sequence

0 −→ Ext(Z/p∞, π∗X) −→ π∗(LM(Z/p)X) −→ Hom(Z/p∞, π∗−1X) −→ 0.

(b) If the groups π∗X are finitely generated, then

π∗(LM(Z/p)X) ∼= Z∧
p ⊗ π∗X,

where Z∧
p denotes the p-adic integers.

(c) A spectrum X ∈ Ho(Sp) is M(Z/p)-local (equivalently p-complete) if and only
if the groups π∗(X) are Ext-p-complete in the following sense:

(i) The completion map

π∗(X)→ Ext(Z/p∞, π∗(X))

is an isomorphism, and
(ii) Hom(Z/p∞, π∗(X)) = ∗.

Moreover, p-completion can be described as a homotopy limit.

Corollary 3.9. As a consequence of Proposition 3.8, the p-completion of a spectrum
X is

X∧
p ≃ holim(· · · −→M(Z/p3) ∧X −→M(Z/p2) ∧X −→M(Z/p) ∧X).
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Another feature of the K(1)-localisation that will become useful in the next sec-
tion is the following result, which enables us to see the K(1)-localisation as the p-
completion of the E(1)-localisation.

Lemma 3.10 ([Bou79, Proposition 2.11]). For a fixed prime p and X any spectrum
in Ho(Sp), we have

LK(1)X = LM(Z/p)L1X = (L1X)∧p .

We will end this section by talking about the “v1-self map” that will be needed
later on.

Definition 3.11. Let X be a p-local finite spectrum, and let n > 1. A vn-self map is
a map f : ΣkX → X with the following properties:

(a) The map f is a K(n)∗-equivalence.

(b) For m 6= n, the induced map K(m)∗(X)→ K(m)∗(Y ) is nilpotent.

Definition 3.12. We say that a p-local finite spectrum X has type n if

K(n)∗(X) 6= 0, but K(m)∗(X) = 0 for m < n.

Example 3.13. A spectrum X has type 0 if

H∗(X,Q) ≇ 0,

or equivalently if Hi(X,Z) is not a torsion group for all i. An example of such a
spectrum is the p-local sphere S0(p).

Example 3.14. An example of a spectrum of type 1 is the mod-p Moore spectrum
M(Z/p). To begin with, it has no rational homology

K(0)∗(M(Z/p)) = H∗(M(Z/p),Q) = 0.

Furthermore, the non-triviality of K(1)∗(M(Z/p)) can be deduced by considering the
cofiber sequence

S0
.p
−−→ S0 →M(Z/p).

More precisely, the maps

K(1)∗(S
0)→ K(1)∗(M(Z/p))

are injections, because multiplication by p kills

K(1)∗(S
0) ∼= Fp[v1, v

−1
1 ],

hence K(1)∗(M(Z/p)) cannot be trivial.

Theorem 3.15 (Periodicity Theorem [Rav94, Chapter 6], [HS98, §3]). Let X be
a finite p-local spectrum of type n. Then X admits a vn-self map

vp
i

n : ΣpidX → X, for some i > 0.

Where d = 0 if n = 0, and d = 2pn − 2 if n > 0.

By applying this theorem to the mod-2 Moore spectrum, we get the following
v1-self map.
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Example 3.16. The earliest known periodic map was constructed by [Ada66], now
known as the Adams map. It is denoted

v41 : Σ
8M(Z/2)→M(Z/2).

Note that there is no smaller degree v1-self map that can be realised by M(Z/2).

4. From E(1)-locality to K(1)-locality

Notation. From now on, let p = 2, and let Sp denote the category of 2-local spectra.
The mod-2 Moore spectrum M(Z/2) will be denoted by M .

In [Bou79], a criterion involving the Adams periodic map v41 has been developed
to show that a spectrum is E(1)-local:

Lemma 4.1 ([Bou79, §4]). A spectrum X is E(1)-local if and only if v41 induces an
isomorphism

(v41)
∗
: [M,X]Spn → [M,X]Spn+8, for all n ∈ Z.

In this section we extend this result to K(1)-locality by adding another condition.
First, we need the following lemma.

Lemma 4.2. For any spectrum X ∈ Ho(Sp), we have

LK(1)(M ∧X) ≃ L1(M ∧X).

Proof. By [Dwy04, 3.9], we have the following homotopy pullback square

L1Y LK(1)Y

L0Y L0LK(1)Y.

Therefore, we have that if L0Y ≃ ∗ and LK(1)Y ≃ ∗ then L1Y ≃ LK(1)Y . This is the
case for

Y = X ∧M(Z/2) := X/2.

First, let us prove that L0(X ∧M) ≃ ∗. The long exact homotopy sequence of the
exact triangle

X
.2
−−→ X

incl
−−−→ X/2 −→ ΣX

splits into short exact sequences of the form

0 −→ (πm+1X)
/

2 −→ πm+1(X/2) −→ {πmX}2 → 0.

Here {πmX}2 denotes the 2-torsion of the group πmX. Since tensoring with Q pre-
serves exactness, we have

πm+1(X/2)⊗Q ∼= 0 ∼= πm+1(L0(X/2)),

therefore L0(X/2) ≃ ∗.
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The same applies to L0LK(1)(X/2). We can see that by tensoring the following
short exact sequence with Q

0 −→ (πm+1LK(1)X)
/

2 −→ πm+1LK(1)(X/2) −→ {πmLK(1)X}2 → 0,

we will have that

L0LK(1)(X/2) ≃ ∗.

Hence, L1(M ∧X) ≃ LK(1)(M ∧X) as desired.

Remark 4.3. Even though the above lemma is written in the 2-local world, we can
replace p = 2 in the proof by any prime p and the lemma will still be correct in the
p-local setting.

Lemma 4.4. A 2-complete spectrum X is K(1)-local if and only if v41 induces an
isomorphism

(v41)
∗
: [M,X]Sp

n → [M,X]Sp
n+8

for all n ∈ Z.

Proof. First, suppose that the spectrum X is K(1)-local. As we have seen, the map
v41 induces a K(1)∗-isomorphism on M , thus its cofibre V (1) is K(1)∗-acyclic. The
desired isomorphism is deduced from the long exact sequence

· · · −→ [V (1), X]n+1 −→ [M,X]n
(v4

1)
∗

−−−−→ [Σ8M,X]n → [V (1), X]n → · · · ,

since by hypothesis [V (1), X]n = 0 for all n.
To prove the other direction, we first note that the assumption is equivalent to

(v41 ∧X)∗ : πn(M ∧X)→ πn+8(M ∧X)

being an isomorphism for all n because M is its own Spanier-Whitehead dual up to
suspension DM(Z/p) ≃ ΩM(Z/p). We conclude that

hocolim(M ∧X
v4
1∧X
−−−−−→ Σ−8M ∧X

v4
1∧X
−−−−−→ Σ−16M ∧X −→ · · · ) ≃M ∧X,

because all the arrows are weak equivalences. However, by [Bou79, Proposition 4.2]
L1M is the homotopy colimit of the sequence formed by the self-map on M(Z/2),
i.e., we have that

hocolim(M
v4
1−−−→ Σ−8M

v4
1−−−→ Σ−16M

v4
1−−−→ · · · ) ≃ L1M.

We conclude that in our case,

M ∧X ≃ (L1M) ∧X

since unlike holim, hocolim commutes with the smash product “∧”. Therefore,

M ∧X ≃ (L1M) ∧X ≃ L1(M ∧X),

because L1 is smashing. On the other hand, by Lemma 4.2

L1(M ∧X) ≃ LK(1)(M ∧X).

We conclude that M ∧X is K(1)-local.
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By induction, we prove that M(Z/2n) ∧X is K(1)-local for all n. The octahedral
axiom provides us with the following exact triangle in Ho(Sp)

M(Z/2) ∧X →M(Z/2n) ∧X →M(Z/2n−1) ∧X → ΣM(Z/2) ∧X.

If we suppose that M(Z/2n−1) ∧X is K(1)-local, then [Bou79, Lemma 1.4] tells us
that M(Z/2n) ∧X is K(1)-local as well. By Corollary 3.9, the 2-completion of X
denoted X∧

2 is the homotopy limit of

· · · −→M(Z/2n) ∧X −→ · · · −→M(Z/22) ∧X −→M(Z/2) ∧X.

Since every term of the above sequence is K(1)-local, the spectrum X∧
2 is K(1)-

local [Rav84, Proposition 1.7]. As X is 2-complete, this must mean that X itself is
K(1)-local.

5. The Quillen functor pair

In order to obtain a Quillen equivalence between LK(1)Sp and C, we first need
a Quillen adjunction between those categories. Forgetting the K(1)-local structure,
Quillen adjunctions between spectra Sp and any stable model category have been
studied first in [SS02] and were later generalised in [Len12].

Theorem 5.1 ([Len12, Section 6]). Let C be a stable model category and X ∈ C a
fibrant and cofibrant object. Then there is a Quillen adjunction

X ∧ − : Sp ⇄ C :Hom(X,−)

such that X ∧ S0 ≃ X.

Notation. The left derived functor of X ∧ − : Sp→ C is denoted

X ∧L − : Ho(Sp)→ Ho(C),

and RHom(X,−) : Ho(C)→ Ho(Sp) denotes the right derived functor of Hom(X,−).

Looking at Sp and LK(1)Sp as categories, they are the same, however, they have
different model structures. We would like to show that this construction also gets us
a Quillen adjunction between K(1)-local spectra LK(1)Sp as follows

Sp C

LK(1)Sp

X∧−

Id X∧−

By [BR11, Proposition 7.8], this is the case if and only if the spectrum RHom(X,Y )
is K(1)-local for all Y ∈ C.

For the rest of the paper, let Φ: Ho(LK(1)Sp)→ Ho(C) be an equivalence of trian-
gulated categories, and X a fibrant-cofibrant replacement of Φ(LK(1)S

0). In order to
show that RHom(X,Y ) is K(1)-local for all Y , we use Lemma 4.4. However, before
being able to apply Lemma 4.4, we need to prove that RHom(X,Y ) is 2-complete,
to that end we use Proposition 3.8.

Lemma 5.2. The spectrum RHom(X,Y ) is 2-complete for all Y ∈ C.
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Proof. By Proposition 3.8 (c), in order to prove that the spectrum RHom(X,Y )
is 2-complete for all Y ∈ C, it is enough to show that the groups π∗(RHom(X,Y ))
are Ext-2-complete. However, the latter fact is the same as the following equivalent
statements:

(i) The groups [X ∧L S0, Y ]C∗ are Ext-2-complete, since (X ∧L −,RHom(X,−)) is
a pair of adjoint functors.

(ii) The groups [X,Y ]C∗ are Ext-2-complete since X ∧L S0 ∼= X.

(iii) The groups [Φ−1(X),Φ−1(Y )]
LK(1)Sp
∗ are Ext-2-complete (Φ is an equivalence

of categories).

(iv) The groups [S0,Φ−1(Y )]
LK(1)Sp
∗ are Ext-2-complete because Φ−1(X) ∼= LK(1)S

0.

(v) The groups [S0, LK(1)Φ
−1(Y )]Sp∗ are Ext-2-complete, as a consequence of the

isomorphism [X,Y ]LK(1)Sp ∼= [X,LK(1)Y ]Sp.

The last statement is the same as saying that the spectrum LK(1)Φ
−1(Y ) is 2-

complete, which is indeed true, since by Lemma 3.10 we have

LK(1)Φ
−1(Y ) =

(

L1Φ
−1(Y )

)∧

2
.

Lemma 5.3. For the mod-2 Moore spectrum M , we have

X ∧L M ∼= Φ(LK(1)M) ∼= Φ(M).

Proof. From the isomorphisms

X ∧L S0 ∼= X ∼= Φ(LK(1)S
0),

we can see that both X ∧L M and Φ(LK(1)M) are the cofibre of the multiplication
by 2 on the element X, hence we have

X ∧L M ∼= Φ(LK(1)M).

As for the last isomorphism of the lemma, it is a consequence of the isomorphism

M ∼= LK(1)M

in the homotopy category Ho(LK(1)Sp).

In order to show that RHom(X,Y ) is K(1)-local for all Y , we use Lemma 4.4.

Lemma 5.4. The map

(v41)
∗ : [M,RHom(X,Y )]Spn → [M,RHom(X,Y )]Spn+8

is an isomorphism for all n ∈ Z and all Y ∈ C.

Remark 5.5. Before we proceed to the proof of the above lemma, we need to know
the homotopy groups of the K(1)-local sphere in degrees 0 till 9. By [Bou79, The-
orem 4.3] and Lemma 3.10, we can see that the K(1)-local sphere is the fiber of
the Adams operation Ψ3 − 1 on KOZ2, where KOZ2 is the 2-adic real K-theory
spectrum. Therefore the long exact sequence produced by the fiber sequence

LK(1)S
0 → KOZ2

Ψ3
−1

−−−−−→ KOZ2
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provides us with values of πn(LK(1)S
0) at p = 2. On the other hand, the long exact

sequence provided by the homotopy pullback square

L1Y LK(1)Y

L0Y L0LK(1)Y

tells us that 2-locally, we have

πn(LK(1)S
0) ∼= πn(L1S

0), for n 6= −2, −1, 0.

The final result from degree −2 till 9 reads as follows, see, e.g., [Rav84, Theo-
rem 8.15].

n πn(LK(1)S
0)

−2 0
−1 Z∧

2

0 Z∧
2 {ι} ⊕ Z/2{y0}

1 Z/2{η, y1}
2 Z/2{η2}
3 Z/8{ν}
4 0
5 0
6 0
7 Z/16{σ}
8 Z/2{ησ}
9 Z/2{η2σ, µ}

The element y0 is the unique element of order 2 of π0(LK(1)S
0), and y1 = ηy0 is

a generator of the second summand in π1(LK(1)S
0). As for the other elements of

πn(LK(1)S
0), we give them the names of their preimages in πn(S

0). Moreover, we
have the following relations, [Rav84, Theorem 8.15(d)]

4ν = η3, ηy1 = 0, y20 = 0, y21 = 0, σy1 = 0 and µy0 = η2σ.

Now, we can move on to proving Lemma 5.4, namely that the mod-2 homotopy
groups of RHom(X,Y ) are v41-periodic for all Y ∈ C.

Proof. By adjunction, it suffices to prove that

(X ∧L v41)
∗ : [X ∧L M,Y ]Cn → [X ∧L M,Y ]Cn+8

is an isomorphism for all integers n. We know that

(v41)
∗
: [M,Φ−1(Y )]

LK(1)Sp
n → [M,Φ−1(Y )]

LK(1)Sp
n+8

is an isomorphism for all n, but by Lemma 5.3, this means that

Φ(v41)
∗ : [X ∧L M,Y ]Cn → [X ∧L M,Y ]Cn+8

is an isomorphism as well. Therefore, to show that (X ∧L v41)
∗ is an isomorphism, one

compares the elements (X ∧L v41) and Φ(v41) in the endomorphism ring

[X ∧L M,X ∧L M ]C8
∼= [M,M ]

LK(1)Sp
8 .
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But since [M,M ]
LK(1)Sp
∗ = [M,M ]L1Sp

∗ by Lemma 4.2, we can use the calculation
done in [Roi07, Section 3.2] for the E(1)-local case to show that

X ∧L v41 = Φ(v41) + Φ(T ), for some T ∈ [M,M ]
LK(1)Sp
8 , 2T = 0.

However, by Remark 5.5 and [Roi07, Section 3.2] we can see that all such v41 + T are
isomorphims in Ho(LK(1)Sp). Hence, (X ∧

L v41)
∗ is also an isomorphism.

Since we have seen that RHom(X,Y ) is 2-complete, we can make use of the last
lemma with Lemma 4.4 to deduce the following:

Corollary 5.6. The spectrum RHom(X,Y ) is K(1)-local for all Y . Thus,

X ∧ − : LK(1)Sp ⇄ C :Hom(X,−)

is a Quillen adjunction.

6. The Quillen equivalence

As before, let Φ: Ho(LK(1)Sp)→ Ho(C) be an equivalence of triangulated cate-
gories. After constructing the Quillen adjunction

X ∧ − : LK(1)Sp ⇄ C :Hom(X,−),

whereX ≃ Φ(LK(1)S
0), our goal now is to prove that this Quillen adjunction is indeed

a Quillen equivalence. To this end, we first start by looking at the homotopy type of
the spectrum RHom(X,X ∧L M). Note that in the E(1)-local case in [Roi07], the
author investigated the homotopy type of RHom(X,X ∧L S0). The reason behind it
is that in L1Sp, the sphere spectrum is a compact generator, while in LK(1)Sp, the
Moore spectrum M is a compact generator, and S0 is just a generator. Everything
mentioned and the reason why we are looking at a compact generator will become
apparent when we will be proving the equivalence.

As we have seen in Corollary 5.6, the spectrum RHom(X,X ∧L M) is K(1)-local.
Therefore, by the universal property of localisation [Rav84, Proposition 1.5], the
adjoint of the identity map factors over LK(1)M

M RHom(X,X ∧L M)

LK(1)M

Id
λ

Proposition 6.1. The map λ : LK(1)M → RHom(X,X ∧L M) is a π∗-isomorphism.

Proof. As all the homotopy groups involved are torsion, it is enough to show that λ
induces an isomorphism of mod-2 homotopy groups. In other words, we need to show
that λ∗ in the following commutative diagram is an isomorphism.

[M,LK(1)M ]Sp∗ = [M,M ]
LK(1)Sp
∗ [M,RHom(X,X ∧L M)]Sp∗

[X ∧L M,X ∧L M ]C∗

λ∗

X∧
L
−

adj

∼=
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It is commutative because, by definition of λ, for α ∈ [M,LK(1)M ]Sp∗ , the image of
X ∧L α under the adjunction isomorphism is precisely λ ◦ α. All we need to show is
that

X ∧L − : [M,M ]
LK(1)Sp
n −→ [X ∧L M,X ∧L M ]Cn

is an isomorphism for all n.
However, via the self map v41 , the endomorphisms of the Moore spectrum are

periodic of period 8 in Ho(LK(1)Sp)

[M,M ]
LK(1)Sp
n

∼= [M,M ]
LK(1)Sp
n+8 .

Therefore, we only have to show that the desired isomorphism holds for n = 1, . . . , 8.
To that end, we show that

X ∧L − : [S0, S0]
LK(1)Sp
n −→ [X,X]Cn

is an isomorphism for n = 0, . . . , 9 by verifying that

ψ : [S0, S0]
LK(1)Sp
n

X∧
L
−

−−−−−→ [X,X]Cn
Φ−1

−−−−→ [S0, S0]
LK(1)Sp
n

is an isomorphism in that range. By Remark 5.5 and [Roi07, Lemma 3.4], we deduce
that the desired isomorphism is established for n = 1, . . . , 9 because the homotopy
groups of L1S

0 and LK(1)S
0 agree in degrees 1 to 9. As for the degree 0, the sit-

uation is similar to [Roi07] because y0 is still the only nonzero torsion element in
π0(LK(1)S

0) = Z∧
2 {ι} ⊕ Z/2{y0}, hence we have that

X ∧L y0 = Φ(y0), by [Roi07, Lemma 3.4].

Therefore, the morphism Ψ is an isomorphism at degree 0 as well. The desired result
will follow by using a five lemma argument. To be more specific, we have the following
commutative diagram

0 (πnLK(1)S
0)
/

2
incl∗

πn(LK(1)M)
pinch

∗

{πn−1LK(1)S
0}2 0

0 [X,X]Cn
/

2
incl∗

[X,X ∧M ]Cn
pinch

∗

{[X,X]Cn−1}2 0

where the two rows are short exact sequences, and the left-hand side, as well as the
right-hand side, are isomorphisms for n = 0, . . . , 9. Therefore, we conclude that the
middle row is an isomorphism. Now, the statement that

X ∧L − : [M,M ]
LK(1)Sp
n −→ [X ∧L M,X ∧L M ]Cn

is an isomorphism for n = 1, . . . , 8 is deduced from the following commutative diagram

0 (πn+1(LK(1)M))
/

2
pinch∗

∼=

[M,M ]
LK(1)Sp
n

incl∗
{πnLK(1)M}2

∼=

0

0 [X ∧L S0, X ∧L M ]Cn+1

/

2 [X ∧L M,X ∧L M ]Cn {[X ∧L S0, X ∧L M ]Cn}2 0.

Thus, we can conclude that LK(1)M and Hom(X,X ∧L M) are weakly equivalent in
Sp.
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Now that we have all the necessary arguments, we can use the fact that M is a
compact generator of Ho(LK(1)Sp) to prove our main theorem.

Theorem 6.2. The Quillen adjunction

X ∧ − : LK(1)Sp ⇄ C :Hom(X,−)

is a Quillen equivalence.

Proof. By [Hov99, 1.3.16], it is sufficient to show the following:

• RHom(X,−) : Ho(C)→ Ho(LK(1)Sp) reflects isomorphisms.

• A→ RHom(X,X ∧L A) is an isomorphism for all A ∈ Ho(LK(1)Sp).

Since Φ is an equivalence of triangulated categories, Φ(LK(1)S
0) = X is a genera-

tor for Ho(C), therefore as mentioned in the first section in Remark 2.7 it detects
isomorphisms.

Let us first show the first point. For a morphism f : Y → Z in C, let

RHom(X, f) : RHom(X,Y )→ RHom(X,Z)

be an isomorphism in Ho(LK(1)Sp), so

[S0,RHom(X,Y )]LK(1)(Sp)
∗

RHom(X,f)
−−−−−−−−−→ [S0,RHom(X,Z)]LK(1)(Sp)

∗

is an isomorphism. By adjunction,

[X,Y ]C∗
f∗
−−−→ [X,Z]C∗

is an isomorphism. Since X is a generator in Ho(C), we have that

f : Y → Z

is an isomorphism in Ho(C) which proves the first point.

In order to prove the second point, we use Theorem 2.6 mentioned in the first
section of this paper. Consider the full subcategory T of Ho(LK(1)Sp) containing
those A ∈ Ho(LK(1)Sp) such that

A→ RHom(X,X ∧L A)

is an isomorphism. Our goal is to prove that T = Ho(LK(1)Sp). Since RHom(X,−)
and X ∧L − are exact functors, T is triangulated. By Proposition 6.1 it contains the
Moore spectrum M , i.e., a compact generator of Ho(LK(1)Sp).

To be able to use Theorem 2.6, we still need to verify that this category T is also
closed under coproducts. Now let Ai, i ∈ I, be a family of objects in T . We would
like that

∐

i

Ai ∈ T . As M reflects isomorphisms, this means that we need to show

that

[M,
∐

i

Ai]
LK(1)Sp
∗

→ [M,RHom(X,X ∧L (
∐

i

Ai))]
LK(1)Sp
∗

is an isomorphism. On the other hand, by adjunction,

[M,RHom(X,X ∧L (
∐

i

Ai))]
LK(1)Sp
∗

∼= [X ∧L M,X ∧L (
∐

i

Ai)]
C

∗

.
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Since X ∧L − is a left adjoint, it commutes with coproducts, therefore

[X ∧L M,X ∧L (
∐

i

Ai)]
C
∗
∼= [X ∧L M,

∐

i

(X ∧L Ai)]
C
∗ .

Since Φ is an equivalence of triangulated categories, and LK(1)M is a compact gen-
erator of Ho(LK(1)Sp), we have that Φ(LK(1)M) = X ∧L M is a compact generator
of Ho(C), and this means that

[X ∧L M,
∐

i

(X ∧L Ai)]
C
∗
∼=

⊕

i

[X ∧L M,X ∧L Ai]
C
∗ .

Similarly, we know that

[M,
∐

i

Ai]
LK(1)Sp
∗

∼=
⊕

i

[M,Ai]
LK(1)Sp
∗

.

As Ai ∈ T , for all i ∈ I,

[M,Ai]
LK(1)Sp
∗

∼= [M,RHom(X,X ∧L Ai)]
LK(1)Sp
∗

,

which is induced by

Ai

∼=
−→ RHom(X,X ∧L Ai).

By naturality of those isomorphisms, we have that T is closed under coproducts,
therefore T = Ho(LK(1)Sp), and our Quillen adjunction is indeed a Quillen equiva-
lence.

What is known so far is that, 2-locally, we have rigidity of Ho(L1Sp) and
Ho(LK(1)Sp). It will be intriguing to find out if at odd primes, an exotic model
for LK(1)Sp can be constructed out of the one already established for the E(1)-local
case.
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