
Homology, Homotopy and Applications, vol. 22(1), 2020, pp.77–96

FIXED POINTS OF COISOTROPIC SUBGROUPS OF Γk ON
DECOMPOSITION SPACES

GREGORY ARONE and KATHRYN LESH

(communicated by J.P.C. Greenlees)

Abstract
We study the equivariant homotopy type of the poset Lpk

of orthogonal decompositions of Cpk

. The fixed point space of
the p-radical subgroup Γk ⊂ U(pk) acting on Lpk is shown to be
homeomorphic to a symplectic Tits building, a wedge of (k − 1)-
dimensional spheres. Our second result concerns Δk = (Z/p)k ⊂
U(pk) acting on C

pk

by the regular representation. We identify a
retract of the fixed point space of Δk acting on Lpk . This retract
has the homotopy type of the unreduced suspension of the Tits
building for GLk(Fp), also a wedge of (k − 1)-dimensional spheres.
As a consequence of these results, we find that the fixed point
space of any coisotropic subgroup of Γk contains, as a retract,
a wedge of (k − 1)-dimensional spheres. We make a conjecture
about the full homotopy type of the fixed point space of Δk act-
ing on Lpk , based on a more general branching conjecture, and
we show that the conjecture is consistent with our results.

1. Introduction

A proper orthogonal decomposition of Cn is an unordered collection of nontrivial,
pairwise orthogonal, proper vector subspaces of Cn whose sum is Cn. These decom-
positions have a partial ordering given by coarsening and accordingly form a topo-
logical poset category, denoted Ln. The category Ln has a (topological) nerve, also
denoted Ln, and we trust that context will distinguish Ln the poset (a topological
category) from Ln the nerve (a simplicial space). The action of U(n) on C

n induces
a natural action of U(n) on Ln, and we are interested in the fixed point spaces of the
action of certain subgroups of U(n) on Ln.
The space Ln was introduced in [Aro02], in the context of the orthogonal calculus

of M. Weiss. It plays an analogous role to that played in Goodwillie’s homotopy
calculus by the partition complex Pn, the poset of proper nontrivial partitions of a set
of n elements [AM99]. The space Ln made another, related appearance in [AL07],
in the filtration quotients for a filtration of the spectrum bu that is analogous to
the symmetric power filtration of the integral Eilenberg-MacLane spectrum. The
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properties of Ln are particularly of interest in the context of the “bu-Whitehead
Conjecture” [AL10, Conjecture 1.5].

The topology and some of the equivariant structure of Ln were studied in detail in
[BJL+15], and [BJL+]. In particular, the goal of those papers was to determine, for a

prime p and for all p-toral subgroups H ⊆ U(n), whether (Ln)
H
is contractible. This

classification question is analogous to questions that had to be answered in [ADL16],
in the course of calculating the Bredon homology of Pn. In the case of Pn, for
coefficient functors that are Mackey functors taking values in Z(p)-modules, the p-
subgroups of Σn with non-contractible fixed point spaces on Pn present obstructions
to Pn having the same Bredon homology as a point. Fixed point spaces of subgroups
of Σn acting on Pn were further studied in [Aro15] and [AB18]. In a different con-
text, the spaces Ln were used in [HL18] to develop an obstruction theory for the
existence of multiplicative complex orientations.

As was the case for Pn, one expects that p -toral subgroups of U(n) acting on Ln

with non-contractible fixed point spaces will present obstructions to Ln having the
same Bredon homology as a point, at least for coefficients that are Mackey functors
taking values in Z(p)-modules. In this paper, we contribute to the understanding of

these fixed point spaces by identifying two key cases of p -toral subgroups of U
(
pk

)
whose fixed point spaces on Lpk are not only non-contractible, but actually have
homology that is either free abelian or has a free abelian summand. When we put
these together with a join formula from [BJL+], we obtain a similar result for all
coisotropic subgroups of Γk.

Our results have a similar flavor to results of [AD01] and [ADL16] in that they
involve Tits buildings. We also show that the results obtained are consistent with a
more general conjecture about the equivariant homotopy type of Ln. The conjecture
is analogous to the branching rule of [Aro15] and [AB18] for Pn.

The results of the current work are used in [BJL+] to give a complete classification
of p -toral subgroups of U(n) with contractible fixed point spaces on Ln. Unlike the
case for Pn, where many elementary abelian p -subgroups of Σn have non-contractible
fixed point spaces [Aro15, AB18], it turns out that the fixed point spaces of the
actions of most p -toral subgroups of U(n) on Ln are actually contractible. [BJL+]
shows that the only possible exceptions occur when n = qipj , where q is a prime
different from p. Theorems 1.1 and 1.2 below are used in [BJL+] to settle these
cases.

To state our results explicitly, we need some notation for the two p -toral subgroups
that we study. First, let Δk denote the subgroup (Z/p)

k ⊂ U
(
pk

)
where (Z/p)

k
acts on

C
pk

by the regular representation. Associated to Δk is the Tits building for GLk(Fp),
denoted T GLk(Fp), which is the poset of proper, nontrivial subgroups of Δk, and
which has the homotopy type of a wedge of spheres.

Second, let Γk be the irreducible projective elementary abelian p -subgroup of
U
(
pk

)
(unique up to conjugacy), which is given by an extension

1 −→ S1 −→ Γk −→ (Z/p)2k −→ 1. (1.1)

Here S1 denotes the center of U
(
pk

)
. (See Section 2 for a brief discussion of Γk,

or [Oli94] or [BJL+] for a detailed discussion from basic principles.) The exten-
sion (1.1) induces a symplectic form on (Z/p)2k defined by lifting to Γk and taking the
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commutator, which lies in S1 and has order p. We define a coisotropic subgroup of Γk

to be a subgroup that is the preimage in (1.1) of a coisotropic subspace of (Z/p)2k.
(See Definition 2.7.) This allows us to associate to Γk the Tits building for the sym-
plectic group, denoted T Spk(Fp), which is the poset of proper coisotropic subgroups
of (Z/p)2k, and like T GLk(Fp) has the homotopy type of a wedge of spheres.
We have two main results.

Theorem 1.1. For k� 1, the fixed point space
(
Lpk

)Γk is homeomorphic to T Spk(Fp).

By way of context, we point out that there is a more elementary, analogous result to
Theorem 1.1 that establishes a homeomorphism between the fixed point space of the
action of Δk ⊂ Σpk on the partition complex Ppk , and the Tits building for GLk(Fp)
[ADL16, Lemma 10.1]. The paper [Aro02] establishes a dictionary between the
properties of the action of Σn on Pn and the action of U(n) on Ln. The dictionary
translates Δk ⊂ Σpk to Γk ⊂ U

(
pk

)
, and translates the Weyl group of Δk in Σk,

which is GLk(Fp), to the Weyl group of Γk in U
(
pk

)
, which is Spk(Fp). Therefore

Theorem 1.1 is the result one would expect to get by taking the dictionary literally.

On the other hand, the dictionary does not give a prediction for
(
Lpk

)Δk , although
we explain later how the following theorem is consistent with a more general conjec-
ture. Given a space X, let X� denote the unreduced suspension of X.

Theorem 1.2. For k � 1, the fixed point space
(
Lpk

)Δk has T GLk(Fp)
�
as a retract.

We compute explicit examples for k = 1 in Examples 3.1 and 5.1.

Remark 1.3. As part of proving Theorem 1.2, we need to construct an inclusion

T GLk(Fp)
�
↪→

(
Lpk

)Δk , as well as a retraction. Constructing the inclusion is perhaps
the sneakiest step in the paper. Contrary to what one might expect, the inclusion is
not induced by a functor from the poset of subspaces of Fk

p to the poset of decompo-

sitions of Cpk

. (Note that in any case, we want the suspension of the Tits building
as the retract, and not the Tits building itself.) Rather, we need to use the edge-
wise subdivision of the poset of subspaces of Fk

p to model the space T GLk(Fp)
�
. The

edgewise subdivision is a poset whose objects are nested pairs (H ⊆ K) of subgroups
of Δk, and whose morphisms are twisted arrows. We construct a functor from the

edgewise subdivision to the poset of decompositions of Cpk

using a mixture of the

action of K on a basis of Cpk

, and canonical decomposition of H-representations into
H-isotypical summands. Details appear in the latter part of Section 4.

With Theorems 1.1 and 1.2 in place, we can use a join formula from [BJL+] to
identify a wedge of spheres as a retract of the fixed point space of any coisotropic
subgroup of Γk acting on Lpk .

Corollary 1.4. If k � 1 and H ⊆ Γk is coisotropic, then
(
Lpk

)H
has a retract that

is homotopy equivalent to a wedge of spheres of dimension k − 1.

Proof. Because H is coisotropic, it has the form Γs ×Δt for some s+ t = k (Lem-
ma 2.9). If s = k or t = k, then the result is the same as Theorems 1.1 and 1.2, respec-
tively, because T Spk(Fp) and T GLk(Fp)

�
are both wedges of (k − 1)-dimensional

spheres. (See, for example, [AB08, Theorem 4.127].) By direct computation, this
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statement includes the case t = k = 1, since T GL1(Fp) is empty and so its unreduced
suspension is a 0-sphere, as required.
When s and t are both less than k, we apply [BJL+, Theorem 9.2] to find that

(
Lpk

)H ∼= (Lpt)
Δt ∗ (Lps)

Γs .

Hence by Theorems 1.1 and 1.2,
(
Lpk

)H
has T GLt(Fp)

� ∗ T Sps(Fp) as a retract.
But s and t must both be at least 1, and as noted above, the spaces T GLt(Fp)

�
and

T Sps(Fp) each have the homotopy type of a wedge of spheres, of dimension t− 1
and s− 1, respectively. The corollary follows because s+ t = k.

Theorem 1.2 is good enough to complete the classification of [BJL+]: all that

is needed there is that the integral homology of
(
Lpk

)Δk has a summand that is a
free abelian group. However, we actually have a conjectural description of the full

homotopy type of the fixed point space
(
Lpk

)Δk , based on a more general conjecture
regarding the equivariant homotopy type of Ln. We can embed U(n− 1) ⊆ U(n) (in
a nonstandard way) as the symmetries of the orthogonal complement of the diago-
nal C ⊂ C

n, since that complement is an (n− 1)-dimensional vector space over C.
Observe that the standard inclusion Σn ↪→ U(n) by permutation matrices actually
factors through this inclusion U(n− 1) ⊂ U(n). Finally, let Sρ̄n denote the one-point
compactification of the reduced standard representation of Σn on R

n−1. The general
conjecture is as follows.

Conjecture 1.5. There is a U(n− 1)-equivariant homotopy equivalence

Ln � U(n− 1)+ ∧Σn

(
P�
n ∧ Sρ̄n

)
.

Remark 1.6. Conjecture 1.5 is motivated by the role of Ln in orthogonal calculus. On
the one hand, Ln is closely related to the n-th derivative of the functor V 	→ BU(V ).
This, together with the fibration sequence S1 ∧ SV → BU(V )→ BU(V ⊕ C) implies
that the restriction of Ln to U(n− 1) is closely related to the n-th derivative of the
functor V 	→ S1 ∧ SV . On the other hand, by connection with Goodwillie’s homotopy
calculus, the n-th derivative of this last functor is closely related to P�

n ∧ Sρ̄n . In fact,
one can use this connection to prove that the equivalence in Conjecture 1.5 is true after
taking suspension spectra and smashing with EU(n)+. For more details see [Aro02],
especially Theorem 3, which is equivalent to the assertion of the previous sentence,
modulo standard manipulations involving Spanier-Whitehead duality.

In the final section of this paper, we show what the general statement in Conjec-

ture 1.5 would imply about the actual homotopy type of
(
Lpk

)Δk , and we check that
implication against what we can prove beginning from Theorems 1.1 and 1.2. Let
CG(H) denote the centralizer of a subgroup H in a group G. After some calculation,
we find that Conjecture 1.5 implies the following conjecture.

Conjecture 1.7. Let C̃ = CU(pk) (Δk) /
(
Δk × S1

)
. There is a homotopy equivalence

(
Lpk

)Δk � C̃+ ∧ T GLk(Fp)
�
.

We observe that Conjecture 1.7 is consistent with Theorem 1.2, and this consis-
tency can be regarded as evidence for the correctness of Conjecture 1.5.
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Organization of the paper

In Section 2, we collect some background information about Ln, the p-toral
group Γk, and the symplectic Tits building. Section 3 proves Theorem 1.1 and com-
putes an example. Section 4 proves Theorem 1.2, and lastly, in Section 5 we show how
to deduce Conjecture 1.7 from Conjecture 1.5, and we compute another example.

Throughout the paper, we assume that we have fixed a prime p. By a subgroup
of a Lie group, we always mean a closed subgroup. We write NG(H) and CG(H)
for the normalizer and centralizer, respectively, of a subgroup H in a group G. The
notation S1 always means the center of the unitary group under discussion. We write
ρn for the standard representation of Σn on C

n, and we write ρ̄n for the reduced
standard representation (the quotient of the standard representation by the trivial
representation).

2. Background on Lpk and Γk

In this section, we give background results on the decomposition spaces Ln, the
group Γk, and the symplectic Tits building.

As explained in Section 1, Ln is a poset category internal to topological spaces: the
objects and morphisms have an action of U(n) and are topologized as disjoint unions
of U(n)-orbits. If λ is an object of Ln, then we write cl(λ) for the set of subspaces
that make up λ, which are called the classes or components of λ. If a decomposition
λ is stabilized by the action of a subgroup H ⊆ U(n), then there is an action of H on
cl(λ), which may be nontrivial.

In analyzing (Ln)
H
, there are two operations that are particularly helpful in con-

structing deformation retractions to subcategories.

Definition 2.1. Suppose that H ⊆ U(n) is a closed subgroup, and λ is a decompo-

sition in (Ln)
H
.

1. We define λ/H as the decomposition of Cn obtained by summing components
of cl(λ) that are in the same orbit of the action of H on cl(λ).

2. If μ is a decomposition of Cn such that H acts trivially on cl(μ) (i.e., every
component of μ is a representation of H), then we define μ iso(H) as the refine-
ment of μ obtained by taking the canonical decomposition of each component
of μ into its H-isotypical summands.

Example 2.2. Let {e1, e2, e3, e4} denote the standard basis for C4, and let Σ4 ⊂ U(4)
act by permuting the basis vectors. Let ε denote the decomposition of C4 into the
four lines determined by the standard basis. Let H ∼= Z/2 ⊂ Σ4 be generated by
(1, 2)(3, 4). Then μ := ε/H consists of two components v1 = Span{e1, e2} and v2 =
Span{e3, e4}.
Since each component of μ is a representation of H, we can refine μ as (ε/H) iso(H).

Each of the components v1 and v2 decompose into one-dimensional eigenspaces for
the action of H, one for the eigenvalue +1 and one for the eigenvalue −1. Hence
(ε/H) iso(H) is a decomposition of C4 into four lines, each of which is fixed by H,
where H acts on two of them by the identity and on the other two by multiplication
by −1.
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Since Ln has a topology, it is necessary that the operations of Definition 2.1 be
continuous, which is proved in [BJL+] using the following lemma, specialized from
[May99, Lemma 1.1].

Lemma 2.3. The path components of the object and morphism spaces of (Ln)
H

are
orbits of the identity component of the centralizer of H in U(n).

The proof of continuity of the operations of Definition 2.1 then goes by observing
that the operations commute with the action of the centralizer of H in U(n), which

defines the topology of (Ln)
H
, since the orbits of U(n) determine the topology of Ln.

See [BJL+, Section 4].

Our next job is to identify a smaller subcomplex of (Ln)
H
that is sometimes good

enough to compute the homotopy type of (Ln)
H
.

Definition 2.4. Let H ⊆ U(n) be a subgroup and suppose that λ is a decomposition

in (Ln)
H
.

1. For v ∈ cl(λ), we define the H-isotropy group of v, denoted Iv, as Iv = {h ∈ H :
hv = v}.

2. We say that λ has uniform H-isotropy if all elements of cl(λ) have the same
H-isotropy group. In this case, we write Iλ for the H-isotropy group of any
v ∈ cl(λ), provided that the group H is understood from context.

Example 2.5. Suppose that λ ∈ Obj (Ln)
H
, and that H acts transitively on the

set cl(λ). If there exists v ∈ cl(λ) such that Iv � H, then λ necessarily has uniform
H-isotropy. This is because the transitive action of H means that the H-isotropy
groups of all components of λ are conjugate in H. Since Iv is normal, all the isotropy
groups are actually the same.
More specifically, suppose that H ⊂ U(n) has the property that H/(H ∩ S1) is

abelian (resp., elementary abelian), where S1 denotes the center of U(n). In this case
we say that H is projective abelian (resp., projective elementary abelian). By the

discussion above, if λ ∈ Obj (Ln)
H
has a transitive action of H on cl(λ), then λ has

uniform H-isotropy, because every subgroup of H containing H ∩ S1 is normal.

For H ⊂ U(n), let Unif(Ln)
H
denote the subposet of (Ln)

H
consisting of objects

with uniform H-isotropy. As in [BJL+], we have the following lemma, stated slightly
more generally here.

Lemma 2.6. If H ⊂ U(n) is a projective abelian subgroup, then the inclusion

Unif(Ln)
H → (Ln)

H
induces a homotopy equivalence of nerves.

Proof. Exactly the same proof as in [BJL+] works here. Let λ be a decomposition

in (Ln)
H
, with cl(λ) = {v1, . . . , vj}. Each Ivi contains H ∩ S1, and so is normal in H

because H is projective abelian. Let Jλ = Iv1 · · · Ivj , which is also a normal subgroup
of H. We assert that λ/Jλ is a proper decomposition. If not, then Jλ (and hence
also H) acts transitively on cl(λ). A transitive action of H on cl(λ) would tell us that
Iv1

= · · · = Ivj = Jλ, and that Iv1 , for example, acts transitively on cl(λ). However,
Iv1

fixes v1, so λ would have only have one component, a contradiction.
From this point, the proof is precisely as in [BJL+], by doing the routine checks

that λ 	→ λ/Jλ is a continuous deformation retraction from (Ln)
H
to Unif(Ln)

H
.
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Our next order of business is to provide a little background on the groups whose
fixed points we study in this paper. As in the introduction, we write Δk for the group

(Z/p)k ⊂ U
(
pk

)
acting on the standard basis of Cpk

by the regular representation.
One of the goals of this paper is to understand the fixed point space of Δk acting on
Lpk (Theorem 1.2 and Conjecture 1.7).
The other important group in our results is Γk ⊂ U

(
pk

)
, which denotes a subgroup

of U
(
pk

)
given by an extension

1 −→ S1 −→ Γk −→ (Z/p)
k × (Z/p)

k −→ 1,

and, of key importance, acts irreducibly on C
pk

. The group Γk is discussed exten-
sively and described explicitly in terms of matrices in [Oli94]. (See also [BJL+] for

a discussion from first principles.) Each factor of (Z/p)
k
has a splitting back into Γk,

though the splittings of the two factors do not commute in Γk. As a subgroup of
Γk ⊆ U

(
pk

)
, the image of the splitting of the first factor of (Z/p)

k
can be regarded

as Δk itself, acting on the standard basis of C
pk

by the regular representation. The
image of the splitting of the second factor of (Z/p)

k
acts via the regular representa-

tion on the pk one-dimensional irreducible representations of Δk, which are pairwise

nonisomorphic and span C
pk

.
Moving on to Tits buildings, recall that a symplectic form on an Fp-vector space

is a nondegenerate alternating bilinear form. The vector space necessarily has even
dimension. Lifting elements of Γk/S

1 to Γk and computing the commutator gives a

well-defined symplectic form on (Z/p)
k × (Z/p)

k
. Oliver shows in [Oli94] that the

Weyl group of Γk in U
(
pk

)
is the full group of automorphisms of this form, that is,

the Weyl group of Γk in U
(
pk

)
is the symplectic group Spk(Fp). Our next goal is to

describe the symplectic Tits building, T Spk(Fp).

Definition 2.7.

1. A subspace W of a symplectic vector space is called coisotropic if W⊥ ⊆W .

2. We say that J ⊆ Γk is a coisotropic subgroup if J is the inverse image of a
coisotropic subspace of (Z/p)2k.

3. The symplectic Tits building, T Spk(Fp), is the poset of proper coisotropic sub-
groups of Γk.

Example 2.8. To compute T Sp1(Fp), consider

1 −→ S1 −→ Γ1 −→ (Z/p)
2 −→ 1.

Coisotropic subspaces have dimension at least half the dimension of the ambient
vector space, so here a proper coisotropic subspace of (Z/p)

2
has dimension one.

Further, every one-dimensional subspace of a two-dimensional symplectic vector space
is coisotropic. The vector space (Z/p)2 has p+ 1 one-dimensional subspaces. Since
there are no possible inclusions between the subspaces, there are no morphisms in
the poset, and therefore the nerve of T Sp1(Fp) consists of p+ 1 isolated points.

Remark. In the literature, the symplectic Tits building is usually defined in terms of
isotropic subspaces. The poset of flags of isotropic subspaces is isomorphic to the poset
of parabolic subgroups of the symplectic group Spk(Fp), and this is why its geometric
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realization is identified with the symplectic Tits building. In general, T Spk(Fp) has
the homotopy type of a wedge of spheres of dimension k − 1. See [AB08, Section 6.6]
for more details. Taking orthogonal complement defines a canonical (inclusion-re-
versing) bijection between isotropic and coisotropic subspaces, and for our purposes
it is more natural to focus on the coisotropic subgroups.

Our final piece of background is some concrete information about coisotropic sub-
groups. Let Hs denote a 2s-dimensional vector space over Z/p with a symplectic form,
and let Tt denote a t-dimensional vector space with trivial form.

Lemma 2.9. If H ⊆ Γk is coisotropic, then H has the form Γs ×Δt where s+ t = k.

Proof. A coisotropic subspace of (Z/p)2k has an alternating form isomorphic to Hs ⊕
Tt where s+ t = k. Further, H is classified up to isomorphism by its commutator
form, with Hs corresponding to Γs and Tt corresponding to Δt. (A proof is given in
[BJL+].) The result follows.

Lemma 2.10. If H ⊆ Γk is coisotropic, then H has irreducibles of dimension ps

⇐⇒ H ∼= Γs ×Δt where s+ t = k.

Proof. We already know from Lemma 2.9 thatH is isomorphic toH ∼= Γs ×Δt where

s+ t = k. The lemma follows from the fact that Γs is acting on C
pk

by a multiple of the
standard representation, and the irreducible representations of Γs ×Δt are products
of irreducible representations of Γs and (one-dimensional) irreducible representations
of Δt.

3. Fixed points of Γk acting on Lpk

In this section, we prove the first theorem announced in the introduction.

Theorem 1.1. For k� 1, the fixed point space
(
Lpk

)Γk is homeomorphic to T Spk(Fp).

To get a feel for the result, we begin by computing the case k = 1 of Theorem 1.1
directly.

Example 3.1. To compute (Lp)
Γ1 , suppose that λ is a decomposition of Cp that is

fixed by Γ1. Because Γ1 acts irreducibly on C
p, the action of Γ1 on cl(λ) is tran-

sitive, meaning that cl(λ) has one element, p2 elements, or p elements. The first is
impossible because λ is proper (must have more than one class), and the second is
impossible because classes of λ must be nonzero (cannot have p2 nonzero classes in
a decomposition of Cp). Hence λ is a decomposition of Cp into p lines. The kernel Iλ
of the action map Γ1 → Σcl(λ) has the form Iλ ∼= S1 × Z/p. The decomposition λ is
exactly the canonical decomposition of Cp into Iλ-isotypical representations. Hence
there is a one-to-one correspondence between subgroups I ∼= S1 × Z/p of Γ1 and Γ1-
invariant decompositions λ of Cp. There are p+ 1 subgroups I of the required form,
and there are no possible inclusions, so (Lp)

Γ1 consists of p+ 1 points. Comparing to
Example 2.8, we see that T Sp1(Fp) also consists of p+ 1 isolated points, as required
by Theorem 1.1.
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Example 3.1 brings up the point that while T Spk(Fp) is a discrete poset, it is not

initially clear that
(
Lpk

)Γk is discrete, because Lpk itself is a topological poset. While
it is not logically necessary to verify discreteness up front, we give a freestanding

proof that
(
Lpk

)Γk is a discrete poset.

Lemma 3.2. The object and morphism spaces of
(
Lpk

)Γk are discrete.

Proof. By Lemma 2.3, the path components of Obj
(
Lpk

)Γk are orbits of the central-

izer of Γk in U
(
pk

)
. However, Γk is centralized in U

(
pk

)
only by the center S1 of U

(
pk

)
[Oli94, Prop. 4]. Since S1 actually fixes every object of Lpk , the S1-orbit of an object

of Lpk is just a point. Hence the path components of the object space of
(
Lpk

)Γk are

single points, and the object space of
(
Lpk

)Γk is discrete. The same is then necessarily
true of the morphism space, since there is at most one morphism between any two
objects and the source and target maps are continuous on the morphism space.

The strategy for the proof of Theorem 1.1 is straightforward: to establish functors

from T Spk(Fp) to
(
Lpk

)Γk and back, and to show that their compositions are identity
functors. Defining the functions on objects is not difficult. To show that the maps are
functorial and compose to identity functors requires some representation theory.
We will define functions in both directions between the proper coisotropic sub-

groups of Γk and the objects of
(
Lpk

)Γk . If H is a subgroup of Γk, let λH denote the

canonical decomposition of Cpk

by H-isotypical summands. On the other hand, recall

that if λ is an object of
(
Lpk

)Γk , then λ necessarily has uniform Γk-isotropy (Exam-

ple 2.5, because Γk acts irreducibly on C
pk

). We denote this isotropy by Iλ ⊂ U
(
pk

)
.

We define the required correspondences between subgroups and decompositions as
follows: if H is a coisotropic subgroup of Γk, then

F (H) = λH

and if λ is a decomposition in
(
Lpk

)Γk , then

G(λ) = Iλ.

We need to check that the image of F consists of proper decompositions of Cpk

, that
the image of G consists of proper coisotropic subgroups, that F and G are functorial,
and that F and G are inverses of each other when F is restricted to proper coisotropic
groups.
To show that F and G are functors, we need a representation-theoretic lemma.

Lemma 3.3. If H is a coisotropic subgroup of Γk, then the standard representation

of Γk on C
pk

breaks into the sum of [Γk : H] irreducible representations of H, all of
equal dimension, and pairwise non-isomorphic.

Proof. Direct computation of the character of Γk from the matrix representation in
[Oli94] establishes that χ

Γk
(x) = 0 for x /∈ S1 and χ

Γk
(s) = pks for s ∈ S1, and hence

the same is true for the character of H. By Lemma 2.9, we know H ∼= Γs ×Δt with

s+ t = k. Computing the characters shows that the action of H ∼= Γs ×Δt on C
pk ∼=
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C
ps ⊗ C

pt

is conjugate to the action where Γs acts on the first factor by the standard
representation and Δt acts on the second factor by the regular representation. Since
H is a product, irreducible H-representations are obtained as tensor products of
irreducible representations of Γs and of Δt. There are p

t = [Γk : H] irreducibles of Δt

acting on C
pt

, all non-isomorphic, and the tensor products of these irreducibles with

the standard representation of Γs are again irreducible, span C
pk

, and are pairwise
non-isomorphic (for example, since they have different characters).

We obtain the following corollary to Lemma 3.3.

Corollary 3.4. If J ⊆ Γk is coisotropic, then λJ is the only J-isotypical decomposi-

tion of Cpk

.

Proof. A decomposition of Cpk

is J-isotypical if and only if each one of its components

is an isotypical representation of J . Every J-isotypical decomposition of Cpk

is a
refinement of λJ . But by Lemma 3.3, each component of λJ is irreducible. Hence λJ

has no J-isotypical refinements, and therefore it is the only J-isotypical decomposition

of Cpk

.

With Corollary 3.4 in hand, we can establish that F is functorial.

Proposition 3.5. F is a functor from T Spk(Fp) to
(
Lpk

)Γk .

Proof. Suppose H is an object of T Spk(Fp), that is, a proper coisotropic subgroup

of Γk. Since H � Γk, the action of Γk on C
pk

permutes the irreducible representations
of H and hence stabilizes λH (while possibly permuting its components). Further,
by Lemma 3.3, λH has [Γk : H] > 1 components, so λH is a proper decomposition

of Cpk

.
To establish naturality, suppose that J ⊆ H are two coisotropic subgroups of Γk.

Every component of λH is a representation of H, and hence also of J . Consider the
decomposition (λH) iso(J). It is J-isotypical, by definition, and so by Corollary 3.4, we

know that (λH) iso(J) = λJ . It follows that λJ is a refinement of λH , so F is a functor
on the poset of proper coisotropic subgroups of Γk.

Next we turn our attention to the function G from objects of
(
Lpk

)Γk to sub-
groups of Γk. By way of preparation, we need a key representation-theoretic result
similar to Lemma 3.3. Given an irreducible representation σ of a group G and another
representation τ of G, let [τ : σ] denote the multiplicity of σ in τ .

Lemma 3.6. Let λ be an object of
(
Lpk

)Γk , and let Iλ denote the (uniform) Γk-
isotropy subgroup of its components. Then the representations of Iλ afforded by the
components of λ are pairwise non-isomorphic irreducible representations of Iλ.

Corollary 3.7. If λ ∈ Obj
(
Lpk

)Γk , then FG(λ) = λ.

Proof. By definition, G(λ) = Iλ, so the question is to find the canonical isotypical
decomposition of Iλ. Lemma 3.6 says that all components of λ are non-isomorphic
irreducible representations of Iλ, so in fact, F (Iλ) = λ.



FIXED POINTS OF COISOTROPIC SUBGROUPS 87

Proof of Lemma 3.6. Let ρ denote the standard representation of Γk on C
pk

. The
action of Γk/Iλ on cl(λ) is free and transitive (the latter because Γk acts irreducibly),
so if we choose v ∈ cl(λ), then ρ is induced from the representation of Iλ given by v. We
conclude that v is an irreducible representation of Iλ, since it induces the irreducible
representation ρ. The same is true for every other component of λ, so the components

of λ are a decomposition of Cpk

into Iλ-irreducibles.
We can apply Frobenius reciprocity (see, for example, [Kna96, Theorem 9.9]) to

conclude that: [
IndΓk

Iλ
(v) : ρ

]
= [ρ|

Iλ
: v].

Because IndΓk

Iλ
(v) ∼= ρ, we conclude that [ρ|

Iλ
: v] = 1. However, ρ|

Iλ
is a direct sum

of the irreducible Iλ-modules given by the components of λ. If any other component
of λ were isomorphic to v as a representation of Iλ, then we would have [ρ|Iλ : v] � 2,

contrary to the calculation above.

In addition to showing that F is a left inverse for G, Lemma 3.6 also allows us
to check that subgroups in the image of G are actually proper coisotropic subgroups
of Γk.

Lemma 3.8. If λ is an object of
(
Lpk

)Γk , then Iλ is a proper coisotropic subgroup
of Γk.

Proof. We know that Iλ is strictly contained in Γk, because otherwise irreducibility
of the action of Γk would imply that λ had only one component.
We have the following ladder of short exact sequences:

1 �� S1 �� Iλ ��

��

W ��

��

1

1 �� S1 �� Γk
�� (Z/p)2k �� 1.

We must show that if z ∈W⊥ ⊆ (Z/p)2k, then in fact, z ∈W . Recall that the sym-
plectic form on (Z/p)2k is given by the commutator pairing: if we denote lifts of z
and w by z̃ and w̃, then the symplectic form evaluated on the pair (z, w) is given by
the commutator [z̃, w̃] ∈ S1. Hence if z pairs to 0 with all elements of W , it means
that z̃ is actually in the centralizer of Iλ in Γk. Thus is it sufficient for us to show
that if z̃ ∈ Γk centralizes Iλ, then z̃ ∈ Iλ.
However, if z̃ centralizes Iλ and v ∈ cl(λ), then z̃ gives a nontrivial Iλ-equivariant

map between the Iλ-representations v and z̃v. By Lemma 3.6, if v �= z̃v, then v and
z̃v are non-isomorphic irreducible representations of Iλ, so Schur’s Lemma tells us
that there is no nontrivial Iλ-equivariant map. We conclude that z̃v = v, so z̃ ∈ Iλ,
as required.

Finally, the last step is to show that the functors F and G are inverses of each
other.

Proof of Theorem 1.1. The functors F : H 	→ λH and G : λ 	→ Iλ induce the desired
homeomorphism, once we show that they are inverses of each other. Corollary 3.7
already tells us that FG(λ) = λ. To finish the proof of the theorem, we must show if
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H is proper and coisotropic, then GF (H) = H, that is, the Γk-isotropy subgroup of
λH is H itself.
By definition of λH , the components of λH are H-representations, so certainly H ⊆

IλH
. Both H and IλH

are proper and coisotropic, by assumption and by Lemma 3.8,
respectively. However, a coisotropic subgroup of Γk is determined up to isomorphism
by the dimension of its irreducible summands in the standard representation of Γk

(Lemma 2.10). Further, the components of λH are irreducible representations for both
H (Lemma 3.3) and IλH

(Lemma 3.6). Hence the irreducible summands of H and
IλH

are actually the same, and H and IλH
are isomorphic, and therefore equal.

4. Fixed points of Δk acting on Lpk

Let T GLk(Fp) denote the Tits building for GLk(Fp), that is, the poset of proper
nontrivial subgroups of Δk. In this section, we prove the following result.

Theorem 1.2. For k � 1, the fixed point space
(
Lpk

)Δk has T GLk(Fp)
�
as a retract.

To set up the proof, we follow a similar strategy to [BJL+, Section 9]. Recall

Unif
(
Lpk

)Δk denotes the subposet of
(
Lpk

)Δk consisting of objects with uniform Δk-

isotropy, and that Unif
(
Lpk

)Δk ↪→
(
Lpk

)Δk is a homotopy equivalence (Lemma 2.6).

We analyze Unif
(
Lpk

)Δk in terms of two subposets.

Definition 4.1.

1. Let
(
Lpk

)Δk

Ntr
⊆ Unif

(
Lpk

)Δk consist of objects λ such that Δk does not act

transitively on cl(λ).

2. Let
(
Lpk

)Δk

move
⊆ Unif

(
Lpk

)Δk consist of objects λ such that Δk acts nontrivially

on cl(λ).

Example 4.2. Choose an orthonormal basis E of Cpk

on which Δk acts freely and

transitively. (Recall that Δk is acting on C
pk

by the regular representation.) Let ε

be the corresponding decomposition of Cpk

into the lines, each line generated by an

element of E. Then ε is an object of
(
Lpk

)Δk

move
but not of

(
Lpk

)Δk

Ntr
, and the same is

true for ε/K for any proper subgroup K ⊆ Δk.
Conversely, let H be any nontrivial subgroup of Δk. Then λH is an element of(
Lpk

)Δk

Ntr
but not of

(
Lpk

)Δk

move
.

We observe that refinements of objects in
(
Lpk

)Δk

Ntr
are still in

(
Lpk

)Δk

Ntr
, and

refinements of objects in
(
Lpk

)Δk

move
are still in

(
Lpk

)Δk

move
. Further, every object of

Unif
(
Lpk

)Δk is in one of these two subposets. Hence we have a pushout diagram of
nerves

(
Lpk

)Δk

Ntr
∩
(
Lpk

)Δk

move
��

��

(
Lpk

)Δk

Ntr

��(
Lpk

)Δk

move
�� Unif

(
Lpk

)Δk .

(4.1)

We assert that this diagram is, in fact, a homotopy pushout: that the top row is a



FIXED POINTS OF COISOTROPIC SUBGROUPS 89

Reedy cofibration, and the bottom left space is Reedy cofibrant. This is established
by precisely the same argument as Proposition 9.11 of [BJL+], with the identity
component of the centralizer of Δk in U

(
pk

)
in place of the centralizers that are

applicable in that work. Essentially, the point is that in each simplicial dimension,
one is looking at an inclusion of a subset of path components.
To prove Theorem 1.2, we will use the expected steps to show that the nerve

of Unif
(
Lpk

)Δk has T GLk(Fp)
�
as a retract: finding a retraction map, exhibiting a

corresponding inclusion, and showing that the inclusion and retraction compose to
a self-equivalence of T GLk(Fp)

�
. Our first step is to use diagram (4.1) to produce

a map from the nerve of Unif
(
Lpk

)Δk to the double cone on T GLk(Fp). Unlike the
rest of the arguments in this paper, the map will not be realized on the categorical
level, but only once we have passed to spaces by taking nerves. However, we begin on
the categorical level. Define a function on object spaces,

G :
(
Lpk

)Δk

Ntr
∩
(
Lpk

)Δk

move
−→ T GLk(Fp)

by the formula G(λ) = Iλ.

Lemma 4.3. The function G defines a continuous functor.

Proof. First we need to check that G(λ) is a proper, nontrivial subgroup of Δk. If

λ is an object of
(
Lpk

)Δk

move
, then Iλ is a proper subgroup of Δk. If Iλ were trivial,

then Δk would act freely on cl(λ), implying that λ is a decomposition of C
pk

into pk

lines, freely permuted by Δk. But then the action of Δk on cl(λ) would be transitive,

in contradiction of the assumption that λ ∈
(
Lpk

)Δk

Ntr
. Hence G(λ) is a proper and

nontrivial subgroup of Δk. To check that G defines a functor, we observe that if

λ→ μ is a coarsening morphism in Unif
(
Lpk

)Δk , then Iλ ⊆ Iμ.

The functor G is defined on a subcategory of Unif
(
Lpk

)Δk , and its target cat-
egory is discrete. Continuity of G follows once we check that the assignment λ 	→
Iλ is constant on each path component of Unif

(
Lpk

)Δk . However, path compo-

nents of Unif
(
Lpk

)Δk ⊆
(
Lpk

)Δk are orbits of the centralizer of Δk. If c central-
izes Δk, then Icλ = Iλ. Hence the assignment λ 	→ Iλ is constant on path components

of Unif
(
Lpk

)Δk , and G is therefore continuous.

Definition 4.4. The map from the nerve of Unif
(
Lpk

)Δk to T GLk(Fp)
�
is defined

as the map of homotopy colimits arising from the following map of diagrams induced
by G in the upper left corner:

⎛
⎜⎜⎜⎝

(
Lpk

)Δk

Ntr
∩

(
Lpk

)Δk

move
��

��

(
Lpk

)Δk

Ntr

(
Lpk

)Δk

move

⎞
⎟⎟⎟⎠

⏐⏐

⎛
⎝

T GLk(Fp) ��

��

∗

∗

⎞
⎠ .
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The next piece of the puzzle is to define a map from T GLk(Fp)
�
into Unif

(
Lpk

)Δk .
This map will be defined on the categorical level, that is, by taking the nerve of a func-
tor between two categories, but we need a different categorical model for T GLk(Fp)

�

in order to define the map. For this purpose, we recall some background on the edge
subdivision of a category (also called a twisted arrow category). Suppose that C is a
category; define the “edge subdivision” category Sde (C) of C as follows:
1. Objects of Sde (C) are morphisms X → Y of C.
2. A morphism from X → Y to C → D is given by a twisted arrow, that is, a

commuting diagram

X �� Y

��
C

��

�� D.

Note that if C is a poset, then Sde (C) is a poset as well.
Lemma 4.5 ([Seg73, Appendix 1]). The geometric realizations of Sde (C) and C are
naturally homeomorphic.

Recall that T GLk(Fp) is the poset of proper, non-trivial subgroups of Δk. In what

follows, let T GLk(Fp) be the poset of all subgroups of Δk. Note that Sde

(
T GLk(Fp)

)

has a final object {e} → Δk, but no initial object.

Definition 4.6. Let T be the category Sde (T GLk(Fp)) and let T � be the category

Sde

(
T GLk(Fp)

)
without the final object {e} → Δk. We will denote a generic object

of Sde

(
T GLk(Fp)

)
by H ⊆ K.

To justify the notation T �, we prove that the category T � does, in fact, give a
model for the unreduced suspension of the Tits building.

Lemma 4.7. The nerve of T � is homeomorphic to |T GLk(Fp)|�.
Proof. We define Cone+(T ) as the subposet of T � consisting of pairs H ⊆ K where
H �= {e}. Likewise, we define Cone−(T ) as the subposet of T � consisting of pairs
H ⊆ K where K �= Δk.
A straightforward check shows that if H ⊆ K is an object of Cone+(T ) (respec-

tively, Cone−(T )), then H ⊆ K can only be the target of morphisms from other
objects in Cone+(T ) (respectively, Cone−(T )). We conclude that a sequence of com-
posable morphism that ends in Cone+(T ) consists entirely of morphisms in Cone+(T ),
and similarly for Cone−(T ). Therefore on the level of nerves, we have

Cone+(T ) ∪ Cone−(T ) = T �.

Since the intersection Cone+(T ) ∩ Cone−(T ) is exactly T , we have a pushout diagram
of nerves

T ��

��

Cone+(T )

��
Cone−(T ) �� T �.

Observe that Cone+(T ) is the edge subdivision of T GLk(Fp) ∪ {Δk} (adding in the
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final object {Δk} to the category being subdivided) and similarly for Cone−(T ) (but
by adding in the initial object {e}). Hence the nerves of Cone+(T ) and Cone−(T )
are each homeomorphic to a cone on the nerve of T , and the result follows.
We will define a functor

F : T � −→ Unif
(
Lpk

)Δk .

As in Example 4.2, we fix an orthonormal basis of Cpk

that is freely permuted by Δk,

and let ε be the corresponding decomposition of Cpk

into lines. For an object H ⊆ K
of T GLk(Fp)

�
, define F by

F (H ⊆ K) = (ε/K) iso(H) .

Observe that this makes sense, because H acts trivially on the set of components
of ε/K, so each component is a representation of H and can itself be refined into
H-isotypical components.
A couple of routine checks are required.

Lemma 4.8. The image F (H ⊆ K) is an object of Unif
(
Lpk

)Δk .

Proof. Since ε is stabilized by Δk and sinceH andK are normal in Δk, the operations
of taking K-orbits and H-isotypical decomposition are stabilized by Δk. We also need
to check that F (H ⊆ K) is a proper decomposition. If K is a proper subgroup of Δk,
then ε/K is proper, so certainly any refinement of it is proper. If K = Δk, then

ε/K has just one component, all of Cpk

, but since H acts by copies of the regular
representation, it acts non-isotypically. Hence F (H ⊆ K) is a proper decomposition

of Cpk

.
To check whether F (H ⊆ K) has uniform isotropy, first notice that since K cen-

tralizes H, an action of K on a subspace v fixes each of the canonical H-isotypical
summands of v. ThereforeK stabilizes each component of (ε/K) iso(H). But the action

of Δk/K on ε/K is free, so the action of Δk/K on (ε/K) iso(H) is also free. Therefore

(ε/K) iso(H) has K as the Δk-isotropy group of every component.

Lemma 4.9. F is a functor.

Proof. A morphism (H1 ⊆ K1)→ (H2 ⊆ K2) of T � is given by a sequence of con-
tainments H2 ⊆ H1 ⊆ K1 ⊆ K2. We need to show that such a morphism gives rise to
a coarsening morphism

(ε/K1) iso(H1)
−→ (ε/K2) iso(H2)

.

Certainly there is a coarsening morphism ε/K1
c−−→ ε/K2, because K1 ⊆ K2. Com-

ponents of both the source and the target of c are representations of H1, since
H1 ⊆ K1 ⊆ K2, so we can take the isotypical refinement of c with respect to H1

to obtain a morphism

(ε/K1) iso(H1)
−→ (ε/K2) iso(H1)

. (4.2)

Following (4.2) with the morphism (ε/K2) iso(H1)
→ (ε/K2) iso(H2)

gives the desired
result.

Finally, we prove Theorem 1.2 by considering the compositions of the maps of
diagrams induced by F and G.
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Proof of Theorem 1.2. The three diagrams we need to consider are
⎛
⎜⎝

T ��

��

Cone+(T )

Cone−(T )

⎞
⎟⎠ (4.3)

mapping on all three corners via F : (H ⊆ K) 	→ (ε/K) iso(H) to

⎛
⎜⎜⎜⎜⎝

(
Lpk

)Δk

Ntr
∩

(
Lpk

)Δk

move
��

��

(
Lpk

)Δk

Ntr

(
Lpk

)Δk

move

⎞
⎟⎟⎟⎟⎠

(4.4)

which then has a map of nerves induced by G : λ 	→ Iλ to

⎛
⎝

T GLk(Fp) ��

��

∗

∗

⎞
⎠ . (4.5)

We first need to check that the corners of diagram (4.3) map to the corners of
diagram (4.4) as claimed. For the lower left-hand corner, notice that if H ⊆ K �= Δk

is an object of Cone−(T ), then there is a coarsening morphism
(ε/K) iso(H) −→ ε/K.

Since the set of components of ε/K has more than one element and a transitive
(hence necessarily nontrivial) action of Δk, the action of Δk on the components of
(ε/K) iso(H) is also nontrivial.

For the upper right-hand corner of diagram (4.4), if {e} �= H ⊆ K is an object of
Cone+(T ), then we have a coarsening morphism

(ε/K) iso(H) −→ (ε/Δk) iso(H) = λH .

However, λH has more than one component because H is nontrivial, and Δk acts
trivially (hence nontransitively) on cl (λH) because H is central in Δk. Hence the
action of Δk on the components of (ε/K) iso(H) cannot be transitive either.

The maps given between diagrams (4.3), (4.4), and (4.5) give maps on homotopy
pushouts:

T � −→ Unif
(
Lpk

)Δk −→ T GLk(Fp)
�
.

To prove the theorem, it is sufficient to show that the composition of diagrams (4.3),
(4.4), and (4.5) gives a homotopy equivalence of nerves on the upper left-hand corner,

T −→
(
Lpk

)Δk

Ntr
∩

(
Lpk

)Δk

move
−→ T GLk(Fp) .

However, the composition takes an object H ⊆ K of T to the isotropy subgroup of
(ε/K) iso(H), which is K itself, as in the proof of Lemma 4.8. Hence the composition

T → T GLk(Fp) maps (H ⊆ K) to K, which induces an equivalence of nerves by
[Qui73, p. 94].



FIXED POINTS OF COISOTROPIC SUBGROUPS 93

5. Conjectures

In the introduction, we presented a general conjecture regarding the U(n− 1)-
equivariant homotopy type of Ln. Recall that Pn denotes the poset of proper non-
trivial partitions of a set of n elements and P�

n denotes its unreduced suspension. The
group Σn is embedded in U(n) via the standard (permutation) representation, and
Sρ̄n denotes the representation sphere of the reduced standard representation of Σn

on C
n.

Conjecture 1.5. There is a U(n− 1)-equivariant homotopy equivalence

Ln � U(n− 1)+ ∧Σn

(
P�
n ∧ Sρ̄n

)
.

In this section, we show that the following conjecture follows from Conjecture 1.5.

Conjecture 1.7. Let C̃ = CU(pk) (Δk) /
(
Δk × S1

)
. There is a homotopy equivalence

(
Lpk

)Δk � C̃+ ∧ T GLk(Fp)
�
.

The case k = 1 is computed explicitly in Example 5.1.

Dividing CU(pk)(Δk) ∼= (U(1))
pk

by the subgroup Δk × S1 still leaves us with a

torus, so we have a homeomorphism C̃ ∼=
(
S1

)pk−1
. Recall that T GLk(Fp)

�
is a wedge

of spheres of dimension k − 1. Conjecture 1.7 would tell us that for k > 1, the fixed

point space
(
Lpk

)Δk is a wedge of spheres of varying dimensions. Further, by the join
formula from [BJL+], we have

(
Lps+t

)Γs×Δt � (Lps)
Γs ∗ (Lpt)

Δt ,

which would also be a wedge of spheres (of varying dimensions for t > 0) provided
that either s > 0 or t > 1.
Recall that we are considering U

(
pk − 1

)
⊂ U

(
pk

)
as the symmetries of the orthog-

onal complement of the diagonal C ⊂ C
pk

. The subgroup Δk ⊂ Σpk is a subgroup of
U
(
pk − 1

)
with this embedding. To show that Conjecture 1.7 follows from Conjec-

ture 1.5, we need to calculate the fixed points of Δk ⊂ Σpk acting on

U
(
pk − 1

)
+
∧Σ

pk

(
P�
pk ∧ Sρ̄

pk

)
. (5.1)

In general, the fixed points of D ⊆ G on a space with an action of H ⊆ G induced up
to G is

(G×H X)
D
=

⋃
[g]∈N(D;H)/H

{g} ×Xg−1Dg, (5.2)

where NG(D;H) = {g ∈ G : g−1Dg ⊆ H}. Thus we need NU(pk−1)(Δk; Σpk).

To calculate NU(pk)

(
Δk; Σpk

)
, suppose that u ∈ U

(
pk

)
satisfies u−1Δku ⊂ Σpk ⊂

U
(
pk

)
, which means that all elements of u−1Δku are permutation matrices. The

character of u−1Δku is the same as that of Δk, i.e., zero on all nonidentity elements,
which tells us that u−1Δku acts freely and hence transitively on {1, . . . , pk}. But then
Δk and u−1Δku are both transitive elementary abelian p-subgroups of Σpk , which
means that they are conjugate inside of Σpk itself. So there exists σ ∈ Σpk such that
σ−1Δkσ = u−1Δku ⊂ Σpk .
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However, all automorphisms of Δk are realized by the action of its normalizer
in Σpk . By changing the choice of σ if necessary, we can actually make the stronger
assertion that σ and u induce the same automorphism of Δk, i.e. σ

−1dσ = u−1du for
all d ∈ Δk. Thus uσ

−1 centralizes every d ∈ Δk, and u is in the coset CU(pk) (Δk) σ.
We conclude that

NU(pk)

(
Δk; Σpk

)
=

⋃
σ∈Σ

pk

CU(pk) (Δk) σ.

Since the centralizer of Δk in Σpk is Δk itself, CU(pk) (Δk) ∩ Σpk = Δk. It follows that

the formula for NU(pk)

(
Δk; Σpk

)
can be rewritten as

NU(pk)

(
Δk; Σpk

)
= CU(pk) (Δk)×Δk

Σpk .

Next we restrict to U
(
pk − 1

)
⊂ U

(
pk

)
, and observe that

NU(pk−1)

(
Δk; Σpk

)
= NU(pk)

(
Δk; Σpk

)
∩ U

(
pk − 1

)
.

We have already found that NU(pk)

(
Δk; Σpk

)
is a union of cosets CU(pk) (Δk) σ,

and σ ∈ Σpk ⊂ U
(
pk − 1

)
, so we need only compute the intersection of CU(pk) (Δk)

with U
(
pk − 1

)
. Recall that CU(pk) (Δk) = (U(1))

pk

, where each copy of U(1) acts

on a different irreducible representation of Δk on C
pk

. However, U
(
pk − 1

)
is the

symmetry group of the orthogonal complement of the diagonal C ⊂ C
pk

, and the
diagonal is actually the trivial representation of Δk, so we find

CU(pk) (Δk) ∩ U
(
pk − 1

)
= (U(1))

pk−1
,

where each U(1) acts on a different nontrivial irreducible representation of Δk, and

NU(pk−1)

(
Δk; Σpk

)
=

⋃
σ∈Σ

pk

(U(1))
pk−1

σ = (U(1))
pk−1 ×Δk

Σpk .

Taking the quotient by Σk, we find that the indexing set in (5.2) applied to (5.1) is

NU(pk−1)(Δk; Σpk)/Σpk = (U(1))
pk−1

/Δk.

To finish the calculation, we note that
(
Sρ̄

pk
)Δk ∼=S0 andwe recall that by [ADL16,

Lemma 10.1],
(
P�
pk

)Δk

is equivalent to T GLk(Fp)
�
. Assembling all the pieces,

[
U
(
pk−1

)
+
∧Σ

pk

(
P�
pk ∧Sρ̄

pk

)]Δk

=
⋃

[g]∈N
U(pk−1)(Δk;Σpk)/Σpk

{[g]}+∧
(
P�
pk ∧Sρ̄

pk

)Δk

∼=
(
U(1)

pk−1
)
/Δk+ ∧

(
P�
pk ∧ Sρ̄

pk

)Δk

∼= CU(pk) (Δk) /
(
Δk × S1

)
+
∧ T GLk(Fp)

�
,

where the S1 in the last line is the center of U
(
pk

)
.

We conclude that Conjecture 1.7 follows from Conjecture 1.5.

Example 5.1. We can compute (Lp)
Δ1 explicitly. (In fact, this is done via completely
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elementary manipulations in [BJL+15] for p = 2.) There are two types of decompo-

sitions λ in (Lp)
Δ1 :

(i) Δ1 acts freely on cl(λ), in which case λ has p components, each of which is a
line;

(ii) Δ1 acts trivially on cl(λ), in which case each component of λ is a representation
of Δ1.

In the first situation, the decompositions of C
p into lines that are freely (and

therefore transitively) permuted by Δ1 have no refinements, and also no coarsenings
that are stabilized by Δ1. We assert that they are all in a single orbit of CU(p)(Δ1) ∼=
(U(1))

p
. For suppose that λ and μ are such decompositions, with cl(λ) = {v1, . . . , vp}

and cl(μ) = {w1, . . . , wp}. Choose an isomorphism f from v1 and w1, and consider
the unique extension of f to a Δ1-equivariant map u ∈ U(p). Then uλ = μ, and u
centralizes Δ1 by construction. Some linear algebra allows us to show that if u ∈
CU(p)(Δ1) ∼= (U(1))

p
stabilizes λ, then u ∈ S1 ×Δ1, so this component of the object

space is homeomorphic to CU(p)(Δ1)/
(
S1 ×Δ1

)
.

On the other hand, the decompositions of Cp whose components are each stabilized
by Δ1 are sums of the p distinct one-dimensional representations of Δ1 in its regular
representation on C

p. There are coarsening morphisms between such decompositions,
but there are no morphisms from such decompositions to those of the paragraph
above. There is an initial object in the subcategory of objects λ in (Lp)

Δ1 with trivial
action on cl(λ), namely the canonical decomposition of Cp into the lines that are the
irreducible representations of Δ1.
Hence we can actually deduce that

(Lp)
Δ1 ∼= Cone (Pp) � CU(p)(Δ1)/

(
S1 ×Δ1

)

� CU(p)(Δ1)/
(
S1 ×Δ1

)
+
∧ T GL1(Fp)

�

because T GL1(Fp) = ∅. The result is in conformity with Conjecture 1.7, and is also
in agreement with the calculation for p = 2 in [BJL+15], where it was found that

(L2)
Z/2 ∼= ∗ � S1.
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