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MULTIPLICATIVE STRUCTURE OF THE COHOMOLOGY RING
OF REAL TORIC SPACES

SUYOUNG CHOI and HANCHUL PARK

(communicated by Donald M. Davis)

Abstract
A real toric space is a topological space which admits a well-

behaved Zk
2-action. Real moment-angle complexes and real toric

manifolds are typical examples of real toric spaces. A real toric
space is determined by the pair of a simplicial complex K and
a characteristic matrix Λ. In this paper, we provide an explicit
R-cohomology ring formula of a real toric space in terms of K
and Λ, where R is a commutative ring with unity in which 2
is a unit. Interestingly, it has a natural (Z⊕ rowΛ)-grading. As
corollaries, we compute the cohomology rings of (generalized) real
Bott manifolds in terms of binary matroids, and we also provide
a criterion for real toric spaces to be cohomologically symplectic.

1. Introduction

During the last half century, the topology of topological spaces admitting nice
torus symmetries has been one of the most important problems in toric geometry
and toric topology. In 1970s, the cohomology of smooth complete toric varieties was
computed by Jurkiewicz [19] (for projective case) and Danilov [13] (for general case).
Later, their topological generalization, recently known as quasitoric manifolds, was
also studied in [14]. Interestingly, the cohomology ring of such manifolds can be
beautifully represented as the quotient of a polynomial ring. It should be mentioned
that smooth complete toric varieties and quasitoric manifolds are all obtainable as
quotients of moment-angle complexes, which also play an important role in toric
topology. More precisely, for a simplicial complex K on m vertices, the moment-angle
complex ZK is defined as follows:

ZK =
⋃
σ∈K

{
(x1, . . . , xm) ∈ (D2)m | xi ∈ S1 when i /∈ σ

}
,
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where D2 = {z ∈ C | |z| � 1} is the unit disc and S1 is its boundary. There is a
canonical (S1)n-action on ZK which comes from the S1-action on the pair (D2, S1).
Let n � m. A surjective linear map Zm → Zn represented by an (n×m) Z-matrix
Λ = (λ(1) · · · λ(m)) determines a group homomorphism Λ: (S1)m → (S1)n and a
subgroup kerΛ ⊂ (S1)m. We denote by M(K,Λ) the associated toric space, defined
to be the orbit space ZK/ kerΛ. Then the above mentioned smooth complete toric
varieties, quasitoric manifolds, and moment-angle complexes are all toric spaces. Fur-
thermore, LV-M manifolds [23, 25], LVMB-manifolds [2], and Ishida’s complex man-
ifolds with maximal torus actions [18] are other interesting examples of toric spaces.
The cohomology of the moment-angle complex is also well known due to [5].

One may also consider the real analogue of toric spaces. For example, toric varieties
admit a natural involution defined by complex conjugation, and the fixed part of this
involution is known as a real toric variety. Similarly, a small cover and a real moment-
angle complex are counterparts of a quasitoric manifold and a moment-angle complex,
respectively. They admit well-behaved Zk

2-actions induced from the torus action on
the associated toric spaces. It is known that smooth complete real toric varieties and
small covers are quotients of real moment-angle complexes. Motivated by this, the
spaces which can be obtained from a real moment-angle complex admitting Zm

2 -action
by quotient of the subgroup of Zm

2 are, recently, called real toric spaces. The definition
is analogous to that of the toric space. More precisely, for a simplicial complex K on
m vertices, the real moment-angle complex RZK is defined as follows:

RZK =
⋃
σ∈K

{
(x1, . . . , xm) ∈ (D1)m | xi ∈ S0 when i /∈ σ

}
,

where D1 = [0, 1] is the unit interval and S0 = {0, 1} is its boundary. There is a
canonical Zm

2 -action on RZK which comes from the Z2-action on the pair (D1, S0).
Let n � m. A surjective linear map Zm

2 → Zn
2 represented by an (n×m) Z2-matrix

Λ = (λ(1) · · · λ(m)) determines a subgroup kerΛ ⊂ Zm
2 acting on RZK . Then the

real toric space associated to the pair (K,Λ) is the following topological space

MR(K,Λ) = RZK/ kerΛ.

See [7] for details.
Like toric spaces, a real toric space lies in a central position in the realm of toric

topology, so the (co)homology of real toric spaces has been a particular interest in toric
topology. Jurkiewicz [20] and Davis-Januszkiewicz [14] computed Z2-cohomology
rings of real toric varieties and small covers, respectively. It is of the form of the quo-
tient of polynomial ring with Z2-coefficient. It is not until 2012, in their unpublished
paper [29], Suciu and Trevisan established the formula for the rational cohomology
group of a small cover as announced in [28]. It has been confirmed by the authors
in [12], in which one can see that the formula can be generalized to real toric spaces
and the similar formula holds for even much generalized coefficient than the ratio-
nal coefficient. In order to describe the formula, let us prepare some notations. Let
K be a simplicial complex on [m] := {1, . . . ,m}. We note that there is the natural
identification between Zm

2 and the power set 2[m], as we will see details in (3.1). For
each element ω ∈ Zm

2 , we denote by Kω the induced subcomplex of K induced by
the subset of [m] corresponding to ω. Throughout the paper, we assume that R is a
commutative ring in which 2 is a unit and the coefficient ring of the cohomology is R.
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A typical example of R is the ring of rationals Q.

Theorem 1.1 ([12, Theorem 4.6]). Let M = MR(K,Λ) be a real toric space and R
a commutative ring in which 2 is a unit. Then there is an R-linear isomorphism

Hp(M ;R) ∼=
⊕

ω∈rowΛ

H̃p−1(Kω;R).

As the next step, it is natural to ask how we can compute its “cohomology ring”.
However, the multiplication structure of the cohomology of a real toric space, even
a real moment-angle complex, is rather intricate and difficult to understand as men-
tioned in [5, p. 157]. In the paper [12] of the authors, they provided one theoretical
formulation of the cohomology ring such as [12, Theorem 4.5]. Although the for-
mula is correct, it may be of little use in practice, unfortunately. There are two main
reasons. One reason is that it contains a Raynold operation N which leads to huge
computation. The other reason is that we do not know whether the isomorphism
in Theorem 1.1 satisfies the following expected property. We note that if two ele-
ments ω1 and ω2 are in rowΛ, so is ω1 + ω2. It, thus, is reasonable to expect that for
α ∈ H̃p−1(Kω1

) and β ∈ H̃q−1(Kω2
), the cup product α � β is in H̃p+q−1(Kω1+ω2

).
However, the formula given in [12, Theorem 4.5] does not guarantee in transparent
way that the natural group isomorphism such as in Theorem 1.1 satisfies the property.

In the present paper, we will provide fancier cohomology ring formula of real toric
space which can resolve both of these problems. Let us consider the differential free
R-algebra R〈u1, . . . , um; t1, . . . , tm〉 with 2m generators such that

deg ui = 1, deg ti = 0, dui = 0, dti = ui

and the differential d satisfies the Leibniz rule d(ab) = da · b+ (−1)deg a · db for any
homogeneous elements a and b. We denote by R the quotient of R〈u1, . . . , um;
t1, . . . , tm〉 under the following relations:

uiui = 0, uiti = ui, tiui = −ui, titi = 1,
uiuj = −ujui, uitj = tjui, titj = tjti,

for i, j = 1, . . . ,m and i 	= j. Let us use the notation uσ (respectively, tσ) for the
monomial ui1 · · ·uik (respectively, ti1 · · · tik) where σ = {i1, . . . , ik}, i1 < · · · < ik, is
a subset of [m]. The Stanley-Reisner ideal I is the ideal generated by all square-free
monomials uσ such that σ is not a simplex of K. We write the quotient algebra
RK := R/I. For ω ⊆ [m], let us denote by RK

ω the R-submodule of RK generated
by uσtω\σ for σ ⊆ ω ⊆ [m] and σ ∈ K.

Main Theorem. There are (Z⊕ rowΛ)-graded R-algebra isomorphisms

H∗(M) ∼= H(RK |rowΛ, d) ∼=
⊕

ω∈rowΛ

H̃∗−1(Kω),

where RK |rowΛ is the subalgebra of RK generated by uσtω\σ such that ω ∈ rowΛ, and

the product structure on
⊕

ω∈rowΛ H̃∗−1(Kω) is given by the canonical maps

H̃k−1(Kω1
)⊗ H̃�−1(Kω2

) → H̃k+�−1(Kω1+ω2
)

which are induced by simplicial maps Kω1+ω2 → Kω1 � Kω2 when � denotes the sim-
plicial join.
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The main theorem can be viewed as the analogue for real moment-angle complexes
and real toric spaces of Theorem 4.5.8 of [5]. Note that the product need not be
zero when ω1 ∩ ω2 	= ∅ unlike that of moment-angle complexes ZK . The cohomology
of RZK is very important not only because RZK is homotopy equivalent to the
real coordinate subspace arrangement (see Section 4.7 of [5] for example), but also
because it enables to calculate the cohomology of the polyhedral product of the form
(CX,X)K in the sense of Theorem 1.9 of [1].

The proof and details of the main theorem will be given in Theorems 3.4 and 3.5.
In Section 4, we apply our main result in some examples. In Sections 4.1 and 4.2, we
compute the rational cohomology ring of (generalized) real Bott manifolds. A real
Bott manifold is one of the most important examples of real toric varieties, and each
real toric manifold is determined by an upper triangular Z2-matrix A whose diago-
nal entries are zero. Interestingly, we can show in Proposition 4.3 that the rational
cohomology of the real Bott manifold corresponding to A is completely determined
by the binary matroid related to A.

In Section 4.3, we discuss the criterion as in Lemma 4.12 for real toric spaces to be
cohomologically symplectic. In addition, we give some necessary conditions for real
moment-angle complex to be cohomology symplectic.

2. Cohomology ring of a real moment-angle complex

In this section, we study the cohomology ring of a real moment-angle complex
using a natural CW structure of the cube (D1)m. We basically follow the arguments
of [6] and [12], but with the basis (2.2) which causes huge difference as we can see in
Section 3.

We will use the notation C∗(X) and C∗(X) for the simplicial or cellular (co)chain
complex of X when X is a simplicial complex or a CW complex, respectively. Let us
fix a simplicial complex K on the vertex set [m] = {1, . . . ,m}. Regarding the interval
D1 = [0, 1] as the simplicial complex consisting of two 0-cells 0, 1 and one 1-cell 01,
the m-cube (D1)m has a natural CW structure coming from the Cartesian product
operation. More precisely, let D1

i
∼= [0, 1] be the ith factor of (D1)m = D1

1 × · · · ×D1
m

which is a CW complex with two 0-cells 0i, 1i and one 1-cell 01i. Then every cell of
(D1)m is given as

e1 × · · · × em, ei = 0i, 1i or 01i.

For 1 � i � m, the cochain complex C∗(D1
i ) is the dual graded R-module

Hom(C∗(D1
i ), R) = 〈0∗i , 1∗i , 01∗i 〉, such that deg 0∗i = deg 1∗i = 0 and deg 01∗i = 1 where

e∗i is the cochain dual to the cell ei. Furthermore, there is the (simplicial) cup product
� making C∗(D1

i ) a graded R-algebra. Among the nine possible combinations a � b
when a, b ∈ {0∗, 1∗, 01∗}, observe that only the following survive:

0∗ � 0∗ = 0∗, 1∗ � 1∗ = 1∗, 0∗ � 01∗ = 01∗ � 1∗ = 01∗. (2.1)

We define the differential R-module B∗((D1)m), which is C∗(D1
1)⊗ · · · ⊗ C∗(D1

m)
with a differential d such that

d(e∗1 ⊗ · · · ⊗ e∗m) =

m∑
i=1

(−1)
∑i−1

j=1 deg e∗j e∗1 ⊗ · · · ⊗ e∗i−1 ⊗ de∗i ⊗ e∗i+1 ⊗ · · · ⊗ e∗m.
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Note that d0∗i = −01∗i , d1
∗
i = 01∗i , and d01∗i = 0. Actually, the cup products on the

factors of B∗((D1)m) extend to the whole R-module so that

(e∗1 ⊗ · · · ⊗ e∗m) � (f∗
1 ⊗ · · · ⊗ f∗

m) = (−1)c
m⊗
i=1

e∗i � f∗
i ,

where

c =

m∑
i=1

deg f∗
i

∑
j>i

deg e∗j .

Refer to (11) of [6]. Then the extended cup product turns B∗((D1)m) into a graded
R-algebra.

The real moment-angle complex of K, denoted by RZK , is defined by

RZK =
⋃
σ∈K

m∏
j=1

Y j
σ , where Y j

σ =

{
D1

j , if j ∈ σ;
∂D1

j = {0j , 1j}, otherwise.

It is obvious that RZK is a subcomplex of (D1)m as a CW complex. The differen-
tial R-algebra B∗(RZK) is defined as follows. Since B∗((D1)m) can be thought as
Hom(C∗((D1)m), R) where C∗((D1)m) is the cellular chain complex of (D1)m, we put
B∗(RZK) = Hom(C∗(RZK), R), where C∗(RZK) is the restriction of C∗((D1)m) to
RZK , and inherits the cup product from B∗((D1)m) as an R-subalgebra. A direct
application of Theorem 3.1 of [6] implies that B∗(RZK) is indeed a well-defined
differential R-algebra and the following holds.

Theorem 2.1 ([6, Theorem 5.1]). There is a graded R-algebra isomorphism

H∗(RZK) ∼= H(B∗(RZK), d).

Now we perform a “basis change” of C∗(D1) by

1 = 1∗ + 0∗, t = 1∗ − 0∗, u = 2 · 01∗. (2.2)

This is a genuine basis change, because 2 is a unit in the coefficient ring R. Indeed,
one has

1∗ =
1

2
(1+ t), 0∗ =

1

2
(1− t), and 01∗ =

1

2
u.

From (2.1), the following identities are easily checked:

u � u = 0, u � t = u, t � u = −u, t � t = 1,
1 � u = u � 1 = u, 1 � t = t � 1 = t, 1 � 1 = 1.

It should be emphasized that the above basis change (2.2) is modified from (17)
of [6], or (3.1) of [12]. The original basis change in [6] and [12] is

1 = 1∗ + 0∗, t = 1∗, u = 01∗. (2.3)

This modification leads great improvements of computability which will be explained
later. It is convenient to regard B∗(RZK) as a differential R-algebra with 2m gen-
erators u1, . . . , um, t1, . . . , tm such that 11 � · · · � 1m is the unique identity. More
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precisely, let R〈u1, . . . , um; t1, . . . , tm〉 be the differential free R-algebra with 2m gen-
erators such that

deg ui = 1, deg ti = 0, dui = 0, dti = ui

and the differential d satisfies the Leibniz rule d(ab) = da · b+ (−1)deg a · db for any
homogeneous elements a and b. We denote by R the quotient of R〈u1, . . . , um;
t1, . . . , tm〉 under the following relations:

uiui = 0, uiti = ui, tiui = −ui, titi = 1,
uiuj = −ujui, uitj = tjui, titj = tjti,

(2.4)

for i, j = 1, . . . ,m and i 	= j. Let us use the notation uσ (respectively, tσ) for the
monomial ui1 · · ·uik (respectively, ti1 · · · tik) where σ = {i1, . . . , ik}, i1 < · · · < ik, is
a subset of [m]. The Stanley-Reisner ideal I is the ideal generated by all square-free
monomials uσ such that σ is not a simplex of K. We write the quotient algebra
RK := R/I. Note that, as an R-module, RK is freely generated by the square-free
monomials uσtω\σ, where σ ⊆ ω ⊆ [m] and σ ∈ K. Now observe that we can identify
the differential R-algebras

R ∼= B∗((D1)m) and RK ∼= B∗(RZK).

Then Theorem 2.1 can be restated as follows.

Theorem 2.2 ([6, Theorem 5.1]). There is a graded R-algebra isomorphism

H∗(RZK) ∼= H(RK , d).

For ω ⊆ [m], let us denote by RK
ω the R-submodule of RK generated by uσtω\σ

for σ ⊆ ω ⊆ [m] and σ ∈ K. The differential d is preserved in RK
ω for each ω ⊆ [m],

and thus there is a (Z⊕ 2[m])-grading on the R-module H∗(RZK)

Hi,ω(RZK) ∼= Hi(RK
ω , d), (2.5)

where 2[m] denotes the power set of [m]. However, as an R-algebra, RK is generally
not (Z⊕ 2[m])-graded due to the relations uiti = ui and tiui = −ui. In Cai’s original
settings, one has the union ∪

� : Hp,ω(RZK)⊗Hp′,ω′(RZK) → Hp+p′,ω∪ω′(RZK),

and the union does not give a group structure on 2[m]. Nevertheless, as we will see
in the next section, it turns out by Theorem 3.5 that at cohomology level, H(RK , d)
is indeed a (Z⊕ 2[m])-graded R-algebra with respect to the symmetric difference
operation on 2[m].

Denote by Kω = {σ ∈ K | σ ⊆ ω} the induced subcomplex of K with respect to ω.
For each ω ⊆ [m], observe that there is a bijective cochain map of cochain complexes

fω : RK
ω

∼=−→ C∗(Kω),

uσtω\σ −→ σ∗,

where C∗(Kω) means the simplicial cochain complex of Kω. This induces an R-linear
isomorphism of cohomology

Hp(RK
ω , d)

∼=−→ H̃p−1(Kω) (2.6)

and thus one concludes that there is an R-linear isomorphism, well-known as the
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Hochster formula,

Hp,∗(RZK) =
⊕

ω⊆[m]

Hp,ω(RZK) ∼=
⊕

ω⊆[m]

H̃p−1(Kω).

See [6, Proposition 3.3] for details.
The cohomology of the moment-angle complex ZK is beautifully described in Sec-

tion 4.5 of [5]. In order to compare the cohomology of RZK and ZK , we include a
brief explanation of H∗(ZK). Let R〈u1, . . . , um; t1, . . . , tm〉C be the differential free
R-algebra with 2m generators such that

deg ui = 2, deg ti = 1, dui = 0, dti = ui

and the differential d satisfies the Leibniz rule d(ab) = da · b+ (−1)deg a · db for any
homogeneous elements a and b. We denote by RC the quotient of R〈u1, . . . , um;
t1, . . . , tm〉C under the following relations:

uiui = 0, uiti = 0, tiui = 0, titi = 0,
uiuj = ujui, uitj = tjui, titj = −tjti,

(2.7)

for i, j = 1, . . . ,m and i 	= j. Let the Stanley-Reisner ideal IC be defined analogously
to the RZK case. Then one has a graded R-algebra isomorphism

H∗(ZK) ∼= H(RC/IC, d). (2.8)

Remark 2.3. Besides the similarity of the two R-algebras, there are two main con-
cerns:

1. For ZK , (2.8) holds for an arbitrary coefficient ring R. Indeed, we could choose
the basis (2.3) to obtain the result of [6] forH∗(RZK ;R) for arbitrary coefficient.

2. The difference of (2.4) and (2.7) yields significant contrast of the rings
H∗(RZK ;R) and H∗(ZK ;R). The analogue of Theorem 3.5 still holds for ZK ,
but in that case, the cup product is zero if ω ∩ ω′ 	= ∅, which is not generally
true for RZK .

3. Cohomology ring of a real toric space

We recall that there is a natural action of Zm
2 on RZK ⊆ (D1)m by

(g1, . . . , gm) · (x1, . . . , xm) = (g1 · x1, . . . , gm · xm),

where

gi · xi =

{
xi, if gi = 0;
1− xi, if gi = 1.

Any subgroup of Zm
2 can be specified as the kernel of a surjective linear map Λ: Zm

2 →
Z
q
2 for some q � m. When q = 0, we put Λ be the empty matrix by convention. We

denote the ith column by Λ(i). If Λ satisfies the following condition called the non-
singularity condition

Λ(i1), . . . ,Λ(i�) are linearly independent in Z
q
2 if {i1, . . . , i�} ∈ K,

then Λ is called a (mod 2) characteristic function over K. One can check (or see [7,
Lemma 3.1]) that the action of kerΛ is free on RZK if and only if Λ is a characteristic
function over K. In this case, ker Λ is isomorphic to Z

m−q
2 .
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For a surjective linear map Λ: Zm
2 → Z

q
2, the quotient space RZK/ kerΛ is denoted

by MR(K,Λ) and is called the real toric space associated to (K,Λ). If K is the
boundary of a simplicial n-polytope and Λ is non-singular, thenMR(K,Λ) is a smooth
n-manifold. If we add the condition q = n, then MR(K,Λ) is the well-known small
cover.

Our main tool here is the transfer homomorphism for the finite group action. For
the transfer homomorphism, see for example [3, III.2] or [16, Section 3.G] when the
action is free. When a group Γ acts on the R-algebra A, let us recall that AΓ means
the subalgebra consisting of elements fixed by the Γ-action.

Theorem 3.1 (see V.19.2 of [4]). Let X be a CW complex and Γ a finite group acting
on X. Then there is a graded R-algebra isomorphism

H∗(X/Γ;R) ∼= H∗(X;R)Γ,

when R is a commutative ring in which the order |Γ| is a unit.

We are going to compute the induced action of kerΛ on H∗(RZK) ∼= H(RK , d).
Consider the reflection map f : D1 → D1 given by f(x) = 1− x. Then f induces a
map on C∗(D1), again denoted by f , such that

f(01∗) = −01∗, f(0∗) = 1∗, and f(1∗) = 0∗

and after change of basis,

f(u) = −u, f(t) = −t, and f(1) = 1.

It should be noted that f preserves H∗,ω(RZK) for each ω ∈ 2[m]. This is one of the
key properties of the basis change (2.2). It leads the simpler and improved cohomology
ring formula of MR(K,Λ) as in Theorem 3.4 below rather than one given in [12].

The following lemmas are useful later in this section. In this paper we sometimes
use the identification 2[m] ∼= Zm

2 by the bijection

{i1, . . . , i�} �→ ei1 + · · · + ei� , (3.1)

where ei is the ith coordinate vector of Zm
2 , 1 � i � m. Moreover, this identification is

a group isomorphism (2[m],�) ∼= (Zm
2 ,+), where � denotes the symmetric difference.

Lemma 3.2 ([12, Theorem 4.2]). Let us assume that we have the identification
2[m] ∼= Zm

2 . Let rowΛ be the row space of Λ and ω a vector in Zm
2 . Then ω ∈ rowΛ

if and only if |ω ∩ g| is even for all g ∈ kerΛ.

Proof. The lemma is proved by the following observation.

ω ∈ rowΛ ⇐⇒ ω ⊥ kerΛ

⇐⇒ ω · g = 0 for all g ∈ kerΛ

⇐⇒ |ω ∩ g| is even for all g ∈ kerΛ.

Lemma 3.3. The Zm
2 -action on RZK induces a Zm

2 -action on the R-module RK by
the following. For a monomial uσtω\σ ∈ RK for σ ⊆ ω and g ∈ Zm

2 ,

g · uσtω\σ = (−1)|ω∩g|uσtω\σ.
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Proof. The proof is obvious since some ui or ti in uσtω\σ changes its sign whenever
i ∈ g ∩ ω.

One should be cautious that the Zm
2 -action on the R-module RK does not pre-

serve the product structure. For instance, f(ut) = f(u) = −u, while f(u)f(t) = (−u) ·
(−t) = ut = u. But its induced action on the cohomology H(RK , d) ∼= H∗(RZK) does
preserve the product by the functorial property of the cup product.

For A ⊆ Zm
2 , a set of vectors in Zm

2 , we denote by RK |A the direct sum

RK |A =
⊕
ω∈A

RK
ω .

Theorem 3.4. Let M = MR(K,Λ) be a real toric space. Then there is a graded R-
algebra isomorphism

H∗(M) =
⊕

ω∈rowΛ

H∗,ω(RZK) ∼= H(RK |rowΛ, d).

Proof. Theorem 3.1 implies that H∗(M) ∼= H∗(RZK)ker Λ since | kerΛ| = 2m−q is a
unit in R. By Theorem 2.2, it is enough to show that

H(RK , d)ker Λ ∼= H(RK |rowΛ, d).

For ω ∈ Zm
2 and a nonzero cohomology class α ∈ H∗,ω(RZK), by Lemma 3.3, one

observes that, for g ∈ kerΛ,

g · α =

{
α, if g ∩ ω has even cardinality, or
−α, if g ∩ ω has odd cardinality.

Note that α 	= −α; if α = −α, then α+ α = 2α = 0 and we conclude that α = 0 since
2 is a unit in R. Thus, by Lemma 3.2, α is fixed by kerΛ if and only if ω ∈ rowΛ.
In general case α ∈ H(RK , d), write α as the sum of nonzero summands which are
homogeneous with respect to the second grading

α = α1 + · · · + α�, αi ∈ H∗,ωi(RZK)

for 1 � i � 
, and ωi 	= ωj if i 	= j. By applying the above argument to each summand
αi, one can see that α is fixed by kerΛ if and only if each ωi is in rowΛ, that is,
α ∈ H(RK |rowΛ, d). This proves the theorem.

The following theorem is an application of Theorem 3.4 and an essential part of
the main theorem.

Theorem 3.5. Let M = MR(K,Λ) be a real toric space. Then its cohomology group
is equipped with a (Z⊕ rowΛ)-grading induced by (2.5) and we have

� : Hp,ω(M)⊗Hp′,ω′(M) → Hp+p′,ω	ω′(M).

In other words, H∗,∗(M) is a (Z⊕ rowΛ)-graded R-algebra.

Proof. It is enough to prove the theorem when Λ = 0 and thus M = RZK . Once it
is shown for RZK , it is instant to generalize the result for general real toric spaces,
because rowΛ is closed under the operation �. Consider the two monomials uσtω\σ
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and uσ′tω′\σ′ where σ ⊆ ω and σ′ ⊆ ω′, each of which contributes to a nonzero coho-

mology class α ∈ H∗,ω(RZK) and α′ ∈ H∗,ω′(RZK), respectively. We investigate how
the product h = uσtω\σ · uσ′tω′\σ′ = ±uAtB\A is computed, when A ⊆ B and A ∈ K.

Let i ∈ ω ∪ ω′ be a subscript possibly in h. We have four cases

(a) i ∈ ω�ω′,

(b) i ∈ ω ∩ ω′ and i /∈ σ ∪ σ′,

(c) i ∈ ω ∩ ω′ and i ∈ σ ∩ σ′, and

(d) i ∈ ω ∩ ω′ and i ∈ σ�σ′.

Recall the relations (2.4). If i is for (a), then it contributes as ui or ti for a factor
of h. Thus we have

ω�ω′ ⊆ B ⊆ ω ∪ ω′. (3.2)

In order to prove the theorem, it is enough to show that B = ω�ω′ if h does not
vanish in the cohomology. We additionally observe that

• (b) corresponds to titi = 1 and we obtain i /∈ B.

• (c) corresponds to uiui = 0, and therefore if this happens in h then h = 0.

• (d) corresponds to uiti = ui or tiui = −ui and we obtain ui for a factor of h.

Assume that ω 	= ω′. The case ω = ω′ will be dealt with later. Observe that ω and ω′

define a Z2-linear map L : Zm
2 → Z2

2 up to change of basis of Z2
2; write ω and ω′ as

row vectors in Zm
2 and L is given by the (m× 2)-matrix whose two rows are ω and

ω′. Then Y = RZK/ kerL is a real toric space (the action of kerL need not be free)
whose cohomology ring H∗(Y ) is the subring

H∗,∅(RZK)⊕H∗,ω(RZK)⊕H∗,ω′(RZK)⊕H∗,ω	ω′(RZK) ⊆ H∗(RZK)

and α, α′ ∈ H∗(Y ). Since H∗(Y ) is closed under the cup product, B should be one
of ω, ω′, and ω�ω′. Suppose that B 	= ω�ω′. Note that by (3.2) B = ω�ω′ if either
ω 	⊆ ω′ or ω′ 	⊆ ω. Therefore, one may assume that ω ⊆ ω′ (including the case ω = ω′)
and B = ω′. In this case, every i in ω should be of Case (d). It means that every term
of h corresponding to ω is ui, not ti. If h would not vanish in the cohomology, recall
that every ui is in a face of K and we observe that ω ⊆ A ∈ K. Therefore Kω is
contractible and [uσtω\σ] = 0 ∈ H∗,ω(RZK), which is a contradiction since we have
assumed that uσtω\σ contributes to α.

Remark 3.6. In the proof of Theorem 3.5, one observes that if either of (c) or (d)
appears in h, then h vanishes in the cohomology. In fact, the monomials h, in which
(d) appears at least once, assemble to make a zero cohomology class. Therefore one
can calculate cup product of cohomology as if uiti = tiui = 0. This “rule” cannot be
directly applied in place of (2.4) since it could be problematic as

0 = (uiti)ti = ui(titi) = ui,

but it can be freely used to compute cup product between the summands uσtω\σ at
the cohomology level.

Proof of Main Theorem. The proof is complete using (2.6) and Theorem 3.5.



COHOMOLOGY RING OF THE REAL TORIC SPACE 107

Example 3.7. Let us consider the simplicial 2-sphere K with 9 vertices labeled 1 to 9
and 14 triangles

123, 129, 138, 148, 149, 237, 257, 259, 367, 368, 456, 459, 468, and 567.

The sphere K is the boundary of a triangular prism each of whose quadrangular faces
is subdivided to four triangles, respectively. We are given two cohomology classes

α = [u5t167 + u6t157 + u7t156] ∈ H1,1567(RZK)

and

β = [u2t347 + u3t247 + u7t234] ∈ H1,2347(RZK).

Then the cup product α � β, computed by the rule (2.4), is written as α � β =
−x− y, where

x = [u25t1346 + u36t1245] ∈ H2,123456(RZK)

and

y = [u57t12346 + u67t12345 + u27t13456 + u37t12456] ∈ H2,1234567(RZK).

Observe that d(u7t123456) = u57t12346 + u67t12345 + u27t13456 + u37t12456 and there-
fore y = 0. Theorem 3.5 or the “rule” uiti = tiui = 0 in Remark 3.6 implies that the
calculation for y is actually not needed to compute α � β.

Remark 3.8. The Z⊕ Zm
2 -grading of H∗(RZK) is given by

deg ui = (1, ei) and deg ti = (0, ei),

where ei is the ith coordinate vector of Zm
2 . It is the analogue of the Z⊕ Zm-grading

of H∗(ZK) in Construction 3.2.8 of [5]. Recall that H∗(ZK) is also equipped with
the famous bigrading, which is a Z⊕ Z-grading as explained in Section 4.4 of [5].
The grading group Z⊕ Z is a subgroup of Z⊕ Zm, but not a subgroup of Z⊕ Zm

2 .
The appearance of 2-torsion elements is essential in our grading due to the relation
titi = 1, and therefore the analogue of the bigrading does not behave well with the
cup product for RZK .

Remark 3.9. Recall that ZK (RZK resp.) are homotopy equivalent to the complement
of a complex (real resp.) coordinate subspace arrangement. It has been claimed in [22]
there is an additive (ungraded) group isomorphism φ : H∗(RZK ;Z) → H∗(ZK ;Z)
such that φ(α � β) = ±φ(α) � φ(β). Then φ would induce a ring isomorphism
H∗(RZK ;Z2)∼=H∗(ZK ;Z2). But it is pointed out in [15] that in generalH∗(RZK ;Z2)
is not isomorphic to H∗(ZK ;Z2) as (ungraded) rings.

4. Examples

4.1. Real Bott manifolds
Let K = ∂(In)∗ be the boundary complex of the n-cube In. The vertex set of K

is identified with [2n] and the minimal non-face of K consists of {i, n+ i} for all
i = 1, . . . , n. Let us assume that we are given a strictly upper triangular n× n matrix
A over the finite field Z2 whose jth column is Aj for 1 � j � n. Then, the matrix
Λ(A) = (In | In +At) represents a non-singular characteristic function over K, where
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In is the identity Z2-matrix of size n. The corresponding real toric spaceMR(K,Λ(A))
is well-known as a real Bott manifold, and it is denoted by M(A). Indeed, it is a real
toric variety, and plays an important role in toric geometry. See [8] or [21] for details.

The rational Betti number of a real Bott manifold has been computed in [17,
Lemma 2.1]. In this subsection, we further discuss about the rational cohomology
ring of a real Bott manifold. Now we need the notion of matroids referring to [26],
which is an abstraction of linear dependency of vectors.

Definition 4.1. A matroid is the pair T = (E, C), where E is a finite set called the
ground set and C is a set of subsets of E satisfying the following axioms:

(C1) ∅ /∈ C.
(C2) If C1, C2 ∈ C and C1 ⊆ C2, then C1 = C2.

(C3) If C1, C2 ∈ C such that C1 	= C2 and e ∈ C1 ∩ C2, then there exists C3 ∈ C such
that C3 ⊆ (C1 ∪ C2) \ {e}.

The elements of C are called the circuits of the matroid.

Definition 4.2. Let A be a matrix over the finite field Z2. Let E = {Aj | 1 � j � m}
the set of the columns of A and C the collection of subsets C of E for which the
columns in C are minimally dependent, that is, any proper subset of C is linearly
independent while C itself is linearly dependent. Then T = T (A) = (E, C) is called a
binary matroid and we say that A represents T .

Proposition 4.3. For a strictly upper triangular matrix A over Z2, the cohomology
ring H∗(M(A);R) depends only on the matroid T (A) and is generated by the circuits
of T (A) as a graded R-algebra. More precisely, let xC be the formal symbol for the
cohomology class corresponding to a circuit C. Then

H∗(M(A);R) ∼= R〈xC | C ∈ C〉/ ∼,

where we have the relations

xC1
xC2

=

{
(−1)|C1|·|C2|xC2xC1 , if C1 ∩ C2 = ∅;
0, if C1 ∩ C2 	= ∅.

The grading is given by deg xC = |C|.
Proof. First of all, let us consider the boundary of the n-crosspolytope K = S1

1 �
· · · � S1

n, where S1
i is the simplicial complex consisting of two points xi and yi and �

means the simplicial join. Note that the real Bott manifold is a small cover over K.
A nonempty induced subcomplex Kω is homotopy equivalent to Sk−1 if and only if
ω = {xi1 , . . . , xik , yi1 , . . . , yik} for 1 � i1 < · · · < ik � n, and is null-homotopic oth-
erwise. Observe that xi and yi correspond to the ith and (n+ i)th column of Λ(A)
respectively and the proof goes obviously by the main theorem.

The following easy observation characterizes the matroids T which can be a
matroid T (A) of a strictly upper triangular matrix A over Z2.

Proposition 4.4. Let T be a binary matroid which contains a singleton circuit. Then
we have a strictly upper triangular matrix A over Z2 representing T .
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Proof. Let B be the matrix over Z2 representing T and Bj the jth column vector of
B. By the assumption, there is a zero column, say B1, after an appropriate shuffling
of columns. After that, we consider the nested sequence of linear subspaces

0 = 〈B1〉 ⊆ 〈B1, B2〉 ⊆ 〈B1, B2, B3〉 ⊆ · · ·
and pick a basis {x1, . . . , x�} of the column space such that 〈B1, . . . , Bk+1〉 ⊆
〈x1, . . . , xk〉 for 1 � k � 
. Then B becomes a strictly upper triangular matrix with
respect to this basis.

Remark 4.5. Unfortunately, the graded ring H∗(M(A);R) does not necessarily deter-
mine the matroid T (A). Let us consider the two following matroids T1 and T2 deter-
mined by the Z2-linear relations

v0 = 0,
v1 + v2 + v3 + v4 + v5 + v6 + v7 + v8 + v9 + v10 = 0,

v3 + v4 + v5 + v6 + v7 + v8 + v11 + v12 + v13 + v14 = 0,
v5 + v6 + v7 + v8 + v9 + v10 + v13 + v14 + v15 + v16 = 0

and
v0 = 0,

v1 + v2 + v3 + v4 + v5 + v6 + v7 + v8 + v9 + v10 = 0,
v2 + v3 + v4 + v5 + v6 + v7 + v11 + v12 + v13 + v14 = 0,
v5 + v6 + v7 + v8 + v9 + v10 + v13 + v14 + v15 + v16 = 0,

respectively. One easily checks that the two matroids are non-isomorphic. On the
other hand, the two matroids make isomorphic cohomology R-algebras, each of which
is generated by one degree 1 element, three degree 8 elements, and four degree 10
elements and the products which do not involve the degree 1 element are all zero.

n 1 2 3 4 5 6 7 8
Dn 1 2 4 12 54 472 8512 328416
Mn 1 2 4 8 16 32 68 148

Table 1: Dn is the number of diffeomorphism types of n-dimensional real Bott man-
ifolds found in [8], and Mn is the number of non-isomorphic binary matroids on an
n-set (A076766 of [27]).

Remark 4.6. The Z2-cohomology ring of a real Bott manifold determines its diffeo-
morphism type [21]. Therefore in Table 1, Dn is the number of Z2-cohomology rings
(up to isomorphism) of n-dimensional real Bott manifolds, and we know that the num-
ber of isomorphism types of Q-cohomology rings of n-dimensional real Bott manifolds
does not exceed Mn. Since Mn < Dn for some n, we conclude that the Q-cohomology
ring of a real Bott manifold does not determine its diffeomorphism type and thus the
Q-cohomology is strictly “weaker” than Z2-cohomology in the case of real Bott man-
ifolds.

The Q-cohomology ring of the real Bott manifold is a fairly weak invariant as
the above remark shows, but it is worth emphasizing that Q-cohomology ring is still
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stronger than the Q-cohomology group. Consider the two binary matroids T1 and T2

determined by the Z2-linear relations

v0 = 0, v1 + v2 + v3 + v4 + v5 + v6 = 0, v4 + v5 + v7 = 0, v5 + v6 + v8 = 0

and

v0 = 0, v1 + v2 + v3 + v4 + v5 + v6 = 0, v3 + v4 + v7 = 0, v5 + v6 + v8 = 0,

respectively. We choose two 9-dimensional real Bott manifolds M1 and M2 whose
corresponding binary matroids are T1 and T2, respectively. Then M1 and M2 have
identical rational Betti numbers

(β0, β1, . . . , β9) = (1, 1, 0, 2, 3, 3, 4, 2, 0, 0).

However, in H∗(M1), the all multiplications of elements of degree greater than 1
are trivial, while H∗(M2) has a non-trivial multiplication. Hence, M1 and M2 have
non-isomorphic Q-cohomology rings, although they have isomorphic Q-cohomology
groups.

4.2. Generalized real Bott manifolds
Let us consider a more generalized notion of real Bott manifolds. Let K =

∂(
∏k

i=1 Δ
ni)∗ be the boundary complex of the product of simplices

∏k
i=1 Δ

ni . Then,
the vertex set of K is {11, . . . , 1n1+1, 21, . . . , 2n2+1, . . . , k1, . . . , knk+1}, and the mini-
mal non-face of K consists of {i1, . . . , ini+1} for all i = 1, . . . , k.

Let us assume that we are given a k × k block matrix A over Z2 which is strictly
upper triangular whose (i, j)th block of A is of size 1× ni. We denote by I the k × k
block matrix whose diagonal elements are all 1 and the others are all 0, where the
size of block is equal to that of A. Put n = n1 + · · ·+ nk and m = n+ k. Then, the
n×m matrix Λ(A) = (In | It + At) represents a non-singular characteristic function
over K, where each column of Λ(A) is assigned by the vertex set of K in the order of

{11, . . . , 1n1 , 21, . . . , 2n2 , . . . , k1, . . . , knk
| 1n1+1, 2n2+1, . . . , knk+1}.

The corresponding real toric space MR(K,Λ(A)) is a (k-stage) generalized real Bott
manifold, and it is denoted by M(A). Let A be the k × k matrix over Z2 such that the
(i, j)-component of A is congruent to the sum of all components of the (i, j)th block
of A if i 	= j or ni + 1 if i = j. We call this A by the underlying matrix of M(A). One
remarks that if n1 = · · · = nk = 1, then M(A) is indeed a real Bott manifold M(A).
See [9] for details.

Then, similarly to Proposition 4.3, we have the following proposition.

Proposition 4.7. The cohomology ring H∗(M(A);R) depends only on the matroid
T (A) and the integers n1, . . . , nk. It is generated by the circuits of T (A) as a graded
R-algebra. More precisely, let xC be the formal symbol for the cohomology class cor-
responding to a circuit C. Then

H∗(M(A);R) ∼= R〈xC | C ∈ C〉/ ∼,

where we have the relations

xC1
xC2

=

{
(−1)|C1|·|C2|xC2xC1 , if C1 ∩ C2 = ∅;
0, if C1 ∩ C2 	= ∅.
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The grading is given by deg xC =
∑

i∈C ni.

Corollary 4.8. The Z2-cohomology ring of a two-stage generalized real Bott manifold
determines its Q-cohomology ring.

Proof. Assume that M(A) and M(B) have the same Z2-cohomology rings. Let A
and B be the underlying matrices of A and B, respectively. Let p (resp., q) be the
number q of non-zero components of the (1, 2)th block of A (resp., B). Then, by [24,
Theorem 2.3], p ≡ q or n2 + 1− q(mod 2h(n1+1)), where h(a) is the minimal integer r
such that 2r � a. Since n1 � 1, h(n1 + 1) is positive, so p must have the same parity
with q and n2 + 1− q. If n2 is odd, then A and B are the same. Hence, M(A) and
M(B) have the isomorphic Q-cohomology rings.

If n2 is even, then A and B can be different. However, in this case, A and B must
be of form

A =

(
a b
0 1

)
and B =

(
a c
0 1

)
,

where a, b, c ∈ Z2. Note that A and B have the same first column, and the second col-
umn never correspond to the generator of the Q-cohomology ring by Proposition 4.7
because there is no dependent column set containing the second column. Therefore,
M(A) and M(B) have still isomorphic Q-cohomology rings, as desired.

There was one interesting question in toric topology called the cohomological rigid-
ity problem for small covers [11, Section 4]: if two small covers have the isomorphic
Z2-cohomology rings, then are they diffeomorphic? As we mentioned in Remark 4.6,
it is positive for real Bott manifolds. It, however, is not true in general. Masuda
[24] showed that two-stage generalized Bott manifolds provide counterexamples to
the problem. Nevertheless, motivated by Corollary 4.8, it is reasonable to ask the
following weaker version of the cohomological rigidity problem.

Question 4.9. Does the Z2-cohomology ring of a small cover determine its rational
cohomology ring?

Remark 4.10. It is shown in [10, Lemma 8.1] that every Z2-cohomology ring iso-
morphism preserves the Stifel-Whitney class of a small cover. Therefore, the Z2-
cohomology ring of a small cover determines its orientability, and, thus, its nth ratio-
nal cohomology group as well. This fact also supports an affirmative evidence of the
above question.

4.3. Cohomologically symplectic real toric spaces
In this subsection, we assume that K = ∂P ∗ is the boundary of a simplicial poly-

tope P ∗ and therefore RZK is a smooth manifold.

Definition 4.11. A closed manifold M of dimension 2n is called cohomologically
symplectic or c-symplectic if there is a cohomology class α ∈ H2(M ;R) such that
αn 	= 0.

Lemma 4.12. Let K be the boundary of a simplicial 2n-polytope with m vertices and
Λ a characteristic function over K. Then the following hold:
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1. The real moment-angle manifold RZK is cohomologically symplectic if and only
if there are n homogeneous classes αi ∈ H2,ωi(RZK ;Q) for 1 � i � n such that
α1 � · · · � αn 	= 0.

2. The real toric space MR(K,Λ) is cohomologically symplectic if and only if there
are n homogeneous classes αi ∈ H2,ωi(RZK ;Q) for 1 � i � n such that ωi ∈
rowΛ for all i and α1 � · · · � αn 	= 0.

In either case, one must have ω1�· · ·�ωn = [m].

Proof. First, we give a proof of (1). For “if” part, we put α = α1 + · · ·+ αn. Then
αn = n! · α1 � · · · � αn 	= 0. For “only if” part, write α as a sum of homogeneous
classes in H2,ωi(RZK ;Q), that is, α = β1 + · · ·+ β� and take the power of n.
Then in the expansion of (β1 + · · ·+ β�)

n, there should exist a nonzero monomial
in H2n(RZK ;Q) = H2n,[m](RZK ;Q) and the proof (1) is done. The proof of (2) is
just an analogue of that of (1) together with Theorem 3.4.

Definition 4.13. Let K be the boundary of a simplicial polytope with m vertices.
Suppose that there are 
 homogeneous classes α1, . . . , α� ∈ Hd,ωi(RZK ;Q) for d = 1
or 2, such that α1 � · · · � α� 	= 0 and ω1�· · ·�ω� = [m]. When α = {α1, . . . , α�},
we say that K is almost cohomologically symplectic with class set α, or shortly almost
c-symplectic.

Note that ZK is never c-symplectic since it is 2-connected (Proposition 4.3.5 of
[5]). In contrast, there are infinitely many examples of c-symplectic real moment-
angle manifolds as seen below. When K = ∂P ∗ is almost c-symplectic, observe that
RZK is c-symplectic if and only if P ∗ has even dimension by Lemma 4.12. Let us
denote by V (K) the set of vertices of K. Recall that K is called flag if every non-face
I ⊆ V (K) contains a non-face of cardinality two.

Proposition 4.14. Let K be the boundary of a simplicial polytope. If K is flag, then
it is almost c-symplectic.

Proof. Let us assume that K is of dimension n− 1 and pick a facet {v1, . . . , vn} of K.
Since K is a pseudomanifold, the link of the codimension two face

{v1, . . . , v̂i, . . . , vn} = {v1, . . . , vi−1, vi+1, . . . , vn},
for 1 � i � n, is a set of two elements one of which is vi and the other is denoted
by wi. Observe that wi 	= wj if i 	= j thanks to flagness. We take a vertex labeling

 : V (K) \ {v1, . . . , vn} → {1, . . . , n} such that 
(wi) = i for all i, and 
(v) 	= i if v
is connected to vi by an edge. The map 
 exists (not necessarily uniquely) because
there is no vertex v connected to vi by an edge for all i, again by flagness. Now
the cohomology classes αi = [uvi

∏
v:�(v)=i tv] are well-defined and one checks that

α1 � · · · � αn 	= 0, completing the proof.

The converse of the above Proposition does not hold. For example, let us denote
by ∂Pk the boundary of the k-gon. Then the simplicial join K = ∂Pk1 � · · · � Pk�

is
flag if and only if ki � 4 for all i. But K is always almost c-symplectic as one can see
below.
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Proposition 4.15. Let K and L be the boundaries of two simplicial polytopes. Then
the simplicial join K � L is almost c-symplectic if and only if both of K and L are
almost c-symplectic.

Proof. One direction is obvious since RZK�L = RZK × RZL. We show the other
direction. Let α ∈ H∗,ω
τ (RZK�L;Q) where ω ⊆ V (K) and τ ⊆ V (L). One applies
Künneth theorem to Kω
τ = Kω � Kτ and

H̃∗,ω
τ (RZK�L;Q) ∼= H̃∗,ω(RZK ;Q)⊗ H̃∗,τ (RZL;Q)

and therefore α is a sum of classes of the form β � γ, where β and γ are homo-
geneous classes in H∗,ω(RZK ;Q) and H∗,τ (RZL;Q), respectively. In particular, the
proposition is proved putting ω = V (K) and τ = V (L).

The previous Proposition can again be applied for real toric spaces. Consider
the simplicial join K = K1 � · · · � Kk and suppose that Λ is a characteristic func-
tion over K. Suppose that MR(K,Λ) is cohomologically symplectic. Then one can

choose the classes αj
i ∈ Hd,ωj

i (RZKj
;Q) for d = 1 or 2, ωj

i ⊆ V (Kj), 1 � j � k and
1 � i � 
j such that

αj
1 � · · · � αj

�j
	= 0, ωj

1�· · ·�ωj
�j

= V (Kj).

Denote by αj = {αj
1, . . . , α

j
�j
} a set of cohomology classes. Write α = α1 ∪ · · · ∪αk

and αd = α ∩Hd(RZK ;Q) for d = 1, 2. Suppose that for each α ∈ α2, ω ∈ rowΛ if
α ∈ H2,ω(RZK ;Q), and there is a bijection φ : α1 → α1 called a pairing map such
that

1. φ(φ(α)) = α for all α ∈ A1,

2. φ(α) 	= α, and

3. ω�ω′ ∈ rowΛ whenever α ∈ H1,ω(RZK ;Q) and φ(α) ∈ H1,ω′(RZK ;Q).

If this assumption holds then we say that α is Λ-compatible. We omit the proof of
the below proposition which generalize a result in [17].

Proposition 4.16. For a characteristic function Λ over K1 � · · · � Kk, the real toric
space MR(K1 � · · · � Kk,Λ) is c-symplectic if and only if each Ki is c-symplectic with
class set αi such that α1, . . . ,αk are Λ-compatible.

Remark 4.17. Recall that a closed 2-form ω in a smooth 2n-manifold is a symplectic
form if ωn is nowhere vanishing. A naturally following question is: “For what K
does the real moment-angle manifold RZK admit a symplectic form?” The general
answer seems quite non-trivial and the only known examples are the simplicial joins of
polygon boundaries whose corresponding real moment-angle manifolds are products of
orientable surfaces. It is worthwhile to note that in [15], Gitler and Lopez de Medrano
presented many families of RZK diffeomorphic to connected sums of sphere products,
but the sphere products almost always contain a sphere factor of dimension � 3,
preventing the manifold from being symplectic.

We present the following two questions related to the above Remark.

Question 4.18. Let K = ∂P ∗ be the boundary of a simplicial 2n-polytope.
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1. If K is almost c-symplectic, then does RZK admit a symplectic form?

2. If K is flag, then does RZK admit a symplectic form?

In Proposition 4.14, a cohomology class of RZK of top degree is generated by
degree one classes. The following can be regarded as its strengthening.

Conjecture 4.19. Let K = ∂P ∗ be the boundary of a simplicial 2n-polytope. Then
K is flag if and only if H∗(RZK ;Q) is generated by degree one elements.
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