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Abstract
Motivated by Kapranov’s discovery of an sh Lie algebra struc-

ture on the tangent complex of a Kähler manifold and Chen–
Stiénon–Xu’s construction of sh Leibniz algebras associated with
a Lie pair, we find a general method to construct sh Leibniz alge-
bras. Let A be a commutative dg algebra. Given a derivation of A
valued in a dg module Ω, we show that there exist sh Leibniz alge-
bra structures on the dual module of Ω. Moreover, we prove that
this process establishes a functor from the category of dg module
valued derivations to the category of sh Leibniz algebras over A .

1. Introduction

Higher homotopies and higher structures are playing important roles in mathemat-
ics and some branches of theoretical physics, such as gauge theory and topological field
theory (see Huebschmann [14]). Higher homotopies, as explained by Huebschmann
in [13], often arise from the process of transferring certain strict geometric or alge-
braic structure on a huge chain complex to a smaller but chain homotopic complex.
For instance, an sh Lie algebra (also known as L∞-algebra [21]) comes from a dg Lie
algebra by applying homological perturbation theory [12]. Here and in the sequel,
sh is short for strongly homotopy and dg is short for differential graded. Sh Leib-
niz algebras, also known as sh Loday algebras, Loday infinity algebras or Leibniz∞
algebras [1], are also examples of higher structures. In fact, the notion of Leibniz∞
algebras is a generalization of L∞ algebras where the skew-symmetry constraint on
multibrackets is discarded.

In this note, we use the notion of Leibniz∞[1] algebras (see Definition 3.1), which
is equivalent to the notion of sh Leibniz algebras, and study a particular method to
construct Leibniz∞[1] algebras. This method first appeared in Kapranov’s approach
to Rozansky–Witten theory [15]: Given a Kähler manifold X, Kapranov discovered
an L∞ algebra structure on Ω0,•−1

X (TX) via the Atiyah class αX . More precisely, let ∇
be the Chern connection on the holomorphic tangent bundle TX . Then the curvature
R∇ ∈ Ω0,1

X (Hom(S2(TX), TX)) is a Dolbeault representative of the Atiyah class αX .

The L∞ brackets {λk}k⩾1 on Ω0,•−1
X (TX) are defined by
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• λ1 = ∂̄.

• λ2 = R∇.

• λk+1 = ∇1,0(λk) ∈ Ω0,1
X (Hom(Sk+1(TX), TX)), for k = 2, 3, 4, . . . .

Kapranov’s construction of L∞ algebras is generalized in Chen, Stiénon and Xu’s
work [8] where the setting is a Lie algebroid pair (Lie pair, for short) (L,A). It is
shown that the graded vector space Γ(∧•A∨ ⊗ L/A) admits a Leibniz∞[1] algebra
structure [8, Theorem 3.13] via the Atiyah class of the Lie pair (L,A). The Atiyah
class of Lie pairs encompasses the original Atiyah class [2] of holomorphic vector
bundles and the Molino class [24] of foliations as special cases. This construction
of Leibniz∞[1] algebra structures is similar to that of Kapranov—First, we choose
a splitting j : L/A→ L of vector bundles so that L ∼= A⊕ L/A. Second, choose an
L-connection ∇ on L/A extending the A-module structure. Then the Leibniz∞[1]
brackets {λk}k⩾1 on Γ(∧•A∨ ⊗ L/A) are determined as follows:

• λ1 = dCE is the Chevalley–Eilenberg differential of the Bott representation of A
on L/A.

• Define a bundle map R2 : L/A⊗ L/A→ A∨ ⊗ L/A via the Atiyah cocycle α∇
L/A

(see Section 2.3.2):

R2(b1, b2) = α∇
L/A(−, b1)b2, ∀b1, b2 ∈ Γ(L/A).

The second structure map λ2 is specified by

λ2(ξ1 ⊗ b1, ξ2 ⊗ b2) = (−1)|ξ1|+|ξ2|ξ1 ∧ ξ2 ∧R2(b1, b2),

for all ξ1, ξ2 ∈ Γ(∧•A∨) and b1, b2 ∈ Γ(L/A).

• Define a sequence of bundle maps Rk : (L/A)
⊗k → A∨ ⊗ L/A, k ⩾ 3 recursively

by Rk+1 = ∇Rk, i.e.,

Rk+1(b0 ⊗ · · · ⊗ bk) = Rk(∇j(b0)(b1 ⊗ · · · ⊗ bk))−∇j(b0)Rk(b1 ⊗ · · · ⊗ bk).

The k-th structure map is specified by

λk(ξ1 ⊗ b1, . . . , ξk ⊗ bk) = (−1)|ξ1|+···+|ξk|ξ1 ∧ · · · ∧ ξk ∧Rk(b1, . . . , bk),

for all ξi ∈ Γ(∧•A∨), bi ∈ Γ(L/A), 1 ⩽ i ⩽ k.

We call (Γ(∧•A∨ ⊗ L/A), {λk}k⩾1) a Kapranov–Leibniz∞[1] algebra. Its construction
needs, a priori, some extra choices (a splitting j and an L-connection ∇ on L/A).
Then one asks a natural question [8, Remark 3.19]—how does the Leibniz∞[1] algebra
structure on Γ(∧•A∨ ⊗ L/A) depend on the choice of splitting data and connection?
The main goal of this note is to answer this question—Kapranov–Leibniz∞[1] alge-
bra structures on Γ(∧•A∨ ⊗ L/A) associated with different choices of j and ∇, are
mutually isomorphic in the category of Leibniz∞[1] algebras over Γ(∧•A∨) (see The-
orem 1.3 or Theorem 3.20).

We adopt an algebraic approach to achieve this goal. The algebraic notion we need
is a dg module valued derivation of a commutative differential graded algebra (cdga
for short) A (see Definition 2.3). As an immediate example from complex geometry,
consider a complex manifold X. The Dolbeault dg algebra A = (Ω0,•

X , ∂̄) is a cdga.

Let Ω = (Ω0,•
X ((T 1,0X)∨), ∂̄) be the dg A -module generated by the section space of
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holomorphic cotangent bundle (T 1,0X)∨. Then ∂ : A → Ω is an Ω-valued derivation
of A .

We now explain how Kapranov’s original method and Chen–Stiénon–Xu’s con-
struction can be further generalized in the setting of a dg module valued deriva-

tion A
δ−→ Ω. Consider the dual dg A -module B = Ω∨ of Ω. First, one chooses a

δ-connection ∇ on B, i.e., a map ∇ : B → Ω⊗A B that extends the δ-map (see Def-
inition 2.6). Then one can define a sequence of degree 1 maps {R∇

k : ⊗k B → B}k⩾1

as follows:

• R∇
1 = ∂A is the differential on B.

• R∇
2 = At∇B : B ⊗A B → B is the twisted Atiyah cocycle (see Definition 2.9).

• R∇
k for k ⩾ 3 are defined recursively by R∇

k = ∇R∇
k−1 (see Equation (3.3)).

Our first result is the following

Theorem 1.1. When endowed with structure maps {R∇
k }k⩾1, the dg A -module B

becomes a Leibniz∞[1] A -algebra.

Here by saying that B is a Leibniz∞[1] A -algebra, we mean that its higher structure
maps {R∇

k }k⩾2 are all A -multilinear. We emphasise that the Kapranov–Leibniz∞[1]
algebra (B, {R∇

k }k⩾1) should be treated as an object in the category of Leibniz∞[1]
A -algebras. In fact, if we treat (B, {R∇

k }k⩾1) merely as a Leibniz∞[1] algebra over K,
it is always isomorphic to a trivial one (see Remark 3.10). We call (B, {R∇

k }k⩾1) the
Kapranov–Leibniz∞[1] A -algebra associated with the dg module valued derivation

A
δ−→ Ω and the δ-connection ∇.
Our second result is that the above construction is functorial:

Theorem 1.2. The above construction defines a functor Kap, called Kapranov func-
tor, from the category of dg module valued derivations of a cdga A to the category of
Leibniz∞ A -algebras. Moreover, the Kapranov functor Kap is homotopy invariant,
i.e., if δ and δ′ are two homotopic derivations of A valued in the same dg module,
then Kap(δ) is isomorphic to Kap(δ′).

Applying Theorem 1.2 to dg module valued derivations arising from Lie pairs, we
obtain the answer of our motivating question:

Theorem 1.3. Let (L,A) be a Lie pair. The Kapranov–Leibniz∞[1] algebra struc-
ture on the graded vector space Γ(∧•A∨ ⊗ L/A) is unique up to isomorphism in the
category of Leibniz∞[1] Γ(∧•A∨)-algebras.

This note is organized as follows: Section 2 consists of our conventions, notations,
and the notion of twisted Atiyah classes. We will see that twisted Atiyah classes
encompass Atiyah classes of Lie pairs and dg Lie algebroids as special cases. Section 3
contains a brief summary of sh Leibniz algebras, the construction of the Kapranov
functor, and its applications. Finally, we present some relevant remarks and open
questions in Section 4.
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2. Atiyah classes of commutative dg algebras and their twists

In [2], Atiyah introduced a cohomology class, which has come to be known as
the Atiyah class, to characterize the obstruction to the existence of holomorphic
connections on a holomorphic vector bundle. The notion of Atiyah classes have been
developed in the past decades for diverse purposes (see [5–8,10,19,20,23]). In this
section, we recall Atiyah classes of commutative dg algebras defined by Costello [10]
and introduce a version of twisted Atiyah classes.

2.1. Atiyah classes of commutative dg algebras

Throughout this paper, K denotes a field of characteristic zero and graded means
Z-graded. A commutative differential graded algebra (cdga for short) over K is a pair
(A , dA ), where A is a commutative graded K-algebra, and dA : A → A , usually
called the differential, is a homogeneous degree one derivation of square zero. We also
write A for a cdga without making its differential explicitly.

An A -module is a representation of the underlying commutative graded algebra
of A by forgetting the differential dA . A dg A -module is an A -module E , together
with a degree one and square zero endomorphism ∂E

A of the graded K-vector space E ,
called the differential, such that

∂E
A (ae) = (dA a)e+ (−1)|a|a∂E

A (e),

for all a ∈ A , e ∈ E . To work with various different dg A -modules, the differential
∂E

A of any dg A -module E will be denoted by the same notation ∂A . A dg A -module
(E , ∂A ) will also be simply denoted by E .

The dg A -module of Kähler differentials is the graded A -module

Ω1
A |K = span{ddRa : a ∈ A }/{ddR(ab)− (ddRa)b− (−1)|a|addRb : a, b ∈ A },

together with the differential ∂A such that the algebraic de Rham operator ddR : A →
Ω1

A |K is a cochain map, i.e., ∂A (ddRa) = ddR(dA a) for all a ∈ A . In the sequel, we

assume that Ω1
A |K is projective as an A -module.

A degree rmorphism of dg A -modules, denoted byα∈Homr
dgA (E ,F ), is a degree r

A -module morphism α : E → F , which is also compatible with differentials:

∂A (α) := ∂A ◦ α− (−1)rα ◦ ∂A = 0: E → F .

Definition 2.1 (Costello [10]). Let A be a cdga and E an A -module.

1. A connection on E is a (degree 0) map of graded K-vector spaces

▼ : E → Ω1
A |K ⊗A E ,

satisfying the Leibniz rule

▼(ae) = (ddRa)⊗ e+ a▼(e), ∀a ∈ A , e ∈ E .
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2. Assume that (E , ∂A ) is a dg A -module. Given a connection ▼ on E ,

At▼E := [▼, ∂A ] = ▼ ◦ ∂A − ∂A ◦ ▼ ∈ Ω1
A |K ⊗A EndA (E )

is a closed element of degree 1 which measures the failure of ▼ to be a cochain
map. Its cohomology class AtE ∈ H1(A ,Ω1

A |K ⊗A EndA (E )) is independent of
the choice of connections, and is called the Atiyah class of the dg A -module E .

The existence of connections on E is guaranteed if E is a projective A -module.
Hence we make the following

Convention. In this note, all A -modules are assumed to be projective.

Example 2.2 (Mehta–Sténon–Xu [23]). Let (M, QM) be a smooth dg manifold, where
M = (M,OM) is a smooth Z-graded manifold, and QM is a homological vector field
on M. Then A = (C∞(M), QM) is a cdga. For each dg vector bundle (E , QE) over
(M, QM), its space of sections E = (Γ(E), QE) is a dg A -module. The Atiyah class
AtE of E coincides, up to a minus sign, with the Atiyah class AtE of the dg vector
bundle E with respect to the dg Lie algebroid TM defined by Mehta–Sténon and Xu.
This is a particular instance of Atiyah classes of dg vector bundles with respect to a
general dg Lie algebroid (see Section 2.3).

2.2. Dg module valued derivations and twisted Atiyah classes
A key notion in this note is dg module valued derivation (dg derivation for short):

Definition 2.3. Let (A , dA ) be a cdga and (Ω, ∂A ) a dg A -module.

• A dg derivation of A valued in (Ω, ∂A ) is a degree 0 derivation δ : A → Ω of
the commutative graded algebra A valued in the A -module Ω,

δ(ab) = δ(a)b+ aδ(b), ∀a, b ∈ A ,

which commutes with the differentials as well:

δ ◦ dA = ∂A ◦ δ : A → Ω.

Such a dg derivation is simply denoted by A
δ−→ Ω.

• Let δ and δ′ be two (Ω, ∂A )-valued dg derivations of A . They are said to be
homotopic, written as δ ∼ δ′, if there exists a degree (−1) derivation h of A
valued in the A -module Ω such that

δ′ − δ = [∂A , h] = ∂A ◦ h+ h ◦ dA : A → Ω.

An immediate example of dg derivations is Ω0,•
X

∂−→ Ω0,•
X ((T 1,0X)∨) arising from a

complex manifold X, which has already been explained in Section 1. Another funda-

mental example is the dg derivation A
ddR−−→ Ω1

A |K, which is universal in the following

sense: For any generic dg derivation A
δ−→ Ω, there exists a unique dg A -module

morphism δ̄ : Ω1
A |K → Ω such that the following diagram commutes:

A

ddR
��

δ // Ω

Ω1
A |K.

∃! δ̄

::
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Thus,

δ̄ ⊗A idEndA (E ) : Ω
1
A |K ⊗A EndA (E ) → Ω⊗A EndA (E ) (2.1)

is a dg A -module morphism as well.

Definition 2.4 (Twisted Atiyah class). Let E be a dg A -module and A
δ−→ Ω a dg

derivation. The dg A -module morphism δ̄ ⊗A idEndA (E ) in Equation (2.1) sends the
Atiyah class AtE ∈ H1(A ,Ω1

A |K ⊗A EndA (E )) of E to a cohomology class

AtδE ∈ H1(A ,Ω⊗A EndA (E )),

which is called the δ-twisted Atiyah class of E .

It follows immediately that twisted Atiyah classes are homotopy invariant:

Proposition 2.5. If δ ∼ δ′, then for any dg A -module E ,

AtδE = Atδ
′

E ∈ H1(A ,Ω⊗A EndA (E )).

Below we give a different characterization of the twisted Atiyah class AtδE . We need
another key notion in this note—δ-connections, which can be thought of as operations
extending δ.

Definition 2.6. Let A
δ−→ Ω be a dg derivation and E an A -module. A δ-connection

on E is a degree 0, K-linear map of graded K-vector spaces

∇ : E → Ω⊗A E

satisfying the following Leibniz rule:

∇(ae) = δ(a)⊗ e+ a∇(e), ∀a ∈ A , e ∈ E .

Remark 2.7. A connection ▼ as in Definition 2.1 induces a δ-connection ∇ as in
Definition 2.6 via the following triangle

E
▼ //

∇ &&

Ω1
A |K ⊗A E

δ̄⊗A idE
��

Ω⊗A E .

(2.2)

It follows that δ-connections always exist on projective A -modules. However, δ-con-
nections do not necessarily arise in this manner.

Proposition 2.8. Let E = (E , ∂A ) be a dg A -module.

1) For any δ-connection ∇ on E , the degree 1 element

At∇E := [∇, ∂A ] = ∇ ◦ ∂A − ∂A ◦ ∇ ∈ Ω⊗A EndA (E )

is a cocycle.

2) The cohomology class [At∇E ] ∈ H1(A ,Ω⊗A EndA (E )) coincides with the δ-
twisted Atiyah class AtδE of E .

Proof. The first statement is clear. It only suffices to prove the second one: Observe
that the difference of two δ-connections is a degree zero element in Ω⊗A EndA (E ).
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Hence, the cohomology class [At∇E ] is independent of the choice of δ-connections.
We choose a particular δ-connection ∇ induced by a connection ▼ on E as in the
commutative triangle (2.2).

Since the map δ̄ ⊗A idEndA (E ) defined in Equation (2.1) is a dg A -module mor-
phism, it follows that

At∇E = [∇, ∂A ] = [(δ̄ ⊗A idEndA (E )) ◦ ▼, ∂A ] = (δ̄ ⊗A idEndA (E ))(At
▼
E ).

Passing to the cohomology, we have

[At∇E ] = (δ̄ ⊗A idEndA (E ))(AtE ) = AtδE .

Definition 2.9. We call At∇E the δ-twisted Atiyah cocycle of E with respect to the
δ-connection ∇ on E .

Denote the A -dual Ω∨ of Ω by B, which is also a dg A -module. Given a δ-con-
nection ∇ : E → Ω⊗A E of an A -module E , the covariant derivation along b ∈ B is

∇b : E → E , ∇b(e) := ιb∇(e), ∀e ∈ E .

The δ-twisted Atiyah cocycle At∇E could be viewed as a degree 1 element in
HomA (B ⊗A E ,E ) by setting

At∇E (b, e) = (−1)|b|ιbAt
∇
E (e) = (−1)|b|ιb(∇(∂A (e))− ∂A (∇(e)))

= −∂A (∇be) +∇∂A (b)e+ (−1)|b|∇b∂A (e)

= ∇∂A (b)e− [∂A ,∇b](e),

(2.3)

for all b ∈ B and e ∈ E . Moreover, as At∇E is a 1-cocycle, it is a morphism of dg
A -modules, i.e., At∇E ∈ Hom1

dgA (B ⊗A E ,E ).
As an immediate consequence of Proposition 2.8 and Equation (2.3), we have the

following

Proposition 2.10. Let A
δ−→ Ω be a dg derivation and E a dg A -module. Then the

δ-twisted Atiyah class AtδE vanishes if and only if there exists a δ-connection ∇ on E
such that the associated twisted Atiyah cocycle At∇E vanishes, i.e., the map ∇ : E →
Ω⊗A E is compatible with the differentials. In this case, for all ∂A -closed elements
b ∈ B and e ∈ E , ∇be is also ∂A -closed.

2.3. Atiyah classes of dg Lie algebroids and Lie pairs
In this section, we briefly recall Atiyah classes of dg vector bundles with respect to

a dg Lie algebroid defined in [23] and Atiyah classes of Lie pairs defined in [8] (see [9]
for the equivalence between the two types of Atiyah classes arising from integrable
distributions), and show that both of them can be viewed as twisted Atiyah classes.

2.3.1. Dg Lie algebroids
A dg Lie algebroid can be thought of as a Lie algebroid object in the category of
smooth dg manifolds. The precise description is as follows.

Definition 2.11. A dg Lie algebroid over a dg manifold (M, QM) is a quadruple

(L, QL, ρL, [−,−]L),

where
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1) (L, QL) is a dg vector bundle over (M, QM);

2) (L, ρL, [−,−]L) is a graded Lie algebroid over M;

3) The anchor map ρL : (L, QL) → (TM, LQM) is a morphism of dg vector bun-
dles;

4) QL : Γ(L) → Γ(L) is a derivation with respect to the bracket [−,−]L, i.e.,

QL([X,Y ]L) = [QL(X), Y ]L + (−1)|X|[X,QL(Y )]L, ∀X,Y ∈ Γ(L).
Given a dg Lie algebroid (L, QL, ρL, [−,−]L) and a dg vector bundle (E , QE) over

(M, QM), Mehta, Stiénon and Xu constructed the Atiyah class AtE of E with respect
to L as follows: Choose a Lie algebroid L-connection ∇E on the vector bundle E , i.e.,
a degree 0 K-bilinear map

∇E : Γ(L)× Γ(E) → Γ(E)

subject to the relations

∇E
fXe = f∇E

Xe, ∇E
X(fe) = (ρL(X)f)e+ (−1)|f ||X|f∇E

Xe,

for all f ∈ C∞(M), X ∈ Γ(L) and e ∈ Γ(E). There associates a degree 1 cocycle

At∇
E

E ∈ Γ(L∨ ⊗ End(E)) defined by

At∇
E

E (X, e) = QE(∇E
Xe)−∇E

QL(X)e− (−1)|X|∇E
X(QEe), ∀X ∈ Γ(L), e ∈ Γ(E).

(2.4)
Its cohomology class AtE ∈ H1(Γ(L∨ ⊗ End(E))), which is independent of the choice
of L-connections, is called the Atiyah class of the dg vector bundle E with respect to
the dg Lie algebroid L [23].

Meanwhile, there is a (Γ(L∨), QL∨)-valued derivation of the cdga (C∞(M), QM)
defined by

δL : C∞(M)
ddR−−→ Ω1(M)

ρ∨L−−→ Γ(L∨), (2.5)

where QL∨ is induced from the differential QL on L. The fact that δL commutes
with the two differentials QM and QL∨ follows from (3) of Definition 2.11. The
section space of a dg vector bundle E gives rise to a dg (C∞(M), QM)-module E :=
(Γ(E), QE). It is obvious that a δL-connection ∇δL on E = Γ(E) is equivalent to a Lie
algebroid L-connection∇L on the graded vector bundle E . Comparing Equations (2.3)
and (2.4), we have the following

Proposition 2.12. The Atiyah class AtE of the dg vector bundle E with respect to
the dg Lie algebroid L coincides, up to a minus sign, with the twisted Atiyah class
AtδLE of the dg (C∞(M), QM)-module E = (Γ(E), QE), where the dg derivation δL is
given by Equation (2.5).

2.3.2. Lie pairs
By a Lie pair (L,A), we mean two Lie algebroids L and A over the same smooth man-
ifold M such that A ⊂ L is a Lie subalgebroid. The quotient bundle B = L/A carries
a natural flat (Lie algebroid) A-connection, called the Bott A-module structure.

Let us recall the Atiyah class of the Lie pair (L,A) defined in [8]. First of all, there
is a short exact sequence of vector bundles over M ,

0 → A
i−→ L

prB−−→ B → 0. (2.6)
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Choose a splitting of Sequence (2.6), i.e., a vector bundle injection j : B → L, which
determines a bundle projection prA : L→ A such that

prA ◦i = idA, prB ◦j = idB , i ◦ prA+j ◦ prB = idL .

Using this splitting, one could identify L with A⊕B. Meanwhile, for each A-module
(E, ∂EA ), where E is a vector bundle over M and ∂EA is a flat A-connection on E,
choose an L-connection ∇L on E extending the given flat A-connection. Then there

associates a 1-cocycle α∇L

E ∈ Γ(A∨ ⊗B∨ ⊗ End(E)), called the Atiyah cocycle, of the
Lie algebroid A valued in the A-module B∨ ⊗ End(E):

α∇L

E (a, b)e := ∇a∇L
j(b)e−∇L

j(b)∇ae−∇L
[a,j(b)]e,

for all a ∈ Γ(A), b ∈ Γ(B) and e ∈ Γ(E). The cohomology class

αE = [α∇L

E ] ∈ H1
CE(A,B

∨ ⊗ End(E))

does not depend on the choice of j and ∇L, and is called the Atiyah class of the
A-module E with respect to the Lie pair (L,A).

From the Lie pair (L,A), we get a cdga Ω•
A = (Γ(∧•A∨), dA), and a dg Ω•

A-module
Ω•
A(B

∨) := (Γ(∧•A∨ ⊗B∨), ∂A), where ∂A is the A-module structure dual to the Bott
A-module structure on B. Here the degree convention is that Γ(B∨) is concentrated
in degree zero.

Fixing a splitting j of Sequence (2.6), we construct an Ω•
A(B

∨)-valued derivation
δj of Ω

•
A, i.e., a map

δj : Γ(∧•A∨) → Γ(∧•A∨ ⊗B∨). (2.7)

As a degree zero derivation of the graded K-algebra Γ(∧•A∨), δj is fully determined
by its action on its generators, i.e. elements in C∞(M) and Γ(A∨)—Define

δj : C
∞(M)

dL−−→ Γ(L∨)
j∨−→ Γ(B∨),

δj : Γ(A
∨)

pr∨A−−→ Γ(L∨)
dL−−→ Γ(∧2L∨) → Γ(L∨ ⊗ L∨)

i∨⊗j∨−−−−→ Γ(A∨ ⊗B∨),

where dL : Γ(∧•L∨) → Γ(∧•+1L∨) is the Chevalley–Eilenberg differential of the Lie
algebroid L. A straightforward verification shows that δj is compatible with the dif-
ferentials and thus is an Ω•

A(B
∨)-valued dg derivation of Ω•

A.
Note that δj depends on a choice of a splitting j of Sequence (2.6). However, we

have

Proposition 2.13. The Ω•
A(B

∨)-valued dg derivations δj of Ω•
A associated with dif-

ferent splittings of Sequence (2.6) are homotopic to each other.

Proof. Given two splittings j and j′ of Sequence (2.6), their difference is a bundle
map j′ − j : B → A. Define a degree (−1) derivation h : Γ(∧•A∨) → Γ(∧•−1A∨ ⊗B∨)
by setting

h|C∞(M) = 0, h|Γ(A∨) = (j′ − j)∨.

It follows from direct verifications that

δj′ − δj = [∂A, h] : Γ(∧•A∨) → Γ(∧•A∨ ⊗B∨).

This proves that δj ∼ δj′ .
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Let (E, ∂EA ) be an A-module. There induces a dg Ω•
A-module E := (Γ(∧•A∨ ⊗

E), ∂EA ).

Proposition 2.14. The Atiyah class αE of the A-module E with respect to the Lie

pair (L,A) coincides with the twisted Atiyah class At
δj
E of the dg Ω•

A-module E , where
the dg derivation δj is given as in Equation (2.7).

Proof. First of all, the spaces where the two Atiyah classes live are exactly the same,
i.e.,

(αE ∈) H1
CE(A,B

∨ ⊗ End(E)) = H1(Ω•
A,Ω

•
A(B

∨)⊗Ω•
A
EndΩ•

A
(E )) (∋ At

δj
E ).

According to Proposition 2.8, to find the twisted Atiyah class At
δj
E , one may use a

δj-connection ∇δj on E , which is determined by its restriction on Γ(E):

∇δj |E : Γ(E) → Γ(B∨)⊗ Γ(E).

This is equivalent to an L-connection ∇L on E extending the given flat A-connection
by setting

∇L
a+b = ∇a +∇δj

b |E , ∀a+ b ∈ L ∼= A⊕B. (2.8)

The two associated Atiyah cocycles coincide by straightforward computations, i.e.,

At∇
δj

E = α∇L

E .

As a consequence of Propositions 2.12 and 2.14, both Atiyah classes of dg Lie alge-
broids and those of Lie pairs arise from Atiyah classes of cdgas. In particular, we have

Corollary 2.15. Let A be a Lie algebroid and E an A-module. Denote by E the
corresponding dg vector bundle over (A[1], dA). If the Atiyah class of the dg vector
bundle E with respect to the dg Lie algebroid T (A[1]) vanishes, then the Atiyah class
of E with respect to any Lie pair (L,A) vanishes.

2.4. Functoriality
We now study functorial properties of twisted Atiyah classes. Let H(dgA ) denote

the homology category of dg A -modules: Objects in H(dgA ) are dg A -modules, and
morphisms in H(dgA ) are dg A -module morphisms modulo homotopy [16].

Let A
δ−→ Ω be a dg derivation. For each object E in H(dgA ), by Definition 2.4,

the twisted Atiyah class

AtδE ∈ H1(A ,Ω⊗A EndA (E )) ∼= Hom1
H(dg A )(E ,Ω⊗A E )

is a degree 1 morphism in the category H(dgA ). This identification defines a func-
torial transformation. In fact, when the dg derivation δ is fixed, the δ-twisted Atiyah
class is a functorial transformation on H(dgA ) from the identity functor id to the
tensor functor Ω⊗A −:

Proposition 2.16. Let E and F be dg A -modules, λ ∈ HomH(dg A )(E ,F ). The fol-
lowing diagram commutes in the category H(dgA ):

E
AtδE //

(−1)|λ|λ
��

Ω⊗A E

idΩ ⊗A λ
��

F
AtδF // Ω⊗A F .
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Proof. Let us first show the non-twisted case. Namely, the following diagram com-
mutes in H(dgA ):

E
AtE //

(−1)|λ|λ
��

Ω1
A |K ⊗A E

id⊗A λ
��

F
AtF // Ω1

A |K ⊗A F .

In fact, this can be directly verified. We choose connections ▼E and ▼F , respectively,
on E and F . For simplicity, they are both denoted by ▼. Then
(id⊗A λ) ◦At▼E − (−1)|λ| At▼F ◦λ

= (idΩ ⊗A λ) ◦ (▼ ◦ ∂A − ∂A ◦ ▼)− (−1)|λ|(▼ ◦ ∂A − ∂A ◦ ▼) ◦ λ
= ((id⊗A λ) ◦ ▼− ▼ ◦ λ) ◦ ∂A − (−1)|λ|∂A ◦ ((id⊗A λ) ◦ ▼− ▼ ◦ λ).

The map (id⊗A λ) ◦ ▼− ▼ ◦ λ : E → Ω1
A |K ⊗A F is actually A -linear, by direct ver-

ifications. Thus the two maps (id⊗A λ) ◦At▼E and (−1)|λ| At▼F ◦λ only differ by an
exact term. Composing with the dg A -module morphism δ̄ : Ω1

A |K → Ω induced from

the dg derivation δ, we accomplish a commutative diagram in H(dgA ):

E
AtE //

(−1)|λ|λ
��

Ω1
A |K ⊗A E

id⊗A λ
��

δ̄⊗A id
// Ω⊗A E

id⊗A λ
��

F
AtF // Ω1

A |K ⊗A F
δ̄⊗A id

// Ω⊗A F .

Now we study how Atiyah classes vary when twisted by different dg derivations.
So we need the category of dg derivations, denoted by dgDerA , whose objects are dg

derivations A
δ−→ Ω as in Definition 2.3, and whose morphisms are defined as follows:

Definition 2.17. A morphism ϕ from A
δ−→ Ω to A

δ′−→ Ω′ is a morphism ϕ : Ω → Ω′

of dg A -modules such that

δ′ = ϕ ◦ δ : A → Ω′.

Now let us fix a dg A -module E . We have the constant functor (− 7→ E ) and
the tensor functor −⊗A E , both from the category dgDerA of dg derivations to
the homology category H(dgA ) of dg A -modules. The Atiyah class is a functorial
transformation from (− 7→ E ) to −⊗A E :

Proposition 2.18. Given a morphism ϕ : (A
δ−→ Ω) → (A

δ̃−→ Ω̃) of dg derivations

and a dg A -module E , let AtδE and Atδ̃E be the Atiyah classes of E twisted, respectively,

by A
δ−→ Ω and A

δ̃−→ Ω̃. Then the following diagram commutes in H(dgA ):

E
AtδE //

idE
��

Ω⊗A E
ϕ⊗A idE
��

E
Atδ̃E // Ω̃⊗A E .

The proof is easy and thus omitted. Combining the previous two propositions, we
have



152 ZHUO CHEN, ZHANGJU LIU and MAOSONG XIANG

Theorem 2.19. With the same assumptions as in Propositions 2.16 and 2.18, the
following diagram in H(dgA ) commutes:

E
AtδE //

(−1)|λ|λ
��

Ω⊗A E
ϕ⊗A λ
��

F
Atδ̃F // Ω̃⊗A F .

3. The Kapranov functor

In this section, we explore higher algebraic structures, calledKapranov–Leibniz∞[1]
algebras, induced from a dg derivation of a cdga A . Our main goal is to show that
there exists a contravariant functor, called the Kapranov functor, from the category
of dg derivations to the category of Leibniz∞[1]-algebras over A .

3.1. Leibniz∞[1] algebras
We recall some basic notions of homotopy Leibniz algebras (cf.[1, 8]). In what

follows, all tensor products ⊗ without adornment are assumed to be over K.

Definition 3.1. A Leibniz∞[1] algebra (over K) is a graded K-vector space V =
⊕n∈ZV

n, together with a sequence {λk : ⊗k V → V }k⩾1 of degree 1, K-multilinear
maps satisfying∑
i+j=n+1

n∑
k=j

∑
σ∈sh(k−j,j−1)

ϵ(σ)(−1)|vσ(1)|+···+|vσ(k−j)| = λi(vσ(1), . . .

. . . , vσ(k−j), λj(vσ(k−j+1), . . . , vσ(k−1), vk), vk+1, . . . , vn) = 0,

(3.1)

for all n ⩾ 1 and all homogeneous elements vi ∈ V , where sh(p, q) denotes the set of
(p, q)-shuffles (p, q ⩾ 0), and ϵ(σ) is the Koszul sign of σ.

Definition 3.2. A morphism of Leibniz∞[1] algebras from (V, {λk}k⩾1) to (V ′,
{λ′k}k⩾1) is a sequence {fk : V ⊗k → V ′}k⩾1 of degree 0, K-multilinear maps, sat-
isfying the following compatibility condition:∑
k+p⩽n−1

∑
σ∈sh(k,p)

ϵ(σ)(−1)†
σ
kfn−p(bσ(1), . . . , bσ(k), λp+1(bσ(k+1), . . .

. . . , bσ(k+p), bk+p+1), . . . , bn)

=
∑
q⩾1

∑
I1∪···∪Iq=N(n)

I1,...,Iq ̸=∅
i1|I1|<···<iq|Iq|

ϵ(I1, . . . , Iq)λ′q(f|I1|(bI1), . . . , f|Iq|(bIq )),
(3.2)

for all n ⩾ 1, where †σk =
∑k
i=1|bσ(i)|, Ij = {ij1 < · · · < ij|Ij |} ⊂ N(n) = {1, . . . , n}, and

(bIj ) = (bij1
, . . . , bij

|Ij |
) for all 1 ⩽ j ⩽ q.

In the above definition, the first component f1 : (V, λ1) → (V ′, λ′1), called the tan-
gent morphism, is a morphism of cochain complexes. We call the Leibniz∞[1] mor-
phism f• : (V, λ•) → (V ′, λ′•) a quasi-isomorphism (resp. an isomorphism) if f1 is a
quasi-isomorphism (resp. an isomorphism). In fact, there is a standard way to find
its quasi-inverse (resp. inverse) f−1

• : (V ′, λ′•) → (V, λ•) (see [1]).



KAPRANOV’S CONSTRUCTION OF SH LEIBNIZ ALGEBRAS 153

Definition 3.3. Let (V, {λk}k⩾1) be a Leibniz∞[1] algebra. A (V, {λk}k⩾1)-module
is a graded K-vector spaceW together with a sequence {µk : V ⊗(k−1) ⊗W →W}k⩾1

of degree 1, K-multilinear maps satisfying the identities∑
i+j=n+1

n∑
k=j

∑
σ∈sh(k−j,j−1)

ϵ(σ)(−1)†
σ
k−jµi(vσ(1), . . . , vσ(k−j), λj(vσ(k−j+1), . . .

. . . , vσ(k−1), vk), vk+1, . . . , vn−1, w)

+
∑

1⩽j⩽n

∑
σ∈sh(k,j)

ϵ(σ)(−1)†
σ
n−jµi(vσ(1), . . . , vσ(n−j), µj(vσ(n−j+1), . . . , vσ(n−1), w))=0,

for all n ⩾ 1 and all homogeneous vectors v1, . . . , vn−1 ∈ V,w ∈W , where †σj =
|vσ(1)|+ · · ·+ |vσ(j)| for all j ⩾ 0.

Definition 3.4. Let (V, {λk}k⩾1) be a Leibniz∞[1] algebra. A morphism of (V,
{λk}k⩾1)-modules from (W, {µk}k⩾1) to (W ′, {µ′

k}k⩾1) is a sequence {ψk : V ⊗(k−1) ⊗
W →W ′}k⩾1 of degree 0, K-multilinear maps satisfying the identity∑
i+j=n+1

n∑
k=j

∑
σ∈sh(k−j,j−1)

ϵ(σ)(−1)|vσ(1)|+···+|vσ(k−j)|ψi(vσ(1), . . .

. . . , vσ(k−j), λj(vσ(k−j+1), . . . , vσ(k−1), vk), vk+1, . . . , vn−1, w)

+
∑

1⩽j⩽n

∑
σ∈sh(k,j)

ϵ(σ)(−1)|vσ(1)|+···+|vσ(n−j)|ψi(vσ(1), . . . , vσ(n−j), µj(vσ(n−j+1), . . .

. . . , vσ(n−1), w))

=
∑

I1∪···∪Ip+1=N(n−1)

I1,...,Ip+1 ̸=∅,p⩾0

i1|I1|<···<ip+1

|Ip+1|

ϵ(I1, . . . , Ip+1)µ′
p+1(λ|I1|(vI1), . . . , λ|Ip|(vIp), ψ|Ip+1|+1(vIp+1 , w)),

for each n ⩾ 1 and all homogeneous vectors v1, . . . , vn−1 ∈ V,w ∈W . Here Ij = {ij1 <
· · · < ij|Ij |} ⊂ N(n−1) = {1, . . . , n− 1}, and (vIj ) = (vij1

, . . . , vij
|Ij |

) for all 1⩽j⩽p+1.

In this note, we are particularly interested in Leibniz∞[1] algebras over a cdga A
(or Leibniz∞[1] A -algebras).

Definition 3.5. A Leibniz∞[1] A -algebra is a Leibniz∞[1] algebra (V, {λk}k⩾1) (in
the category of Leibniz∞[1] algebras over K) such that the cochain complex (V, λ1)
is a dg A -module and all higher brackets λk : ⊗k V → V (k ⩾ 2) are A -multilinear.

A morphism of Leibniz∞[1] A -algebras from (V, {λk}k⩾1) to (V ′, {λ′k}k⩾1) is a
morphism {fk : V ⊗k → V ′}k⩾1 (in the category of Leibniz∞[1] algebras over K) such
that all structure maps {fk}k⩾1 are A -multilinear. In particular, its tangent mor-
phism f1 : (V, λ1) → (V ′, λ′1) is a dg A -module morphism.

Such a morphism f• : (V, λ•) → (V ′, λ′•) is called a quasi-isomorphism (resp. an iso-
morphism) if its tangent morphism f1 is a quasi-isomorphism (resp. an isomorphism)
of dg A -modules.

Denote the category of Leibniz∞[1] A -algebras by Leib∞(A ). It is a subcategory of
the category of Leibniz∞[1] algebras over K. There are analogous notions of modules
of a Leibniz∞[1] A -algebra and their morphisms:
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Definition 3.6. Let (V, {λk}k⩾1) be a Leibniz∞[1] A -algebra. A (V, {λk}k⩾1) A -
module is a (V, {λk}k⩾1)-module (W, {µk}k⩾1) (in the category of Leibniz∞[1] mod-
ules over K) such that (W,µ1) is a dg A -module and all higher structure maps
{µk}k⩾2 are A -multilinear.

A morphism of (V, {λk}k⩾1) A -modules from (W, {µk}k⩾1) to (W ′, {µ′
k}k⩾1) is a

morphism of (V, {λk}k⩾1)-modules {ψk : V ⊗(k−1) ⊗W →W ′}k⩾1 (in the category of
Leibniz∞[1] modules over K) such that all maps {ψk}k⩾1 are A -multilinear.

It follows that the collection of (V, {λk}k⩾1) A -modules and their morphisms form
a category.

3.2. The Kapranov functor
In this section, we generalize Kapranov’s construction of an L∞ algebra struc-

ture [15] and Chen–Stiénon–Xu’s construction of a Leibniz∞[1] algebra structure [8]

in the setting of a dg derivation A
δ−→ Ω of a cdga A .

3.2.1. Kapranov–Leibniz∞[1] algebras
Let E be a graded A -module with a δ-connection ∇. For each homogeneous b ∈ B,
there is a degree |b| derivation on the reduced tensor algebra T (E ) (over A ) defined by

∇b(e1 ⊗ · · · ⊗ en) =

n∑
i=1

(−1)|b|∗i−1e1 ⊗ · · ·∇bei ⊗ · · · en,

for all homogeneous ei ∈ E , where ∗i =
∑i
j=1|ej |.

Let E and F be two graded A -modules with δ-connections ∇E and ∇F , respec-
tively. For b ∈ B and λ ∈ HomA (E ,F ), there associates the derivation

∇b(λ) = [∇b, λ] = ∇F
b ◦ λ− (−1)|b||λ|λ ◦ ∇E

b : E → F .

It follows from a direct verification that ∇b(λ) ∈ HomA (E ,F ).
Choose a δ-connection on B. There is a sequence of degree 1 maps R∇

k : B⊗k →
B, k ⩾ 1 defined as follows:

• R∇
1 = ∂A : B → B;

• R∇
2 is specified by the associated twisted Atiyah cocycles At∇B ;

• {R∇
k+1 : B⊗(k+1) → B}k⩾2 are defined recursively byR∇

k+1 = ∇(R∇
k ). Explicitly,

we have

R∇
k+1(b0, b1, . . . , bk) = (−1)|b0|[∇b0 ,R∇

k ](b1, . . . , bk), ∀bi ∈ B. (3.3)

Proposition 3.7. The A-module B, together with the sequence of operators {R∇
k }k⩾1,

is a Leibniz∞[1] A -algebra.

Proof. The 2-bracket R∇
2 is the twisted Atiyah cocycles At∇B , which is certainly A -

bilinear. By the recursive construction of higher brackets R∇
k+1 (k ⩾ 2) in Equa-

tion (3.3), they are all A -multilinear as well. So it suffices to verify that {R∇
k }k⩾1

satisfies Equation (3.1). We argue by induction.
The n = 1 case follows from the fact that R∇

1 = ∂A is a differential, and the n = 2
case follows from the fact that the δ-twisted Atiyah cocycle At∇B is a ∂A -cocycle.
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Now assume that the identity (3.1) holds for some n ⩾ 2, i.e.,

−∂A (R∇
n )(b1, . . . , bn)

= −∂A (R∇
n (b1, . . . , bn)) +

n∑
i=1

(−1)∗i−1R∇
n (b1, . . . , ∂A bi, . . . , bn)

=
∑
i,j⩾2,

i+j=n+1

n∑
k=j

∑
σ∈sh(k−j,j−1)

ϵ(σ)(−1)|bσ(1)|+···+|bσ(k−j)|R∇
i (bσ(1), . . .

. . . , bσ(k−j),R∇
j (bσ(k−j+1), . . . , bσ(k−1), bk), bk+1, . . . , bn).

(3.4)

Consider the (n+ 1) case: We first compute

−∂A (R∇
n+1)(b0, b1, . . . , bn) = ∂A ([R∇

n ,∇b0 ])(b1, . . . , bn) + [R∇
n ,∇∂A b0 ](b1, . . . , bn)

= [∂A (R∇
n ),∇b0 ](b1, . . . , bn) + [R∇

n ,R∇
2 (b0,−)](b1, . . . , bn).

(3.5)
Here we have used the recursive definition (3.3) in the first equality and Equation (2.3)
in the second one.

We introduce

b
(i)
k =

{
bk, if k ̸= i,

∇b0bi, if k = i.

Then the first summand in Equation (3.5) is,

[∂A (R∇
n ),∇b0 ](b1, b2, . . . , bn)

=

n∑
i=1

(−1)|b0|∗i−1∂A (R∇
n )(b1, . . . ,∇B

b0bi, . . . , bn)−∇b0(∂A (R∇
n )(b1, . . . , bn))

by assumption (3.4)

= −
n∑
i=1

∑
p,q⩾2,

p+q=n+1

n∑
k=q

∑
σ∈sh(k−q,q−1)

ϵ(σ)(−1)
|b0|∗i−1+|b(i)

σ(1)
|+···+|b(i)

σ(k−q)
|

R∇
p (b

(i)
σ(1), . . . , b

(i)
σ(k−q),R

∇
j (b

(i)
σ(k−q+1), . . . , b

(i)
σ(k−1), b

(i)
k ), b

(i)
k+1, . . . , b

(i)
n )

+
∑
i,j⩾2,

i+j=n+1

n∑
k=j

∑
σ∈sh(k−j,j−1)

ϵ(σ)(−1)|bσ(1)|+···+|bσ(k−j)|∇b0(R∇
i (bσ(1), . . .

. . . , bσ(k−j),R∇
j (bσ(k−j+1), . . . , bσ(k−1), bk), bk+1, . . . , bn))

=
∑
i,j⩾2,

i+j=n+1

n∑
k=j

∑
σ∈sh(k−j,j−1)

ϵ(σ)(−1)|b0|+|bσ(1)|+···+|bσ(k−j)|R∇
i+1(b0, bσ(1), . . .

. . . , bσ(k−j),R∇
j (bσ(k−j+1), . . . , bσ(k−1), bk), bk+1, . . . , bn)

+
∑
i,j⩾2,

i+j=n+1

n∑
k=j

∑
σ∈sh(k−j,j−1)

ϵ(σ)(−1)(|bσ(1)|+···+|bσ(k−j)|)(|b0|+1)R∇
i (bσ(1), . . .

. . . , bσ(k−j),R∇
j+1(b0, bσ(k−j+1), . . . , bσ(k−1), bk), bk+1, . . . , bn).

(3.6)
Here in the last step we used the recursive definition of {R∇

i }.
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Meanwhile, the second summand in Equation (3.5) is

[R∇
n ,R∇

2 (b0,−)](b1, b2, . . . , bn) =

n∑
i=1

(−1)(|b0|+1)∗i−1R∇
n (. . . ,R∇

2 (b0, bi), . . .)

+(−1)|b0|R∇
2 (b0,R∇

n (b1, . . . , bn)).

(3.7)

Substituting Equations (3.6) and (3.7) into Equation (3.5), we see that Equation (3.4)
holds for the case (n+ 1). This proves that {R∇

k }k⩾1 satisfies Equation (3.1) for all
n ⩾ 1.

The Leibniz∞[1]A -algebra (B, {R∇
k }k⩾1) will be denoted by Kapc(δ). Here the

superscript c is to remind the reader that this Leibniz∞[1]A -algebra is defined via a
particular δ-connection on B.

Remark 3.8. This method is originated from Kapranov’s construction of L∞ algebra
structure on the shifted tangent complex Ω0,•−1

X (T 1,0X) of a compact Kähler manifold
X [15]. For this reason, we call (B, {R∇

k }k⩾1) the Kapranov–Leibniz∞[1] A -algebra.

3.2.2. Functoriality

Next, we show that the assignment of a Leibniz∞[1] A -algebra to each pair of dg

derivation A
δ−→ Ω and δ-connection ∇ on B is functorial:

Proposition 3.9. Let ϕ be a morphism from A
δ′−→ Ω′ to A

δ−→ Ω in the category
dgDerA of dg derivations (see Definition 2.17). Let B = Ω∨ and B′ = (Ω′)∨ be their
dual dg A -modules. For a δ-connection ∇ on B and a δ′-connection ∇′ on B′,
there exists a morphism f• = {fk}k⩾1 of Kapranov–Leibniz∞[1] A -algebras from

(B, {R∇
k }k⩾1) to (B′, {R∇′

k }k⩾1), whose first map is f1 = ϕ∨. In other words, we
have the following commutative diagram

(A
δ′−→ Ω′)

ϕ
��

Kapc

// (B′, {R∇′

k }k⩾1)

(A
δ−→ Ω)

Kapc

// (B, {R∇
k }k⩾1).

Kapc(ϕ)=f•

OO

Proof. Define a sequence of A -multilinear maps fk : B⊗k → B′ recursively by setting

f1(b1) = ϕ∨(b1), fk+1(b0, . . . , bk) = ∇′
f1(b0)

fk(b1, . . . , bk)− fk(∇b0(b1, . . . , bk)),

(3.8)

for all k ⩾ 1 and bi ∈ B. It is easy to verify that all the maps {fk}k⩾1 are A -
multilinear. Now we show that {fk}k⩾1 is a morphism of Leibniz∞[1] A -algebras

from (B,R∇
k ) to (B′,R∇′

k ).

We argue by induction: First of all, the n = 1 case is obvious, since f1 = ϕ∨ : B →
B′ is a morphism of dg modules. Now assume that Equation (3.2) holds for some
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n ⩾ 1, i.e.,∑
k+p⩽n−1

∑
σ∈sh(k,p)

ϵ(σ)(−1)†
σ
kfn−p(bσ(1), . . .

. . . , bσ(k),R∇
p+1(bσ(k+1), . . . , bσ(k+p), bk+p+1), . . . , bn)

=
∑
q⩾1

∑
I1∪···∪Iq=N(n)

I1,...,Iq ̸=∅
i1|I1|<···<iq|Iq|

ϵ(I1, . . . , Iq)R∇′

q (f|I1|(bI1), . . . , f|Iq|(bIq )),
(3.9)

where †σk =
∑k
i=1|bσ(i)|, Ij = {ij1 < · · · < ij|Ij |} ⊂ N(n), and (bIj ) = (bij1

, . . . , bij
|Ij |

) for

all 1 ⩽ j ⩽ q.
We proceed to show that Equation (3.9) holds for (n+ 1) homogeneous inputs

{b0, . . . , bn+1}. For simplicity, we denote the left-hand side and the right-hand side
of Equation (3.9) by LHS(b1, . . . , bn) and RHS(b1, . . . , bn), respectively.

We write LHS(b0, b1, . . . , bn) = I1 + I2 + I3 as the sum of three parts, where

I1 = fn+1(∂A b0, b1, . . . , bn)

= ∇′
∂A f1(b0)

◦ fn(b1, . . . , bn)−
n∑
i=1

(−1)∗i−1(|b0|+1)fn(b1, . . . ,∇∂A b0(bi), . . . , bn),

I2 =

n−1∑
k+p=0

∑
σ∈sh(k,p)

ϵ(σ)(−1)|b0|+†σkfn−p+1(b0, bσ(1), . . . , bσ(k),R∇
p+1(bσ(k+1), . . .

. . . , bσ(k+p), bk+p+1), . . . , bn)

= (∇′
f1(b0)

◦ fn−p − fn−p ◦ ∇b0)(bσ(1), . . . ,R∇
p+1(bσ(k+1), . . . , bσ(k+p), bk+p+1), . . .

. . . , bn),

by Equation (3.8), and

I3 =

n−1∑
k+p=0

∑
σ∈sh(k,p)

ϵ(σ)(−1)(|b0|+1)†σkfn−p(bσ(1), . . . , bσ(k),R∇
p+2(b0, bσ(k+1), . . .

. . . , bσ(k+p), bk+p+1), . . . , bn)

=

n−1∑
k+p=0

∑
σ∈sh(k,p)

ϵ(σ)(−1)(|b0|+1)†σkfn−p(bσ(1), . . . , bσ(k),−[R∇
p+1,∇b0 ](bσ(k+1), . . .

. . . , bσ(k+p), bk+p+1), . . . , bn)

+

n−1∑
k=0

(−1)∗k(|b0|+1)fn(b1, . . . ,∇∂A b0(bk+1), . . . , bn),

by Equations (2.3) and (3.3). Summing them up, we have

LHS(b0, b1, . . . , bn) = ∇′
∂A (f1(b0))

fn(b1, . . . , bn) +∇′
f1(b0)

LHS(b1, . . . , bn)

−
n∑
i=1

(−1)|b0|∗i−1 LHS(b1, . . . ,∇b0bi, . . . , bn).
(3.10)
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Meanwhile,

RHS(b0, b1, . . . , bn)

=

n∑
q=1

∑
I1∪···∪Iq=N(n)

I1,...,Iq ̸=∅
i1|I1|<···<iq|Iq|

ϵ(I1, . . . , Iq)
(
R∇′

q+1(b0, f|I1|(bI1), . . . , f|Iq|(bIq ))+

R∇′

q (f|I1|+1(b0, bI1), . . . , f|Iq|(bIq )) + · · ·

+(−1)|b0|(|bI1 |+···+|bIq−1 |)R∇′

q (f|I1|(bI1), . . . , f|Iq|+1(b0, bIq ))
)

by Equations (2.3),(3.3),(3.8)
= ∇′

f1(b0)
RHS(b1, . . . , bn) +∇′

∂A (f1(b0))
fn(b1, . . . , bn)

−
n∑
i=1

(−1)|b0|∗i−1 RHS(b1, . . . ,∇b0bi, . . . , bn).

(3.11)

Applying the induction assumption to Equations (3.10) and (3.11), we see that Equa-
tion (3.9) holds for all (n+ 1) entries. Thus Equation (3.9) holds for all n ⩾ 1. This
proves that f = {fk}k⩾1 is a morphism of Leibniz∞[1] A -algebras.

As a consequence, Kapranov’s construction defines a contravariant functor

Kapc : dgDerA → Leib∞(A )

from the category dgDerA of dg derivations of A to the category Leib∞(A ) of
Leibniz∞[1]-algebras.

Remark 3.10. The reason that we restrict to work in the category Leib∞(A ) of
Leibniz∞[1] A -algebras is as follows: If we treat (B, {R∇

k }k⩾1) merely as a Leibniz∞[1]
algebra over K, it is always isomorphic to the trivial one (B, {∂A , 0, 0, . . .}) (all higher
brackets are zero). In fact, one can build a sequence of degree 0 maps

ϕk : B⊗k → B, k ⩾ 1,

where ϕ1 = idB, and {ϕk+1}k⩾1 are defined recursively by

ϕk+1(b0, . . . , bk) = ∇b0 ◦ ϕk(b1, . . . , bk), ∀bi ∈ B.

The set {ϕk : B⊗k → B}k⩾1 defines an isomorphism of Leibniz∞[1] algebras from
(B, {∂A , 0, 0, . . .}) to (B, {R∇

k }k⩾1) in the category of Leibniz∞[1] algebras over K.
The proof is similar to that of Proposition 3.9. However, the maps {ϕk}k⩾2 are not
A -multilinear.

Next, we stress the independence from the choice of connections in the defi-

nition of Kapranov functors. For a dg derivation A
δ−→ Ω, suppose that we have

another δ-connection ∇̃ on B = Ω∨. Denote the corresponding Kapranov–Leibniz∞[1]

A -algebra by Kapc̃(δ) = (B,R∇̃
k ). By Proposition 3.9, there exists an isomorphism

g∇,∇̃• : Kapc(δ) → Kapc̃(δ) of Leibniz∞[1] A -algebras, where g∇,∇̃1 = idB, and g
∇,∇̃
k+1

for k ⩾ 1 are defined recursively as follows:

g∇,∇̃k+1 (b0, . . . , bk) = (∇̃b0 ◦ g
∇,∇̃
k − g∇,∇̃k ◦ ∇b0)(b1, . . . , bk), ∀bi ∈ B.

Moreover, via a straightforward verification, we have
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Lemma 3.11. There exists a natural equivalence between Kapranov functors Kapc

and Kapc̃ with respect to different connections. In other words, for any morphism

ϕ : (A
δ′−→ Ω′) → (A

δ−→ Ω) of dg derivations of A , we have the following commutative
diagram

Kapc(δ)

Kapc(ϕ)
��

g∇,∇̃
• // Kapc̃(δ)

Kapc̃(ϕ)
��

Kapc(δ′)
g∇

′,∇̃′

// Kapc̃(δ′).

By this natural equivalence, we are allowed to drop the superscript c to obtain the
following

Theorem 3.12. Kapranov’s construction defines a contravariant functor

Kap: dgDerA → Leib∞(A )

from the category dgDerA of dg derivations of A to the category Leib∞(A ) of
Leibniz∞[1]-algebras.

Remark 3.13. By the universal property, the Kähler differential A
ddR−−→ Ω1

A |K is the
initial object in the category dgDerA of dg derivations. Thus the corresponding
Kapranov–Leibniz∞[1] A -algebra on the tangent complex TA |K = (Ω1

A |K)
∨ of A is

the final object of the subcategory in Leib∞(A ) consisting of Kapranov–Leibniz∞[1]
A -algebras arising from dg derivations of A .

Let A
δ−→ Ω be a dg derivation of A and E a dg A -module. By a similar argument,

E carries a Leibniz∞[1] A -module structure over Kap(δ). Moreover, we have

Theorem 3.14. Given a dg derivation A
δ−→ Ω of A , there exists a functor from

the category dgA of dg A -modules to the category of Leibniz∞[1] A -modules over
Kap(δ).

3.2.3. Leibniz algebra structures

Let (V, {λk}k⩾1) be a Leibniz∞[1] A -algebra as in Definition 3.5. Then (V, λ1 = ∂A )
is a dg A -module. Its cohomology H•(V ) is called the tangent cohomology of the
Leibniz∞[1] A -algebra (V, {λk}k⩾1). According to [8, Proposition 3.10], the (degree
(−1) shifted) tangent cohomology H•(V [−1]) is a Leibniz algebra (over K), when
equipped with the bracket

λ̌2 : H
•(V [−1])×H•(V [−1]) → H•(V [−1]),

λ̌2([x], [y]) := (−1)|x|[λ2(x, y)],

where x, y ∈ V are λ1-closed.

In a similar fashion, if (W, {µk}k⩾1) is a (V, {λk}k⩾1) A -module as in Defini-
tion 3.6, then (W,µ1 = ∂A ) is also a dg A -module. The cohomology H•(W ) is a
Leibniz module over the aforesaid Leibniz algebra H•(V [−1]) (both over K), when
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equipped with the action

µ̌2 : H
•(V [−1])×H•(W ) → H•(W ),

µ̌2([x], [w]) : = (−1)|x|[µ2(x,w)],

where x ∈ V,w ∈W are, respectively, λ1- and µ1-closed elements.

As a consequence of Theorem 2.19, Theorems 3.7 and 3.14, we have the following

Corollary 3.15. Let ϕ be a morphism of dg derivations from A
δ′−→ Ω′ to A

δ−→ Ω
and let B and B′ be the dual dg A -modules of Ω and Ω′, respectively.

1. The (degree (−1) shifted) cohomology space H•(A ,B[−1]) is a Leibniz algebra,

whose bracket
[
−,−

]
B
is induced by the δ-twisted Atiyah class of B:[
[b1], [b2]

]
B
= (−1)|b1| AtδB([b1], [b2]),

where b1, b2 ∈ B are ∂A -closed elements. Moreover, ϕ∨ : B → B′ induces a mor-
phism of Leibniz algebras, i.e.,[

ϕ∨([b1]), ϕ
∨([b2])

]
B′

= ϕ∨ ([[b1], [b2]]B) .

2. For any dg A -module E , there exists a representation of H•(A ,B[−1]) on the
cohomology space H•(A ,E ), with the action map − ▷− induced by the δ-twisted
Atiyah class of E :

[b] ▷ [e] = (−1)|b| AtδE ([b], [e]),

where b ∈ B, e ∈ E are both ∂A -closed elements. Moreover, this assignment is
functorial, i.e., for each dg A -module morphism λ : E → F (of degree 0),

[b] ▷ λ(e) = λ([b] ▷ [e]).

Remark 3.16. According to [8, Theorem 3.4], the Atiyah class of a Lie pair (L,A)
induces a Lie algebra structure on the cohomology H•

CE(A,L/A[−1]). A similar result
holds for L∞ algebra pairs [7]. However, it is not the case in general (see an example
below). It is natural to ask when the Leibniz algebra structure in Corollary 3.15 could
be refined to a Lie algebra structure. We will investigate this question somewhere else.

Example 3.17. Let LM be the category of linear maps [22]. A Lie algebra object

in LM is a triple E
ψ−→ g, where g is a Lie algebra, E is a left g-module, and

ψ is a g-equivariant linear map. Consider the cdga A = C•(g) = (∧•g∨, dCE) and
dg C•(g)-module Ω = C•(g, E∨[−1]) = (∧•g∨ ⊗ E∨[−1], dCE), i.e., the Chevalley–
Eilenberg cochain complex of the dual g-module E∨[−1]. The g-equivariant map

E
ψ−→ g gives rise to a dg derivation of C•(g):

C•(g)
δ=ψ∨

−−−−→ C•(g, E∨[−1]).

The dual module of Ω = C•(g, E∨[−1]) is B = C•(g, E[1]). One can take the trivial
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δ-connection on B:
∇ : B = C•(g, E[1]) → Ω⊗A B = C•(g, E∨[−1]⊗ E[1]),

defined by

∇(ω ⊗ e) = δ(ω)⊗ e, ∀ω ∈ ∧•g∨, e ∈ E.

By Equation (2.3), the associated Atiyah cocycle is a degree 1 element At∇B ∈
E∨[−1]⊗ E∨[−1]⊗ E[1] specified by

R∇
2 = At∇B (e1, e2) = −ψ(e1)e2, ∀e1, e2 ∈ E.

It can be easily seen that higher structures R∇
j = 0 for all j ⩾ 3. Hence, the

Kapranov–Leibniz∞[1] C•(g)-algebra B = C•(g, E[1]) is simply a dg Leibniz[1] alge-
bra in this case, or equivalently, B[−1] = C•(g, E) is a dg Leibniz algebra. In partic-
ular, the subspace E is a Leibniz algebra, recovering the result in [22].

By Corollary 3.15, there is a Leibniz algebra structure on the graded vector space
H•(A ,B[−1]) = H•

CE(g, E), whose bracket is given by[
[e1], [e2]

]
= (−1)|e1|+1[At∇B (e1, e2)] = ±[ψ(e1)e2],

for all dCE-closed elements e1, e2 ∈ C•(g, E). Here the last term ψ(−)(−) : C•(g, E)×
C•(g, E) → C•(g, E) is a (∧•g∨)-bilinear map naturally extended from ψ(−)(−) : E ×
E → E. In general, the Leibniz structure on (H•

CE(g, E), [−,−]) is not skewsymmetric.

3.2.4. Homotopy invariance
In this section, we prove that the isomorphism class of Kapranov–Leibniz∞[1]
A -algebras arising from dg derivations only depends on their homotopy classes.

Proposition 3.18. Let δ∼ δ′ be homotopic Ω-valued dg derivations of A . Then there
exists an isomorphism {gk}k⩾1 sending the Kapranov–Leibniz∞[1] A -algebra Kap(δ′)

= (B, {R∇′

k }k⩾1) (with respect to a δ′-connection ∇′) to Kap(δ) = (B, {R∇
k }k⩾1) (with

respect to a δ-connection ∇).

Proof. By assumption, there exists a degree (−1) Ω-valued derivation h : A → Ω of
A such that

δ′ = δ + [∂A , h] = δ + ∂A ◦ h+ h ◦ dA .

We choose an h-connection on B, i.e., a degree (−1) linear map

∇̂ : B → Ω⊗A B
satisfying

∇̂(ab) = h(a)⊗ b+ (−1)|a|a∇̂(b), ∀a ∈ A , b ∈ B.

For each δ-connection ∇ on B, it can be easily verified that ∇′′ := [∂A , ∇̂] is a [∂A , h]-
connection on B, and thus

∇′ = ∇+∇′′ = ∇+ [∂A , ∇̂] : B → Ω⊗A B
is a δ′-connection on B. It follows that

R∇′

2 = [∇′, ∂A ] = [∇+ [∂A , ∇̂], ∂A ] = [∇, ∂A ] = R∇
2 .

Define a family of A -multilinear maps gk : B⊗k → B inductively by setting g1 =
idB, g2 = 0, and



162 ZHUO CHEN, ZHANGJU LIU and MAOSONG XIANG

gk+1(b0, . . . , bk)

= (−1)|b0|
k∑
p=2

∑
I1∪···∪Ip=N(k)

I1,...,Ip ̸=∅
i1|I1|<···<ip|Ip|

ϵ(I1, . . . , Ip)[∇̂b0 , R
∇
p ](g|I1|(bI1), . . . , g|Ip|(bIp))

+[∇′
b0
, gk](b1, . . . , bk),

for all k ⩾ 2. It follows from a straightforward inductive argument that {gk}k⩾1 is a

morphism of Leibniz∞[1] A -algebras from (B,R∇′

n ) to (B,R∇
n ).

Remark 3.19. Although the Kapranov functor Kap maps homotopic derivations to
isomorphic Leibniz∞[1] A -algebra, it does not reduce to a functor from the category
consisting of homology classes of dg derivations of A to the category Leib∞(A ) of
Leibniz∞[1] A -algebras.

3.3. Applications
We first consider a Lie pair (L,A), and let B = L/A be the Bott A-module. In

the introduction, we explained that for each splitting j : B → L of the short exact
sequence (2.6) and for any L-connection ∇ on B extending the Bott A-module struc-
ture, there associates a Leibniz∞[1] algebra structure {λk}k⩾1 on the graded K-
vector space Γ(∧•A∨ ⊗B). As all {λk}k⩾2 are Ω•

A-multilinear, it is a Leibniz∞[1]
Ω•
A-algebra.
Recall that we have an Ω•

A(B
∨)-valued dg derivation δj of the cdga Ω•

A as in
Equation (2.7). By Proposition 2.14, the Atiyah cocycle α∇

B of the Lie pair coincides

with the Atiyah cocycle At∇
δj

B of the dg Ω•
A-module B := Ω•

A(B) with respect to
a δj-connection ∇δj as in Equation (2.8). Comparing definitions of {λk}k⩾3 in the

introduction and {R∇δj

k } as in Equation (3.3), we see that the two Leibniz∞[1] Ω•
A-

algebras (B, {λk}k⩾1) and (B,R∇δj

k ) are exactly the same.
Applying Proposition 2.13, Theorem 3.12, Theorem 3.14, and Proposition 3.18, we

have the following

Theorem 3.20. Let (L,A) be a Lie pair over a smooth manifold M . The Leibniz∞[1]
algebra structure constructed in [8, Theorem 3.13] on the graded K-vector space
Γ(∧•A∨ ⊗ L/A) is unique up to isomorphisms in the category of Leibniz∞[1] Ω•

A-
algebras.

Moreover, if (E, ∂EA ) is an A-module, then the representation of the above
Leibniz∞[1] algebra on the graded K-vector space Γ(∧•A∨ ⊗ E) is also unique up
to isomorphisms in the category of Leibniz∞[1] Ω•

A-modules.

Finally, we consider another interesting application: Let X be a complex manifold
and A = (Ω0,•

X , ∂̄) its Dolbeault dg algebra. Let Ω = (Ω0,•
X (T 1,0X), ∂̄) be the dg A -

module generated by the smooth section space Γ(T 1,0X) of the holomorphic tangent
bundle T 1,0X. Note that each holomorphic bivector field π ∈ Γ(∧2T 1,0X) determines
an Ω-valued dg derivation of A , denoted by δπ, which is the composition

A
∂−→ Ω1,•

X = Ω0,•
X ((T 1,0X)∨)

π♯

−→ Ω.

Here π♯ is the contraction along π from (T 1,0X)∨ to T 1,0X.
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In fact, π♯ is a morphism of dg derivations of A (from A
∂−→ Ω1,•

X to A
δπ−→ Ω).

It sends the Atiyah class αE ∈ H1(X, (T 1,0X)∨ ⊗ End(E)) of any holomorphic vec-
tor bundle E to the δπ-twisted Atiyah class AtδπE ∈ H1(X,T 1,0X ⊗ End(E)) of the

associated dg A -module E = Ω0,•
X (E).

By Proposition 2.10, the δπ-twisted Atiyah class AtδπE measures the existence of
holomorphic δπ-connections on E. In particular, if π a holomorphic Poisson bivector
field, then (T 1,0X)∨ is a holomorphic Lie algebroid [18], and AtδπE measures the
existence of holomorphic (T 1,0X)∨-connections on E.

Applying Theorem 3.12, we have the following

Theorem 3.21. Let X be a complex manifold, π a holomorphic bivector field. Then,

• Both Ω0,•
X (T 1,0X) and Ω0,•

X ((T 1,0X)∨) carry canonical Kapranov–Leibniz∞[1]

Ω0,•
X -algebra structures;

• There is a morphism of Leibniz∞[1] Ω0,•
X -algebras {fk}k⩾1 : Ω

0,•
X ((T 1,0X)∨) →

Ω0,•
X (T 1,0X) such that f1 = π♯.

4. Open questions and remarks

In this note, we assume that each dg A -module E is projective in order that
connections exist on E . In the non-projective case, one can follow Calaque-Van den
Bergh’s approach [6] to define the Atiyah class of E (which coincides with the Atiyah
class of E in Definition 2.1 when E admits connections)—The first step is to construct
a short exact sequence, called the jet sequence, of dg A -modules:

0 // Ω1
A |K ⊗A E // JE // E // 0 .

The Atiyah class of E is then defined to be the extension class of the above jet
sequence. We would like to follow this approach to study twisted Atiyah classes of
some cases when connections do not exist (singular foliations considered in [17] for
example).

Note that Kapranov’s original construction on Ω0,•−1
X (TX) of a Kähler manifold

X is an L∞ algebra, whereas Chen, Stiénon and Xu’s construction of Γ(∧•A∨ ⊗B)
is a Leibniz∞[1] algebra. In fact, this is due to the existence of Chern connection
on TX which enjoys special properties (see [8, Section 3.4.4]). Meanwhile, when
A = C∞(M) is the cdga of functions of a smooth dg manifold M. According to [23],
the tangent complex TA |K = Γ(TM) admits an L∞[1] algebra structure (by a con-
struction different from Kapranov’s construction we discussed). Moreover, Laurent-
Gengoux, Stiénon and Xu [20] have proved that for each Lie pair (L,A), there exists
a canonical L∞[1] algebra structure on the graded K-vector space Γ(∧•A∨ ⊗ L/A)
(which is different from Chen–Stiénon–Xu’s construction in [8]). It is natural to ask
how to tweak the Kapranov–Leibniz∞[1] algebra of general dg derivations so as to
produce an L∞[1] algebra rather than a mere Leibniz∞[1] algebra.

According to the perturbation lemmas proved by Huebschmann [12, 13], many
L∞ algebras arise from dg Lie algebras or L∞ algebras by homological perturbation
theory. It is interesting to investigate whether similar perturbation lemma holds for
Leibniz∞[1] algebras. Moreover, if this is the case, then it is natural to ask for which
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kind of dg derivations of a cdga A , the associated Kapranov–Leibniz∞[1] A -algebra
results from some perturbation.

These questions will be investigated somewhere else.
We would also like to mention other works that are related to the present paper:

Batakidis and Voglaire [3] showed how Atiyah classes of Lie pairs [8] and of dg
Lie algebroids [23] give rises to Atiyah classes of dDG algebras [6]. Bordemann [4]
studied the Atiyah class as the obstruction to the existence of invariant connections on
homogeneous spaces. Hennion [11] generalized Kapranov’s construction to algebraic
derived stack: There exists a Lie algebra structure on the shifted tangent complex
TX [−1] of a derived Artin stack X locally of finite presentation. Moreover, given a
perfect module E over X, there exists a representation of the aforesaid Lie algebra
on E induced by the Atiyah class of E.
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393.

[6] Damien Calaque and Michel Van den Bergh, Hochschild cohomology and Atiyah
classes, Adv. Math. 224 (2010), no. 5, 1839–1889.

[7] Zhuo Chen, Honglei Lang, and Maosong Xiang, Atiyah classes of Strongly homo-
topy Lie pairs, Algebra Colloq. 26 (2019), no. 2, 195–230.
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2011, pp. 159–179.

1112.0816


KAPRANOV’S CONSTRUCTION OF SH LEIBNIZ ALGEBRAS 165

[13] , The sh-Lie algebra perturbation lemma, Forum Math. 23 (2011), no. 4,
669–691.

[14] , Origins and breadth of the theory of higher homotopies, Higher structures
in geometry and physics, Progr. Math., vol. 287, Birkhäuser/Springer, New York,
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