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ON d-CATEGORIES AND d-OPERADS

TOMER M. SCHLANK and LIOR YANOVSKI

(communicated by Emily Riehl)

Abstract
We extend the theory of d-categories, which are a strict model

for (d, 1)-categories introduced by Lurie, by providing an explicit
description of the right mapping spaces of the d-homotopy cat-
egory of an ∞-category. Using this description, we deduce an
invariant ∞-categorical characterization of the d-homotopy cat-
egory. We then proceed to develop an analogous theory of d-
operads, which model ∞-operads with (d− 1)-truncated multi-
mapping spaces, and prove analogous results for them.

1. Introduction

Overview & organization
The notion of a d-category was introduced by Lurie in [Lur09, 2.3.4], as a strict

model for what we call an essentially d-category : an∞-category1 all of whose mapping
spaces are homotopically (d− 1)-truncated. To any ∞-category C, Lurie associates a
d-category hdC, which we call the d-homotopy category of C. While this d-category
is shown to be universal in the 1-categorical (simplicially enriched) sense among d-
categories that C is mapped to [Lur09, 2.3.4.12], the question of how hdC relates to
C as an ∞-category is left unaddressed. The goal of this work is to fill this gap and
to give an analogous treatment for operads.

In Section 2, we begin by showing that the right mapping spaces of hdC are given,
up to isomorphism, by applying hd−1 to the right mapping spaces of C (Proposi-
tion 2.13). This is the main technical result of this note, the proof of which goes
through the comparison with the “middle mapping spaces”. From this we deduce
that hdC is obtained from C by (d− 1)-truncation of the mapping spaces. More pre-
cisely, we show that hd can be promoted to a functor of ∞-categories, which is left
adjoint to the inclusion of the full subcategory spanned by essentially d-categories into
Cat∞. And furthermore, that the unit map of this adjunction is essentially surjective
and is given on mapping spaces by the (d− 1)-truncation map (Theorem 2.15).

In Section 3, we develop a parallel theory for operads. We call an ∞-operad
an essentially d-operad if all of its multi-mapping spaces are (d− 1)-truncated. We
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begin by defining a notion of a d-operad (Definition 3.3) that relates to essentially
d-operads in the same way that d-categories relate to essentially d-categories. We
then define the d-homotopy operad functor (Definition 3.6), again by analogy with
(and by means of) the d-homotopy category functor. This is achieved by analyzing
the behavior of the d-homotopy category functor on inner and coCartesian fibrations
(Proposition 3.5). Finally, we bootstrap the results of Section 2, to obtain analogous
results for (essentially) d-operads (Theorem 3.12) and some corollaries.

This work grew out of a project whose goal is to generalize the classical Eckmann-
Hilton argument to the ∞-categorical setting [SY].

Conventions
We work in the setting of ∞-categories (a.k.a. quasi-categories) and ∞-operads,

relying heavily on the results of [Lur09] and [Lur]. Since we have numerous references
to these two foundational works, references to [Lur09] are abbreviated as T.? and
those to [Lur] as A.?. As a rule, we follow the notation of [Lur09] and [Lur] whenever
possible. However, we supplement this notation and deviate from it in several cases
in which we believe this enhances readability:

1. We abuse notation by identifying an ordinary category C with its nerve N (C).
2. We abbreviate the data of an ∞-operad p : O⊗ → Fin∗ by O and reserve the

notation O⊗ for the ∞-category that is the source of p. Similarly, given two
∞-operads O and U , we write f : O → U for a map of ∞-operads from O to
U . The underlying ∞-category of O, which in [Lur] is denoted by O⊗

⟨1⟩, is here

denoted by O.

3. Given two ∞-operads O and U , we denote by AlgO (U) the ∞-operad
AlgO (U)⊗ → Fin∗ from Example A.3.2.4.4. This is the internal mapping object
induced from the closed symmetric monoidal structure onOp∞ (see A.2.2.5.13).
The underlying ∞-category AlgO (U) is the usual ∞-category of O-algebras in
U (which in [Lur] is denoted by AlgO (U)). Moreover, the maximal Kan sub-
complex AlgO (U)≃ is the space of morphisms MapOp∞

(O,U) from O to U as
objects of the ∞-category Op∞.

2. d-Categories

Recall the following definition from classical homotopy theory.

Definition 2.1. For d ⩾ 0, a space X ∈ S is called d-truncated if πi (X,x) = 0 for
all i > d and all x ∈ X. In addition, a space is called (−2)-truncated if and only if it
is contractible and it is called (−1)-truncated if and only if it is either contractible
or empty. We denote by S⩽d the full subcategory of S spanned by the d-truncated
spaces. The inclusion S⩽d ↪→ S admits a left adjoint and we call the unit of the
adjunction the d-truncation map.

This leads to the following definition in ∞-category theory.

Definition 2.2. Let d ⩾ −1 be an integer. An essentially d-category is an∞-category
C such that for all X,Y ∈ C, the mapping space MapC (X,Y ) is (d− 1)-truncated.
We denote by Catd the full subcategory of Cat∞ spanned by essentially d-categories.
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Example 2.3. An ∞-category C is an essentially 1-category if and only if it lies in
the essential image of the nerve functor N : Cat → Cat∞ and it is an essentially
0-category if and only if it is equivalent to the nerve of a poset.

One might hope that an ∞-category C is an essentially d-category if and only
if C is a (d− 1)-truncated object of the presentable ∞-category Cat∞ in the sense
of T.5.5.6.1. This turns out to be false. The latter condition is equivalent to both
spaces Map(∆0, C) and Map(∆1, C) being (d− 1)-truncated, while the former to the
(d− 1)-truncatedness of the projection map

Map(∆1, C) → Map(∆{0}, C)×Map(∆{1}, C).

It can be deduced that a (d− 1)-truncated object ofCat∞ is an essentially d-category
and that an essentially d-category is a d-truncated object of Cat∞. To see that both
converses are false, consider on the one hand a d-truncated space as an ∞-groupoid,
and on the other, an ∞-category with two objects and a d-truncated space of maps
from the first to the second (and no other non-trivial maps).

In T.2.3.4, Lurie develops the theory of d-categories, which are a strict model for
essentially d-categories. We begin by recalling some basic definitions and properties.
First, we introduce the following definition/notation (which is a variation on notation
T.2.3.4.11).

Notation 2.4. (1) Let A ⊆ B and D be simplicial sets. We define B ⋊A D by the
following pushout diagram

A×D

��

// B ×D

��
A // B ⋊A D.

(2) Let A ⊆ B and X be simplicial sets. Given two maps f, g : B → X such that
f |A = g|A we obtain a map f ∪ g : B ⋊A ∂∆1 → X. A homotopy relative to A
(or “rel. A” for short) is an extension of f ∪ g to B ⋊A ∆1.

(3) Given inclusions of simplicial sets A⊆B⊆C and a simplicial setX, let [B,C;X]
be the set of maps B → X for which there exists an extension to C. We denote
by [A,B,C;X] the set obtained from [B,C;X] by identifying maps that are
homotopic rel. A.

Remark 2.5. Let C be an ∞-category, let A ⊆ B be an inclusion of simplicial sets,
and consider f, g : B → C such that f |A = g|A. By the discussion at the beginning of
T.2.3.4, a homotopy from f to g rel. A is the same as an equivalence from f to g as
objects of the ∞-category D that is given as a pullback

D

��

// CB

��
∆0 // CA.

Therefore, the existence of a homotopy rel. A is an equivalence relation. We note
that the above diagram is also a homotopy pullback in the Joyal model structure as
the right vertical map is a categorical fibration and all objects are fibrant.
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Definition 2.6 (T.2.3.4.1). Let C be a simplicial set and let d ⩾ −1 be an integer.
We will say that C is a d-category if it is an ∞-category and the following additional
conditions are satisfied:

(1) Given a pair of maps f, f ′ : ∆d → C, if f and f ′ are homotopic relative to ∂∆d,
then f = f ′.

(2) Given m > d and a pair of maps f, f ′ : ∆m → C, if f | ∂∆m = f ′ | ∂∆m, then
f = f ′.

Example 2.7. By T.2.3.4.5, an ∞-category C is a 1-category if and only if it is iso-
morphic to the nerve of an ordinary category. By T.2.3.4.3, it is a 0-category if and
only if it is isomorphic to the nerve of a poset (compare Example 2.3).

Next, we shall recall the definition of the d-homotopy category hdC of an ∞-
category C. Using the notation Kd = skdK for the d-th skeleton of a simplicial set K,
we recall the following construction.

Lemma 2.8 (T.2.3.4.12). For d ⩾ 1, given an ∞-category C, there exists an essen-
tially unique simplicial set hdC, such that for every simplicial set K, we have a bijec-
tion

hom (K,hdC) ≃
[
Kd−1,Kd,Kd+1; C

]
that is natural in K. We denote the canonical map by θd : C → hdC.

Using the above construction, we have the following definition:

Definition 2.9. Given an ∞-category C and an integer d ⩾ −2, we define the d-
homotopy category of C to be hdC of Lemma 2.8 when d ⩾ 1 and

(1) For d = −2 we set h−2C = ∆0.

(2) For d = −1 we set h−1C =

{
∅ C = ∅
∆0 C ̸= ∅

with the unique map θ−1 : C → h−1C.

(3) For d = 0, we first define a pre-ordered set h̃0C with the same objects as C and
the relationX ⩽ Y if and only if MapC (X,Y ) ̸= ∅. Then we define h0C to be the
nerve of the poset obtained from h̃0C by identifying isomorphic objects. There
is a canonical map θ0 : C → h0C defined as the composition of θ1 : C → h1C with
the nerve of the functor that takes each object in the homotopy category h1C
to its class in h0C (with the unique definition on morphisms).

Warning 2.10. Note that an ∞-category C is an essentially d-category if and only
if all objects of C are (d− 1)-truncated in the sense of T.5.5.6.1. Hence, another way
to associate an essentially d-category with an ∞-category C is to consider the full
subcategory spanned by the (d− 1)-truncated objects. For a presentable ∞-category,
this is denoted by τ⩽d−1C in T.5.5.6.1 and called the (d− 1)-truncation of C. We
warn the reader that the two essentially d-categories hdC and τ⩽d−1C are usually very
different. For example, when C = S is the ∞-category of spaces, h1S is the ordinary
homotopy category of spaces, while τ⩽0S is equivalent to the ordinary category of
sets.

The map θd has the following universal property.
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Lemma 2.11. Let d ⩾ −1 and let C be an ∞-category.

(1) The simplicial set hdC is a d-category.

(2) The canonical map C → hdC is an isomorphism if and only if C is a d-category.

(3) For every d-category D, composition with the canonical map C → hdC induces
an isomorphism of simplicial sets

Fun (hdC,D)
∼−→ Fun (C,D) .

Proof. For d ⩾ 1 this is the content of T.2.3.4.12. For d = −1 this is trivial. For
d = 0, (1) and (2) are obvious from the definition. For (3) observe that we have a
factorization of the map in question:

Fun (h0C,D) → Fun (h1C,D)
∼−→ Fun (C,D) ,

where the second map is an isomorphism (from the claim for d = 1). Therefore, we can
assume that C is an ordinary category and D is a poset and hence both simplicial sets
are discrete. The result now follows from the observation that every functor C → D
factors uniquely through h0C.

Using the above results, we get the following:

Proposition 2.12. The inclusion Catd ↪→ Cat∞ admits a left adjoint hd : Cat∞ →
Catd with unit map given by θd : C → hdC.
Proof. By T.2.3.4.18, every essentially d-category is equivalent to a d-category and
for every d-category D, the map

Fun (hdC,D) → Fun (C,D)

is an isomorphism by Lemma 2.11. Restricting to the maximal Kan sub-complexes,
the map of simplicial sets

θ∗d : MapCatd
(hdC,D) → MapCat∞ (C,D)

is a homotopy equivalence. It now follows that θd exhibits hdC as theCatd-localization
of C in the sense of T.5.2.7.6. Thus, the claim about the existence of a left adjoint
follows from T.5.2.7.8 and the claim about the unit follows from the proof of T.5.2.7.8.

The main goal of this section is to show that for every∞-category C, the d-category
hdC is obtained (as one would expect) by (d− 1)-truncation of the mapping spaces.
The main ingredient is the following explicit description of the right mapping space
in the d-homotopy category (we recall the construction of the right mapping space in
the last paragraph of the next page).

Proposition 2.13. Let d ⩾ −1 and let C be an ∞-category. For every X,Y ∈ C,
there is a canonical isomorphism α of simplicial sets rendering the following diagram
commutative:

homR
C (X,Y )

β

tt
γ

))
homR

hdC (θd (X) , θd (Y ))
α

∼ // hd−1 hom
R
C (X,Y ) ,

where β and γ are the obvious maps.
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We defer the rather technical proof of Proposition 2.13 to the end of the section.
Assuming Proposition 2.13, we get

Corollary 2.14. Let d ⩾ −1 and let C be an ∞-category. The canonical map θd : C →
hdC is essentially surjective and for every X,Y ∈ C, the induced map

MapC (X,Y ) → MaphdC (θd (X) , θd (Y ))

is a (d− 1)-truncation map.

Proof. It is clear that θd is essentially surjective since it is surjective on objects. Let
X,Y ∈ C be two objects. Since the map

MapC (X,Y ) → MaphdC (θd (X) , θd (Y ))

is represented by the map

θ : homR
C (X,Y ) → hd−1 hom

R
C (X,Y ) ,

it will be enough to show that for every Kan complex X, the map X → hd−1X is a
(d− 1)-truncation map. We prove this by induction. For d ⩽ 0 it is clear. For d ⩾ 1,
recall that homR

X (p, q) has the homotopy type of the path space Pp,qX between p
and q in X when viewed as a space. Thus, by induction, θ is a map of spaces that is
surjective on π0 and induces the (d− 2)-truncation map on path spaces

Pp,qX → Pp,q (hd−1X) ≃ hd−2 (Pp,qX) .

It follows that θ is a (d− 1)-truncation map.

Theorem 2.15. The inclusion functor Catd ↪→ Cat∞ admits a left adjoint hd such
that for every ∞-category C, the value of hd on C is the d-homotopy category of C,
the unit transformation θd : C → hdC is essentially surjective, and for all X,Y ∈ C,
the map of spaces

MapC (X,Y ) → MaphdC (θd (X) , θd (Y ))

is the (d− 1)-truncation map.

Proof. Combine Proposition 2.12 and Corollary 2.14.

To prove Proposition 2.13, we begin by recalling the definitions of the “right” and
“middle” mapping spaces. Let J : sSet → sSet∂∆1/ be the functor given by J (K) =
K ⋆∆0/K, with the natural map ∂∆1 → J (K) taking 0 to the image of K and 1 to
the cone point. Recall that by the definition of the right mapping space (right before
T.1.2.2.3), we have

hom(∆n,homR
C (X,Y )) = hom(X,Y )(J(∆

n), C),

where the subscript (X,Y ) in the right hand side means we take the subset of maps
that restrict to (X,Y ) on ∂∆1. Since J preserves colimits, it follows that for every
simplicial set K, we have a canonical isomorphism

hom(K, homR
C (X,Y )) = hom(X,Y )(J(K), C).

Similarly, we can construct the “middle mapping space”. Let Σ: sSet → sSet be
the functor given by Σ (K) = K ⋄∆0/K, where the alternative join operation ⋄ is
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that of definition T.4.2.1.1. This also comes with a canonical map ∂∆1 → Σ(K),
and similarly, from the definition of the middle mapping space (right after remark
T.1.2.2.5), we have

hom(K, homM
C (X,Y )) = hom(X,Y )(Σ(K), C).

There is a canonical categorical equivalence K ⋄∆0 ∼−→ K ⋆∆0 that induces a cate-
gorical equivalence ΣK → J (K) that induces a Kan equivalence

Φ: homR
C (X,Y )

∼−→ homM
C (X,Y )

of Kan complexes.
For f : K → homR

C (X,Y ), we denote by f : J (K) → C the corresponding map in
the definition of homR

C (X,Y ). We also denote by F = Φ ◦ f and F : Σ (K) → C the
corresponding map in the definition of homM

C (X,Y ). We begin with the following
technical lemma.

Lemma 2.16. Given simplicial sets A ⊆ B and D, there is a canonical isomorphism

Σ(B ⋊A D)
∼−→ ΣB ⋊ΣA D.

Proof. Consider the following diagram (with the obvious maps) and compute the
colimit, starting once with the rows and once with the columns:

∂∆1 ∂∆1 ×D //oo ∂∆1 ×D ∂∆1 ×
(
∆0 ⋊∆0 D

)
∂∆1 ×A

��

OO

∂∆1 ×A×D //oo

��

OO

∂∆1 ×B ×D

��

OO

∂∆1 × (B ⋊A D)

��

OO

∆1 ×A ∆1 ×A×D //oo ∆1 ×B ×D ∆1 × (B ⋊A D)

ΣA ΣA×D //oo ΣB ×D ΣB ⋊ΣA D ≃ Σ(B ⋊A D) .

The following lemma compares the different models of the mapping space.

Lemma 2.17. Given simplicial sets A ⊆ B and two maps f, g : B → homR
C (X,Y ),

the following are equivalent:

(1) f, g : B → homR
C (X,Y ) agree on A (resp. homotopic rel. A).

(2) F,G : B → homM
C (X,Y ) agree on A (resp. homotopic rel. A).

(3) f, g : J (B) → C agree on J (A) (resp. homotopic rel. J (A)).

(4) F,G : Σ (B) → C agree on Σ(A) (resp. homotopic rel. Σ(A)).

Proof. In each of the statements (1)-(4) we refer to “agree on . . . ” as the first part and
to “homotopic rel . . . ” as the second part. We start with the equivalence (1) ⇐⇒ (2).
The first part follows from the fact that

Φ: homR
C (X,Y )

∼−→ homM
C (X,Y )

is a monomorphism and second part from the fact that it is a homotopy equivalence
of Kan complexes. In the equivalence (3) ⇐⇒ (4), the first part follows from the
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fact that ΣA → J (A) is an epimorphism and the second part can be seen as follows:
the maps f, g : J (B) → C are homotopic rel J (A) if and only if they are equivalent
as elements of the ∞-category that is the fiber over f |J(A) = g|J(A) (which is also

a homotopy fiber) of the categorical fibration CJ(B) → CJ(A). Since we have functo-
rial categorical equivalences Σ (A)

∼−→ J (A) and Σ (B)
∼−→ J (B), this is the same

as showing that the corresponding maps F,G : Σ (B) → C are equivalent in the fiber
of CΣ(B) → CΣ(A) (which is also the homotopy fiber). This in turn is the same as
having F,G homotopic rel. ΣA. It is left to show the equivalence (2) ⇐⇒ (4). The
first part is clear. The second part amounts to showing the equivalence of two exten-
sion problems. If F |A = G|A, we get a map F ∪A G from B ∪A B ≃ B ⋊A ∂∆1 to
homM

C (X,Y ) and F and G are homotopic rel. A if and only if F ∪A G extends to the
relative cylinder B ⋊A ∆1. In terms of maps to C, this is equivalent to the extension
problem

Σ
(
B ⋊A ∂∆1

)
//

��

C.

Σ
(
B ⋊A ∆1

)
77

On the other hand, by the assumption that F |ΣA = G|ΣA we get a map F ∪ΣA G from
ΣB ⋊ΣA ∂∆1 to C and F and G are homotopic rel. ΣA if and only if it extends to the
relative cylinder ΣB ⋊ΣA ∆1. By Lemma 2.16 for D = ∆1, ∂∆1, the two extension
problems are isomorphic.

We are now ready to prove Proposition 2.13.

Proof (of Proposition 2.13). For d ⩽ 0 this follows directly from the definitions, and
so we assume that d ⩾ 1. Let K be a simplicial set. On the one hand,

hom
(
K, homR

hdC (X,Y )
)
= hom(X,Y ) (J (K) , hdC)

=
[
J (K)

d−1
, J (K)

d
, J (K)

d+1
; C

]
(X,Y )

,

where the subscript (X,Y ) indicates that we take only the subset of maps that restrict
to (X,Y ) on ∂∆1 ↪→ J (K) (observe that this is independent of the representative as

∂∆1 ⊆ J (K)
d−1

). On the other hand,

hom
(
K,hd−1 hom

R
C (X,Y )

)
=

[
Kd−2,Kd−1,Kd; homR

C (X,Y )
]
.

We will argue that this last set is in natural bijection with the set[
J
(
Kd−2

)
, J

(
Kd−1

)
, J

(
Kd

)
, C

]
(X,Y )

.

First, by definition of the right mapping space we have a natural bijection

(−) : hom(Kd−1,homR
C (X,Y ))

∼−→ hom(X,Y )(J
(
Kd−1

)
, C).

Second, f extends to Kd if and only if f extends to J
(
Kd

)
. Likewise, it is clear that

two maps f, g : Kd−1 → homR
C (X,Y ) agree on Kd−2 if and only if the corresponding

maps f, g : J
(
Kd−1

)
→ C agree on J

(
Kd−2

)
. Hence, the only thing we need to show

is that f and g are homotopic rel. Kd−2 if and only if f and g are homotopic rel.
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J
(
Kd−2

)
and this follows from (1) ⇐⇒ (3) in Lemma 2.17. It remains to observe

that for every simplicial set K and every d ⩾ 1 we have a canonical isomorphism
J
(
Kd−1

) ∼−→ J (K)
d
. Hence, we get a natural bijection

hom
(
K, homR

hdC (X,Y )
)
≃ hom

(
K,hd−1 hom

R
C (X,Y )

)
and therefore an isomorphism α : homR

hdC (X,Y ) ≃ hd−1 hom
R
C (X,Y ).

Finally, we need to show that the isomorphism we have constructed is compat-
ible with the maps θ : homR

C (X,Y ) → hd−1 hom
R
C (X,Y ) and β : homR

C (X,Y ) →
homR

hdC (X,Y ). For this, consider a map f : K → homR
C (X,Y ). The composition

θ ◦ f is represented by the restriction f |Kd−1 , which corresponds to the map
f |Kd−1 : J

(
Kd−1

)
→ C. On the other hand, the composition β ◦ f corresponds to

the restriction of f : J (K) → C to J (K)
d+1

and these are identified by α.

3. d-Operads

We now develop the basic theory of (essentially) d-operads in analogy with (and
by bootstrapping of) the theory of d-categories. First,

Definition 3.1. Let d ⩾ −1. An essentially d-operad is an ∞-operad O such that for
all X1, . . . , Xn, Y ∈ O, the multi-mapping space MulO ({X1, . . . , Xn} ;Y ) is (d− 1)-
truncated. We denote by Opd the full subcategory of Op∞ spanned by essentially
d-operads.

Example 3.2. Two important special cases are:

(1) A symmetric monoidal ∞-category is an essentially d-operad if and only if its
underlying ∞-category is an essentially d-category.

(2) A reduced∞-operad P is an essentially d-operad if and only if the corresponding
symmetric sequence of n-ary operations {P (n)}n⩾0 consists of (d− 1)-truncated
spaces.

The corresponding strict notion is the following:

Definition 3.3. Let O be an ∞-operad.

(1) For d ⩾ 1, we say that O is a d-operad if O⊗ is a d-category.

(2) We say that O is a 0-operad if O⊗ is a skeletal 1-category and p is faithful.

(3) We say that O is a (−1)-operad if either O⊗ = ∅ or p is an isomorphism.

Remark 3.4. A d-operad is intended to bear the same relation to an essentially d-
operad as a d-category does to an essentially d-category; i.e. it is a strict model for
an ∞-operad in which all multi-mapping spaces are (d− 1)-truncated.

Next, we define the notion of a d-homotopy operad of an ∞-operad, which is
analogous to the notion of a d-homotopy category of an ∞-category. We begin by
showing that the functor hd behaves well with respect to inner and coCartesian edges.

Proposition 3.5. Let d ⩾ −1 and let p : C → D be a functor, where C is an ∞-
category and D a d-category.
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(1) If the functor p : C → D is an inner fibration, then so is hd (p) : hd (C) →
hd (D) = D.

(2) If in addition f is a p-coCartesian morphism in C, then hd (f) is hd (p)-co-
Cartesian in hdC.

Proof. For d = −1, 0, both assertions are trivial to check and so we assume that
d ⩾ 1. The argument that hd (p) is an inner fibration is similar to the argument that
hd (f) is coCartesian and so we shall prove them together. Using T.2.4.1.4, we need
to consider the lifting problem

Λm
i

//

��

hdC

��
∆m //

::

D
for some m ⩾ 2 and either

(1) 0 < i < m or

(2) i = 0 and ∆{0,1} ⊆ Λm
0 is mapped in hdC to hd (f).

For m ⩾ d+ 3, we have skjΛm
i = skj∆m for all j ⩽ d+ 1, and so the map

hom (∆m, hdC) → hom (Λm
i , hdC)

is a bijection and there is nothing to prove. For m ⩽ d+ 2, we have Λm
i = skd+1Λm

i ,
and so the map

hom (Λm
i , C) ↠ hom (Λm

i , hdC)

is surjective, hence the map Λm
i → hdC factors through Λm

i → C. Now, the functor
C → hdC identifies only homotopic morphisms (for d ⩾ 1); hence in (2) the image of
∆{0,1} in C is coCartesian. Thus, in both cases we can solve the corresponding lifting
problem in C, which induces a lift in the original square.

Definition 3.6. Given an ∞-operad p : O⊗ → Fin∗, we define its d-homotopy operad
hdO to be a map of simplicial sets pd : (hdO)

⊗ → Fin∗ defined as follows:

(1) For d ⩾ 1, we simply apply hd to p as a functor between ∞-categories and
use the fact that Fin∗ is a 1-category; hence there is a canonical isomorphism
hd (Fin∗) ≃ Fin∗.

(2) For d = 0, we first construct the (ordinary) category h̃0O⊗ whose objects are
those of O⊗ and each mapping space is replaced by its image in Fin∗. Then
we identify isomorphic objects in h̃0O⊗ (note that there is a unique induced
composition, since isomorphic objects are mapped to the same object in Fin∗)
and, finally, we define (h0O)

⊗
to be the nerve of the resulting category, with p0

being the obvious map to Fin∗.

(3) For d = −1, we define pd : Fin∗ → Fin∗ to be the identity functor if O⊗ ̸= ∅
and the unique functor pd : ∅ → Fin∗, otherwise.

In all three cases we have a canonical map of simplicial sets θd : O⊗ → (hdO)
⊗

over Fin∗.

Warning 3.7. For every ∞-operad O and d ⩾ 1 we have (hdO)
⊗ ≃ hd (O⊗), but

for d ⩽ 0 we get something slightly different. The reason for this is that (hdC)⊗
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corresponds to the application of hd fiber-wise to the map p : O⊗ → Fin∗. Since Fin∗
is a 1-category, for d ⩾ 1 this is the same as applying hd to p, but for d ⩽ 0 it is not.

Lemma 3.8. Let p : O⊗ → Fin∗ be an ∞-operad.

(1) The map pd : (hdO)
⊗ → Fin∗ is a d-operad.

(2) The canonical map θd : O → hdO is a map of ∞-operads.

(3) Given an ∞-operad map F : O → U , the induced map hdF : hdO → hdU on d-
homotopy operads, is an ∞-operad map.

Proof. For d = −1, there is nothing to prove in (1)–(3) and so we assume that d ⩾ 0.
(1) For d = 0, it is clear that (h0O)

⊗
is a skeletal 1-category, with p0 faithful; and

for d ⩾ 1, it is clear that (hdO)
⊗

is a d-category. Hence, we only need to show that
(hdO)

⊗
is an ∞-operad. For this we need to check the three conditions of Defini-

tion A.2.1.1.10.

• Since p : O⊗ → Fin∗ is an ∞-operad, for every inert morphism f : ⟨m⟩ → ⟨n⟩
and an object X ∈ hdO⊗

⟨m⟩, we can lift X to X ∈ O⊗
⟨m⟩ and find a coCartesian

lift g : X → Y of f in O⊗. For d ⩾ 1, the image g of g in (hdO)
⊗
is a coCartesian

lift of f by Proposition 3.5. For d = 0, we use the dual of T.2.4.4.3 to show that
g is coCartesian. The functor (h0O)

⊗ → Fin∗ is an inner fibration (as the nerve
of a functor of ordinary categories by T.2.3.1.5) and for every Z ∈ (h0O)

⊗
⟨m⟩,

pre-composition with g induces a diagram

Map(h0O)⊗
(
Y ,Z

)
��

// Map(h0O)⊗
(
X,Z

)
��

MapFin∗
(⟨m⟩ , ⟨k⟩) // MapFin∗

(⟨n⟩ , ⟨k⟩)

,

and this is a homotopy pullback as p0 is faithful and it is a pullback of sets.

• Let X ∈ (hdO)
⊗
⟨m⟩ and Y ∈ (hdO)

⊗
⟨n⟩ and let f : ⟨m⟩ → ⟨n⟩ be a morphism in

Fin∗. We first observe that

Mapf
(hdO)⊗

(X,Y ) ≃ hd−1

(
MapfO⊗ (X,Y )

)
.

For d ⩾ 1 this follows from Proposition 2.13 and for d = 0 it follows directly
from the definition. Hence,

Mapf
(hdO)⊗

(X,Y ) ≃ hd−1

(
MapfO⊗ (X,Y )

)
≃ hd−1

 ∏
1⩽i⩽n

Mapρ
i◦f

O⊗ (X,Yi)


≃

∏
1⩽i⩽n

hd−1

(
Mapρ

i◦f
O⊗ (X,Yi)

)
≃

∏
1⩽i⩽n

Mapρ
i◦f

(hdO)⊗
(X,Yi) .

Note that we use the fact that hd preserves finite products of spaces.

• For every finite collection of objects X1, . . . , Xn ∈ (hdO)
⊗
⟨1⟩ that are lifted to

objects of O⊗
⟨1⟩, there is an objectX ∈O⊗

⟨n⟩ and coCartesian morphisms fi : X →
Xi covering ρi : ⟨n⟩ → ⟨1⟩. The images of those maps in hdO⊗ are coCartesian
as well and satisfy the analogous property (Proposition 3.5(2)).
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(2) From the proof of (1), θd maps inert morphisms in O⊗ to inert morphisms in
hdO⊗.

(3) We need to show that hdF maps inert morphisms to inert morphisms. For d = 0,
this is automatic. For d ⩾ 1, let f : X → Y be an inert morphism in (hdO)

⊗
. There is

a coCartesian morphism f : X → Y ′ in O⊗ with the same image as f in Fin∗; hence
its image in (hdO)

⊗
is equivalent to f . Since the composition O⊗ → U⊗ → (hdU)⊗

preserves inert morphisms, it follows that the image of f in (hdU)⊗ is inert and since
the image of f in (hdU)⊗ is equivalent to the image of f , it is inert as well.

The following lemma provides the universal property of θd by analogy with Lem-
ma 2.11 for d-categories.

Lemma 3.9. Let O be an ∞-operad.

(1) For every d-operad U , pre-composition with θd induces an isomorphism of sim-
plicial sets

Alg
hdO

(U) → AlgO (U)

and, in particular, a homotopy equivalence

MapOp∞
(hdO,U) → MapOp∞

(O,U) .

(2) O is a d-operad if and only if θd is an isomorphism.

Proof. (1) Assume that d ⩾ 1. By the analogous fact for ∞-categories, the composi-
tion with θd induces an isomorphism

FunFin∗((hdO)⊗,U⊗)
∼−→ FunFin∗(O⊗,U⊗).

The simplicial set AlgO (U) is the full subcategory of FunFin∗ (O⊗,U⊗) spanned by
maps of ∞-operads (and similarly for hdO instead of O). The claim now follows from
the fact that the image of a coCartesian edge in O⊗ is coCartesian in (hdO)

⊗
(Propo-

sition 3.5(2)) and, conversely, every inert morphism in (hdO)
⊗

is up to equivalence
the image of an inert morphism in O⊗ (lift the source to some object X ∈ O⊗ and
choose any inert map with domain X).

For d = 0, essentially the same argument works, only now the inert maps of (h0O)
⊗

are precisely those whose image in Fin∗ is inert and therefore the inert maps of
(h0O)

⊗
are again precisely the images of inert maps in O⊗. For d = −1, the claim is

obvious.
(2) Follows from (1) and the Yoneda lemma in the 1-category POp∞ of ∞-

preoperads (see A.2.1.4.2).

Lemma 3.10. Let d ⩾ −1 and let O be an ∞-operad. The canonical map θd : O →
hdO is essentially surjective and for all X1, . . . , Xn, Y ∈ O, the map

MulO ({X1, . . . , Xn} ;Y ) → MulhdO ({θd (X1) , . . . , θd (Xn)} ; θd (Y ))

is a (d− 1)-truncation map.

Proof. The map θd : O → hdO is surjective on objects and hence is essentially sur-
jective. For d ⩾ 1, the second assertion follows from the corresponding fact for ∞-
categories; and for d = −1, 0, it follows directly from the definition.
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Corollary 3.11. An ∞-operad is an essentially d-operad if and only if it is equivalent
to a d-operad.

The following is the analogue of Theorem 2.15 for ∞-operads.

Theorem 3.12. The inclusion Opd ↪→ Op∞ admits a left adjoint hd, such that for
every ∞-operad O the value of hd on O is the d-homotopy operad of O, the unit trans-
formation θd : O → hdO is essentially surjective, and for all objects X1, . . . , Xn, Y ∈
O, the map of spaces

MulO ({X1, . . . , Xn} ;Y ) → MulhdO ({θd (X1) , . . . , θd (Xn)} ; θd (Y ))

is the (d− 1)-truncation map.

Proof. Follows from Lemma 3.10, Lemma 3.9 (the universal property of θd) and
Corollary 3.11 analogously to the proof for d-categories.

We conclude with a simple consequence of the theory of d-operads, that showcases
the effectiveness of the strict model.

Proposition 3.13. Let O be an ∞-operad and let U be an (essentially) d-operad.
The ∞-category AlgO (U) is an (essentially) d-category.

Proof. Since an ∞-operad U is an essentially d-operad if and only if it is equivalent
to a (strict) d-operad, it is enough to prove the strict version. By definition, the ∞-
category AlgO (U) is a full subcategory of Fun (O⊗,U⊗). For d ⩾ 1, the ∞-category
U⊗ is a d-category and, therefore, by T.2.3.4.8, the ∞-category Fun (O⊗,U⊗) is a
d-category as well. Hence, every full subcategory of it is a d-category. For d = 0, by
Lemma 3.9 we can assume that O⊗ is a 0-operad as well and therefore both O⊗ and
U⊗ are skeletal 1-categories with faithful projection to Fin∗. Observing that AlgO (U)
is a full subcategory of FunFin∗ (O⊗,U⊗) and using the faithfulness of the projections
to Fin∗, we see that the mapping spaces are either empty or singletons. For d = −1,
the claim is obvious.
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