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Abstract
Using the category of finite sets and injections, we construct a

new model for the multilinearization of multifunctors between
spaces that appears in the derivatives of Goodwillie calculus.
We show that this model yields a lax monoidal functor from
the category of symmetric functor sequences to the category
of symmetric sequences of spaces after evaluating at S0. We
also give a construction which extends the result to symmetric
sequences of spectra.

1. Introduction

The chain rule of calculus gives a way of relating the derivative of a composition
to the derivatives of the composite functions; put another way, taking derivatives
preserves composition of functions in some sense. Higher order derivatives satisfy a
similar chain rule, discovered by Faà di Bruno. This relationship between derivatives
is a foundational tool for computations in any setting where derivatives make sense.

In [Goo03], a notion of derivative was introduced by Goodwillie for homotopical
functors from spaces to spaces or spectra. He constructed a Taylor tower of polynomial
approximations and identified the layers of this tower as infinite loop spaces, classified
by certain spectra, called the derivatives of the functor. He further identified the
homotopy type of the derivatives, showing that the nth derivative is equivalent to the
multilinearization of the nth cross-effect of the functor evaluated at S0. In [KR02],
Klein and Rognes gave a chain rule for Goodwillie’s first derivatives establishing a
homotopy-theoretic computation of the first derivative of a mapping space functor.
In [Chi05], Ching showed that the higher derivatives of the identity functor of spaces
form an operad by showing that the dual spectra form a cooperad, building on work
of Johnson and Arone–Mahowald [Joh95, AM99]. Working with these models and
using duality, Arone and Ching showed that the derivatives of other functors are
bimodules over the derivatives of the identity [AC11]. From these module structures,
they proved a Faà di Bruno chain rule for the higher derivatives of functors.

One question in [AC11] is whether the derivatives functor is lax monoidal as a
functor from endofunctors of spaces to symmetric sequences, a categorical way of
capturing the preservation of composition. This would account for the operad and
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module structures of derivatives and would extend the results of [AC11] to other
functors. This note seeks to push closer to a positive answer to that question.

Goodwillie’s identification of the infinite loop space associated to the derivatives
as multilinearized cross-effects evaluated at S0 can be broken into a composition. Let
T be the category of pointed spaces, let T n be the cartesian product of n copies
of T , and let Fun(T , T ) be the category of endofunctors of T . The first functor
sends an endofunctor of spaces to its sequence of cross-effects. The second functor is
multilinearization at each level followed by evaluation at S0 in each variable.

Fun(T , T )
cr∗

SymmFun(T )
D

(∗)
1 −(S0)

SymmSeq(T )

The sequence of cross-effects of an endofunctor is an object of the category of
symmetric functor sequences. A symmetric functor sequence F∗ is an element of
∏

n>1 Fun(T
n, T ), that is, a sequence of multifunctors Fk : T

k → T , which are sym-
metric in all k variables. We say a functor is pointed if it preserves the one point
space, and we call a multifunctor multipointed if it is pointed in each variable. The
category of symmetric functor sequences has a monoidal product induced by compo-
sition of functors. The category of symmetric sequences in spaces also has a monoidal
product called the composition product. We prove the following result, which says
that the second functor is lax monoidal on multipointed symmetric functor sequences
which land in well-based spaces.

Theorem 4.2. Given symmetric functor sequences F∗,G∗ which are pointed in each
variable and take values in well-based spaces, there are natural maps S0 → D1id(S

0)
and

D
(∗)
1 G∗(S

0) ◦ D
(∗)
1 F∗(S

0) → D
(∗)
1 (G ◦ F)∗(S

0),

where I is the category of finite sets and injections, D1 is defined by

D1F (X) = hocolim
U∈I

ΩUF (ΣUX),

and D
(n)
1 denotes applying D1 in each of the n variables. Further, for symmetric func-

tor sequences satisfying extra connectivity conditions, D
(n)
1 is equivalent to ordinary

multilinearization.

This theorem reduces the question of [AC11] to: Is there a model for cr∗ : Fun(T ,

T ) → SymmFun(T ) which is monoidal with respect to composition and takes values
in multipointed symmetric functor sequences? The cross-effects functor satisfies these
conditions in some settings, for example, for functors of abelian categories [JM04].

In the second section, we review Goodwillie’s definition of linearization and rele-
vant definitions of operads, including the notion of symmetric functor sequences. In
the third section, we discuss using the category of finite sets and injections to replace
the straight line category as an index for homotopy colimits. We also review the defi-
nition of the sphere operad of [AK14] and a modification which produces useful maps
in linearizations. In the fourth section, we apply the new linearization to symmetric
multifunctors, recovering the main theorem and the corollary that under certain con-
nectivity conditions, the multilinearization of a functor-operad is an operad. In the
final section, the maps from section 4 are lifted to maps of symmetric spectra.
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2. Background and conventions

In this section, we review the notion of linearization in functor calculus and relevant
definitions.

Definition 2.1. Let F : T → T be an endofunctor of pointed spaces. We say F is a
homotopy functor if it preserves weak equivalences. We say F is reduced if F (∗) ≃ ∗,
and pointed if F (∗) = ∗. Finally, F is continuous if the natural map Hom(X,Y ) →
Hom(F (X), F (Y )) is a continuous function.

We note that since Hom(X,Y ) is a pointed space, we require Hom(X,Y ) →
Hom(F (X), F (Y )) to be a pointed map. That is, X → ∗ → Y is sent to the base-
point of Hom(F (X), F (Y )), thus a functor F must be strictly pointed in order to be
continuous.

Assembly maps are incredibly useful to the point of view offered here, so we review
their construction.

Lemma 2.2. If F is a continuous functor, then F has assembly, a binatural trans-
formation which is also natural in F given by

αF : Z ∧ F (X) −→ F (Z ∧X).

Proof. The assembly map is given by pushing the identity through the following
maps:

Hom(Z ∧X,Z ∧X)
∼=

−−→Hom(Z,Hom(X,Z ∧X))

F∗−−→Hom(Z,Hom(F (X), F (Z ∧X)))
∼=

−−→Hom(Z ∧ F (X), F (Z ∧X)).

For homotopy limits and colimits, we will use the definitions of Bousfield and Kan
in [BK72]. This model for homotopy colimit is sometimes called the uncorrected
homotopy colimit.

Definition 2.3. The homotopy limit of a diagram X : J → T , holimJ X , is given by
the totalization of the cosimplicial replacement crep X , which has nth term

(crep X )n =
∏

j0→···→jn

X (jn).

Dually, the homotopy colimit of a diagram X : J → T , hocolimJ X , is given by
the realization of the simplicial replacement srep X , which has nth term

(srep X )n =
∨

j0→···→jn

X (j0).
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Proposition 2.4. Let I,J be small categories. The Bousfield–Kan model for homo-
topy colimits satisfies the following properties:

(a) For a functor F : I × J → T , there is a natural homeomorphism

hocolim
I

hocolim
J

F (i, j) ∼= hocolim
I×J

F (i, j).

(b) Given a functor β : I → J on indexing categories and F : J → T , then β induces
a natural map

hocolim
I

F ◦ β → hocolim
J

F.

(c) If F,G : J → T are functors and η : F → G is a natural transformation, then η

induces a natural map

hocolim
J

F → hocolim
J

G.

(d) Given F : I → T and a space X, there is a natural map

αhc : (hocolim
I

F ) ∧X → hocolim
I

(F ∧X).

This model for homotopy colimit is not homotopy invariant in general, but it is on
well-based spaces [Mal, 2.6]. We assume that all functors take values in well-based
spaces.

2.1. Goodwillie’s linearization

In [Goo03], Goodwillie constructs the Taylor tower {PnF} of a homotopy functor
F from topological spaces to spaces or spectra, and Kuhn shows that Goodwillie’s
work extends to functors between more general model categories [Kuh07]. We will
concentrate on the linearization of an endofunctor of spaces.

Definition 2.5. A functor F is 1-excisive if for every homotopy cocartesian square
X , the square F (X ) is homotopy cartesian.

We will often omit the word “homotopy” from our limits and colimits, but it is
always intended, unless noted otherwise.

Goodwillie defines the 1-excisive approximation P1F of a homotopy functor F as
the homotopy colimit of an infinite iteration of intermediate functors T1F . For the
purposes of this paper, we only need T1F for reduced functors F , so we substitute
Goodwillie’s definition with the following equivalent one.

Definition 2.6. For a reduced functor F , define the functor T1F by Ω ◦ F ◦ Σ.

We see that T1 : Fun(T , T ) → Fun(T , T ) can be iterated, and thus T i
1F ≃ Ωi ◦

F ◦ Σi for F reduced. There is a natural transformation t1 : F → T1F . Then P1F =
hocolimi→∞ T i

1F , and the 1st layer of the Taylor tower is the fiber D1F =
hofib[P1F → F (∗)]. The functor D1F is reduced and is called the linearization of
the functor F . When F is reduced, P1F is equivalent to the linearization, and
D1F ≃ hocolimi Ω

iFΣi.
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Definition 2.7. Let F : T → T be a homotopy functor. F is stably 1-excisive or
satisfies stable 1st order excision, if the following condition holds for some numbers c
and κ:

E1(c, κ): If X : P({0, 1}) → C is any strongly cocartesian square such that the maps
X (∅) → X ({s}) are ks-connected for s ∈ {0, 1} and ks > κ, then the diagram F (X )
is (−c+Σks)-cartesian.

Example 2.8 ([Goo92, 4.3, 4.5]). The identity functor of spaces is stably 1-excisive
by the Blakers–Massey theorem, and the functor Hom(K,−) is stably 1-excisive,
satisfying E1(kn,−1) where k = dim(K).

We think of stable 1-excision as being a bound on the failure of a functor to be 1-
excisive; that is, applying the functor to a cocartesian square of sufficiently connected
spaces is predictably cartesian. These connectivity conditions turn out to be precisely
what is necessary to linearize over a different category and retain the same homotopy
type, as indicated in Lemma 3.4.

2.2. Symmetric sequences and symmetric functor sequences
We review the pertinent definitions of symmetric sequences and the related cate-

gory of functors.

Definition 2.9. Let C be a category and let Σ be the category of finite sets and
bijections. A symmetric sequence in C is a functor A : Σ → C. This is a sequence
{A(n)}n>1 of objects of C with a Σn-action on A(n) for each n > 1. A morphism of
symmetric sequences f : A → B is a natural transformation of functors or, explicitly,
a sequence of Σn-equivariant morphisms f(n) : A(n) → B(n). We denote the category
of symmetric sequences in C by SymmSeq(C).

Definition 2.10. If C is a cocomplete closed symmetric monoidal category with
monoidal product denoted ∧ and if A,B are symmetric sequences in C, then the com-
position product or ◦-product of A and B is the symmetric sequence A ◦B defined by

(A ◦B)(n) =
∨

unordered partitions of {1,...,n}

A(k) ∧B(n1) ∧ · · · ∧B(nk).

The composition product defines a monoidal product on the category of symmetric
sequences in C. If the unit of C is S and zero-object ∗, the unit object of SymmSeq(C)
is given by

1(n) =

{

S if n = 1,
∗ else.

Definition 2.11. An operad in C is a monoid in SymmSeq(C) under the composition
product; that is, an operad is a symmetric sequence O with a composition map γ : O ◦
O → O and a unit map η : 1 → O satisfying associativity and unitality diagrams.

Definition 2.12. Let C be a symmetric monoidal category and let Ck denote the
k-fold cartesian product. Each permutation σ ∈ Σk yields a map σ# : Ck → Ck which
permutes the coordinates, σ#(X1, . . . , Xk) = (Xσ(1), . . . , Xσ(k)). A symmetric func-

tor sequence in C is a sequence of functors Fk : C
k → C with natural isomorphisms

σ∗ : Fk → Fk ◦ σ# for each σ ∈ Σk. A morphism of symmetric functor sequences is a
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sequence of levelwise natural transformations. We denote the category of symmetric
functor sequences in C by SymmFun(C).

This category is related to a 2-category introduced by Day and Street in [DS03].

Proposition 2.13 ([DS03]). If C has coproducts, SymmFun(C) has a monoidal prod-
uct defined for symmetric functor sequences F∗ and G∗ by

(G ◦ F)n =
∑

j1+···+jk=n

Gk ◦ (Fj1 × · · · × Fjk).

The unit of this monoidal product is given by the initial object 0 ∈ Fun(Cn, C) for
n 6= 1 and idC for n = 1.

Definition 2.14. A monoid in SymmFun(C) is called a multitensor, a lax monoidal
category (in [DS03]), or a functor-operad (in [MS04]).

Example 2.15. In a symmetric monoidal category,
⊗

k(X1, . . . , Xk) =
⊗k

i=1 Xk de-
fines a functor-operad. If O is an operad in a category C with products, then
∏

O

k (X1, . . . , Xk) = O(k)×X1 × · · · ×Xk is a functor-operad.

In [BJY], Bauer, Johnson, and the author show that for a monad F of R-modules,
the directional derivatives of abelian calculus, ∇kFR(X) : ModkR → Ch(R), form a
functor-operad in an appropriate Kleisli category.

Definition 2.16. A functor F : C → D between monoidal categories (C,⊗C , 1C) and
(D,⊗D, 1D) is lax monoidal if there is a morphism ǫ : 1D → F (1C) and a natural trans-
formation µX,Y : F (X)⊗D F (Y ) → F (X ⊗C Y ) satisfying associativity and unitality
diagrams.

3. A new linearization

In this section, we define a new model for linearization, using the sphere operad
and the category of finite sets with injections.

3.1. The category I

In redefining linearization, we will exploit the properties of a particular indexing
category used by Bökstedt in his definition of topological Hochschild homology. The
use of the category I has found great success in the areas of algebraic K-theory and
representation stability.

Definition 3.1. Let I denote (the skeleton of) the category of finite sets and injective
maps. Let N denote the category of finite sets with only the standard inclusions (those
induced by subset inclusion).

Bökstedt showed that under certain conditions on a functor G : I → T , the map
hocolimN G → hocolimI G is an equivalence [Bök85]. Essentially, the condition is that
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maps further in the diagram become more and more connected. For a multifunctor,
there is a criterion for equivalence which reduces to that of Bökstedt’s when q = 1.

Lemma 3.2 ([DGM13, 2.2.2.2]). If G : Iq → T , x ∈ I
q, let x ↓ I

q be the full subcat-
egory of Iq receiving maps from x, then if G sends maps in x ↓ I

q to nx-connected
maps and nx → ∞ as |x| → ∞ (where |x| is the sum over the factors of x), then
hocolimNq G → hocolimIq G is an equivalence.

Using a homotopy colimit over I, we can define a tower {PnF} which is equivalent
to the Taylor tower when F is analytic. We prove the n = 1 case. For functors F : T →
Sp, the Taylor tower defined in this way is investigated further in [Yea].

Definition 3.3. Let P1F = hocolimk∈I T
k
1 F .

Lemma 3.4. When F is stably 1-excisive, P1F → P1F is an equivalence.

Proof. We will show that the functor Θ: I → Fun(T , T ) defined by Θ(k) = T
|k|
1 F

satisfies the hypotheses of Bökstedt’s lemma (3.2) when F satisfies E1(c, κ). By
[Goo03, Prop 1.4], if F satisfies E1(c, κ), then T1F satisfies E1(c− 1, κ− 1) and
t1F : F → T1F is (−c+ 2ℓ)-connected on objects X which are (ℓ− 1)-connected with
ℓ > k. By induction on i, T i

1F satisfies E1(c− i, κ− i), and T i
1F (X) → T i+1

1 F (X) is
at least (i− c+ 2ℓ)-connected for ℓ > κ. Since (i− c+ 2ℓ) increases as i increases, Θ
satisfies the condition of Bökstedt’s lemma.

3.2. The sphere operad

We will need to be careful with the model of spheres we use in our linearizations,
as we need strict associativity. We will make use of the sphere operad defined in
[AK14], so we recall its definition and salient properties now.

The sphere operad S is the one-point compactification of a nonunital simplex
operad, whose nth space is the open (n− 1)-dimensional simplex, so the nth space
of S is homeomorphic to Sn−1. The operad composition maps are homeomorphisms

Sk−1 ∧ Sj1−1 ∧ · · · ∧ Sjk−1 → Sj1+···+jk−1.

There is a map of operads S → Coend(S1) such that for each n > 1 the map Sn
∼=

Sn−1 → ΩSn is adjoint to a homeomorphism Sn−1 ∧ S1 → Sn. Since the Σn-action
on the coendomorphism operad of S1 permutes the n coordinates of Sn, this defines a
Σn-equivariant map S1 ∧ Sn

∼= Sn. Finally, there is a map of operads Com → S such
that the composite Com → S → Coend(S1) is levelwise the canonical map adjoint to
the diagonal map S1 → Sn.

Definition 3.5. Let SU denote the operad whose nth space is the smash product of
U copies of Sn.

We use the finite set U to index the spheres because we will be linearizing over the
category I. The operad SU has the diagonal Σn-action induced by that on Sn, and
composition maps require a shuffling of coordinates before applying the composition
maps of S.
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Proposition 3.6. For a continuous functor F : T → T and j > 1, there is a map

ΓU
j : ΩUF (SU ) → Ω

∐
j UF (S

∐
j U ).

Define the map by smashing an element of ΩUF (SU ) with the jth space of SU

then assembling the sphere into F . That is, f in ΩUF (SU ) maps to the composite

S
∐

j U ∼= SU
j ∧ SU

SU
j ∧f

−−−−→ SU
j ∧ F (SU )

αF−−→ F (SU
j ∧ SU ) ∼= F (S

∐
j U ).

We will discuss the associativity properties of this map after the main theorem.

4. Linearizing symmetric functor sequences

In [Goo03], Goodwillie identifies the infinite loop space associated to the deriva-
tives of a functor as the multilinearized cross-effects evaluated at S0. The nth cross-
effect is a functor of n variables which satisfies some connectivity hypotheses, namely,
it is stably 1-excisive in each variable, even after partial linearization. The collection
of cross-effects form a symmetric functor sequence. In this section, we will consider
multilinearization of more general symmetric functor sequences.

Definition 4.1. Let Fn : T
n → T . Then we denote the linearization of Fn in each

variable over I by

D
(n)
1 Fn(X1, . . . , Xn) = hocolim

U1,...,Un∈I

ΩU1 · · ·ΩUnFn(Σ
U1X1, . . . ,Σ

UnXn).

We denote the I
n-shaped diagram over which the linearization is taken by

Ω•,...,•FnΣ
•,...,•.

There is a natural map D
(n)
1 Fn → D

(n)
1 Fn, which is an equivalence when

Ω•,...,•FnΣ
•,...,• satisfies the condition of Lemma 3.2. We abuse notation by letting

Fn(X) = Fn(X, . . . ,X), the evaluation of the multifunctor on the diagonal.

Theorem 4.2. The functor D
(∗)
1 − (S0) : SymmFun∗(T ) → SymmSeq(T ) from multi-

pointed symmetric functor sequences of spaces to symmetric sequences is lax monoidal.

Proof. The unit ǫ : S0 → D1id(S
0) is given by inclusion of the first object in the

homotopy colimit

id(S0) → D1id(S
0) = hocolim

I

(

id(S0) ΩidΣ(S0) · · ·
)

.

We note that the symmetric group Σn acts on D
(n)
1 Fn(S

0) by permuting the n

inputs of Fn. In the linearization, this also block-permutes the loops.

We now define

µk,ji : D
(k)
1 Gk(S

0) ∧ D
(j1)
1 Fj1(S

0) ∧ · · · ∧ D
(jk)
1 Fjk(S

0) → D
(
∑

ji)
1 (G ◦ F)∑ ji(S

0).
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We will start with the definition of the map on level one:

µ1,1 : D1G1(S
0) ∧ D1F1(S

0) → D1(G ◦ F)1(S
0).

Recall that the homotopy colimit and loops functors are both continuous, so by
Lemma 2.2 they have assembly maps α. The first step is to assemble the homotopy
colimits and loops out of the smash product. Next, we use assembly for F1 and G1

to nest them then include this summand into the composition G ◦ F . Finally, we use
the map induced by

∐

: I× I → I to reindex the homotopy colimit.

hocolim
U∈I

ΩUG1(S
U ) ∧ hocolim

V ∈I

ΩV F1(S
V )

αhocolim, αΩ

hocolim
U∈I

hocolim
V ∈I

ΩUΩV G1(S
U ) ∧ F1(S

V )

αG1
,αF1

hocolim
U∈I

hocolim
V ∈I

ΩUΩV G1(F1(S
U ∧ SV ))

incl

hocolim
(U,V )∈I×I

ΩU
∐

V (G ◦ F)1(S
U

∐
V )

∐
∗

hocolim
W∈I

ΩW (G ◦ F)1(S
W )

Remark 4.3. The last step is the key reason for using I; if the homotopy colimit is
defined over N, the map µ can be defined, but it will not be strictly associative on
homotopy colimits. This is similar to the reason naive spectra do not have a good
smash product, but symmetric spectra have enough extra structure to encode the
smash product in an associative way.

We will introduce new notation to save some ink in the definition of the general
µ. If U, V1, . . . , Vk are finite sets, let SV denote the k-tuple of spheres (SV1 , . . . , SVk)
and let SU

∐
V = (SU

∐
V1 , . . . , SU

∐
Vk). We will restrict to the case

µ2,j1,j2 : D
(2)
1 G2(S

0) ∧ D
(j1)
1 Fj1(S

0) ∧ D
(j2)
1 Fj2(S

0) → D
(j1+j2)
1 (G ◦ F)j1+j2(S

0),

and note that the general case follows easily.
The map µ is defined as a long composition, with most maps the same as in the

level one case. As before, we assemble the homotopy colimits and loops out of the
smash product first, but then we apply the map constructed in Proposition 3.6 for
both variables of G2, that is, Γ

U1
j1

and ΓU2
j2
. Then we use assembly for the Fji to nest

them, noting that only one copy of SUi assembles into each variable of Fji . Finally, as
before, we include into the composition of symmetric functor sequences, and use the
coproduct of I to reindex the homotopy colimit. That is, µ is defined by the following
composite.
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hocolim
U1,U2∈I

ΩU1ΩU2G2(S
U1 , SU2)∧ hocolim

V 1
1 ,...,V 1

j1
∈I

Ω
∐

V 1
i Fj1(S

V 1

)∧ hocolim
V 2
1 ,...V 2

j2
∈I

Ω
∐

V 2
ℓ Fj2(S

V 2

)

αhocolim,αΩ

hocolim
U1,U2,V

1
1 ,...,V 2

j2
∈I

ΩU1ΩU2Ω
∐

V 1
i Ω

∐
V 2
ℓ G2(S

U1 , SU2) ∧ Fj1(S
V 1

) ∧ Fj2(S
V 2

)

Γ
U1
j1

, Γ
U2
j2

hocolim
U1,U2,V

1
1 ,...,V 2

j2
∈I

Ω
∐

j1
U1Ω

∐
j2
U2Ω

∐
V 1
i Ω

∐
V 2
ℓ G2(S

∐
j1
U1 , S

∐
j2
U2)∧Fj1(S

V 1

)∧Fj2(S
V 2

)

αG2

hocolim
U1,U2,V

1
1 ,...,V 2

j2
∈I

Ω
∐

j1
U1Ω

∐
j2
U2Ω

∐
V 1
i Ω

∐
V 2
ℓ G2(S

∐
j1
U1 ∧Fj1(S

V 1

), S
∐

j2
U2 ∧Fj2(S

V 2

))

αFji

hocolimU1,U2,V
1
1 ,...,V 2

j2
∈I Ω

∐
(U1

∐
V 1
i )Ω

∐
(U2

∐
V 2
ℓ )G2(Fj1(S

U1

∐
V 1

),Fj2(S
U2

∐
V 2

))
∐

∗
◦incl

hocolimW1,...,Wj∈I Ω
∐

Wi(G ◦ F)j(S
W1 , . . . , SWj )

To verify associativity, we must check that for another symmetric functor se-
quence H∗,

(D
(∗)
1 G ◦ D

(∗)
1 F) ◦ D

(∗)
1 H = D

(∗)
1 G ◦ (D

(∗)
1 F ◦ D

(∗)
1 H).

Since the assembly maps are associative and natural as well as the symmetric functor
sequence composition, associativity of the composition above boils down to commu-
tativity of a single square below involving the maps Γ described in Proposition 3.6.

To simplify notation, we assume k = 1 and omit the homotopy colimits and the
terms for the symmetric functor sequence H∗ (which have indices i1, . . . , ij).

ΩUΩV1 · · ·ΩVjG1(S
U ) ∧ Fj(S

V1 , . . . , SVj )

Ω
∐

j UΩV1 · · ·ΩVjG1(S
∐

j U ) ∧ Fj(S
V1 , . . . , SVj )

ΩUΩ
∐

i1
V1 · · ·Ω

∐
ij

VjG1(S
U ) ∧ Fj(S

∐
i1

V1 , . . . , S
∐

ij
Vj )

Ω
∐

∑
i UΩ

∐
i1

V1 · · ·Ω
∐

ij
VjG1(S

∐
U ) ∧ Fj(S

∐
i1

V1 , . . . , S
∐

ij
Vj )

ΓU
j

Γ
V1
i1

,...,Γ
Vj
ij

ΓU
i1

,...,ΓU
ij
,Γ

V1
i1

,...,Γ
Vj
ij

ΓU∑
i

Assembly into different variables of a multifunctor is commutative, and so the
square commutes because ΓU∑

i
= (ΓU

i1
∧ · · · ∧ ΓU

ij
) ◦ ΓU

j by the homeomorphism of the

sphere operad’s composition, SU∑
i
∼= SU

j ∧ SU
i1
∧ · · · ∧ SU

ij
.

Note that the assembly maps are equivariant and associative, and the composition
of symmetric functor sequences is also equivariant with respect to permuting the
variables, so the composition above is equivariant and associative.

Furthermore, if a functor-operad F∗ is such that Ω•,...,•FnΣ
•,...,• satisfies the con-

ditions of Lemma 3.2 for each n, then the multilinearization over I is equivalent to
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the usual multilinearization of F∗.
Monoidal functors take monoids to monoids, so the multilinearization of a multi-

pointed functor-operad or multitensor of spaces evaluated at S0 is an operad. Given a
monoidal model for the cross-effects functor cr∗, this would give an operad structure
on the symmetric sequence Ω∞∂∗F (∗) of spaces associated to Goodwillie’s deriva-
tives of a monad F at the one point space. In order to recover and extend the operad
structure of the derivatives of the identity functor of spaces (as a symmetric sequence
of spectra), Theorem 4.2 needs to be modified to land in symmetric sequences of
spectra.

5. Extension to symmetric spectra

The multilinearization of a multifunctor from based spaces to spaces is still a space-
valued functor, while Goodwillie’s derivatives are spectra. We show in this section that
the monoidal structure maps from Theorem 4.2 lift to maps of symmetric spectra.
This ensures that a monoidal model for the cross-effects functor will recover the
operad structure for the derivatives of the identity of spaces, giving explicit structure
maps and extending the operad structure for the identity in [Chi05] to all monads
on T .

Given a morphism α : m → n in I, let n− α denote the complement of α(m) in n
and let Sn−α be the one point compactification of Rn−α. Let IS be the topologically
enriched category with the same objects as I, but with morphism spaces

IS(m,n) =
∨

α : m→n∈I

Sn−α.

If α : m → n and β : n → p are injections, then the composite is defined by the com-
posite injection in I and the homeomorphism Sp−β ∧ Sn−α → Sp−βα induced by the
linear isometry R

p−β ⊕ R
n−α → R

p−βα determined by α and β.
A symmetric spectrum is a based continuous functor IS →T ([MMSS01, Sch09]).

Definition 5.1. Given a symmetric functor sequence F∗ of spaces, we define a spec-
trum for the multilinearization of the kth level by

m 7→ D
(k)
1 (Sm ∧ Fk)(S

0) = hocolim
U1,...,Uk∈I

Ω
∐

UiΣmFk(S
U1 , . . . , SUk).

We denote this spectrum by D
(k)
1 Σ∞Fk(S

0).

Given an analytic endofunctor of spaces F , this definition is equivalent to Good-
willie’s characterization of the kth derivative of F as a spectrum (if Fk is replaced
with the kth cross-effect of F ).

The symmetric monoidal structure ∐ of I yields a symmetric monoidal structure
∐S on IS , which implies that the category of symmetric spectra inherits a symmetric
monoidal (internal) smash product. By [MMSS01, 21.5], the internal smash product
of two symmetric spectra is the topological left Kan extension of the external smash
product ∧ along ∐S , which is characterized by the universal property

Fun(IS , T )(X ∧ Y,Z) ∼= Fun(IS ∧ IS , T )(X∧Y,Z ◦ ∐S).

That is, one can check that a map is defined out of a smash product of symmetric
spectra by pulling backZ along∐S to a bispectrum and checking the map on bispectra.
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In the case of the maps µk,ji , we will pull the target spectrum D
(n)
1 Σ∞(F ◦G)n(S

0)

back to a (k + 1)-fold multispectrum Z : I
∧(k+1)
S → T , where n =

∑

ji. The pullback
is defined by

(m0,m1, . . . ,mk) 7→ D
(n)
1 (S

∑
mℓ ∧ (F ◦G)n)(S

0).

More simply, the i+ jth level of the target spectrum becomes level (i, j) of the pull-
back bispectrum.

We then define

µk,ji : D
k
1Σ

m0Fk(S
0) ∧ D

j1
1 Σm1Gj1(S

0) ∧ · · · ∧ D
jk
1 ΣmkGjk(S

0)

→ D
n
1Σ

m0+···+mk(F ◦ G)n(S
0)

in the obvious way from the µk,ji in section 4. To show this is well-defined on the inter-
nal smash product, we check that the maps composing µ commute with the structure

maps in the category I
∧(k+1)
S . The maps composing µ are easily seen to commute with

the morphisms in the diagram category I
∧(k+1)
S , as they do nothing with the sphere

coordinates indexing the multispectrum levels. Thus µk,ji is a well-defined map on
multispectra, and so also on the internal smash product of the symmetric spectra,
giving rise to spectrum maps

D
(∗)
1 Σ∞F(S0) ◦ D

(∗)
1 Σ∞G(S0) → D

(∗)
1 Σ∞(F ◦ G)(S0).

The unit map from Theorem 4.2 also extends to spectra, now as the inclusion of
the sphere spectrum into the first term of the homotopy colimit. Thus we have the
following.

Proposition 5.2. The functor D
(∗)
1 Σ∞ − (S0) is lax monoidal as a functor from the

category of symmetric functor sequences of spaces which are pointed in each vari-
able and take values in well-based spaces to the category of symmetric sequences of
symmetric spectra:

D
(∗)
1 Σ∞ − (S0) : SymmFun∗(T ) → SymmSeq(Sp).
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