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NONTRIVIAL EXAMPLE OF THE COMPOSITION

OF THE BRANE PRODUCT AND COPRODUCT

ON GORENSTEIN SPACES

SHUN WAKATSUKI

(communicated by Charles A. Weibel)

Abstract
We give an example of a space with nontrivial composition

of the brane product and the brane coproduct, which we intro-
duced in a previous article.

1. Introduction

In this article, we give an example where the composition µ ◦ δ of the brane product
and the brane coproduct is nontrivial.

Theorem 1.1. Let k be a positive even integer. Let M be the Eilenberg–MacLane
space K(Z, 2n) with n > k/2. Then the composition µSk ◦ δSk of the Sk-brane product

µSk : H∗(Map(Sk,M))→ H∗+2n−1(Map(Sk−1 × S1,M)),

analogous to [3, Part I, Chapter 5], and the Sk-brane coproduct

δSk : H∗(Map(Sk−1 × S1,M))→ H∗−2n+k−1(Map(Sk,M)),

introduced in our previous paper [10], is nontrivial.

In some cases, the Sk-brane coproduct is trivial. Now we recall the definition of
a pure Sullivan algebra. A Sullivan algebra (∧V, d) with dimV <∞ is called pure
if d(V even) = 0 and d(V odd) ⊂ ∧V even (cf. [5, Section 32]). Here we denote V even =⊕

n V
2n and V odd =

⊕
n V

2n+1.

Theorem 1.2. Let k be a positive even integer and M a k-connected (Gorenstein)
space with

⊕
n πn(M)⊗K of finite dimension. Assume that the minimal Sullivan

model of M is pure and has at least one generator of odd degree. Then the Sk-brane
coproduct is trivial for M .

For a connected Lie group G and its closed connected subgroup H, the homoge-
neous space M = G/H satisfies the assumption if the canonical map π∗(H)⊗K→
π∗(G)⊗K is not surjective.
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The following corollary follows from Theorems 1.1 and 1.2.

Corollary 1.3. Let k be a positive even integer and M a k-connected (Gorenstein)
space with

⊕
n πn(M)⊗K of finite dimension. Assume that the minimal Sullivan

model of M is pure. Then the composition µSk ◦ δSk is nontrivial if and only if M is
a finite product

∏
iK(Z, 2ni) of Eilenberg–MacLane spaces of even degrees.

Now we explain the background of the above theorems. Chas and Sullivan [1]
introduced the loop product µ : H∗(LM × LM)→ H∗−m(LM) on the homology of
the free loop space LM = Map(S1,M) of a connected closed oriented manifold M of
dimension m. Constructing a 2-dimensional topological quantum field theory with-
out counit, Cohen and Godin [2] generalized this product to other string opera-
tions, including the loop coproduct δ : H∗(LM)→ H∗−m(LM × LM). But Tamanoi
[9] showed that any string operation corresponding to a positive genus surface is triv-
ial. In particular, the composition µ ◦ δ is trivial. In contrast, Theorem 1.1 shows that
this is not the case for brane operations and hence they give richer structures on the
homology of mapping spaces.

The brane product was introduced in Cohen, Hess, and Voronov [3, Part I, Chap-
ter 5] as a generalization of the loop product to the sphere space SkM = Map(Sk,M)
for k > 1. In [10], the author generalized the brane product to the mapping spaces
from manifolds, by means of connected sums.

The brane coproduct, a generalization of the loop coproduct to the mapping spaces
from manifolds, is constructed by the author [10] in the case where the rational homo-
topy group

⊕
n πn(M)⊗Q is of finite dimension. This assumption can be considered

as the “finiteness” of the dimension of the (k − 1)-fold based loop space Ωk−1M as a
Gorenstein space. A Gorenstein space is a generalization of a manifold in the point
of view of Poincaré duality, which was introduced to string topology by Félix and
Thomas [6]. For example, connected closed oriented manifolds, classifying spaces of
connected Lie groups, and their Borel constructions are Gorenstein spaces. Moreover,
any 1-connected space M with

⊕
n πn(M)⊗Q of finite dimension is a Gorenstein

space. In spite of this huge generalization, string operations still tend to be trivial.
For example, the loop product µ is trivial over a field of characteristic zero for the
classifying space of a connected Lie group [6, Theorem 14]. Moreover, it is an open
problem to find a Gorenstein space with nontrivial composition µ ◦ δ of the loop
product and coproduct.

Here we briefly review the construction of the brane product and coproduct.
See Section 2 for details. Let K be a field of characteristic zero, S an oriented manifold
of dimension k with two disjoint base points, and M a k-connected m-dimensional
K-Gorenstein space with

⊕
n πn(M)⊗K of finite dimension. Denote the “connected

sum” and “wedge sum” of S with itself along the two base points by S# and S∨,
respectively. Note that, by the definition of the connected sum, we have the canonical
inclusion Sk−1 →֒ S# and the quotient map q : S# → (S#)/S

k−1 = S∨. Similarly we
have S0 = pt

∐
pt →֒ S and p : S → S/S0 = S∨. Hence we have the diagram

MS incl
←−−−MS∨

comp
−−−−→MS# (1.1)

as a dual of the following diagram:
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p q

S T

S S∨ S#

p q

Sk−1

Using this diagram, we can construct two operations, the S-brane product µS and
coproduct δS :

µS : H∗(M
S)→ H∗−m(MS#),

δS : H∗(M
S#)→ H∗−m̄(MS).

Note that, if T and U are oriented k-manifolds and we take S = T
∐
U with one

base point on T and the other on U , then µS and δS have the form

µT
∐

U : H∗(M
T ×MU )→ H∗−m(MT#U ),

δT
∐

U : H∗(M
T#U )→ H∗−m̄(MT ×MU ).

Moreover, if we take T = U = S1, then µS1
∐

S1 and δS1
∐

S1 coincide with the usual
loop product and coproduct, respectively. Hence the S-brane product and coproduct
are generalizations of the loop product and coproduct.

p q

S = S1
∐
S1 S∨ = S1 ∨ S1 S# = S1

p q

Remark 1.4. Here it should be remarked that the composition µSk ◦ δSk corresponds
to a cobordism without “genus”. In fact, if we take k = 1, the composition µS1 ◦ δS1

is equal to the composition δ ◦ µ, not µ ◦ δ, of the loop product µ and coproduct δ.

p q

S = S1 S∨ = S1 ∨ S1 S# = S1
∐
S1

p q

Section 2 contains brief background material on brane operations. In Section 3,
we construct rational models of the Sk-brane product and coproduct, which gives a
method of computation. Finally, in Section 4, we prove Theorems 1.1 and 1.2 using
the above models.
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2. Brane operations for the mapping space from manifolds

In this section we review the constructions of the S-brane product and coproduct
from [10]. Since the cochain models work well for fibrations, we define the duals of
the S-brane product and coproduct at first, and then we define the S-brane product
and coproduct as the duals of them.

Let K be a field of characteristic zero. This assumption enables us to make full use
of rational homotopy theory. For the basic definitions and theorems on homological
algebra and rational homotopy theory, we refer the reader to [5].

Let k be a positive integer andM a k-connected space such that
⊕

n πn(M)⊗K is
finite dimensional and the minimal Sullivan model ofM is pure. ThenM and Ωk−1M
are Gorenstein spaces by [4, Proposition 3.4]. Here we refer the reader to [4] for the
definition and basic properties of Gorenstein spaces.

We use the following theorem to construct the brane operations.

Theorem 2.1 ([6, Theorem 12] for k = 1, [10, Corollary 3.2] for k > 2). Under the
above assumptions, we have an isomorphism

Ext∗C∗(Sk−1M)(C
∗(M), C∗(Sk−1M)) ∼= H∗−m̄(M),

where m̄ is the dimension of Ωk−1M as a Gorenstein space.

Here, ExtA(L,N) is defined using a semifree resolution of (L, d) over (A, d), for a
dga (A, d) and (A, d)-modules (L, d) and (N, d). TorA(L,N) is defined similarly. See
[5, Section 1] for details of semifree resolutions.

Now we can define the S-brane coproduct for an oriented manifold S with two
distinct base points. Consider the diagram, extending (1.1),

MS# MS∨ MS

Sk−1M M .

res

comp incl

c

(2.1)

Here, the square is a pullback diagram, the map res is the restriction map to Sk−1, and
c is the embedding as the constant maps. By Theorem 2.1, we have an isomorphism
Extm̄C∗(Sk−1M)(C

∗(M), C∗(Sk−1M)) ∼= H0(M) ∼= K, hence the generator

c! ∈ Extm̄C∗(Sk−1M)(C
∗(M), C∗(Sk−1M))

is well-defined up to the multiplication by a non-zero scalar. Using the map c! and
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the diagram (2.1), we can define the shriek map comp! as the composition

H∗(MS∨)
EM
←−−−

∼=
Tor∗C∗(Sk−1M)(C

∗(M), C∗(MS#))

Torid(c!,id)
−−−−−−−−→ Tor∗+m̄

C∗(Sk−1M)
(C∗(Sk−1M), C∗(MS#)) −→

∼=
H∗+m̄(MS#),

where the map EM is the Eilenberg–Moore map, which is an isomorphism since
Sk−1M is 1-connected (see [5, Theorem 7.5] for details). By this, we define the dual
of the S-brane coproduct as the composition

δ∨S : H∗(MS)
incl∗
−−−−→ H∗+m̄(MS∨)

comp!−−−−−→ H∗+m̄(MS#).

Similarly we can define the S-brane product using the generator

∆! ∈ ExtmC∗(M2)(C
∗(M), C∗(M2))

and the diagram

MS MS∨ MS#

M ×M M .

incl comp

∆

3. Models of the brane operations

In this section, we consider the case S = Sk and give rational models of the Sk-
brane operations, for an integer k > 1. In Section 4, we will prove Theorem 1.1
and Theorem 1.2 using these models.

Naito [8] constructed a rational model of the duals of the loop product and coprod-
uct in terms of Sullivan models using the torsion functor description of [7]. The author
[10] constructed a rational model of the duals of the brane product and coproduct as
a generalization of it. Here we give a rational model of the Sk-brane operations by a
similar method.

3.1. Models of spaces
Take a Sullivan model (∧V, d) of M with V 6k = 0 and dimV <∞. For simplicity,

we sometimes denote (∧V, d) byM. Denote (Sk)# = Sk−1 × S1 by T (k) and (Sk)
∨
=

(Sk−1 × S1)/Sk−1 by U (k). For an integer l ∈ Z, let slV be a graded module defined
by (slV )n = V n+l and slv denotes the element in slV corresponding to an element
v ∈ V .

(3.1) Consider s as an derivation on the algebra ∧V ⊗2 ⊗ ∧sV with s ◦ s = 0. Define
a derivation d on the algebra by

d(sv) = 1⊗ v − v ⊗ 1−
∞∑

i=1

(sd)i

i!
(v ⊗ 1),

inductively. Denote the dga (∧V ⊗2 ⊗ ∧sV, d) by M(I). This is a Sullivan model
of the path space M I (≃M). Moreover, define a map ε̄ :M(I)→M by ε̄(v ⊗ 1) =
ε̄(1⊗ v) = v and ε̄(sv) = 0 for v ∈ V . Then it is a relative Sullivan model (resolution)
of the product map. See [5, Section 15 (c)] or [11, Appendix A] for details.
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(3.2) Assume k > 2. Define derivations s(k−1) and d on the graded algebra ∧V ⊗
∧sk−1V by

s(k−1)(v) = sk−1v, s(k−1)(sk−1v) = 0,
d(v) = dv, and d(sk−1v) = (−1)k−1s(k−1)dv.

Denote the dga ∧V ⊗ sk−1V by M(Sk−1). This is a Sullivan model of the space

MSk−1

. See [10, Section 5] for details.

(3.3) Assume k > 2. Define derivations s(k) and d on the graded algebra ∧V ⊗
∧sk−1V ⊗ ∧skV by

s(k)(v) = skv, s(k)(sk−1v) = s(k)(skv) = 0,
d(v) = dv, d(sk−1v) = d(sk−1v), and d(skv) = sk−1v + (−1)ks(k)dv.

Denote the dga ∧V ⊗ ∧sk−1V ⊗ ∧skV by M(Dk). This is a Sullivan model of the

spaceMDk

(≃M). Moreover, define a map ε̃ :M(Dk)→M by ε̃(v) = v, ε̃(sk−1v) =
ε̃(skv) = 0 for v ∈ V . Then it is a relative Sullivan model (resolution) of the map
ε : M(Sk−1)→M, where ε(v) = v and ε(sk−1v) = 0. In particular, ε̃ is a quasi-
isomorphism. See [10, Section 5] for details.

Next we construct models of mapping spaces which appear in the definition of
brane operations, using the above models.

(3.4) SinceMT (k)

= (MSk−1

)S
1

, we have a Sullivan modelM(T (k)) = (∧V ⊗ ∧sk−1V

⊗ ∧sV ⊗ ∧ssk−1V, d) of MT (k)

iterating the construction in (3.2).

(3.5) Since U (k) is homotopy equivalent to Sk ∨ S1, the mapping space MU(k)

is homotopy equivalent to MSk

×M MS1

, and hence we have a Sullivan model
M(U (k)) = (∧V ⊗ ∧skV, d)⊗ (∧V ⊗ ∧sV, d).

3.2. Models of operations
Here we give a model of the Sk-brane product and coproduct in a similar way to

[8] and [10].
First we give a model of the Sk-brane coproduct. Recall that the dual δ∨

Sk of the
Sk-brane coproduct is the composition

δ∨Sk : H
∗(MSk

)
incl∗
−−−−→ H∗+m̄(MU(k)

)
comp!−−−−−→ H∗+m̄(MT (k)

).

The first map incl∗ : H∗(MSk

)→ H∗+m̄(MU(k)

) is induced by the canonical in-
clusion M(Sk)→M(U (k)), which we also denote by incl∗. The second map

comp! : H
∗+m̄(MU(k)

)→ H∗+m̄(MT (k)

) is computed as follows. Let

γ ∈ homM(Sk−1)(M(Dk),M(Sk−1))

be a representative of the nontrivial element (see Theorem 2.1)

c! ∈ Extm̄C∗(Sk−1M)(C
∗(M), C∗(Sk−1M)) ∼= Hm̄(homM(Sk−1)(M(Dk),M(Sk−1))).

Then the map

Torid(c!, id) : Tor∗C∗(Sk−1M)(C
∗(M), C∗(MS#))

−→ Tor∗+m̄
C∗(Sk−1M)

(C∗(Sk−1M), C∗(MS#))
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is induced by the cochain map

γ ⊗ id :M(Dk)⊗M(Sk−1)M(T (k))→M(Sk−1)⊗M(Sk−1)M(T (k)),

since M(Dk) is a resolution of M over M(Sk−1). The map comp! is computed by
this combined with the quasi-isomorphism

ε̃⊗ id :M(Dk)⊗M(Sk−1)M(T (k)) −→
≃
M⊗M(Sk−1)M(T (k)). (3.6)

Hence the dual of the Sk-brane coproduct is induced by the composition

M(Sk)
incl∗
−−−−→M(U (k))

∼=
−−→ M⊗M(Sk−1)M(T (k))
ε̃⊗id
←−−−

≃
M(Dk)⊗M(Sk−1)M(T (k))

γ⊗id
−−−−→ M(Sk−1)⊗M(Sk−1)M(T (k))

∼=
−−→M(T (k)).

(3.7)

Similarly, the dual of the Sk-brane product is induced by the composition

M(T (k))
comp∗

−−−−−→M(U (k))
∼=
−−→M⊗M⊗2 (M(I)⊗MM(Sk))

ε̄⊗id
←−−−

≃
M(I)⊗M⊗2 (M(I)⊗MM(Sk))

η⊗id
−−−−→M⊗2 ⊗M⊗2 (M(I)⊗MM(Sk))

∼=
−−→M(I)⊗MM(Sk)

ε̄⊗id
−−−−→M⊗MM(Sk)

∼=
−−→M(Sk)

(3.8)
Here η ∈ homM⊗2(M(I),M⊗2) is a representative of the nontrivial element ∆! ∈
ExtmC∗(M2)(C

∗(M), C∗(M2)) and comp∗ :M(T (k))→M(U (k)) is the canonical quo-
tient map.

4. Proof of Theorem 1.1 and Theorem 1.2

In this section, we give a proof of Theorem 1.1 and Theorem 1.2 using the models
constructed above. First we recall the description of c! in [10].

Proposition 4.1 ([10, Proposition 6.2]). Assume that k is even. Define an element

γ ∈ homM(Sk−1)(M(Dk),M(Sk−1))

by γ(sky1 · · · s
kyq) = sk−1x1 · · · s

k−1xp and γ(skyj1 · · · s
kyjl) = 0 for l < q. Then γ

defines a non-trivial element in ExtM(Sk−1)(M,M(Sk−1)).

Note that, although the proposition is proved only when k = 2 in [10], the same
proof also applies when k > 2 as long as k is even.

Now we give a proof of Theorem 1.1 using the above description.

Proof of Theorem 1.1. We compute the Sk-brane coproduct using (3.7). Since M =
K(Z, 2n), we take the Sullivan model (∧V, d) = (∧x, 0) where x is the generator of
degree 2n. Note that, in this case, the differentials inM(Sk) andM(T (k)) are zero,

and hence they are identified with the cohomology groups H∗(MSk

) and H∗(MT (k)

).
By Proposition 4.1, we have a representative γ of the shriek map c! defined by

γ(1) = sk−1x and γ((skx)l) = 0 for l > 1.
Since any Sullivan algebra satisfies the lifting property for a surjective quasi-

isomorphism, there is a section ϕ of ε̃⊗ id in (3.6), which is also a quasi-isomorphism.
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It is given explicitly by ϕ(1⊗ x) = 1⊗ x, ϕ(1⊗ skx) = 1⊗ ssk−1x, and ϕ(1⊗ sx) =
1⊗ sx.

Using these maps, we compute the composition (3.7). Since all maps in the com-
position are ∧V -linear, it is enough to compute the image for the elements (skx)n

for n > 0. Applying incl∗ and the section ϕ to the element, we have that it is
mapped to 1⊗ (ssk−1x)n ∈M(Dk)⊗M(Sk−1)M(T (k)). Then the map γ ⊗ id send

it to sk−1x⊗ (ssk−1x)n ∈M(Sk−1)⊗M(Sk−1)M(T (k)). Hence the Sk-brane coprod-

uct δ∨
Sk is the map determined by δ∨

Sk(α) = sk−1xι(α), where ι :M(Sk)→M(T (k))
is the algebra map defined by ι(x) = x and ι(skx) = ssk−1x.

Similarly we can compute the Sk-brane product. Define a ∧V ⊗2-linear map
η :M(I)→ ∧V ⊗2 by η(1) = 0 and η(sx) = 1. By [11, Theorem 5.6 (2)] or a straight-
forward computation, η is a representative of the shriek map ∆!. We have a sec-
tion ψ of ε̄⊗ id in (3.8), which is defined by ψ(x⊗ 1) = 1⊗ (x1 ⊗ 1), ψ(1⊗ sx) =
1⊗ (sx⊗ 1)− sx⊗ 1, and ψ(1⊗ skx) = 1⊗ (1⊗ skx). Here we denote the element
x⊗ 1 ∈M(I) by x1.

As a result, the Sk-brane product µ∨
Sk is the map determined by

µ∨
Sk(β) = 0, µ∨

Sk(sx · β) = −ρ(β), and µ∨
Sk(s

k−1x · β) = µ∨
Sk(sx · sk−1x · β) = 0, for

β ∈ ∧x⊗ ∧ssk−1x. Here ρ : ∧ x⊗ ∧ssk−1x→M(Sk) is the algebra map defined by
ρ(x) = x and ρ(ssk−1x) = skx.

Composing these two, we have δSk ◦ µSk 6= 0. In fact, δSk ◦ µSk(sx) = −sk−1x 6=

0 ∈M(T (k)) ∼= H∗(MT (k)

). This proves the theorem.

Next we prove Theorem 1.2.

Proof of Theorem 1.2. Let (∧V, d) be the minimal Sullivan model ofM , {x1, . . . , xp}
a basis of V even, and {y1, . . . , yq} a basis of V odd. Consider the part

M⊗M(Sk−1)M(T (k))
ε̃⊗id
←−−−−

≃
M(Dk)⊗M(Sk−1)M(T (k))

γ⊗id
−−−−→M(Sk−1)⊗M(Sk−1)M(T (k))

in (3.7). Define a section ϕ of ε̃⊗ id by ϕ(1⊗ v) = 1⊗ v, ϕ(1⊗ sv) = 1⊗ sv, for v ∈ V ,
ϕ(1⊗ ssk−1xi) = 1⊗ ssk−1xi, and ϕ(1⊗ ss

k−1yj) = 1⊗ ssk−1yj +(−1)ksσ(dyj ⊗ 1).
Here, in the last term sσ(dyj ⊗ 1), σ is the derivation which sends v ⊗ 1 to skv ⊗ 1, for
v ∈ V , and the other generators to 0. The map s is also the derivation which sends v
to sv, sk−1v to ssk−1v, and others to 0. Then we have Imϕ ⊂ N ⊗M(Sk−1)M(T (k)),

where N = ∧V ⊗ ∧sk−1V ⊗ ∧sk{x1, . . . , xp} ⊂ M(Dk). Let γ be the representative
of c! given by Proposition 4.1. Since V has at least one generator of odd degree, γ is
zero on N . This implies that the composition (γ ⊗ 1) ◦ ϕ is zero, and hence the brane
coproduct δSk is zero.
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