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HOMOLOGY PRO STABILITY FOR TOR-UNITAL PRO RINGS

RYOMEI IWASA

(communicated by Charles A. Weibel)

Abstract
Let {Am}m be a pro system of associative commutative, not

necessarily unital, rings. Assume that the pro systems of Tor-
groups {TorZ⋉Ami (Z,Z)}m vanish for all i > 0. Then we prove
that the pro systems {Hl(GLn(Am))}m stabilize up to pro iso-
morphisms for n large enough relative to l and the stable range
of Am’s.

1. Introduction

Homology stability for general linear groups is a simple but deep question in homo-
logical algebra. Let R be an associative unital ring. We consider the general linear
groups GLn(R) of R and their sequence

GLn(R) ↪→ GLn+1(R) ↪→ GLn+2(R) ↪→ · · · ,

where each embedding is given by sending α to ( α 0
0 1 ). The question is whether the

induced sequence of the integral group homology

Hl(GLn(R))→ Hl(GLn+1(R))→ Hl(GLn+2(R))→ · · ·

stabilizes for n large enough relative to l. There have been many works on this prob-
lem, and the most striking result was obtained by Suslin.

Theorem 1.1 (Suslin [Su82]). Let R be an associative unital ring and l ⩾ 0. Then
the canonical map

Hl(GLn(R))→ Hl(GLn+1(R))

is surjective for n ⩾ max(2l, l+sr(R)− 1) and bijective for n⩾max(2l+1, l+sr(R)),
where sr(R) is the stable range of R.

Things become much harder and more interesting if we consider non-unital rings.
Then homology stability is strongly related to K-theory excision and Tor-unitality.

homology stability

++
Tor-unitality oo //

? 33

K-theory excision

Let R be an associative unital ring and A a two-sided ideal of R. We define the n-th
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relative K-group by

Kn(R,A) := πn hofib(BGL(R)+ → BGL(R/A)+).

We say that A satisfies K-theory excision if, for every unital ring R which contains
A as a two-sided ideal and for every n ⩾ 1, the canonical map

Kn(Z ⋉A,A)
∼−→ Kn(R,A)

is an isomorphism. It is well-known that K-theory excision fails in general. However,
if the homology Hl(GLn(A)) stabilizes for n large enough, then A satisfies K-theory
excision1. This being the case, homology stability for non-unital rings fails in general,
even if the stable range of A is finite.

On the other hand, in [Su95], Suslin completely determined the obstruction to
K-theory excision: An associative ring A satisfies K-theory excision if and only if A
is Tor-unital, i.e. TorZ⋉Ai (Z,Z) = 0 for all i > 0. Hence, we may hope that Tor-unital
rings satisfy homology stability. Again, Suslin gave a partial solution.

Theorem 1.2 (Suslin [Su96]). Let A be a Tor-unital Q-algebra, r = max(sr(A), 2)
and l ⩾ 0. Then the canonical map

Hl(GLn(A))→ Hl(GLn+1(A))

is surjective for n ⩾ 2l + r − 2 and bijective for n ⩾ 2l + r − 1.

Unfortunately, commutative rings rarely happen to be Tor-unital. Instead, a recent
trend has been to think about Tor-unital pro rings. We say that a pro system {Am}
of associative rings is Tor-unital if the pro systems {TorZ⋉Ami (Z,Z)}m vanish for all
i > 0. A notable result by Morrow [Mo18] is that, for any ideal A of a noetherian
commutative ring, the pro ring {Am}m⩾1 of successive powers of A is Tor-unital.
Besides, Geisser and Hesselholt [GH06] generalized Suslin’s excision theorem to the
pro setting: If {Am} is a Tor-unital pro ring then the canonical map

{Kn(Z ⋉Am, Am)}m
∼−→ {Kn(Rm, Am)}m

is a pro isomorphism for any pro system of unital rings {Rm} together with a level
map {Am} → {Rm} which exhibits each Am as a two-sided ideal of Rm.

Our main theorem is an integral pro version of Theorem 1.2.

Theorem 1.3 (Theorem 5.13). Let {Am} be a commutative Tor-unital pro ring2,
r = maxm(sr(Am), 2) and l ⩾ 0. Then the canonical map

{Hl(GLn(Am))}m → {Hl(GLn+1(Am))}m
is a pro epimorphism for n ⩾ 2l + r − 2 and a pro isomorphism for n ⩾ 2l + r − 1.

It follows from Theorem 1.3 that if {Am} is commutative Tor-unital then the
conjugate action of GLn(Z) on {Hl(GLn(Am))}m is pro trivial for n ⩾ 2l + r − 1, cf.
Corollary 5.14. Together with a standard argument this reproves Geisser-Hesselholt’s

1The stability implies that the conjugate action of GL(R) on Hl(GL(A)) is trivial for any unital
ring R which contains A as a two-sided ideal. Then K-theory excision for A follows by a standard
Hochschild-Serre spectral sequence argument.
2“commutative” means that each Am is commutative. However, this condition may not be essential.
We expect that the theorem is true without the commutativity assumption.
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pro excision theorem for commutative Tor-unital pro rings of finite stable range.
In [CE16], Calegari and Emerton independently proved homology stability for

lim←−mHl(GLn((pZ)m);Zp) and lim←−mHl(GLn((pZ)m);Fp) for a prime number p. See

also [Ca15] for related works and different backgrounds.

1.1. Outline
In §2, we prove the pro stability for H1(GLn), cf. Theorem 2.5. This essentially

follows from Vaserštĕın’s stability for relative K1.
In §3, we recall some properties of Tor-unital rings. In particular, we review the the-

ory of special morphisms between pseudo-free modules over Tor-unital rings exploited
in [Su95]. Roughly speaking, special morphisms are non-unital substitutions for mul-
tiplications by units.

In §4, which is the technical heart of this paper, we study triangular spaces and
prove a pro acyclicity of the union of triangular spaces, cf. Theorem 4.9. This is an
integral pro version of [Su96, Corollary 5.7]. However, the proof there relies on the
Malcev theory, which works only for Q-algebras, and we need a new argument. Our
new input is the theory of special morphisms recalled in §3.

In §5, we complete the proof of Theorem 1.3. The building blocks are the pro
stability for H1(GLn) in §2 and the pro acyclicity of triangular spaces in §4. Then
the drift of the argument follows [Su96, §6].

1.2. Notation

1. A ring means an associative, not necessarily unital, ring.

2. sr(A) is the stable range of a ring A, i.e. the minimum number r ⩾ 1 such that
the stable range condition [Va69, (2.2)n] holds for every n ⩾ r.

3. Let A be a ring and n ⩾ 1.

(a) The general linear group GLn(A) is the kernel of the canonical map
GLn(Z ⋉A)→ GLn(Z).

(b) The elementary subgroup En(A) is the subgroup of GLn(A) generated by
the elementary matrices eij(a) with a ∈ A and 1 ⩽ i ̸= j ⩽ n.

We regard GLn(A) as a subgroup of GLn+1(A) by sending a matrix α to ( α 0
0 1 ).

We write GL(A) = GL∞(A) =
∪
nGLn(A) and E(A) = E∞(A) =

∪
nEn(A).

4. A pro ring is a pro system of rings indexed by a filtered poset. Typically, we
denote a pro ring by a bold letter A = {Am} and the structure maps Am → An
by ιm,n or just by ι.

5. A unital (resp. commutative) pro ring is a pro ring which is levelwise uni-
tal (resp. commutative). Unless otherwise stated, we use standard operations
of rings levelwise for pro rings: E.g. GLn(A) = {GLn(Am)}m, TorZ⋉A

∗ (Z,Z) =
{TorZ⋉Am∗ (Z,Z)}m, etc.

6. A left ideal of a pro ring A = {Am}m∈J is a pro ring B = {Bm}m∈J with a
level map B→ A which exhibits each Bm as a left ideal of Am.
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2. Pro stability for K1

In this section, we prove pro stability forH1(GLn) (Theorem 2.5). This follows from
Vaserštĕın’s stability for relative K1 (Theorem 2.1) and Tits’ lemma (Lemma 2.2).

2.1. Vaserštĕın’s stability
Let R be a unital ring and A a two-sided ideal of R. The normal elementary

subgroup En(R,A) is the smallest normal subgroup of En(R) which contains En(A).
We write E(R,A) = E∞(R,A) =

∪
nEn(R,A). By Whitehead’s lemma, E(R,A) is

a normal subgroup of GL(A). We define the relative K1-group K1(R,A) to be the
quotient group GL(A)/E(R,A).

Theorem 2.1 (Vaserštĕın [Va69]). The canonical map

GLn(A)→ K1(R,A)

is surjective for n ⩾ sr(A), and the kernel is En(R,A) for n ⩾ sr(A) + 1.

2.2. Tits’ lemma
LetR be a unital ring andA a two-sided ideal ofR. The following lemma generalizes

[Ti76, Proposition 2] to possibly noncommutative rings.

Lemma 2.2. For n ⩾ 3, En(R,A
2) ⊂ [En(A), En(A)].

Proof. Note the standard equality of elementary matrices:

[eij(a), ekl(b)] =


1 if j ̸= k, i ̸= l,

eil(ab) if j = k, i ̸= l,

ekj(−ba) if j ̸= k, i = l,

which we use throughout the proof. One immediate consequence is an inclusion rela-
tion En(A

2) ⊂ [En(A), En(A)] for n ⩾ 3.
For r = (r1, . . . , rn) ∈ Rn with rj = 1, we write

Xj(r) :=
∏
k ̸=j

ejk(rk) and Xj(r) :=
∏
k ̸=j

ekj(rk).

Fix 1 ⩽ j ⩽ n. It is easy to see that every x ∈ En(R) has the form

x2m(U) := Xj(u2m)Xj(u2m−1) · · ·Xj(u2)Xj(u1)

for some m > 0 and U = (u1, u2, . . . , u2m) ∈ (Rn)2m. We set x0(∅) := 1 and

x2m−1(V ) := Xj(v2m−1)Xj(v2m−2) · · ·Xj(v2)X
j(v1)

for m > 0 and V = (v1, v2, . . . , v2m−1) ∈ (Rn)2m−1.
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Consider the following assertion.

(♡)N For every U ∈ (Rn)N , xN (U)En(A
2)xN (U)−1 ⊂ [En(A), En(A)].

We have seen (♡)0. Let N > 0 and suppose that (♡)l holds for l < N . We shall prove
(♡)N in the case N even; the case N odd is proved in the same way.

Let U = (u1, . . . , uN ) ∈ (Rn)N and x := xN (U). For eik(a) with a ∈ A2, 1 ⩽ i, k ⩽
n and k ̸= j, we have Xj(u1)eik(a)Xj(−u1) ∈ En(A2) and thus by the induction
hypothesis xeik(a)x

−1 ∈ [En(A), En(A)]. For eij(a) with a ∈ A2 and 1 ⩽ i ̸= j ⩽ n,
we have

Xj(u1)eij(a)Xj(−u1) = eji(u1,i)
( ∏
k ̸=i,j

eik(−au1,k) · eij(a)
)
eji(−u1,i)

=
∏
k≠i,j

ejk(−u1,iau1,k)eik(−au1,k) · eji(u1,i)eij(a)eji(−u1,i).

Hence, it follows from the induction hypothesis that xEn(A
2)x−1 is generated by

yieij(a)y
−1
i , yi = Xj(uN )Xj(uN−1) · · ·Xj(u2)eji(u1,i), with a ∈ A2 and 1 ⩽ i ̸= j ⩽

n modulo [En(A), En(A)].
For U = (u1, . . . , uN ) ∈ (Rn)N and 1 ⩽ p ⩽ N/2, we set

y2p−1
i (U) := Xj(uN )Xj(uN−1) · · ·Xj(u2p)eji(u2p−1,i) · · · eij(u2,i)eji(u1,i),
y2pi (U) := Xj(uN )Xj(uN−1) · · ·Xj(u2p+1)eij(u2p,i) · · · eij(u2,i)eji(u1,i).

We claim that:

(♢)Q For U ∈ (Rn)N , xN (U)En(A
2)xN (U)−1 is generated by yQi (U)eij(a)y

Q
i (U)−1,

a ∈ A2, 1 ⩽ i ̸= j ⩽ n modulo [En(A), En(A)].

We have seen (♢)1. Let Q > 1 and suppose that (♢)l holds for l < Q. We prove (♢)Q
in the case Q even; the case Q odd is proved in the same way.

Let U = (u1, . . . , uN ) ∈ (Rn)N . According to (♢)Q−1, xN (U)En(A
2)xN (U)−1 is

generated by yQ−1
i (U)eij(a)y

Q−1
i (U)−1, a∈A2, 1⩽ i ̸= j ⩽ nmodulo [En(A), En(A)].

We fix 1 ⩽ i ̸= j ⩽ n for a moment. Now,

Xj(uQ)eji(uQ−1,i) = eij(uQ,i)eji(uQ−1,i)
∏
k ̸=i,j

ekj(uQ,k)eki(uQ,kuQ−1,i).

Hence, by putting ỹ :=
∏
k ̸=i,j eki(u2p,ku2p−1,i), we have

yQ−1
i (U) = Xj(uN )Xj(uN−1) · · ·

· · ·Xj(uQ+1)eij(uQ,i)eji(uQ−1,i)X
j(u′Q−2) · · ·Xj(u′2)Xj(u

′
1)ỹ

for some u′1, . . . , u
′
Q−2 ∈ Rn with u′q,i = uq,i. For Q− 1 ⩽ q ⩽ N , we set

u′q :=

{
uq,iei + ej if q = Q− 1, Q,

uq if q > Q

and U ′ := (u′1, . . . , u
′
N ), so that yQ−1

i (U) = xN (U ′)ỹ and yqi (U
′) = yqi (U) for q ⩾ Q.

By applying (♢)Q−1 to U ′, we see that xN (U ′)En(A
2)xN (U ′)−1 is generated by

yQi (U
′)eij(a)y

Q
i (U

′)−1, a ∈ A2 modulo [En(A), En(A)]. Varying i, this proves (♢)Q
for the given U ∈ (Rn)N , and thus for all U ∈ (Rn)N .
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Thanks to (♢)N , we are reduced to showing that yeij(ab)y
−1 ∈ [En(A), En(A)]

for y = eij(rN )eji(rN−1) · · · eij(r2)eji(r1) with a, b ∈ A, r1, . . . , rN ∈ R and 1 ⩽ i ̸=
j ⩽ n. Observe that we have

eij(r1)eji(ab)eij(−r1)=eij(r1)[ejt(a), eti(b)]eij(−r1)=[eit(r1a)ejt(a), etj(−br1)eti(b)]

for t ̸= i, j. Now, it is clear that

y′[eit(r1a)ejt(a), etj(−br1)eti(b)](y′)−1 ∈ [En(A), En(A)]

for y′ = eij(rN )eji(rN−1) · · · eij(r2), and thus we get (♡)N .

Corollary 2.3. Let R = {Rm} be a unital pro ring and A = {Am} a two-sided ideal
of R. Suppose that A/A2 = {Am/A2

m} = 0. Then, for 3 ⩽ n ⩽∞, the canonical maps

En(A)
≃ // En(R,A)

[En(A), En(A)]

≃
OO

≃ // [En(R,A), En(R,A)]

≃
OO

are pro isomorphisms.

Proof. Since all the indicated maps are injections, it suffices to show that the map
[En(A), En(A)]→ En(R,A) is a pro epimorphism. By the assumption A/A2 = 0,
there exists s ⩾ m for each m such that ιs,m(As) ⊂ A2

m. Therefore,

ιs,mEn(Rs, As) ⊂ En(Rm, A2
m) ⊂ [En(Rm, Am), En(Rm, Am)],

where the last inclusion is by Lemma 2.2. This proves that the map [En(A), En(A)]→
En(R,A) is a pro epimorphism.

2.3. Pro excision and pro stability
Let R = {Rm} be a unital pro ring and A = {Am} a two-sided ideal of R. We

define sr(A) := maxm(sr(Am)).

Theorem 2.4 (Pro excision). Suppose that A/A2 = 0. Then the canonical map

H1(GL(A))
∼−→ K1(R,A)

is a pro isomorphism.

Proof. Since K1(R,A) is levelwise abelian, we have a levelwise exact sequence

H1(E(R,A)) //H1(GL(A)) //K1(R,A) //0.

It follows from Corollary 2.3 that H1(E(R,A)) = 0, and thus we get the desired
isomorphism.

Theorem 2.5 (Pro stability). Suppose that A/A2 = 0. Then the canonical map

H1(GLn(A))→ H1(GL(A))

is a pro epimorphism for n ⩾ sr(A) and a pro isomorphism for n ⩾ max(3, sr(A) + 1).

Proof. The composite

H1(GLn(A))→ H1(GL(A))
∼−→ K1(R,A)

is a levelwise surjection for n ⩾ sr(A) by Theorem 2.1. Since the last map is a pro
isomorphism by Theorem 2.4, the first map is a pro epimorphism for n ⩾ sr(A).
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Consider the commutative diagram

H1(En(R,A)) //

��

H1(GLn(A)) //

��

H1(GLn(R,A)/En(R,A)) //

��

0

H1(E(R,A)) // H1(GL(A)) // H1(K1(R,A)) // 0

with levelwise exact rows. The left terms are zero for n ⩾ 3 by Corollary 2.3. Accord-
ing to Theorem 2.1, the right vertical map is a levelwise bijection for n ⩾ sr(A) + 1.
Hence, the middle term is a pro isomorphism for n ⩾ max(3, sr(A) + 1).

Theorem 2.6. Set Ēn(A) := GLn(A) ∩ E(A). Suppose that A/A2 = 0. Then the
canonical map

En(A)→ Ēn(A)

is a pro isomorphism for n ⩾ max(3, sr(A) + 1).

Proof. Let Ēn(R,A) := GLn(A) ∩ E(R,A). According to Theorem 2.1, the canoni-
cal map En(R,A)→ Ēn(R,A) is a levelwise bijection for n ⩾ sr(A) + 1. Hence, the
theorem follows from Corollary 2.3.

3. Tor-unital pro rings

The treatment of this section closely follows Suslin [Su95] and Geisser–Hesselholt
[GH06].

Definition 3.1. A pro ring A = {Am} is Tor-unital if

TorZ⋉A
i (Z,Z) = {TorZ⋉Ami (Z,Z)}m = 0

as pro abelian groups for all i > 0.

Example 3.2.

(i) A unital pro ring is Tor-unital.

(ii) (Morrow [Mo18]) Let A be an ideal of a noetherian commutative ring, then the
pro ring {Am}m⩾1 of the successive powers of A is Tor-unital.

Definition 3.3. Let A = {Am}m∈J be a pro ring.

(i) A left A-module is a pro abelian group M = {Mm}m∈J with a level map A×
M→M which exhibits each Mm as a left Am-module. A morphism between
left A-modules M = {Mm} and N = {Nm} is a level map f : M→ N such that
each fm : Mm → Nm is a morphism of left Am-modules.

(ii) A left A-module P is pseudo-free if there is an isomorphism of left A-modules
A⊗ L

∼−→ P for some pro system L of free abelian groups. We call such an L a
free basis of P.

(iii) A morphism f : P→M of left A-modules is special if P is pseudo-free with
a free basis L and f is induced from a level morphism of pro abelian groups
L→M.
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Proposition 3.4 (Suslin [Su95], Geisser–Hesselholt [GH06]). Let A = {Am} be a
Tor-unital pro ring. Suppose we are given an augmented complex

· · · → C1 → C0
ϵ−→ C−1

of left A-modules such that:3

(i) Each Ck with k ⩾ −1 is pseudo-free.

(ii) The homology Hk(C•,m) is annihilated by Am for every m and k ⩾ −1.
Then

Hk(C•) = {Hk(C•,m)}m = 0

for all k ⩾ −1.

In fact, a finer result holds.

Proposition 3.5. Let A = {Am}m∈J be a Tor-unital pro ring and k ⩾ −1. Then
there exists s(m) ⩾ m for each m ∈ J such that the map

ιs(m),m : Hk(C•,s(m))→ Hk(C•,m)

is zero for all augmented complexes of left A-modules which satisfy conditions (i)
and (ii).

Proof. Let C be a pseudo-free left A-module with a free basis L. Then we have
levelwise isomorphisms

TorZ⋉A
q (Z,C) ≃ TorZ⋉A

q (Z,A⊗ L) ≃ TorZ⋉A
q (Z,A)⊗ L ≃ TorZ⋉A

q+1 (Z,Z)⊗ L.

Since A is Tor-unital, we see that

TorZ⋉A
q (Z,C) = 0

for every q ⩾ 0.
Let Zk and Bk−1 be the kernel and the image of Ck → Ck−1 respectively. By

assumption (ii), we have a levelwise inclusion AC−1 ⊂ B−1, and thus there is a
levelwise surjectionC−1/AC−1 ↠ H−1(C•). SinceC−1 is pseudo-free,C−1/AC−1 =
TorZ⋉A

0 (Z,C−1) = 0. Therefore, H−1(C•) = 0.
Let k ⩾ 0 and suppose that Hl(C•) = 0 for l < k. Consider the levelwise spectral

sequence

E1
pq =


TorZ⋉A

q (Z,Cp) if 0 ⩽ p ⩽ k,

TorZ⋉A
q (Z,Zk) if p = k + 1,

0 otherwise,

which arises from the brutal truncation of the complex

Zk → Ck → Ck−1 → · · · → C0.

By the induction hypothesis, the complex is pro quasi-isomorphic to C−1 and thus

E∞
q ≃ TorZ⋉A

q (Z,C−1) = 0

3We thank Takeshi Saito for pointing out an unnecessary condition, the augmentation ϵ is special,
which was in the first draft and in [Su95, GH06] too.
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for q ⩾ 0. Since Cp is pseudo-free, we also have E1
pq = 0 for 0 ⩽ p ⩽ k. Hence,

Zk/AZk = TorZ⋉A
0 (Z,Zk) = E∞

k+1 = 0.

On the other hand, by the assumption (ii), we haveAZk ⊂Bk. Therefore,Hk(C•) = 0.
This proves Proposition 3.4. The finer assertion (Proposition 3.5) is also clear from
this proof.

Lemma 3.6. Let A be a pro ring and P a pseudo-free left A-module. Then there
exists an augmented complex P• of left A-modules with P−1 = P which satisfies con-
ditions (i), (ii) and

(iii) The augmentation ϵ : P0 → P−1 is special

We call P• a pro resolution of P.

Proof. Write P = {Pm} and let Z[P] = {Z[Pm]} be the pro system of the free abelian
groups generated by the sets Pm. Then P0 := A⊗ Z[P] is a pseudo-free A-module
and the canonical map Z[P]→ P induces a special morphism ϵ : P0 → P.

Let R = {Rm} be the kernel of ϵ, and Z[R] = {Z[Rm]} the pro system of the free
abelian group generated by Rm. Then P1 := A⊗ Z[R] is a pseudo-free A-module.
Repeating this procedure, we obtain an augmented complex P• with P−1 = P which
satisfies the desired conditions.

4. Pro acyclicity of triangular spaces

The goal of this section is to prove Theorem 4.9.

4.1. Preliminaries on homology
For a simplicial setX, we denote by C∗(X) the complex freely generated byX∗ with

the differential being the alternating sum of the faces. We writeHn(X) = Hn(C∗(X)).
Also, we write H̃n(X) for the reduced homology.

Let G be a group. We write EG for the simplicial set whose degree n-part is
G×(n+1) and whose i-th face (resp. the i-th degeneracy) omits the i-th entry (resp.
repeats the i-th entry). We give a right G-action on EG by letting (g0, . . . , gn) · g :=
(g0g, . . . , gng). The classifying space BG is defined to be EG/G.

By a pro object or pro system, we mean a pro object whose index category is a
left filtered small category.

Lemma 4.1. Let f : X → Y be a morphism between pro systems of pointed simplicial
sets. Suppose that f induces pro isomorphisms

πn(X)
∼−→ πn(Y )

for all n ⩾ 0. Then f induces pro isomorphisms

Hn(X)
∼−→ Hn(Y )

for all n ⩾ 0.

Proof. Since Zπ0(X) ≃ H0(X), the assertion is clear for n = 0. Hence, by taking
the connected components (i.e. the levelwise homotopy fiber of X → τ⩽0X), we may
assume that X and Y are connected.
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Then, according to [Is01], the induced map Pn(X)→ Pn(Y ) on the n-th Postnikov
sections for n ⩾ 1 is a strict weak equivalence, i.e. isomorphic to a levelwise weak
equivalence. Hence, the induced map C∗(Pn(X))→ C∗(Pn(Y )) is isomorphic to a
levelwise quasi-isomorphism.

On the other hand, by Hurewicz theorem and Serre spectral sequence, we have
levelwise isomorphisms Hk(X) ≃ Hk(Pn(X)) for k ⩽ n. Now, in the commutative
diagram

Hk(X) //

≃
��

Hk(Y )

≃
��

Hk(Pn(X))
≃ // Hk(Pn(Y )),

the vertical maps and the bottom map are pro isomorphisms for k ⩽ n, and so is the
top map. This completes the proof.

For a simplicial group G, we consider the bi-simplicial set BG constructed degree-
wise. For a bi-simplicial set X, we denote by C∗(X) the double-complex freely gen-
erated by X∗ with the differential being the alternating sum of the faces.

Corollary 4.2. Let f : P → Q be a morphism between pro systems of simplicial
abelian groups. Suppose that f induces pro isomorphisms

πn(P )
∼−→ πn(Q)

for all n ⩾ 0. Then f induces pro isomorphisms

Hn(TotC∗(BP ))
∼−→ Hn(TotC∗(BQ))

for all n ⩾ 0.

Proof. Now, the map BkP → BkQ induces pro isomorphisms πn(BkP )→ πn(BkQ)
for all n ⩾ 0. Hence, by Lemma 4.1, the induced maps

Hn(C∗(BkP ))→ Hn(C∗(BkQ))

are pro isomorphisms for all n ⩾ 0. By a standard spectral sequence argument, we
obtain the corollary.

Let us quote a lemma from [Su95, §2].

Lemma 4.3. Let G be a group and H a group with a left G-action. Then there exists
a natural quasi-isomorphism

C∗(B(G⋉H)) ≃ C∗(EG)⊗G C∗(BH).

Let G = {Gm} be a pro group (= a pro system of groups). A left G-module M
is a pro abelian group M = {Mm} with a level map G×M →M which exhibits
each Mm as a left Gm-module. A morphism between left G-modules M = {Mm} and
N = {Nm} is a level map f : M → N such that each fm : Mm → Nm is a morphism
of left Gm-modules. These form the category of left G-modules, and we consider
simplicial objects in this category; simplicial left G-modules and morphisms between
them.
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Corollary 4.4. Let G be a pro group. Let P and Q be simplicial left G-modules and
f : P → Q a morphism between them. Suppose that f induces pro isomorphisms

πn(P )
∼−→ πn(Q)

for all n ⩾ 0. Then f induces pro isomorphisms

Hn(TotC∗(B(G⋉ P )))
∼−→ Hn(TotC∗(B(G⋉Q)))

for all n ⩾ 0, where the semi-direct products are taken levelwise and degreewise.

Proof. This follows from Corollary 4.2 and Lemma 4.3.

4.2. The key lemma

Let A be a ring and P a left A-module. Let σ be a finite poset. We define a group
Tσ(A,P ) by

Tσ(A,P ) :=
∏

i<σj, j /∈maxσ

A(i,j) ×
∏

i<σj, j∈maxσ

P(i,j),

where A(i,j) and P(i,j) are just the copies of A and P respectively. For α ∈ Tσ(A,P ),
we denote its (i, j)-th component by αi,j ; thus αi,j ∈ A if j /∈ maxσ, and αi,j ∈ P if
j ∈ maxσ. For α, β ∈ Tσ(A,P ), we define the composition α · β by

(α · β)i,j = αi,j + βi,j +
∑

i<σk<σj

αi,kβk,j

for i <σ j. We set Tσ(A) := Tσ(A,A).

Set σ0 := σ \maxσ and Mσ(P ) :=
∏
i<σj, j∈maxσ P(i,j). Then we have an identifi-

cation

Tσ(A,P ) = Tσ0(A)⋉Mσ(P )

and canonical inclusion and projection

Tσ0(A) ↪→ Tσ(A,P ) ↠ Tσ0(A).

Let θ : σ → τ be an embedding of finite posets. Then it induces a morphism of
groups

T θ : Tσ(A)→ T τ (A).

If θ sends maximal elements to maximal elements, then it also induces a morphism
Tσ(A,P )→ T τ (A,P ) for any left A-module P , which we also denote by T θ.

Let f : P → Q be a morphism of A-modules. Then it induces a morphism of groups

T f : Tσ(A,P )→ Tσ(A,Q).

If θ : σ → τ sends maximal elements to maximal elements, then we define

T f,θ : Tσ(A,P )→ T τ (A,Q)

to be the composite T f ◦ T θ = T θ ◦ T f .
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For a finite poset σ and p ⩾ 0, let [p] be the poset 0 < 1 < 2 < · · · < p and endow
σ × [p] with the lexicographical order. We define

σ⋆[p] := σ × [p] \maxσ × {1, . . . , p}.

We denote by ϕ (resp. φ) the embedding σ → σ × [p] (resp. σ → σ⋆[p]), a 7→ (a, 0).
Note that φ−1(max(σ⋆[p])) = maxσ and that (σ⋆[p])0 = σ0 × [p].

The following lemma is a variant of Lemma 7.4 in [Su82].

Lemma 4.5. Let {Am}m∈Ξ be a commutative Tor-unital pro ring and l ⩾ 0. Then
there exist pl ⩾ 0 and sl(m) ⩾ m for each m ∈ Ξ such that:

(i) For all finite posets σ and all pseudo-free {Am}-modules {Pm}, the map

ιsl(m),mHl(T
φ) : H̃l(T

σ(Asl(m), Psl(m)))→ H̃l(T
σ⋆[pl](Am, Pm))

is equal to zero.

(ii) For all finite posets σ and all special morphisms f : {Pm} → {Qm} between
pseudo-free {Am}-modules, the map

ιsl(m),mHl(T
f,φ) : H̃l(T

σ(Asl(m), Psl(m)))→ H̃l(T
σ⋆[pl](Am, Qm))

is equal to zero.

The lemma fails for general non-unital rings and the use of Tor-unitality is essential
here. We also remark that (i) is not a special case of (ii) because the identity morphism
is not special unless the ring is unital. Even if one is only interested in (i), the proof
requires (ii) in its induction step.

Proof. We prove the lemma by induction on l ⩾ 0. The case l = 0 is clear, here we can
take p0 = 0 and s0(m) = m. Let L > 0 and suppose that we have constructed p0 ⩽
p1 ⩽ · · · ⩽ pL−1 and s0(m) ⩽ s1(m) ⩽ · · · ⩽ sL−1(m) which satisfy the conditions of
the lemma.

Set q := pL−1 + 1 and t(m) := sL−1(m). First, we prove the following.

Sublemma 4.6. For all finite posets σ and all special morphisms f : {Pm} → {Qm}
between pseudo-free {Am}-modules, the diagram

HL(T
σ(At(m), Pt(m)))

ιt(m),mHL(T
f,φ)

//

����

HL(T
σ⋆[q](Am, Qm))

HL(T
σ0(At(m)))

ιt(m),mHL(T
ϕ)

// HL(T
σ0×[q](Am))

?�

OO

commutes, where the vertical maps are the canonical projection and inclusion.

Proof. Let f : {Pm} → {Qm} be a special morphism between pseudo-free {Am}-
modules and {Lm} a free basis of {Pm} such that f is induced from a map {Lm} →
{Qm}. Note that we have an equality {lim−→i

L
(i)
m } = {Lm}, where {L(i)

m } is a sub-

system of {Lm} such that each L
(i)
m is finitely generated and the limit runs over all
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such systems. Hence, we have

lim−→
i

C∗(BM
σ(Am ⊗ L(i)

m )) ≃ C∗(BM
σ(Pm))

for every m. It follows that

C∗(BT
σ(Am, Pm)) ≃ lim−→

i

C∗(BT
σ(Am, Am ⊗ L(i)

m ))

and

H∗(T
σ(Am, Pm)) ≃ lim−→

i

H∗(T
σ(Am, Am ⊗ L(i)

m )).

Consequently, to show the sublemma, we may assume that {Pm} = {Am ⊗Z Lm} with
Lm a free abelian group of finite rank. We may also assume that {Qm} = {Am ⊗Z
Mm} with Mm a free abelian group of finite rank.

Fix m ∈ Ξ. Let e1, . . . , eI be a basis of Lt(m) and f1, . . . , fJ a basis of Mm. Since
f is special, the map ιt(m),mf : Pt(m) → Qm is induced by a map α : Lt(m) → Qm,
which sends ei to

∑
j αi,jfj with αi,j ∈ Am. We denote ιt(m),mf also by α.

If α = 0, then the diagram

HL(T
σ(At(m), Pt(m)))

ιt(m),mHL(T
f,φ)

//

����

HL(T
σ⋆[q](Am, Qm))

HL(T
σ0(At(m)))

ιt(m),mHL(T
ϕ)

// HL(T
σ0×[q](Am))

?�

OO

commutes, and thus the sublemma holds in this case. Let (u, v) ∈ [1, I]× [1, J ] and
suppose that the sublemma holds if αi,j = 0 for (i, j) ⩾ (u, v) with respect to the
lexicographical order. We prove the sublemma in case αi,j = 0 for (i, j) > (u, v). We
define a map β : Pt(m) → Qm by sending ei to δi,ufv.

We define an embedding ψ : σ → σ⋆[q] by

ψ(x) =

{
(x, 0) if x ∈ maxσ,

(x, q) if x /∈ maxσ.

Then the image τ of ψ intersects with σ⋆[q − 1] ⊂ σ⋆[q] only at maxσ × {0}, and
thus the composite

Tσ
diag //Tσ × TσT

φ×Tψ//Tσ⋆[q−1] × T τ
prod //Tσ⋆[q]

is a morphism of groups. By applying this construction to the product

Tα,φ × T β,ψ : Tσ(At(m), Pt(m))
×2 → Tσ⋆[q−1](Am, Qm)× T τ (Am, Qm),

we get a morphism of groups

Tα,φ · T β,ψ : Tσ(At(m), Pt(m))→ Tσ⋆[q](Am, Qm).

Since q − 1 = pL−1 and t(m) = sL−1(m), by the induction hypothesis and by the
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Künneth formula, we obtain

HL(T
α,φ · T β,ψ) = HL(T

α,φ) +HL(T
β,ψ). (4.1)

We set

ω :=
∏
x∈σ0

eφ(x),ψ(x)(αu,v) ∈ Tσ⋆[q](Am).

We define (α′
i,j) ∈MI,J(A

m) by α′
i,j = αi,j unless (i, j) = (u, v) and α′

u,v = 0, which
induces a map α′ : Qt(m) → Pm by sending ei to

∑
j α

′
i,jfj .

Claim 4.7. We have an equality4

Ad(ω) ◦ (Tα
′,φ · T β,ψ) = Tα,φ · T β,ψ. (4.2)

We calculate the (k, l)-entry of (4.2) at U ∈ Tσ(At(m), Pt(m)). It suffices to do this
for;

(1) (k, l) = (φ(x), φ(y)) with x ∈ σ0 and y ∈ σ.
(2) (k, l) = (φ(x), ψ(y)) with x ∈ σ0 and y ∈ σ0.
(3) (k, l) = (ψ(x), ψ(y)) with x ∈ σ0 and y ∈ σ0.
(4) (k, l) = (ψ(x), φ(y)) with x ∈ σ0 and y ∈ σ.

Case (1):(
Ad(ω) ◦ (Tα′,φ ·T β,ψ)(U)

)
φ(x),φ(y)

=
(
(Tα

′,φ · T β,ψ)(U)
)
φ(x),φ(y)

+ αu,v ·
(
(Tα

′,φ · T β,ψ)(U)
)
ψ(x),φ(y)

= Tα
′,φ(U)φ(x),φ(y) + αu,v · T β,ψ(U)ψ(x),φ(y)

=

{
Ux,y if y ∈ σ0
α′(Ux,y) + β(Ux,y)αu,v = α(Ux,y) if y ∈ maxσ

=
(
(Tα,φ · T β,ψ)(U)

)
φ(x),φ(y)

.

Case (2):(
Ad(ω) ◦ (Tα′,φ · T β,ψ)(U)

)
φ(x),ψ(y)

= αu,v ·
(
(Tα

′,φ · T β,ψ)(U)
)
φ(x),φ(y)

−
(
(Tα

′,φ · T β,ψ)(U)
)
ψ(x),ψ(y)

· αu,v
= αu,vUx,y − Ux,yαu,v
= 0

=
(
(Tα,φ · T β,ψ)(U)

)
φ(x),ψ(y)

.

Case (3):(
Ad(ω) ◦ (Tα′,φ ·T β,ψ)(U)

)
ψ(x),ψ(y)

=
(
(Tα

′,φ · T β,ψ)(U)
)
ψ(x),ψ(y)

−
(
(Tα

′,φ · T β,ψ)(U)
)
ψ(x),ϕ(y)

· αu,v
=
(
(Tα,φ · T β,ψ)(U)

)
ψ(x),ψ(y)

.

Case (4):(
Ad(ω) ◦ (Tα′,φ · T β,ψ)(U)

)
ψ(x),φ(y)

=
(
(Tα

′,φ · T β,ψ)(U)
)
ψ(x),φ(y)

=
(
(Tα,φ · T β,ψ)(U)

)
ψ(x),φ(y)

.

4Here is the only place we need the commutativity of pro rings
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Consequently, we obtain the equality (4.2).

Again, by the induction hypothesis and by the Künneth formula, we obtain

HL(T
α,φ · T β,ψ) = HL(T

α′,φ · T β,ψ) = HL(T
α′,φ) +HL(T

β,ψ). (4.3)

It follows from (4.1, 4.3) that

HL(T
α,φ) = HL(T

α′,φ).

Therefore, by induction, we get the sublemma.

We return to the proof of Lemma 4.5. We prove (i) for l = L. Let {Pm} be a pseudo-
free {Am}-module. Let {Pm[−]} be a pro resolution of {Pm} as in Lemma 3.6. Then,
by Proposition 3.4 and Corollary 4.4, {Pm[−⩾0]} → {Pm} induces a pro isomorphism

Θ: {HL(T
σ(Am, Pm[−⩾0]))}m

∼−→ {HL(T
σ(Am, Pm))}m.

In fact, by Proposition 3.5, there exists r(m) ⩾ m for each m ∈ Ξ, which does not
depend on {Pm}, {Pm[−]} and σ, such that the canonical maps kerΘr(m) → kerΘm
and cokerΘr(m) → cokerΘm are equal to zero. We set

p := pL :=
(L−1∏
l=1

(pl + 1)
)
(q + 1)− 1,

s(m) := sL(m) := r(s1(· · · (sL−1(t(m))) · · · )).

We claim that (i) for l = L holds with these definitions. We prove it by induction on
n := #σ ⩾ 1. The case n = 1 is clear, and so let n > 1.

By Lemma 4.3, we have

C∗(BT
σ(Am, Pm[−⩾0])) = C∗(ET

σ0(Am))⊗Tσ0 (Am) C∗(BM
σ(Pm[−⩾0]))

and thus we have a first quadrant spectral sequence

(E1
s,t)

σ
m = Ht(T

σ(Am, Pm[s]))⇒ Hs+t(T
σ(Am, Pm[−⩾0])).

It is clear that (E2
s,0)

σ
m = 0 for s > 0. Hence, the spectral sequence induces a filtration

0 = Fσ−1,m ⊂ Fσ0,m ⊂ · · · ⊂ FσL−1,m = HL(T
σ(Am, Pm[−⩾0]))

with Fσi,m/F
σ
i−1,m a subquotient of HL−i(T

σ(Am, Pm[i])).

Note that the map φ : σ → σ⋆[p] induces a morphism of spectral sequences

(E1
s,t)

σ
m = Ht(T

σ(Am, Pm[s])) +3

��

Hs+t(T
σ(Am, Pm[−⩾0]))

��
(E1

s,t)
σ⋆[p]
m = Ht(T

σ⋆[p](Am, Pm[s])) +3 Hs+t(T
σ⋆[p](Am, Pm[−⩾0])).

By the induction hypothesis, the induced map

Fσi,sL−i(m)/F
σ
i−1,sL−i(m) → F

σ⋆[pL−i]
i,m /F

σ⋆[pL−i]
i−1,m

is zero for 1 ⩽ i ⩽ L− 1. Also, observe that (σ⋆[a])⋆[b] = σ⋆[(a+ 1)(b+ 1)− 1]. It

follows that, by putting s′(m) := s1(· · · (sL−1(t(m))) · · · ) and p′ :=
∏L−1
l=1 (pl + 1)− 1,
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the canonical map

ιs′(m),t(m)Hl(T
φ) : HL(T

σ(As′(m), Ps′(m)[−⩾0]))→ HL(T
σ⋆[p′](At(m), Pt(m)[−⩾0]))

factors through F
σ⋆[p′]
0,t(m) .

Now, we have lifts (maps of sets) in the commutative diagram

HL(T
σ(As(m), Ps(m)))

ιs(m),s′(m)

��ss
Fσ
0,s′(m)

� � //

��

HL(T
σ(As′(m), Ps′(m)[−⩾0]))

Θ //

��tt

HL(T
σ(As′(m), Ps′(m)))

ιs′(m),t(m)HL(Tφ)

��
F

σ⋆[p′]
0,t(m)

� � //

��

HL(T
σ⋆[p′](At(m), Pt(m)[−⩾0]))

Θ // HL(T
σ⋆[p′](At(m), Pt(m)))

HL(T
σ⋆[p′](At(m), Pt(m)[0]))

OOOO

HL(T ϵ,φ) / / HL(T
σ⋆[p′](At(m), Pt(m))).

Consider the following diagram

HL(T
σ⋆[p′](At(m), Pt(m)[0]))

��

HL(T ϵ,φ)// HL(T
σ⋆[p](Am, Pm))

HL(T
σ(As(m), Ps(m)))

��

HL(Tφ)

//

33

HL(T
σ⋆[p′](At(m), Pt(m)))

��

HL(Tφ)

// HL(T
σ⋆[p](Am, Pm))

HL(T
σ0(As(m)))

HL(Tϕ)

// HL(T
σ0×[p′](At(m)))

HL(Tϕ)

// HL(T
σ0×[p](Am)),

OO

where we omit the structure maps ι∗,∗. The right rectangle commutes by Sublem-
ma 4.6, though the lower right square may not commute. It follows from a simple
diagram chase that the bottom rectangle commutes. Therefore, by the induction
hypothesis for n = #σ, the middle composite ιs(m),mHL(T

φ) equals zero.
Finally, (ii) for l = L follows immediately from (i) for l = L and Sublemma 4.6.

Let σ be a partial ordering on {1, . . . , n}. Then we can naturally regard Tσ(A)
as a subgroup of GLn(A). For k ⩾ 0, we define kσ̃ to be the partial ordering on
{1, . . . , n+ k} obtained from σ by adding the relations i < n+ j for i ∈ {1, . . . , n}
and 1 ⩽ j ⩽ k. We set

kT̃σ(A,P ) :=

{
Tσ(A) if k = 0

T
kσ̃(A,P ) if k ⩾ 1

= Tσ(A)⋉Mn,k(P ).

We write Πn for the set of all partial orderings on {1, . . . , n}.
Corollary 4.8. Let A be a commutative Tor-unital pro ring. Let σ1, . . . , σt ∈ Πn and
l ⩾ 0. Then there exists p ⩾ 0 such that the canonical map

H̃l

( t∪
i=1

BkT̃σi(A,P)
)
→ H̃l

( t∪
i=1

BkT̃σi×[p](A,P)
)

is equal to zero as a pro morphism for all k ⩾ 0 and all pseudo-free A-modules P,
where the unions are taken in B(GL∗(A)⋉M∗,k(P)).
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In particular, there exists N ⩾ n such that the canonical map

H̃l

( ∪
σ∈Πn

BkT̃σ(A,P)
)
→ H̃l

( ∪
σ∈ΠN

BkT̃σ(A,P)
)

is equal to zero for all k ⩾ 0 and all pseudo-free A-modules P.

Proof. We follow the proof of [Su82, Lemma 7.5]. Note that

kT̃σ×[p](A,P ) =

{
Tσ×[p](A) if k = 0,

T
kσ̃⋆[p](A,P ) if k ⩾ 1.

Hence, the case t = 1 is true by Lemma 4.5. Let t > 1 and suppose that the corollary
holds for s < t.

We abbreviate kT̃σ(A,P) as T̃σ. Set σi,t := σi ∩ σt. Then we have a commutative
diagram

H̃l

(∪t−1
i=1 BT̃

σi
)
⊕ H̃l(BT̃

σt)

��

// H̃l

(∪t
i=1BT̃

σi
)

//

��ss

H̃l−1

(∪t−1
i=1 BT̃

σi,t
)

��
H̃l

(∪t−1
i=1 BT̃

σi×[q]
)
⊕ H̃l(BT̃

σt×[q]) // H̃l

(∪t
i=1BT̃

σi×[q]
)

// H̃l−1

(∪t−1
i=1 BT̃

σi,t×[q]
)

with exact rows. We regard the diagram as a diagram of modules by the Freyd–
Mitchell embedding. By the induction hypothesis, the right vertical map is zero for
some q ⩾ 0. Thus, there exists a lift (a map of sets) as indicated above. Again, by the
induction hypothesis, there exists q′ ⩾ 0 such that the map

H̃l

(t−1∪
i=1

BT̃σi
)
⊕ H̃l(BT̃

σt)→ H̃l

(t−1∪
i=1

BT̃σi×[q′]
)
⊕ H̃l(BT̃

σt×[q′])

is zero. It follows from (σi × [q])× [q′] = σi × [q′′] with q′′ := (q + 1)(q′ + 1)− 1 that
the map

H̃l

( t∪
i=1

BT̃σi
)
→ H̃l

( t∪
i=1

BT̃σi×[q′′]
)

is zero. This completes the proof.

4.3. The pro acyclicity theorem
We set kT̃σ(A) := kT̃σ(A,A) = Tσ(A)⋉Mn,k(A) for σ ∈ Πn.

Theorem 4.9. Let A be a commutative Tor-unital pro ring and l ⩾ 0. Then:

(i) For n ⩾ 2l + 1 and for any k ⩾ 0,

H̃l

( ∪
σ∈Πn

BkT̃σ(A)
)
= 0,

where the union is taken in B(GLn(A)⋉Mn,k(A)).

(ii) For n ⩾ 2l and for any k ⩾ 0, the canonical map

Hl

( ∪
σ∈Πn

BT σ(A)
)
→ Hl

( ∪
σ∈Πn

BkT̃σ(A)
)

is a pro isomorphism.
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Proof. We write kX̃n(A) =
∪
σ∈Πn

BkT̃σ(A) and Xn(A) = 0X̃n(A).

We prove the theorem by induction on l. The case l = 0 is trivial. Let L > 0 and
suppose that the theorem holds for l < L.

Sublemma 4.10. Let k ⩾ 0. The canonical map

HL(
kX̃n(A))→ HL(

kX̃n+1(A))

is a pro epimorphism for n ⩾ 2L and a pro isomorphism for n ⩾ 2L+ 1.

Proof. Let us introduce some notation. Let A be a ring, σ ∈ Πn and 1 ⩽ i ⩽ n. We
define Tσ,in (A) to be the subgroup of Tσn (A) consisting of all α with αi,j = αj,i = 0
for i ̸= j. For k ⩾ 0, we set

kX̃i
n(A) :=

∪
σ∈Πn

BT
kσ̃,i(A)

and write kX̃
i1,...,ip
n (A) for the intersection of kX̃i1

n (A), . . . , kX̃
ip
n (A). Then it is easy

to see that kX̃
i1,...,ip
n (A) ≃ kX̃n−p(A).

Consider the spectral sequence

kẼ1
p,q =

⊔
i0,...,ip

Hq

(
kX̃

i0,...,ip
n+1 (A)

)
⇒ Hp+q

( ∪
1⩽i⩽n+1

kX̃i
n+1(A)

)
. (4.4)

Since kX̃
i0,...,ip
n+1 (A) ≃ kX̃n−p(A), it follows from the induction hypothesis that

kẼ2
0,L ≃ HL(

kX̃n(A))

for n ⩾ 2L. Hence, the canonical map

HL(
kX̃n(A))→ HL

( ∪
1⩽i⩽n+1

kX̃i
n+1(A)

)
is a pro epimorphism for n ⩾ 2L and a pro isomorphism for n ⩾ 2L+ 1. According
to [Su82, Corollary 6.6, see also the remark before Theorem 7.1]5, the canonical map

HL

( ∪
1⩽i⩽n+1

kX̃i
n+1(A)

)
→ HL(

kX̃n+1(A))

is a levelwise surjection for n ⩾ 2L and a levelwise bijection for n ⩾ 2L+ 1. Bringing
these together, we obtain the sublemma.

We show (i) for l = L. Suppose that n ⩾ 2L+ 1. According to Corollary 4.8, the
canonical map

HL(
kX̃n(A))→ HL(

kX̃N (A))

is zero for some N ⩾ n. On the other hand, by Sublemma 4.10, this map is a pro
isomorphism, and thus HL(

kX̃n(A)) = 0.

5The proof works for non-unital rings as it is.
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To get (ii) for l = L, it remains to show that the canonical map

HL(X2L(A))→ HL(
kX̃2L(A))

is a pro isomorphism. By the spectral sequence (4.4), we have a commutative diagram

0 // E2
2,L−1

//

��

HL(X2L(A)) //

��

HL(X2L+1(A)) //

≃��

0

0 // kẼ2
2,L−1

// HL(
kX̃2L(A)) // HL(

kX̃2L+1(A)) // 0

with exact rows. Hence, it is enough to show that E2
2,L−1 → kẼ2

2,L−1 is a pro isomor-
phism; equivalently it is a pro epimorphism. This follows from the diagram

E1
2,L−1 =

⊕
HL−1(X2L−2(A)) //

≃��

E2
2,L−1

//

��

0

kẼ1
2,L−1 =

⊕
HL−1(

kX̃2L−2(A)) // kẼ2
2,L−1

// 0

with exact rows.

5. Homology pro stability

In this section, we prove homology pro stability for En (Theorem 5.6) and for
GLn (Theorem 5.13). We follow Suslin [Su96], generalizing his argument to the pro
setting.

We say that a levelwise action of a pro group {Gm} on a pro object {Mm} is pro
trivial if there exists s ⩾ m for each m such that ιs,m(gx) = ιs,m(x) for all g ∈ Gs
and x ∈Ms.

5.1. Volodin spaces

Let G be a group and {Gi}i∈I a family of subgroups of G. We define the Volodin
space V (G, {Gi}i∈I) to be the simplicial subset of EG formed by simplices (g0, . . . , gp)
for which there exists i ∈ I such that gjg

−1
k ∈ Gi for all 0 ⩽ j, k ⩽ p.

The simplicial subset V (G, {Gi}i∈I) ⊂ EG is stable under the right action of G,
and V (G, {Gi})/G =

∪
i∈I BGi. Hence, we have a spectral sequence

E2
p,q = Hp(G,Hq(V (G, {Gi}i∈I)))⇒ Hp+q

(∪
i∈I

BGi

)
. (5.1)

Let A be a ring. We consider the Volodin space

Vn(A) := V (En(A), {Tσ(A)}σ∈Πn).

The permutation group Σn acts on Vn(A) by conjugation, and En(A) acts on Vn(A)
by right multiplication.

Here are some properties of Volodin spaces we need.

Lemma 5.1 (Suslin–Wodzicki [Su96, Lemma 5.4]). Let G be a subgroup of GLn(A)
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containing En(A) and let k ⩾ 0. Then the canonical projection and the inclusion

V (G, {Tσ(A)}σ∈Πn) ⇄ V

((
G ∗
0 1k

)
,

{(
Tσ(A) ∗

0 1k

)}
σ∈Πn

)
are mutually inverse homotopy equivalences.

Lemma 5.2 (Suslin–Wodzicki [SW92, Lemma 2.8]). For every n, l ⩾ 0, the action
of En+1(A

2) on the image of the canonical map

Hl(Vn(A))→ Hl(Vn+1(A))

is trivial.

Corollary 5.3. Let A be a pro ring such that A/A2 = 0. Then, for every n, l ⩾ 0,
the action of En+1(A) on the image of the canonical map

Hl(Vn(A))→ Hl(Vn+1(A))

is pro trivial.

Proof. Write A = {Am}. By the assumption, there exists s ⩾ m for each m such
that ιs,mAs ⊂ A2

m. Hence, given x in the image of Hl(Vn(As))→ Hl(Vn+1(As)) and
g ∈ En(As), we have ιs,m(gx) = ιs,m(x).

5.2. Van der Kallen’s acyclicity
Let A be a ring and n ⩾ 1. Fix a unital ring R which contains A as a two sided

ideal. Let I be a finite subset of {1, . . . , n} and Rn the free right R-module with
basis e1, . . . , en. A map f : I → Rn is called an A-unimodular function if {f(i)}i∈I
forms a basis of a free direct summand of Rn and f(i) ≡ ei modulo A. We denote by
UniIA,n = UniIA,n(R) the set of all A-unimodular functions f : I → Rn. As the notation

suggests, UniIA,n does not depend on R.
We define the associated semi-simplicial set UniA,n as follows: A p-simplex is

an A-unimodular function f ∈ UniIA,n for some I with |I| = p+ 1. The i-th face
di : (UniA,n)p → (UniA,n)p−1, 0 ⩽ i ⩽ p, is defined by

(f, dom f = {i0, . . . , ip}) 7→ f |{i0,...,̂ik,...,ip}.

As in the preceding section, for a semi-simplicial set X, we denote by C∗(X) the
complex freely generated by X∗ with the differential being the alternating sum of the
faces.

The following result is proved by van der Kallen [vdK80] in the case A is unital,
and the proof can be easily modified for non-unital rings. We can also find a complete
proof in [Su96, §2].

Theorem 5.4. H̃l(C∗(UniA,n)) = 0 for n ⩾ l + sr(A) + 1.

Let SUniIA,n (resp. SUni
I

A,n(R)) be the set of all unimodular functions f ∈UniIA,n(R)
for which there exists α ∈ En(A) (resp. α ∈ En(R,A)) such that f(i) = eiα for all
i ∈ I. These yield semi-simplicial subsets SUniA,n and SUniA,n(R) of UniA,n(R) in an
obvious way.
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Corollary 5.5.

(i) H̃l(C∗(SUniA,n(R))) = 0 for n ⩾ l + sr(A) + 1.

(ii) Let A be a pro ring such that A/A2 = 0. Then

H̃l(C∗(SUniA,n)) = 0

as pro abelian groups for n ⩾ l + sr(A) + 1.

Proof. (i) This is [Su96, Corollary 2.8].
(ii) Let R be a unital pro ring which contains A as a two-sided ideal. By Corol-

lary 2.3, the canonical map SUniA,n → SUniA,n(R) is a pro isomorphism. Hence, (ii)
follows from (i).

5.3. Homology pro stability for Vn and En
The following is a pro version of [Su96, Theorem 6.1].

Theorem 5.6. Let A be a commutative Tor-unital pro ring. Let r = max(sr(A), 2)
and l ⩾ 0. Then:

(i) The canonical map

Hl(Vn(A))→ Hl(Vn+1(A))

is a pro epimorphism for n⩾ 2l+ r+1 and a pro isomorphism for n⩾ 2l+r+2.

(ii) The conjugate action of Σn on Hl(Vn(A)) is pro trivial for n ⩾ 2l + r + 2.

(iii) The action of En(A) on Hl(Vn(A)) is pro trivial for n ⩾ 2l + r + 2.

(iv) The canonical map

Hl(En(A))→ Hl

((
En(A) ∗

0 1k

))
is a pro isomorphism for n ⩾ 2l + r − 2 and for any k ⩾ 0.

(v) The conjugate action of Σn on Hl(En(A)) is pro trivial for n ⩾ 2l + r − 1.

(vi) The canonical map

Hl(En(A))→ Hl(En+1(A))

is a pro epimorphism for n ⩾ 2l + r − 2 and a pro isomorphism for n ⩾ 2l +
r − 1.

We prove Theorem 5.6 by induction on l. The case l = 0 is clear. Also, (iv, v, vi)
for l = 1 holds by the obvious reasons: (v, vi) follows from the fact H1(En(A)) = 0
for n ⩾ 3. For (iv), note that we have a levelwise exact sequence

Mn,k(A)En(A)
//H1(En(A)⋉Mn,k(A)) //H1(En(A)) //0,

and it is easy to see that Mn,k(A)En(A) = 0 for n ⩾ 2.
Let L > 0. The proof is divided into the four steps. We write (?)<N (resp. (?)⩽N ,

resp. (?)N ) for Theorem 5.6 (?) with l < N (resp. l ⩽ N , resp. l = N).

Step 1: (i, ii, iii)<L−1 ⇒ (iii)L−1.

Step 2: (iii)⩽L−1, (iv)<L+1 ⇒ (iv)L+1.

Step 3: (iv)⩽L+1, (v, vi)<L+1 ⇒ (v, vi)L+1.



364 RYOMEI IWASA

Step 4: (i, ii)<L−1, (iii)⩽L−1 (vi)⩽L+1 ⇒ (i, ii)L−1.

Remark 5.7. Let us explain how our argument below compares to Suslin’s in [Su96].
First we remark that, in (i)–(iii) of Theorem 5.6, the range of stability or triviality is
different from Suslin’s (ours is weaker). We think it was just an error there. Accord-
ingly there is a minor difference in induction systems between ours and Suslin’s, but
all the essential ideas below are due to Suslin and the arguments are roughly compared
as follows:

— Step 1 corresponds to 6.2–6.4 in [Su96].

— Step 2 corresponds to Corollary 5.8 and its proof in [Su96].

— Step 3 corresponds to 6.5–6.7 in [Su96].

— Step 4 corresponds to 6.8–6.10 in [Su96].

5.4. Step 1: Covering argument I

Suppose that (i, ii, iii)<L−1 hold. We show (iii)L−1.
6

5.4.1. Covering spectral sequence

Let A be a ring. For I ⊂ {1, . . . , n}, let ΠIn be the set of all partial orderings of
{1, . . . , n} for which every i ∈ I is maximal. Set Vn(A)

I := Vn(En(A), {Tσ(A)}σ∈ΠIn
).

Then Vn(A) =
∪n
i=1 Vn(A)

i, and there is a spectral sequence

E1
p,q(A) =

⊔
|I|=p+1

Hq(Vn(A)
I)⇒ Hp+q(Vn(A)).

We define a map ϕ : Vn(A)
I → SUniIA,n by ϕ(α0, . . . , αq)(i) = eiα0, i ∈ I. Then ϕ

is a morphism of simplicial sets regarding SUniIA,n as a constant simplicial set, and

the inverse image of the unimodular function f0 : i 7→ ei is V (En(A)
I , {Tσ(A)}σ∈ΠIn

),

where En(A)
I is the subgroup of En(A) generated by elementary matrices α such that

eiα = ei for all i ∈ I. For each f ∈ SUniIA,n, choose Λ(f) ∈ En(A) with f(i) = eiΛ(f),
i ∈ I. Since the map ϕ is En(A)-equivariant, Λ(f) gives an isomorphism ϕ−1(f0) ≃
ϕ−1(f) and

SUniIA,n × V (En(A)
I , {Tσ(A)}σ∈ΠIn

)
∼−→ Vn(A)

I , (f, u) 7→ uΛ(f).

Also, the conjugation by the shuffle permutation σI , σI{n− p, . . . , n} = I, gives an
isomorphism

V (En(A)
n−p,...,n, {Tσ(A)}σ∈Πn−p,...,n

n
)

∼−→ V (En(A)
I , {Tσ(A)}σ∈ΠIn

).

Hence, we get an isomorphism

ΦΛ : Cp(SUniA,n)⊗Hq(V (En(A)
n−p,...,n, {Tσ(A)}σ∈Πn−p,...,n

n
))

∼−→ E1
p,q(A).

For another choice of Λ′, there exists γ(f) ∈ En(A)n−p,...,n for each f ∈ SUniA,n such
that ΦΛ′(f, u) = ΦΛ(f, uγ(f)).

6In this step, we only need TorZ⋉A
1 (Z,Z) = A/A2 = 0.
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Under the isomorphism ΦΛ, the differential d1 : Ep,q → Ep−1,q is given by, for f ∈
SUniIA,n and u ∈ Hq(V (En(A)

n−p,...,n, {Tσ(A)}σ∈Πn−p,...,n
n

)),

d1(f ⊗ u) =
p∑
k=0

(−1)kdkf ⊗ τI,k(δu)τ−1
I,kαk. (5.2)

Here, αk is a certain element in En(A)
n−p+1,...,n, τI,k := σ−1

I\{ik}σI , and δ is the map

induced from the canonical embedding En(A)
n−p,...,n → En(A)

n−p+1,...,n.

5.4.2. Pro arguments

We write A = {Am}m∈Ξ. Set Ēn(A) := GLn(A) ∩ E(A). Then the canonical maps

Hq(V (Ēn−p−1(A), {Tσ(A)}σ∈Πn−p−1
))

≃��
Hq(V (Ēn(A)n−p,...,n, {Tσ(A)}σ∈Πn−p,...,n

n
))

≃��

Hq

(
V

((
Ēn−p−1(A) ∗

0 1p+1

)
,

{(
Tσ(A) ∗

0 1p+1

)}
σ∈Πn−p−1

))

are levelwise isomorphisms. Indeed, the second map is an isomorphism by definition
and the composite is an isomorphism by Lemma 5.1. Hence, by Theorem 2.6, the
canonical map

λ : Hq(Vn−p−1(A))→ Hq(V (En(A)n−p,...,n, {Tσ(A)}σ∈Πn−p,...,n
n

))

is a pro isomorphism for n− p− 1 ⩾ r + 1.

Suppose that q < L− 1 and n− p− 1 ⩾ 2q + r + 2. Then, by (iii)<L−1, the action
of En−p−1(A) on Hq(Vn−p−1(A)) is pro trivial. Hence, there exists s(m) ⩾ m for
each m ∈ Ξ such that the composite Ψm in the diagram below does not depend on
the choice of Λ:

Cp(SUniAs(m),n)⊗Hq(Vn−p−1(As(m)))

id⊗λ
��

Ψm

��

Cp(SUniAs(m),n)⊗Hq(V (En(As(m))
n−p,...,n, {Tσ(As(m))}σ∈Π

n−p,...,n
n

))

ΦΛ ≃
��

E1
p,q(As(m))

ιs(m),m // E1
p,q(Am).

We may assume s(m+ 1) > s(m) for every m, so that we obtain a morphism of pro
abelian groups

Ψ: Cp(SUniA,n)⊗Hq(Vn−p−1(A))→ E1
p,q(A).

Since λ is a pro isomorphism and ΦΛ is an isomorphism, we see that Ψ is a pro
isomorphism.

Now, by (ii)<L−1, the action of Σn−p−1 on Hq(Vn−p−1(A)) is also pro trivial.
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Hence, by modifying s(m) ⩾ m if necessary, we see that the diagram

Cp+1(SUniAs(m),n
)⊗Hq(Vn−p−2(As(m)))

ιs(m),mΦΛ(id⊗λ)
//

∑
(−1)kdk⊗δ

��

E1
p+1,q(Am)

d1��
Cp(SUniAs(m),n

)⊗Hq(Vn−p−1(As(m)))
ιs(m),mΦΛ′ (id⊗λ) // E1

p,q(Am)

commutes, cf. the formula (5.2). The horizontal maps are the maps Ψm unless n−
p− 1 = 2q + r + 2; in the last case only the bottom horizontal map can be identified
with Ψm. Consequently, for q < L− 1, we obtain a morphism of pro complexes

Ψ: σ⩽n−2q−r−3(C•(SUniA,n)⊗Hq(Vn−1−•(A)))→ σ⩽n−2q−r−3E
1
•,q(A) (5.3)

and it is a pro isomorphism.

Claim 5.8. For q < L− 1 and 0 < p ⩽ n− 2q − r − 3,

E2
p,q(A) = 0.

Proof. Suppose that q < L− 1 and 0 < p ⩽ n− 2q − r − 3. We set

Fp,q(A) := Cp(SUniA,n)⊗Hq(Vn−p−1(A)),

which we regard as a complex in p with differential ∂ :=
∑

(−1)kdk ⊗ δ. First, we
show that Hp(F•,q(A)) = 0.

By (i)<L−1, the canonical map Hq(Vn−p−1(A))→ Hq(Vn−p(A)) is a pro isomor-
phism, and thus

ker(Fp,q(A)→ Fp−1,q(A)) ≃ Zp(SUniA,n)⊗Hq(Vn−p−1(A)),

where Zp(SUniA,n) := ker(Cp(SUniA,n)→ Cp−1(SUniA,n)). By Corollary 5.5, the dif-
ferential

Cp+1(SUniA,n)→ Zp(SUniA,n)

is a pro epimorphism. Also, by (i)<L−1, the canonical map

Hq(Vn−p−2(A))→ Hq(Vn−p−1(A))

is a pro epimorphism. These imply that ∂ : Fp+1(A)→ ker(Fp,q(A)→ Fp−1,q(A)) is
a pro epimorphism, hence Hp(F•,q(A)) = 0.

If p < n− 2L− r − 3, then Ψ (5.3) induces a pro isomorphism

HpF•,q(A) ≃ E2
p,q(A).

Hence, in this case, the vanishing of E2
p,q(A) follows from that of Hp(F•,q(A)).

Finally, let p = n− 2q − r − 3. Then we have a commutative diagram

Fp+1,q(As(m))
ιs(m),mΦΛ(id⊗λ)

//

∂
��

E1
p+1,q(Am)

d1��
Fp,q(As(m))

Ψm // E1
p,q(Am).

Since Ψ is a pro isomorphism, there existsm′ ⩾ m such that, for x ∈ ker(E1
p,q(Am′)→
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E1
p−1,q(Am′)), ιm′,mx lifts to y ∈ ker(Fp,q(As(m))→ Fp−1,q(As(m))) along Ψm. Fur-

ther, sinceHp,q(F•,q(A)) = 0, we may assume that y = ∂z for some z ∈Fp+1,q(As(m)).
Hence, ιm′,mx is in the image of the differential d1. This proves E2

p,q(A) = 0.

5.4.3. Conclusion

Suppose that n ⩾ 2L+ r. If p+ q = L− 1 and p > 0, then q < L− 1 and 0 < p ⩽
n− 2q − r − 3. Hence, by Claim 5.8, the E2

p,q-terms with p+ q = L− 1 are zero unless
E2

0,L−1, and the edge map

E1
0,L−1(A)→ HL−1(Vn(A))

is a pro epimorphism.

Now, the composite

C0(SUniAm,n)⊗HL−1(Vn−1(Am))

id⊗λ
��

  

C0(SUniAm,n)⊗HL−1(V (En(Am){n}, {Tσ(Am)}
σ∈Π

{n}
n

))

ΦΛ
��

E1
0,L−1(Am)

edge // HL−1(Vn(Am))

is given by f ⊗ u 7→ σ{i}(δu)σ
−1
{i}Λ(f), where f is an Am-unimodular function with

dom f = {i} and u ∈ HL−1(Vn−1(Am)). Since the action of En(A) on the image of
δ : HL−1(Vn−1(A))→ HL−1(Vn(A)) is pro trivial by Corollary 5.3, the above com-
posite yields a pro morphism

C0(SUniA,n)⊗HL−1(Vn−1(A))→ HL−1(Vn(A)), f ⊗ u 7→ σ{i}(δu)σ
−1
{i}. (5.4)

Furthermore, since the edge map is a pro epimorphism and ΦΛ is an isomorphism
and id⊗ λ is a pro isomorphism, we see that (5.4) is a pro epimorphism.

By Corollary 5.3 again, we conclude that the action of En(A) on HL−1(Vn(A)) is
pro trivial. This proves (iii)L−1.

5.5. Step 2: V to E

Suppose that (iii)⩽L−1 and (iv)<L+1 hold. We show (iv)L+1.

Let n ⩾ 2L+ r and fix k ⩾ 0. We set

Ẽn(A) :=

(
En(A) ∗

0 1k

)
, T̃σ(A) :=

(
Tσ(A) ∗

0 1k

)
and Ṽn(A) := V (Ẽn(A), {T̃σ(A)}σ∈Πn).

By Lemma 5.1, the canonical inclusion and projection Vn(A) ⇄ Ṽn(A) are mutu-
ally inverse homotopy equivalences. It follows that the action of

(
1n ∗
0 1k

)
onH∗(Ṽn(A))

is trivial. By (iii)⩽L−1, the action of En(A) on Hq(Vn(A)) ≃ Hq(Ṽn(A)) is pro trivial

for q ⩽ L− 1. Hence, the action of Ẽn(A) on Hq(Ṽn(A)) is pro trivial for q ⩽ L− 1.
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Consider the spectral sequences (5.1) and the canonical map between them;

E2
p,q(A) = Hp(En(A),Hq(Vn(A))) +3

��

Hp+q(
∪
σ∈Πn

BT σ(A))

Ẽ2
p,q(A) = Hp(Ẽn(A),Hq(Ṽn(A))) +3 Hp+q(

∪
σ∈Πn

BT̃σ(A)).

For q ⩽ L− 1, the E2-terms fit into the extensions

0 // Hp(En(A))⊗Hq(Vn(A)) //

��

E2
p,q(A) //

��

Tor(Hp−1(En(A)),Hq(Vn(A))) //

��

0

0 // Hp(Ẽn(A))⊗Hq(Ṽn(A)) // Ẽ2
p,q(A) // Tor(Hp−1(Ẽn(A)),Hq(Ṽn(A))) // 0.

By (iv)<L+1, the canonical map Hp(En(A))→ H̃p(En(A)) is a pro isomorphism for
p ⩽ L. Hence, the canonical map

E2
p,q(A)→ Ẽ2

p,q(A)

is a pro isomorphism for p ⩽ L and q ⩽ L− 1. Also, E2
0,q(A) ≃ Ẽ2

0,q(A) for all q ⩾ 0,

sinceH∗(Vn(A))≃H∗(Ṽn(A)). Finally, by Theorem 4.9, the canonical map E∞
i (A)→

Ẽ∞
i (A) is a pro isomorphism for n ⩾ 2i.

Bringing these together, we have:

(1) E2
p,q(A) ≃ Ẽ2

p,q(A) for p+ q = L− 1.

(2) E2
p,q(A) ≃ Ẽ2

p,q(A) for p+ q = L.

(3) E2
p,q(A) ≃ Ẽ2

p,q(A) for p+ q = L+ 1 and p ⩾ 2 and q ⩾ 1.

(4) E∞
L (A) ≃ Ẽ∞

L (A) and E∞
L+1(A) ≃ Ẽ∞

L+1(A).

Then, by Lemma 5.9 below, we conclude that

E2
L+1,0(A)→ Ẽ2

L+1,0(A)

is a pro epimorphism, and thus a pro isomorphism. This proves (iv)L+1.

Lemma 5.9 ([Su96, Remark A.5]). Let A be an abelian category. Let f : E → Ẽ be a
morphism of first quadrant homological spectral sequence in A, and let L ⩾ 0. Assume
that f induces:

(1) A monomorphism E2
p,q ↪→ Ẽ2

p,q for p+ q = L− 1.

(2) An isomorphism E2
p,q

∼−→ Ẽ2
p,q for p+ q = L.

(3) An epimorphism E2
p,q ↠ Ẽ2

p,q for p+ q = L+ 1, q ⩾ 1 and p ⩾ 2.

(4) An isomorphism E∞
L

∼−→ Ẽ∞
L and an epimorphism E∞

L+1 ↠ Ẽ∞
L+1.

Then f induces an epimorphism

E2
L+1,0 ↠ Ẽ2

L+1,0.

5.6. Step 3: Covering argument II

Suppose that (iv)⩽L+1 and (v,vi)<L+1 hold. We show (v,vi)L+1.
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Sublemma 5.10. For l ⩽ L+ 1 and n ⩾ 2l + r − 2, let H be a finite subgroup of
GLn+1(Z). Then the conjugate action of H on the image of

Hl(En(A))→ Hl(En+1(A))

is pro trivial.

Proof. The case l = 0, 1 is clear. Suppose that 2 ⩽ l ⩽ L+ 1 and n ⩾ 2l + r − 2.
Note that GLn+1(Z) is generated by ei,n+1(1), en+1,i(1), 1 ⩽ i ⩽ n, and the diago-

nal matrix diag(1, . . . , 1,−1). Since H is finite, it suffices to show that each generator
acts pro trivially on the image of Hl(En(A))→ Hl(En+1(A)). It is obvious that
diag(1, . . . , 1,−1) acts trivially on it.

We show the triviality of the conjugate action of ei,n+1(1); that of en+1,i(1) is
similar. By Corollary 2.3, it suffices to show that the action on the image of

Hl(En(R,A))→ Hl(En+1(R,A))

is pro trivial for some unital pro ring R which contains A as a two-sided ideal. The
inclusion En(R,A) ↪→ En+1(R,A) factors through

Ẽn(R,A) :=

(
En(R,A) ∗

0 1

)
⊂ En+1(R,A)

and it is normalized by ei,n+1(1). Hence, we are reduced to showing that ei,n+1(1)

acts pro trivially on the image of Hl(En(R,A))→ Hl(Ẽn(R,A)). Now, we have a
commutative diagram

Hl(Ẽn(R,A))
ei,n+1(1) // Hl(Ẽn(R,A))

����
Hl(En(R,A))

?�

OO

id // Hl(En(R,A)),

and the vertical maps, the canonical inclusion and projection, are pro isomorphisms
by (iv)⩽L+1. This implies the desired pro triviality of the action of ei,n+1(1).

We consider the hyperhomology spectral sequence

E1
p,q(A) = Hq(En+1(A), Cp(SUniA,n+1))⇒ Hp+q(En+1(A), C•(SUniA,n+1)).

Note that Cp(SUniA,n+1) decomposes into a direct sum of En+1(A)-submodules

Cp(SUni
I
A,n+1) with |I| = p+ 1, and that we have a levelwise isomorphism

ZEn+1(A)⊗ZEn+1(A)I Z
∼−→ Cp(SUni

I
A,n+1),

which sends α ∈ En+1(A) to the unimodular function i 7→ eiα, i ∈ I. Hence,⊔
|I|=p+1

Hq(En+1(A)I) ≃ E1
p,q(A).

Let ∆n be the nerve of the partially ordered set {1 < 2 < · · · < n+ 1}. We define
level maps En−p(A)→ En+1(A)I by sending α to σI

(
α 0
0 1p+1

)
σ−1
I , where σI is the

shuffle permutation σI{n− p+ 1, . . . , n+ 1} = I. These maps yield

Ψ: ∆n
p ⊗Hq(En−p(A)) ≃

⊔
|I|=p+1

Hq(En−p(A))→
⊔

|I|=p+1

Hq(En+1(A)I) ≃ E1
p,q(A).
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It follows from Theorem 2.6 and (iv)⩽L+1 that Ψ is a pro isomorphism for q ⩽ L+ 1
and n− p⩾max(2q+ r− 2, r+1). Furthermore, by Sublemma 5.10 (withH = Σn+1),
we see that the diagram

∆n
p+1 ⊗Hq(En−p−1(A))∑p+1

k=0(−1)kdk⊗δ
� �

Ψ // E1
p+1,q(A)

d1��
∆n
p ⊗Hq(En−p(A))

Ψ // E1
p,q(A)

commutes for q ⩽ L+ 1 and n− p ⩾ 2q + r − 1, where dk are the face maps of ∆n

and δ is the canonical map Hq(En−p−1(A))→ Hq(En−p(A)).

Claim 5.11. For q ⩽ L and 0 < p ⩽ n− 2q − r + 1,

E2
p,q(A) = 0.

Proof. Let q ⩽ L and 0 < p ⩽ n− 2q − r + 1. We set Fp,q(A) := ∆n
p ⊗Hq(En−p(A)),

which we regard as a complex in p with differential
∑p+1
k=0(−1)kdk ⊗ δ. Then it follows

from (vi)<L+1 that

ker(Fp,q(A)→ Fp−1,q(A)) ≃ ker(Z∆n
p → Z∆n

p−1)⊗Hq(En−p(A)).

Again by (vi)<L+1, the canonical map

Hq(En−p−1(A))→ Hq(En−p(A))

is a pro epimorphism. Since ∆n is contractible, we conclude that Hp(F•,q(A)) = 0.
Now, we have a pro isomorphism

E2
p,q(A) ≃ Hp(F•,q(A))

for n− p− 1 ⩾ r + 1. Our assumption says n− p− 1 ⩾ 2q + r − 2; hence, in the case
2q + r − 2 ⩾ r + 1, the vanishing of E2

p,q(A) follows from that of Hp(F•,q(A)).
It remains to show the case q = 1. However, in this case,

E1
p,1(A)

∼−→
Ψ

∆n ⊗H1(En−p(A)) = 0.

This finishes the proof of the claim.

Suppose that n ⩾ 2L+ r. Then the E2-terms with p+ q = L+ 1 are zero unless
E2

0,L+1(A). Hence, the edge map

E1
0,L+1(A)→ E∞

L+1(A)

is a pro epimorphism. The left-hand side is pro isomorphic to ∆n
0 ⊗HL+1(En(A)) by

the map Ψ. According to Corollary 5.5, H̃i(C∗(SUniA,n+1)) = 0 for n ⩾ i+ r. Hence,
we have a pro isomorphism

E∞
L+1(A) = HL+1(En+1(A), C•(SUniA,n+1)) ≃ HL+1(En+1(A)).

By Sublemma 5.10, we see that the edge map

∆n
0 ⊗HL+1(En(A))→ HL+1(En+1(A))

agrees with a sum of copies of the canonical map δ : HL+1(En(A))→ HL+1(En+1(A))
as a pro morphism. Hence, δ is a pro epimorphism. This proves the first half of (vi)L+1.
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Next, suppose that n ⩾ 2L+ r + 1. Then we have Ess,L−s+2(A) = 0 for s ⩾ 2 by
Claim 5.11. Hence, we have an exact sequence

∆n
1 ⊗HL+1(En−1(A)) //∆n

0 ⊗HL+1(En(A)) //HL+1(En+1(A)) //0.

Since HL+1(En−1(A))→ HL+1(En(A)) is a pro epimorphism, we conclude that the
canonical map

HL+1(En(A))
∼−→ HL+1(En+1(A))

is a pro isomorphism. This proves the second half of (vi)L+1.

Finally, since HL+1(En−1(A))→ HL+1(En(A)) is a pro epimorphism, the action
of Σn on HL+1(En(A)) is pro trivial by Sublemma 5.10. This proves (v)L+1

5.7. Step 4: E to V

Suppose that (i, ii)<L−1, (iii)⩽L−1 and (vi)⩽L+1 hold. We show (i, ii)L−1.

Let n ⩾ 2L+ r. Consider the spectral sequences (5.1) and the canonical map
between them;

nE2
p,q(A) = Hp(En(A),Hq(Vn(A))) +3

��

Hp+q

(∪
σ∈Πn

BT σ(A)
)

n+1E2
p,q(A) = Hp(En+1(A),Hq(Vn+1(A))) +3 Hp+q

(∪
σ∈Πn+1

BT σ(A)
)
.

By (iii)⩽L−1, for q ⩽ L− 1, the E2-terms fit into the extensions

0 // Hp(En(A))⊗Hq(Vn(A)) //

��

nE2
p,q(A) //

��

Tor(Hp−1(En(A)), Hq(Vn(A))) //

��

0

0 // Hp(En+1(A))⊗Hq(Vn+1(A)) // n+1E2
p,q(A) // Tor(Hp−1(En+1(A)), Hq(Vn+1(A))) // 0.

Hence, it follows from (i)<L−1 and (vi)⩽L+1 that the map

nE2
p,q(A)→ n+1E2

p,q(A)

is a pro epimorphism for q < L− 1 and p ⩽ L+ 1, and it is a pro isomorphism
if further n ⩾ 2p+ r − 1. Finally, by Theorem 4.9, the canonical map nE∞

i (A)→
n+1E∞

i (A) is a pro isomorphism for n ⩾ 2i+ 1.

Bringing these together, we have:

(1) nE2
p,q(A) ≃ n+1E2

p,q(A) for p+ q = L− 1 and p ⩾ 1.

(2) nE2
p,q(A) ≃ n+1E2

p,q(A) for p+ q = L and p ⩾ 2.

(3) nE2
p,q(A) ↠ n+1E2

p,q(A) for p+ q = L+ 1 and p ⩾ 3.

(4) nE∞
L−1(A) ≃ n+1E∞

L−1(A) and nE∞
L (A) ≃ n+1E∞

L (A).

Then, by Lemma 5.12 below, we conclude that the canonical map

nE2
0,L−1(A)

∼−→ n+1E2
0,L−1(A)

is a pro isomorphism. By (iii)⩽L−1, the left-hand side (resp. right hand side) is pro
isomorphic to HL−1(Vn(A)) (resp. HL−1(Vn+1(A))). Hence, we get the second part
of (i)L−1.
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Next, we show (ii)L−1. Now, the canonical map

HL−1(Vn(A))
∼−→ HL−1(Vn+2(A))

is a Σn-equivariant pro isomorphism. Hence, it suffices to show that Σn+2 (and
thus Σn) acts pro trivially on HL−1(Vn+2(A)). Now, the permutation τn+1,n+2 acts
pro trivially on HL−1(Vn+2(A)), since it acts trivially on the image of the above
map. Since Σn+2 is the normal closure of τn+1,n+2, Σn+2 also acts pro trivially on
HL−1(Vn+2(A)).

In Step 1, we have seen that the map (5.4)

C0(SUniA,n)⊗HL−1(Vn−1(A))→ HL−1(Vn(A))

sending f ⊗ u 7→ σ{i}(δu)σ
−1
{i} (dom f = {i}) is a pro epimorphism for n ⩾ 2L+ r.

Now, we know that σ{i}(δu)σ
−1
{i} = δu. Hence, δ : HL−1(Vn−1(A))→ HL−1(Vn(A)) is

a pro epimorphism. This completes the proof of (i)L−1.

Lemma 5.12 ([Su96, Theorem A.6]). Let A be an abelian category. Let f : E → Ẽ
be a morphism of first quadrant homological spectral sequences in A, and let L > 0.
Assume that f induces:

(1) A monomorphism E2
p,q ↪→ Ẽ2

p,q for p+ q = L− 1, p ⩾ 1.

(2) An isomorphism E2
p,q

∼−→ Ẽ2
p,q for p+ q = L, p ⩾ 2.

(3) An epimorphism E2
p,q ↠ Ẽ2

p,q for p+ q = L+ 1, p ⩾ 3.

(4) Isomorphisms E∞
L−1

∼−→ Ẽ∞
L−1 and E∞

L
∼−→ Ẽ∞

L .

Then f induces an isomorphism

E2
0,L−1

∼−→ Ẽ2
0,L−1.

5.8. Homology pro stability for GLn
Now, we prove our main theorem.

Theorem 5.13. Let A be a commutative Tor-unital pro ring. Let r = max(sr(A), 2)
and l ⩾ 0. Then the canonical map

Hl(GLn(A))→ Hl(GLn+1(A))

is a pro epimorphism for n ⩾ 2l + r − 2 and a pro isomorphism for n ⩾ 2l + r − 1.

Proof. The case l = 0 is clear. The case l = 1 is proved in Theorem 2.5. Let l ⩾ 2 and
n ⩾ 2l + r − 2. Then, by Theorem 2.5 and Corollary 2.3, the sequence

0 // En(A) // GLn(A) // H1(GL(A)) // 0

is exact up to pro isomorphisms. Now, we have a morphism of spectral sequences:

nE2
p,q = Hp(H1(GL(A)),Hq(En(A))) +3

��

Hp+q(GLn(A))

��
n+1E2

p,q = Hp(H1(GL(A)),Hq(En+1(A))) +3 Hp+q(GLn+1(A)).

Using these spectral sequences, we deduce the theorem from Theorem 5.6 (vi).
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Corollary 5.14. Let B be a pro ring with a two-sided ideal A and r = max(sr(A), 2).
Assume that A is commutative and Tor-unital. Then the conjugate action of GLn(B)
on Hl(GLn(A)) is pro trivial for n ⩾ 2l + r − 1.

Proof. Let α (resp. β) be the map GLn → GL2n given by

g 7→
(
g 0
0 1n

)
resp. g 7→

(
1n 0
0 g

)
.

According to Theorem 5.13, the induced maps

α, β : Hl(GLn(A))
∼−→ Hl(GL2n(A))

are pro isomorphisms for n ⩾ 2l + r − 1.
Write B = {Bm}m∈J and A = {Am}m∈J . For each m ∈ J , choose s(m) ⩾ m such

that if α(a) = 0 with a ∈ Hl(GLn(As(m))) then ιs(m),m(a) = 0. Next, choose t(m) ⩾
s(m) such that for every x ∈ Hl(GLn(At(m))) there exists y ∈ Hl(GLn(As(m))) with
ιt(m),s(m)(α(x)) = β(y). Then, for g ∈ GLn(Bt(m)) and x ∈ Hl(GLn(At(m))),

α(ιt(m),s(m)(gx)) = α(ιt(m),s(m)(g))β(y)β(y) = α(ιt(m),s(m)(x)).

Hence, ιt(m),m(gx) = ιt(m),m(x). This completes the proof.

Suslin has shown that if a ring A is Tor-unital then, for every ring B which contains
A as a two-sided ideal, the conjugate action of GL(B) on Hl(GL(A)) is trivial, cf.
[Su95, Corollary 4.5], see also [SW92, Corollary 1.6]. Geisser and Hesselholt gener-
alized Suslin’s result to a pro setting, cf. [GH06, Proposition 1.3]. They stated the
result only for pro rings of the form {Am} for some ring A, but their proof works
more generally to give the following.

Theorem 5.15 (Suslin, Geisser–Hesselholt). Let B be a pro ring and A a two-sided
ideal of B. Assume that A is Tor-unital. Then the conjugate action of GL(B) on
Hl(GL(A)) is pro trivial for all l ⩾ 0.

By using Theorem 5.15, we can strengthen Theorem 5.13.

Theorem 5.16. Let A be a commutative Tor-unital pro ring, r = max(sr(A), 2) and
l ⩾ 0. Suppose that there exists a unital pro ring R with sr(R) <∞ which contains
A as a two-sided ideal. Then the canonical map

Hl(GLn(A))→ Hl(GL(A))

is a pro epimorphism for n ⩾ 2l + r − 2 and a pro isomorphism for n ⩾ 2l + r − 1.

Proof. Let R be a unital pro ring as in the statement. Consider the commutative
diagram

GLn(A) //

��

GLn(R) //

��

GLn(R/A)

��
GL(A) // GL(R) // GL(R/A)

with exact rows. Now, the second and third maps induce isomorphisms on homology
for n large enough. Also, the action of GLn(R) on Hl(GLn(A)) is pro trivial for
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n large enough (Theorem 5.14) and for n =∞ (Theorem 5.15). Consequently, the
canonical map

Hl(GLn(A))
∼−→ Hl(GL(A))

is a pro isomorphism for n large enough. Combining it with Theorem 5.13, we get
the result.
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