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COHOMOLOGY OF THE CLASSIFYING SPACES
OF U(n)-GAUGE GROUPS OVER THE 2-SPHERE

MASAHIRO TAKEDA

(communicated by Donald M. Davis)

Abstract
A gauge group is the topological group of automorphisms of a

principal bundle. We compute the integral cohomology ring of the
classifying spaces of gauge groups of principal U(n)-bundles over
the 2-sphere by generalizing the operation for free loop spaces,
called the free double suspension.

1. Introduction

Let G be a topological group, and P → X be a principal G-bundle over a base X.
An automorphism of P is, by definition, a G-equivariant self-map of P covering
the identity map of X. The gauge group of P , denoted as G(P ), is defined as the
topological group of automorphisms of P .

As in [1, 5], there is a natural equivalence

BG(P ) ≃ Map(X,BG;α), (1)

where Map(X,Y ; f) is the path-component of the space of maps Map(X,Y ) contain-
ing a map f : X → Y and α : X → BG is a classifying map of P . This connection
enables us to employ new techniques and insights, specifically fiberwise homotopy
theory and group theory, to study the homotopy theory of mapping spaces and to
import rich tools in the homotopy theory of mapping spaces to gauge groups. More-
over, since the classifying space BG(P ) is homotopy equivalent to the moduli space of
connections of P in the smooth case, the homotopy theory of gauge groups potentially
has application in geometry and physics.

In this paper, we determine the integral cohomology ring of the classifying spaces
of gauge groups of principal U(n)-bundle over S2. Although the (co)homology of
the classifying spaces is an obviously important object in topology and has possible
applications to geometry and physics, there are only a few previous works. Mod-p
homology is computed in [4, 7], and partial cohomology calculations are done in
[8, 9, 12]. In [1] the rational Poincaré series are determined and the generators of
the integral cohomology ring are described.

Thus our result is the first complete determination of the integral cohomology ring
of the classifying space of gauge groups in the nontrivial case.
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To state the main theorem we set notation. Let e : G(P ) → G be a homomorphism
given by the evaluation map at the base point of X. Then one gets the induced map
BG(P ) → BG which is denoted by the same symbol e. Let Pn,k be a principal U(n)-
bundle over S2 such that c1(Pn,k) = k ∈ Z ∼= H2(S2;Z). Recall that H∗(BU(n)) ∼=
Z[c1, c2, . . . , cn], when ci is the i-th Chern class of the universal bundle. As we will
see later, e : BG(P ) → BG is an injection in cohomology, and so we abbreviate e∗(ci)
by ci. Let ei(a1, a2, . . . ) ∈ Z[[a1, a2, . . . ]] be the i-th elementary symmetric function
in a1, a2, . . . , and si be the i-th Newton polynomial defined by

si(e1, . . . , ei) =
∑
j

aij ,

where we abbreviate ei(a1, a2, . . . ) and si(x1, . . . , xi) by ei and si respectively when
the indeterminates are obvious.

Now we state the main theorem.

Theorem 1.1. There is a ring isomorphism

H∗(BG(Pn,k);Z) ∼= Z[c1, . . . , cn, x1, x2, . . . ]/(hn, hn+1, . . . ),

where

hi = kci +
∑

1⩽j⩽i

(−1)jsj(x1, x2, . . . , xj)ci−j .

Moreover, there is ζ ∈ K(BG(Pn,k)) such that ci(ζ) = xi.

To prove this theorem we will generalize a certain map in the cohomology of free
loop spaces which is defined in [6] and called the free loop suspension. Since the
homotopy equivalence (1) is natural with respect to X, the map e : BG(P ) → BG
coincides with the evaluation map Map(X,BG;α) → BG at the base point of X
which is ambiguously denoted by the same symbol e. Specifically in the case of Pn,k

there is an evaluation fibration

Ω2
kBU(n) → Map(S2, BU(n); k)

e−→ BU(n),

where Ω2
kBU(n) and Map(S2, BU(n); k) are the connected component of the double

loop space of BU(n) and Map(S2, BU(n)) containing a degree k map respectively.
Since Ω2

kBU(n) ≃ Ω0U(n), Ω2
kBU(n) and BU(n) have only even cells. Thus the asso-

ciated Serre spectral sequence of this evaluation fibration collapses at the E2-term,
hence there is an isomorphism as H∗(BU(n))-modules

H∗(Map(S2, BU(n); k)) ∼= H∗(Ω2
kBU(n))⊗H∗(BU(n)),

and so, in particular, e is an injection in cohomology. Thus it remains to determine
the ring structure by using the free double suspension.

2. Free double suspension

Let LX := Map(S1, X), the free loop space of a spaceX. In [6], a map σ̂ : H∗(X) →
H∗−1(LX) is constructed as an extension of the cohomology suspension σ : H∗(X) →
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H∗−1(ΩX) and applied to the evaluation fibration

ΩX → LX → X

to determine the cohomology of LX. In this section, we generalize the free suspension
to a mapping space Map(S2, X; f) and show its basic properties that we are going to
use. Since in [6] the space X is assumed to be simply connected, it is not necessary
to consider the components of LX in this case. In our case, we have to consider the
path components of Map(S2, X).

Let ê : S2 ×Map(S2, X; f) → X be the evaluation map defined by ê(s, g) = g(s)
for (s, g) ∈ S2 ×Map(S2, X). We define the free double suspension

σ̂2
f : H

∗(X) → H∗−2(Map(S2, X; f)) by σ̂2
f (x) = ê∗(x)/v

for x ∈ H∗(X), where / means the slant product and v ∈ H2(S
2) is the Hurewicz

image of the identity map of S2.

To state properties of free double suspensions, we set notation. Let e : Map(S2,
X; f) → X be the evaluation map at the basepoint of S2. Let σ2

f : H
∗(X) →

H∗−2(Ω2
fX) be the composite of cohomology suspensions and the inclusion map

H∗(X)
σ−→ H∗−1(ΩX)

σ−→ H∗−2(Ω2X) → H∗−2(Ω2
fX),

where f ∈ Ω2X. Let j : Ω2
fX → Map(S2, X; f) be the inclusion.

Proposition 2.1. Let f ∈ Ω2(X). Free double suspensions have the following proper-
ties:

1. σ̂2
f restricts to σ2

f such that

j∗ ◦ σ̂2
f = σ2

f .

2. σ̂2
f is a derivation such that for x, y ∈ H∗(X)

σ̂2
f (xy) = σ̂2

f (x)e
∗(y) + e∗(x)σ̂2

f (y).

3. Suppose that X is a path-connected H-group with a multiplication µ : X ×X →
X. If µ∗(y) =

∑
i yi × y′i for y ∈ H∗(X), then

σ̂2
f (y) =

∑
i

α∗(σ2
f (yi))e

∗(y′i),

where α : Map(S2, X; f) → Ω2
fX is given by α(g)(t) = µ(g(t), e(g)−1) for t ∈ S2

and g ∈ Map(S2, X; f).

Proof. (1) Let ē : S2 × Ω2
fX → X be the restriction of ê, that is, ē = ê ◦ (1× j). There

is a homotopy commutative diagram

S1 × S1 × Ω2
fX

1×1×l //

q×1
��

S1 × S1 × Ω2X
1×ω //

q×1
��

S1 × ΩX
ω // X

S2 × Ω2
fX

1×l // S2 × Ω2X
ē′ // X,

where q is a quotient map, ω and ē′ are the evaluation map and l is the inclusion



20 MASAHIRO TAKEDA

map. Then for x ∈ H∗(X),

σ2
f (x) = l∗ ◦ σ(ω∗(x)/w)

= l∗ ◦ (ω∗ ◦ (ω∗(x)/w))/w

= l∗ ◦ ((1× ω∗) ◦ (ω∗(x)))/(w × w)

= ē∗(x)/v,

where w ∈ H∗(S
1) is a generator. Thus

j∗ ◦ σ̂2
f (x) = j∗(ê∗(x)/v) = ((1× j)∗ ◦ ê∗(x))/v = ē∗(x)/v = σ2

f (x).

(2) By definition, ê∗(x) = 1× e∗(x) + u× σ̂2
f (x) for x ∈ H∗(X), where u ∈ H2(S2)

is the Kronecker dual of v. Then for x, y ∈ H∗(X),

ê∗(xy) = ê∗(x)ê∗(y) = (1× e∗(x) + u× σ̂2
f (x))(1× e∗(y) + u× σ̂2

f (y))

= 1× e∗(xy) + u× (σ̂2
f (x)e

∗(y) + e∗(x)σ̂2
f (y)).

Thus one gets the desired equality by taking the slant product with v.

(3) The map α× e : Map(S2, X; f) → Ω2
fX ×X is obviously a homotopy equiva-

lence and satisfies a homotopy commutative diagram

S2 ×Map(S2, X; f)
1×(α×e) //

ê

��

S2 × Ω2
fX ×X

ē×1

��
X X ×X.

µoo

As well as ê∗(y), one has ē∗(y) = 1× j∗ ◦ e∗(y) + u× σ2
f (y) for y ∈ H∗(X). Thus if

µ∗(y) =
∑

i yi ⊗ y′i, then

ê∗(y) = (1× (α× e)∗) ◦ (ē∗ × 1) ◦ µ∗(y) = (1× α∗ × e∗) ◦ (ē∗ × 1)
(∑

i

yi × y′i

)
= (1× (α× e)∗)

(∑
i

(1× j∗ ◦ e∗(yi) + u× σ2
f (yi))× y′i

)
=

∑
i

(1× α∗ ◦ j∗ ◦ e∗(yi) + u× α∗(σ2
f (yi)))e

∗(y′i).

Therefore the desired equality is obtained by taking the slant product with v.

We observe the relation between cohomology suspensions and component shifts.
Let f̄ : Ω2

0X → Ω2
fX denote the map given by adding a map f : S2 → X. Then f̄ is

a homotopy equivalence.

Lemma 2.2. For a map f : S2 → X and x ∈ H∗(X),

σ2
f (x) = (f∗(x)× 1)/v + (f̄∗)−1 ◦ σ2

0(x).

Proof. Let ϕf : (S
2 ∨ S2)× Ω2

0X → X be the map defined by ϕf (s, ∗, g) = f(s)
and ϕf (∗, t, g) = g(t) for s, t ∈ S2 and g ∈ Ω0X, and let η : S2 → S2 ∨ S2 be the
comultiplication. Since ē ◦ (1× f̄) = ϕf ◦ (η × 1), there is a homotopy commutative
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diagram

S2 × Ω2
fX

ē

��

1×f̄−1

// S2 × Ω2
0X

η×1

��
X (S2 ∨ S2)× Ω2

0X.
ϕf

oo

Thus

ē∗(x) = (1× (f̄∗)−1) ◦ (η × 1)∗ ◦ ϕ∗
f (x)

= (1× (f̄∗)−1) ◦ (η × 1)∗((f∗(x) ∨ 1)× 1 + (1 ∨ u)× σ2
0(x) + 1× j∗ ◦ e∗(x))

= f∗(x)× 1 + u× (f̄∗)−1(σ2
0(x)) + 1× (f̄∗)−1 ◦ j∗ ◦ e∗(x).

The desired equality is obtained by taking the slant product with v.

3. Proof of the main theorem

In this section, we prove the main theorem. Let in : SU(n) → SU(∞) be the inclu-
sion.

Proposition 3.1.

1. There is an isomorphism

H∗(ΩSU(n)) ∼= Z[y1, y2, . . . ]/(sn, sn+1, . . . ), |yi| = 2i.

2. The map Ωin : ΩSU(n) → ΩSU(∞) is a surjection in cohomology.

Proof.

1. This follows from the result of Bott [3, Proposition 8.1].

2. By the construction of Bott [3], the isomorphism of (1) is natural with respect to
the inclusion in : ΩSU(n) → ΩSU(n+ 1). Namely, (in)

∗(yi) = yi for each i.

We set notation. Let ι ∈ K̃(S2) be a generator such that ch(ι) = u, where
ch: K(X) → H∗∗(X;Q) denotes the Chern character and u is as in Section 2. Let

ξn ∈ K̃(BU(n)) be the universal bundle over BU(n) minus the rank n trivial bundle,
and ξ∞ := colimξn. We define β : BU(∞) → Ω2

0BU(∞) as the adjoint of ι ∧ ξ∞ : S2 ∧
BU(∞) → BU(∞). Let jn : Map(S2, BU(n); k) → Map(S2, BU(∞); k) be the map
induced by the inclusion in : BU(n) → BU(∞).

Lemma 3.2. In H∗(Ω2
0BU(∞)),

σ2
0(cm) =

{
0 (m = 1),

(−1)m−1(β∗)−1(sm−1(c1, . . . , cm−1)) (m ⩾ 2).
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Proof. There is a homotopy commutative diagram

S2 ∧BU(∞)
ι∧ξ∞ //

1×β

��

BU(∞),

S2 ∧ Ω2
0BU(∞)

ē

55

where ē is as in Section 2. Then it follows that

u× ch(ξ∞) = ch(ι)× ch(ξ∞) = (ι ∧ ξ∞)∗(ch(ξ∞))

= (1× β)∗ ◦ ē∗(ch(ξ∞)) = u× β∗(σ2
0(ch(ξ∞))),

in the rational cohomology. Thus since ch(ξ∞) =
∑

i⩾1
1
i!si,

u× sm = u× β∗(σ2
0((−1)mcm+1))

in integral cohomology, completing the proof.

Let γk : Ω
2
0BU(n) → Ω2

kBU(n) be the map given by the concatenation with the
degree k map S2 → BU(n). Then γk is a homotopy equivalence.

Proof of Theorem 1.1. First, we define

x̄m := α∗ ◦ (γk∗)−1 ◦ (β∗)
−1

(cm) and xm := j∗n(x̄m),

where the map α : Map(S2, BU(n); k) → Ω2
kBU(n) is as in Section 2. We show these

xi become the Chern classes of a virtual bundle in the latter half of this proof.
There is a homotopy commutative diagram

Ω2
0BU(n)

Ω2
0in //

γk

��

Ω2
0BU(∞)

γk

��
Ω2

kBU(n)
Ω2

kin // Ω2
kBU(∞)

in which maps γk are homotopy equivalences. Then by Lemma 3.1 (2), Ω2
kin is surjec-

tive in cohomology. Thus since H∗(Ω2
kBU(∞)) is generated by (γ∗

k)
−1 ◦ (β∗)

−1
(ci) for

i ⩾ 1, H∗(Ω2
kBU(n)) is generated by (Ω2

kin)
∗ ◦ (γ∗

k)
−1 ◦ (β∗)

−1
(ci) for i ⩾ 1. There is

a homotopy commutative diagram

Ω2
kBU(n)

Ω2
kin //

��

Ω2
kBU(∞)

��

Ω2
kBU(∞)

Map(S2, BU(n); k)
jn // Map(S2, BU(∞); k)

α // Ω2
kBU(∞).

Then xi restricts to (Ω2
kin)

∗ ◦ (γ∗
k)

−1 ◦ (β∗)
−1

(ci). Now we apply the Leray-Hirsch

theorem to the evaluation fibration Ω2
k(BU(n))

j−→ Map(S2, BU(n); k)
e−→ BU(n), we

obtain that

Φ: Z[c1, c2, . . . , cn, x1, x2, . . . ] → H∗(Map(S2, BU(n); k))

is surjective.



COHOMOLOGY OF THE CLASSIFYING SPACES OF U(n)-GAUGE GROUPS 23

We next show hi ∈ Ker(Φ). Now we know the equation in H∗(S2 ×Map(S2,
BU(n); k))

(f∗(ci)× 1)/v =

{
k (i = 1),
0 (otherwise),

where f : S2 → BU(n) is a degree k-map. From this equation together with Proposi-
tion 2.1 (3) and Lemmas 2.2 and 3.2, it follows that in H∗(Map(S2, BU(∞); k)), one
gets

σ̂2
k(ci) =

∑
1⩽j⩽i

α∗(σ2
k(cj))ci−j = kci−1 +

∑
2⩽j⩽i

α∗ ◦ (γ∗
k)

−1
(σ2

0(cj))ci−j

= kci−1 +
∑

2⩽j⩽i

(−1)j−1sj−1(x̄1, . . . , x̄j−1)ci−j .

Then for i ⩾ n

Φ(hi) = j∗n(σ̂
2
k(ci+1)) = σ̂2

k(i
∗
n(ci+1)) = 0,

where j∗n(x̄i) = xi. Thus Φ induces a surjection

Φ̄ : Z[c1, c2, . . . , cn, x1, x2, . . . ]/(hn, hn+1, . . . ) → H∗(Map(S2, BU(n); k)).

We next show that Φ̄ is an isomorphism. Let F be an arbitrary field. We calculate
the Poincaré series of AF := F[c1, c2, . . . , cn, x1, x2, . . . ]/(hn, hn+1, . . . ). Let Pt(V ) be
the Poincaré series of a graded vector space V . Since hi ≡ si(x1, x2, . . . , xi) mod(c1,
c2, . . . , cn) and c1, c2, . . . , cn is a regular sequence in AF,

Pt(F[c1, c2, . . . , cn, x1, x2, . . . ]/(hn, hn+1, . . . )) =
Pt(F[x1, x2, . . . ]/(sn, sn+1, . . . ))

(1− t2)(1− t4) · · · (1− t2n)
.

Then by Lemma 3.1,

Pt(AF) =
Pt(H

∗(ΩSU(n);F))
(1− t2)(1− t4) · · · (1− t2n)

.

On the other hand as in Section 1 the Serre spectral sequence of the evaluation
fibration Ω2

k(BU(n)) → Map(S2, BU(n); k)
e−→ BU(n) collapses at the E2-term, and

so

Pt(H
∗(Map(S2, BU(n); k);F)) = Pt(H

∗(BU(n);F))× Pt(H
∗(ΩSU(n);F))

=
Pt(H

∗(ΩSU(n);F))
(1− t2)(1− t4) · · · (1− t2n)

.

Then we get the equality

Pt(AF) = Pt(H
∗(Map(S2, BU(n); k);F)).

Since the source and target of Φ̄ is of finite type, Φ̄ is an isomorphism over an arbitrary
field. Thus Φ̄ is an isomorphism over Z.

It remains to show that the classes xi can be represented as the Chern classes of
a virtual bundle. Since the Künneth formula holds as

K(S2 ×Map(S2, BU(∞); k)) ∼= K(S2)⊗K(Map(S2, BU(∞); k)),

we can define the K-theoretic free double suspension σ̂2
k. We define

σ̂2
f : K(BU(∞)) → K(Map(S2, BU(∞); f)) by ê∗(x) = 1⊗ e∗(x) + ι⊗ σ̂2

f (x),
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for x ∈ K(BU(∞)). By the same argument as in the first half of the proof of this
theorem,

σ̂2
k(ξ∞) = k + α∗ ◦ (γ∗

k)
−1 ◦ (β∗)−1(ξ∞).

If we put ζ∞ := σ̂2
k(ξ∞), then ci(ζ∞) = x̄i for i ⩾ 1. Let ζn := j∗n(ζ∞) then ci(ζn) =

j∗n(ci(ζ∞)) = xi as desired. Therefore the proof is complete.
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