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REFINEMENT INVARIANCE OF INTERSECTION
(CO)HOMOLOGIES

MARTINTXO SARALEGI-ARANGUREN

(communicated by Graham Ellis)

Abstract
We prove the refinement invariance of several intersection

(co)homologies existing in the literature: Borel–Moore, Blown-
up, the classical one, . . . These (co)homologies have been intro-
duced in order to establish the Poincaré Duality in various con-
texts. In particular, we retrieve the classical topological invari-
ance of the intersection homology as well as several refinement
invariance results already known.

1. Introduction

Let us consider a topological space X supporting two stratifications S and T . We
say that pX,Sq is a refinement of pX, T q if each stratum of T is a union of strata
of S. In this work we answer the following question about the invariance property of
the intersection homology:

Question 1. Can we find two perversities p and q such that the identity I : X Ñ X
induces the isomorphism

H
p

˚
pX,Sq – H

q

˚
pX, T q?

For pseudomanifolds and using the original Goresky–MacPherson perversities, an
answer comes directly from the topological invariance of the intersection homology
[15, Corollary, p. 148] (see also [19, Theorem 9]): it suffices to take p “ q. In other
words, the intersection homology does not depend on the chosen stratification. We
work in a more general setting.
‚ Spaces. We do not work with pseudomanifolds, but with the more general

notion of CS-set (cf. Section 4). They are locally cone-like spaces, but their links are
not necessarily pseudomanifolds.
‚ Perversities (cf. Section 2.3). We deal with the more general notion of perver-

sity introduced by MacPherson in [21]: the M-perversities. This kind of perversity p
associates a number ppSq P Z “ Z\ t´8,8u to any stratum S of the CS-set, while a
classical perversity p associates a number ppcodimSq to the codimension of the stra-
tum. An M -perversity strongly depends on the stratification and so the topological
invariance of the related intersection homology does not apply.
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‚ (Co)homologies (cf. Section 2). We consider not only the intersection homology

H
p

˚
, but also the following:

+ Intersection cohomologies H
˚

p
, H

˚

p,c
. The intersection cohomology H

˚

p
is the

cohomology of the complex defined by using the functor Hom over intersection chains.
The version with compact supports is H

˚

p,c
.

+ Tame intersection homology H
p

˚
. A variation of the intersection homology

avoiding intersection chains who live in singular strata. We have H
p

˚
“ H

p

˚
when p

is smaller than the top perversity t. This homology is isomorphic to the blown-up
intersection cohomology with compact supports H

˚

p,c
through the Poincaré duality

[5] when one works with pseudomanifolds.

+ Tame intersection cohomologies H
˚

p
,H

˚

p,c
. The tame intersection cohomol-

ogy H
˚

p
is the cohomology of the complex defined by using the functor Hom over tame

intersection chains. The version with compact supports is H
˚

p,c
. We have H

˚

p
“ H

˚

p
and

H
˚

p,c
“ H

˚

p,c
when p ď t. The cohomology H

˚

p,c
is dual to H

Dp

n´˚
through the Poincaré

duality [14, 8] when the coefficient is a field1 and one works with pseudomanifolds.

The cohomology H
˚

p
is isomorphic to the de Rham intersection cohomology through

the de Rham duality [22]. Here, we use real coefficients.

+ Borel–Moore intersection homology H
BM,p

˚
. Similar to the intersection

homology using locally finite chains instead of finite chains.

+ Borel–Moore tame intersection homology H
BM,p

˚
. Similar to H

˚

p
using

locally finite chains instead of finite chains. We have H
BM,p

˚
“ H

BM,p

˚
when p ď t.

+ Blown-up intersection cohomologies H
˚

p
,H

˚

p,c
. These cohomologies are

defined by using simplicial cochains, inspired by Dennis Sullivan’s approach to ratio-
nal homotopy theory. The compact supports version H

˚

p,c
(resp. closed supports ver-

sion H
˚

p
) is isomorphic to the tame intersection homology H

p

n´˚
(resp. Borel–Moore

tame intersection homology H
BM,p

n´˚
) through the Poincaré duality [3] (resp. cf. [23])

when one works with pseudomanifolds. We have H
˚

p
“ H

˚

Dp
and H

˚

p,c
“ H

˚

Dp,c
when

the coefficient ring is a field1 (cf. [3, Theorem F] and [5, Corollary 13.1]).
In this paper, we give two answers to Question 1.
´ Pull-back. Given a perversity q on pX, T q we take p the pull-back perversity I‹q

on pX,Sq (cf. Section 2.3). We prove

H
I‹q

˚
pX,Sq – H

q

˚
pX, T q,

and similarly for the other (co)homologies used in this work (cf. Theorem 5.9).
´ Push-forward. Given a perversity p on pX,Sq we take q the push-forward per-

versity I‹p on pX, T q (cf. Section 2.3). We prove

H
p

˚
pX,Sq – H

I‹p

˚
pX, T q,

and similarly for the other (co)homologies used in this work (cf. Theorem 5.7). In
this case, we need the following conditions on p:

1In fact, following [17], locally p-torsion free.



REFINEMENT INVARIANCE OF INTERSECTION (CO)HOMOLOGIES 313

ppQq ď ppSq ď ppQq ` tpSq ´ tpQq, (K1)

for any strata S,Q P S with S Ă Q and S,Q Ă T for some stratum T P T , and

ppQq “ ppSq, (K2)

for any strata S,Q P S with dimS “ dimQ and S,Q Ă T for some stratum T P T .2

These results encompass some other already known results about invariance of
intersection (co)homology:

� The topological invariance of H
p

˚
for pseudomanifolds [15] and CS-sets [19, 13].

� The topological invariance of H
p

˚
and H

BM,p

˚
for pseudomanifolds [9, 11].

� The topological invariance of H
˚

p
and H

˚

p,c
for CS-sets [3, 5].

� The refinement invariance of H
p

˚
for PL-pseudomanifolds [24] using M -perver-

sities.

� The refinement invariance of H
p

˚
and H

p

˚
for CS-sets [6] using M -perversities.

Recently, the topological invariance of the intersection homology has been extended
to the more general setting of the torsion sensitive intersection homology (cf. [12]).

We end this introduction by giving an idea of the proof of Theorems 5.7 and 5.9.
The original proof of the classical topological invariance of the intersection homology
given by King in [19] uses the intrinsic stratification S˚. He proves that the identity
map I : X Ñ X induces an isomorphism between the intersection homology of pX,Sq
and that of pX,S˚q. This gives the topological invariance since S˚ “ T ˚.

The proof uses the Mayer–Vietoris technique in order to reduce the question to a
local one. Near a point x of X the identity I : pX,Sq Ñ pX,S˚q becomes the stratified
map

h : c̊pSm ˚ Lq Ñ Bm`1 ˆ c̊L (1)

(cf. (9)). Here, Bm`1 “ tz P Rm`1 | }z} ă 1u and L denotes the link of x. Using
the usual local calculations of intersection homology one proves that h is a quasi-
isomorphism for this homology.

In our context, we don’t know whether the identity map I : pX,Sq Ñ pX, T q has
the nice local description (1). We proceed in a different way. We construct a finite
sequence of CS-sets

pX,Sq “ pX,R0q
I
ÝÑ pX,R1q

I
ÝÑ ¨ ¨ ¨ pX,R`´1q

I
ÝÑ pX,R`q “ pX, T q, (2)

where each step is a refinement having the (1)-local description (called simple refine-
ment). Now, we can follow the procedure of [19] in order to get the isomorphism
between the intersection homologies of pX,Sq and pX, T q.

The construction of this sequence uses the fact that any stratum of S P S is
included in a stratum T P T . This gives the following dichotomy: S is a source stratum
if dimS “ dimT and S is a virtual stratum if dimS ă dimT . Somehow, the virtual
strata of S disappear in T while source strata become larger. The first step in the
construction of the above sequence is to eliminate the maximal virtual strata of S.
In this way, we obtain in the CS-set pX,R1q. We continue applying this principle to

2Remark 5.11 gives a relation between classical perversities and those verifying (K1), (K2).
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the refinement pX,R1q
I
ÝÑ pX, T q and we eventually get (2).

What do we mean by “eliminate”? Let us suppose that S P S is the unique virtual
stratum. There exist two source strata R0, R1 P S with T “ S YR0 YR1 (maybe
R0 “ R1). We replace the strata S,R0, R1 of S by the stratum T in order to get R1,
that is, R1 “ tQ P S | Q ‰ S,R0, R1u Y tT u (cf. Example 3.7 for a richer situation).
A similar phenomenon appears in (1), relatively to S “ tapex of c̊pSm ˚ Lqu and T “
Bm`1 ˆ tapex of c̊Lu.

Exceptional strata are singular strata of S included in regular strata of T . For
example, the apex of the open cone of the sphere S0 (which is indeed an open interval)
is an exceptional stratum if we take T the one-stratum stratification of that interval.
This example is a limit case for the refinement invariance results we establish in this
work (see Remark 5.8).

For a topological space X, we denote by cX “ X ˆ r0, 1s{pX ˆ t0uq the cone on X
and c̊X “ X ˆ r0, 1r{pX ˆ t0uq the open cone on X. A point of the cone is denoted
by rx, ts. The apex of the cone is v “ r´, 0s.

We shall write Bm “ tz P Rm | }z} ă 1u and Dm “ tz P Rm | }z} ď 1u, m P N.

Acknowledgments
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her/his comments and suggestions.

2. Intersection homologies and cohomologies (filtered spaces)

We present the homologies and cohomologies studied in this work. We review their
main computational properties which we are going to use in the proof of Theorems 5.7
and 5.9.

2.1. Filtered spaces
A filtered space is a Hausdorff topological space endowed with a filtration by closed

sub-spaces

H “ X´1 Ď X0 Ď X1 Ď ¨ ¨ ¨ Ď Xn´1 Ĺ Xn “ X.

The formal dimension of X is dimX “ n. Any non-empty connected component S
of an XizXi´1 is a stratum. We say that i is the formal dimension of S, written
i “ dimS. We denote by S the family of strata. In order to avoid confusion we also
write pX,Sq the filtered space. The n-dimensional strata are the regular strata, other
strata are singular strata. The family of singular strata is denoted by Ssing. Their
union is the singular part Σ.

A continuous map f : pX,Sq Ñ pY, T q between two filtered spaces is a stratified

map if for each S P S there exists S
f

P T with fpSq Ă S
f

and codimS
f

ď codimS.
The map f is a stratified homeomorphism if f is a homeomorphism and f´1 is a
stratified map.

2.2. Examples
Unless expressly stated otherwise, a manifold M is endowed with the filtration
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H ĎM . The associated stratification is denoted by I “ tMccu, where cc denotes
connected component. Consider pX,Sq a filtered space.

+ An open subset U ĂX inherits the induced filtration Ui“UXXi. The associated
induced stratification is SU “ tpS X Uqcc | S P Su. We write pU,Sq instead of pU,SU q.

+ Given an m-dimensional manifold M the product M ˆX inherits the product
filtration pM ˆXqi “M ˆXi´m. The associated product stratification is I ˆ S “
tMcc ˆ S | S P Su.

+ The cone c̊X inherits the cone filtration c̊Xi “ c̊Xi´1, with the convention
c̊H “ tvu. The associated cone stratification is c̊S “ ttvuu \ tS ˆ s0, 1r, S P Su.

+ Let m P N. We consider the join Sm ˚X “ Dm`1 ˆX{ „, where the equivalence
relation is generated by pz, xq „ pz, x1q if }z} “ 1. An element of Sm ˚X is denoted
by rz, ts. We identify Sm with trz, xs { }z} “ 1u and X with tr0, xs { x P Xu. The
join Sm ˚X is endowed with the join filtration Sm Ă Sm ˚X0 ¨ ¨ ¨ Ă Sm ˚Xn´1 Ĺ

Sm ˚Xn. The associated join stratification is S‹m “ tSm, Bm`1 ˆ S | S P Su.

2.3. Perversities

Consider pX,Sq a filtered space. An M -perversity, or simply perversity, on pX,Sq
is a map p : S Ñ Z “ Z\ t´8,8u verifying ppSq “ 0 for any regular stratum [21].

The top perversity is the perversity defined by tpSq “ codimS ´ 2 for each singular
stratum S. The dual perversity of p is the perversity Dp defined by Dp “ t´ p.

A perverse space is a triple pX,S, pq where pX,Sq is a filtered space and p is a
perversity on pX,Sq. Given a stratified map f : pX,Sq Ñ pY, T q, a perversity q on
pY, T q and a perversity p on pX,Sq, we define:

‚ the pull-back perversity f‹q on pX,Sq by: f‹qpSq “ qpS
f

q for each S P Ssing,

‚ the push-forward perversity f‹p on pX, T q by: f‹ppT q “ mintppQq | Q
f

“ T u for
each T P T sing, with infH “ 8.

Notice that f‹f‹p ď p.

We make a quick reminder of the intersection homologies/cohomologies deployed
in this work. They have been mainly introduced in order to study the Poincaré duality
of the intersection (co)homology in different contexts.

2.4. Tame and intersection (co)homologies (cf. [5, 6])

We fix an n-dimensional perverse space pX,S, pq. Tame intersection homology is a
variant of the classic intersection homology (cf. [15, 16, 19]). When the perversity p is
greater than the top perversity it is possible to have a p-intersection chains contained
in the singular part Σ of X. This fact prevents the Poincaré duality and the de
Rham Theorem. For this reason the tame intersection homology was introduced (cf.
[6, 5, 8, 22]).

A filtered simplex is a singular simplex σ : ∆ Ñ X where the euclidean simplex ∆
is endowed with a filtration ∆ “ ∆0 ˚∆1 ˚ ¨ ¨ ¨ ˚∆n, called σ-decomposition, verifying
σ´1Xi “ ∆0 ˚∆1 ˚ ¨ ¨ ¨ ˚∆i, for each i P t0, . . . , nu. A factor ∆i can be empty with
the conventionH ˚ Y “ Y . The filtered simplex σ is a regular simplex when Imσ Ć Σ,
that is, ∆n ‰ H.

We decompose the boundary of a filtered simplex ∆ “ ∆0 ˚ ¨ ¨ ¨ ˚∆n as B∆ “

Breg∆` Bsing∆, where Breg∆ contains all the regular simplices.
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The perverse degree of the filtered simplex σ relatively to a stratum S P SF is

}σ}S “

"

´8, if S X Imσ “ H,
dimp∆0 ˚ ¨ ¨ ¨ ˚∆dimSq, otherwise.

A filtered simplex σ : ∆ Ñ X is p-allowable if }σ}S ď dim ∆´ codimS ` ppSq, for
each S P S. Moreover, if Imσ Ć Σ then the simplex σ is said to be p-tame.

The chain complex C
p

˚
pX;Sq is the G-module formed of the linear combinations

ξ “
ř

jPJ njσj , where each σj is p-allowable, and such that Bξ “
ř

`PL n`τ`, where the

simplices τ` are p-allowable. We call pC
p

˚
pX;Sq, Bq the p-intersection complex and its

homology, H
p

˚
pX;Sq, the p-intersection homology. This designation is justified since

this homology matches with the usual intersection homology (cf. [6, Theorem A]).

The chain complex C
p

˚
pX;Sq is the G-module formed of the linear combinations

ξ “
ř

jPJ njσj , with each σj is p-tame, and such that Bregξ “
ř

`PL n`τ`, where the

simplices τ` are p-tame. We call pC
p

˚
pX;Sq, d “ Bregq the tame p-intersection complex

and its homology, H
p

˚
pX;Sq, the tame p-intersection homology. This designation is

justified since this homology matches with the usual tame intersection homology (cf.

[6, Theorem B]). We have H
p

˚
pX;Sq “ H

p

˚
pX;Sq when p ď t (cf. [6, Remark 3.9]).

Associated cohomology is defined by using the functor Hom, as usual in algebraic
topology. We put the dual complexes C

˚

p
pX;Sq “ hompC

p

˚
pX;Sq;Sq and C

˚

p
pX;Sq “

hompC
p

˚
pX;Sq;Sq endowed with the dual differential d. Their cohomologies are the p-

intersection cohomology H
˚

p
pX;Sq and the p-tame intersection cohomology H

˚

p
pX;Sq.

Let U Ă X be an open subset. The two relative homologies H
p

˚
pX,U ;Sq and

H
p

˚
pX,U ;Sq are defined from quotient complexes C

p

˚
pX,U ;Sq “ C

p

˚
pX;Sq{Cp

˚
pU ;Sq

and C
p

˚
pX,U ;Sq “ C

p

˚
pX;Sq{Cp

˚
pU ;Sq ([6, Definition 4.5]). The relative cohomolo-

gies H
˚

p
pX,U ;Sq and H

˚

p
pX,U ;Sq are defined by using the functor Hom (cf. [8,

Definition 7.1.1]).
The (tame) intersection cohomology with compact supports is defined by

H
˚

p,c
pX;Sq “ lim

ÝÑ
KĂX

H
˚

p
pX,XzK;Sq and H

˚

p,c
pX;Sq “ lim

ÝÑ
KĂX

H
˚

p
pX,XzK;Sq, (3)

where K runs over the compact subsets of X (cf. [14, Definition 6.1]).

2.5. Main properties for (tame) intersection (co)homology
We group here the main properties of the (tame) intersection homology. We fix a

perverse set pX,S, pq.
a. Mayer–Vietoris. Associated to an open cover tU, V u of X we have the long

exact sequences

¨ ¨ ¨ Ñ H
p

k`1
pX;Sq Ñ H

p

k
pU X V ;Sq Ñ H

p

k
pU ;Sq ‘Hp

k
pV ;Sq Ñ H

p

k
pX;Sq Ñ ¨ ¨ ¨ ,

¨ ¨ ¨ Ñ H
p

k`1
pX;Sq Ñ H

p

k
pU X V ;Sq Ñ H

p

k
pU ;Sq ‘ H

p

k
pV ;Sq Ñ H

p

k
pX;Sq Ñ ¨ ¨ ¨ ,

(cf. [6, Proposition 4.1]).

b. Local calculations. We have the two isomorphisms H
p

˚
pRm ˆX, I ˆ Sq “

H
p

˚
pX,Sq and H

p

˚
pRm ˆX, I ˆ Sq “ H

p

˚
pX,Sq coming from the canonical projection
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pr: Rm ˆX Ñ X (cf. [6, Corollary 3.14]). If L is compact, we have the isomorphisms

H
p

k
pRm ˆ c̊L, I ˆ c̊Sq “

$

&

%

H
p

k
pL,Sq if k ď Dppvq,
0 if 0 ‰ k ą Dppvq,
G if 0 “ k ą Dppvq,

H
p

k
pRm ˆ c̊L, I ˆ c̊Sq “

"

H
p

k
pL;Sq if k ď Dppvq,
0 if k ą Dppvq,

where the isomorphisms (first line) come from the inclusion ι : LÑ Rm ˆ c̊L defined
by ιpxq “ p0, rx, 1{2sq (cf. [6, Proposition 5.1]).

c. Join. Suspension. Using the above calculation (see also [7, Lemma 3.6]), one
gets:

H
p

k
pSm ˚X,S‹mq “

$

’

’

&

’

’

%

H
p

k
pX,Sq if k ď DppSmq,
G if 0 “ k ą DppSmq,
0 if DppSmq ă k ď DppSmq `m` 1, k ‰ 0,

rH
p

k´m´1
pX,Sq if k ě DppSmq `m` 2, k ‰ 0,

H
p

k
pSm ˚X,S‹mq “

$

’

&

’

%

H
p

k
pX;Sq if k ď DppSmq,
0 if DppSmq ă k ď DppSmq `m` 1,

H
p

k´m´1
pX,Sq if k ě DppSmq `m` 2,

where the isomorphism comes from the inclusion ι : X Ñ Sm ˚X defined by ιpxq “
r0, xs Let us look at the case m “ 0, that is, the suspension ΣX. Previous calculations
suppose that the perversity p takes the same value at the north pole n and at the
south pole s. In the general case, if ppsq ě ppnq, we have

H
p

k

`

S0 ˚X,S‹0
˘

“

$

’

’

&

’

’

%

H
p

k
pX,Sq if k ď Dppsq,
G if 0 “ k ą Dppsq,
0 if Dppsq ă k ď Dppnq ` 1, k ‰ 0,

rH
p

k´1
pX,Sq if k ě Dppnq ` 2, k ‰ 0,

H
p

k

`

S0 ˚X,S‹0
˘

“

$

’

&

’

%

H
p

k
pX;Sq if k ď Dppsq,
0 if Dppsq ă k ď Dppnq ` 1,

H
p

k´1
pX,Sq if k ě Dppnq ` 2,

d. Relative homologies. Let U be an open subset of X. We have the associated
long exact sequences for homology

¨ ¨ ¨ Ñ H
p

k
pU ;Sq Ñ H

p

k
pX;Sq Ñ H

p

k
pX,U ;Sq Ñ H

p

k´1
pU ;Sq Ñ ¨ ¨ ¨ ,

¨ ¨ ¨ Ñ H
p

k
pU ;Sq Ñ H

p

k
pX;Sq Ñ H

p

k
pX,U ;Sq Ñ H

p

k´1
pU ;Sq Ñ ¨ ¨ ¨

(cf. [6, Definition 4.5]) and for cohomology

¨ ¨ ¨ Ñ H
k

p
pX,U ;Sq Ñ H

k

p
pX;Sq Ñ H

k

p
pU ;Sq Ñ H

k`1

p
pX,U ;Sq Ñ ¨ ¨ ¨ ,

¨ ¨ ¨ Ñ H
k

p
pX,U ;Sq Ñ H

k

p
pX;Sq Ñ H

k

p
pU ;Sq Ñ H

k`1

p
pX,U ;Sq Ñ ¨ ¨ ¨

(cf. [8, Theorem 7.1.11]).3

3Only the tame case is considered there but the non-tame case can be treated in the same way.
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e. Universal Coefficients Theorem. There are two natural exact sequences

0 Ñ ExtpH
p

k´1
pX;Sq, Rq Ñ H

k

p
pX;Sq Ñ HompH

p

k
pX;Sq, Rq Ñ 0,

0 Ñ ExtpH
p

k´1
pX;Sq, Rq Ñ H

k

p
pX;Sq Ñ HompH

p

k
pX;Sq, Rq Ñ 0,

for every k P N. We find the proof of the second assertion in [8, Proposition 7.1.4].
But the proof is the same for the first sequence.

2.6. Intersection homology from Borel–Moore point of view (cf. [10, 23])

The Borel–Moore p-intersection homology H
BM,p

˚
pX;Sq and the Borel–Moore p-

tame intersection homology H
BM,p

˚
pX;Sq are defined in the same way as the homolo-

gies defined in Section 2.4 have been defined but considering locally finite chains
instead of finite chains.

When X is compact, then H
BM,p

˚
pX;Sq “ H

p

˚
pX;Sq and H

BM,p

˚
pX;Sq “ H

p

˚
pX;Sq.

2.7. Main properties for Borel–Moore (tame) intersection homology
We suppose that X is a hemicompact space, that is, there exists an increasing

sequence of compact subsetsK0 Ă K1 Ă ¨ ¨ ¨Kn Ă ¨ ¨ ¨ such that, each compactK Ă X
is included on some Kn. We have proved in [7, Proposition 2.2] that the Borel–Moore
intersection homology can be computed in terms of the intersection homology in the
following way4:

H
BM,p

˚
pXq “ lim

ÐÝ
nPN

H
p

˚
pX,XzKnq and H

BM,p

˚
pXq “ lim

ÐÝ
nPN

H
p

˚
pX,XzKnq. (4)

2.8. Blown-up intersection cohomologies (cf. [3])

Let N
˚
p∆q and N

˚

p∆q be the simplicial chain and cochain complexes of an
euclidean simplex ∆, with coefficients in R. For each simplex F P N

˚
p∆q, we write

1F the element of N
˚

p∆q taking the value 1 on F and 0 otherwise. Given a face F
of ∆, we denote by pF, 0q the same face viewed as face of the cone c∆ “ ∆ ˚ rws and
by pF, 1q the face cF of c∆. Here, rws “ pH, 1q “ cH is the apex o f the cone c∆.
Cochains on the cone are denoted 1pF,εq for ε “ 0 or 1. For defining the blown-up
intersection complex, we first set

rN
˚

p∆q “ N˚pc∆0q b ¨ ¨ ¨ bN
˚pc∆n´1q bN

˚p∆nq.

A basis of rN
˚

p∆q is composed of the elements 1pF,εq“1pF0,ε0qb¨ ¨ ¨b1pFn´1,εn´1qb1Fn,
where εi P t0, 1u and Fi is a face of ∆i for i P t0, . . . , nu or the empty set with εi “ 1
if i ă n. We set |1pF,εq|ąs “

ř

iąspdimFi ` εiq, with the convention dimH “ ´1.

Let ` P t1, . . . , nu and 1pF,εq P rN
˚

p∆q. The `-perverse degree of 1pF,εq P N
˚

p∆q is

}1pF,εq}` “

"

´8 if εn´` “ 1,
|1pF,εq|ąn´` if εn´` “ 0.

Given ω “
ř

b λb 1pFb,εbq P
rN
˚

p∆q with 0 ‰ λb P R for all b, the `-perverse degree is

}ω}` “ max
b
}1pFb,εbq}`.

4In the op. cit. the result is proved for the Borel–Moore tame intersection homology. The same proof
works for the Borel–Moore intersection homology.
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By convention, we set }0}` “ ´8.

Let σ : ∆ “ ∆0 ˚ ¨ ¨ ¨ ˚∆n Ñ X be a filtered simplex. We set rN
˚

σ
“ rN

˚

p∆q. If
δ` : ∆1 Ñ ∆ is an inclusion of a face of codimension 1, we denote by B`σ the fil-
tered simplex defined by B`σ “ σ ˝ δ` : ∆1 Ñ X. If ∆ “ ∆0 ˚ ¨ ¨ ¨ ˚∆n is filtered, the
induced filtration on ∆1 is denoted ∆1 “ ∆10 ˚ ¨ ¨ ¨ ˚∆1n. The blown-up intersection

complex of X is the cochain complex rN
˚

pXq composed of the elements ω associating

to each regular filtered simplex σ : ∆0 ˚ ¨ ¨ ¨ ˚∆n Ñ X an element ωσ P rN
˚

σ
such that

δ˚` pωσq “ ωB`σ, for any face operator δ` : ∆1 Ñ ∆ with ∆1n ‰ H. The differential dω is
defined by pdωqσ “ dpωσq. The perverse degree of ω along a singular stratum S equals

}ω}S “ sup t}ωσ}codimS | σ : ∆ Ñ X regular simplex such that Imσ X S ‰ Hu .

We denote }ω} the map S ÞÑ }ω}S , where }ω}S “ 0 if S is a regular stratum. A cochain

ω P rN
˚

pX;Sq is p-allowable if }ω} ď p and of p-intersection if ω and dω are p-

allowable. We denote rN
˚

p
pX;Sq the complex of p-intersection cochains and H

p

˚
pX;Sq

its homology called blown-up intersection cohomology of X for the perversity p.

A subsetK Ă X is a support of the cochain ω P rN
˚

p
pX;Sq if ωσ “ 0, for any regular

simplex σ : ∆ Ñ X such that Imσ XK “ H. We also say that ω ” 0 on XzK.

We denote rN
˚

p,c
pX;Sq the complex of p-intersection cochains with compact sup-

ports and H
˚

p,c
pX;Sq its cohomology.

2.9. Main properties for blown up intersection cohomologies

We group here the main properties of blown-up intersection cohomology. We fix a
perverse space pX,S, pq.

a. Mayer–Vietoris. Suppose X paracompact. Given an open cover tU, V u of X
we have the long exact sequence (cf. [3, Corollary 10.1])

¨ ¨ ¨ Ñ H
k

p
pX;Sq ÑH

k

p
pU ;Sq‘H

˚

p
pV ;Sq ÑH

k

p
pUXV ;Sq ÑH

k`1

p
pX;Sq Ñ ¨ ¨ ¨ .

b. Local calculations. We have the isomorphism

H
k

p
pRm ˆX, I ˆ c̊Sq “H

k

p
pX, Iq,

coming from the inclusion ι : X Ñ Rm ˆX defined by ιpxq “ p0, xq (cf. [3, Theo-
rem D]). If L is compact, we have the isomorphism

H
k

p
pRm ˆ c̊L, I ˆ Sq “

"

H
k

p
pL,Sq if k ď ppvq,

0 if k ą ppvq,

where the isomorphism (first line) comes from the inclusion ι : LÑ Rm ˆ c̊L defined
by ιpxq “ p0, rx, 1{2sq (cf. [3, Theorem E]).

c. Join. Using the above calculations, one gets the isomorphism:

H
k

p
pSm ˚X,S‹m`1q “

$

’

&

’

%

H
k

p
pX,Sq if k ď ppSmq,

0 if ppSmq ă k ď ppSmq `m` 1,

H
k´m´1

p
pX,Sq if k ě ppSmq `m` 2,

where the first isomorphism comes from the inclusion ι : X Ñ Sm ˚X defined by
ιpxq “ r0, xs.
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d. Relative cohomology. We consider an open subset U Ă X. The complex of
relative p-intersection cochains is rN

˚

p
pX,U ;Sq “ rN

˚

p
pX;Sq ‘ rN

˚´1

p
pU ;Sq, endowed

with the differential Dpα, βq “ pdα, α´ dβq. Its homology is the relative blown-up

p-intersection cohomology of the perverse pair pX,U, pq, denoted by H
˚

p
pX,Uq.

By definition, we have a long exact sequence associated to the perverse pair
pX,U, pq:

¨ ¨ ¨ ÑH
i

p
pX;Sq ι

‹

ÑH
i

p
pU ;Sq ÑH

i`1

p
pX,U ;Sq pr˚

Ñ H
i`1

p
pX;Sq Ñ ¨ ¨ ¨ ,

where pr : rN
˚

p
pX,Uq Ñ rN

˚

p
pXq is defined by prpα, βq “ α and ι : rN

˚

p
pXq Ñ rN

˚

p
pUq

is the restriction map (cf. [3, Sec. 12.2]).
e. Injective limit. Analogously to the Borel–Moore intersection homology, the

blown-up intersection cohomology with compact supports can be computed through
the relative blown-up intersection cohomology by using an injective limit. Let us see
that.

Proposition 2.1. Let pX,S, pq be a normal and hemicompact perverse space. Then,
there exists an isomorphism

H
˚

p,c
pX;Sq – lim

ÝÑ
KĂX

H
˚

p
pX,XzK;Sq,

where K runs over the family of compact subsets of X.

Proof. By hemicompactness there exists an increasing sequence of compact subsets
tKnu with

K0 Ă intpK1q Ă K1 Ă intpK2q Ă K2 Ă ¨ ¨ ¨Kn Ă ¨ ¨ ¨ ,

and X “
Ť

ně0Kn. In particular, the family tKnu is cofinal in the family of compact
subsets of X. So, it suffices to prove that the chain map

B : rN
˚

p,c
pX;Sq Ñ lim

ÝÑ
nPN

rN
˚

p
pX,XzKn;Sq,

defined by Bpωq “ 〈pω, 0q,m〉, where Km is a compact support of ω, is a quasi-
isomorphism.

An element 〈pα, βq,m〉 P lim
ÝÑnPN

rN
˚

p
pX,XzKn;Sq is characterized by these two

properties:

� pα, βq PH
˚

p
pX,XzKm;Sq, and

� 〈pα, βq,m〉 “ 〈pα1, β1q,m1〉 if pα, βq “ pα1, β1q on rN
˚

p
pX,XzKm1 ;Sq if m ď m1.

We proceed in several steps.
‚ Step 1. Bump functions.
Since X is normal then, for each n P N, we can find a continuous map fn : X Ñ

r0, 1s with fn ” 0 on Kn`1 and fn ” 1 on XzintpKn`2q. Associated to fn we have con-

structed a cochain f̃n P rN
0

0
pX;Sq verifying f̃n” 0 onKn`1 and f̃n” 1 onXzintpKn`2q

(cf. [3, Lemma 10.2]). Consider the open covering Un “ tXzKn, intpKn`1qu of X.
Notice that,5

γ P rN
˚

p
pXzKn;Sq ùñ f̃n ! γ P rN

˚,Un

p
pX;Sq and f̃n ! γ “ γ on XzKn`3. (5)

5We refer the reader to (cf. [3, Section 4]) for the definition of the !-product.
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‚ Step 2. The operator B˚ is a monomorphism.
Let rωs PKerB˚. So, there existsm PN and 〈pγ, ηq,m〉 P rN

˚

p
pX,XzKm;Sq with Km

compact support of ω P rN˚p,cpX;Sq and 〈pω, 0q,m〉“ 〈Dpγ, ηq,m〉“ 〈pdγ, γ ´ dηq,m〉.
In particular, we get ω “ dγ on X and γ ´ dη “ 0 on KzKm.

We get the claim if we prove that ρUm,cpωq “ dθ for some θ P rN
˚,Um

p,c
pX;Sq (cf. [3,

Theorem B]). Here, ρUm,c : rN
˚

p,c
pX;Sq Ñ rN

˚,Um

p,c
pX;Sq is the canonical restriction. It

suffices to consider θ “ ρUmpγq ´ dpf̃m ! ηq, where ρUm : rN
˚

p,c
pX;Sq Ñ rN

˚,Um

p
pX;Sq

is the canonical restriction, since

(i) f̃m ! η P rN
˚,Um

p
pX;Sq (cf. (5)).

(ii) γ ´ dpf̃m ! ηq
(5)
“ γ ´ dη “ 0 on XzKm`3, giving that Km`3 is a compact sup-

port of θ.

(iii) dθ “ dρUmpγq “ ρUmpωq “ ρUm,cpωq.

‚ Step 3. The operator BUm .

For each n,m PN we define rN
˚,Um

p
pX,XzKn;Sq“ rN

˚,Um

p
pX;Sq‘ rN

˚´1,Um

p
pXzKn;Sq

(cf. [3, Definition 9.6]). We consider the chain map

BUm : rN
˚,Um

p,c
pX;Sq Ñ lim

ÝÑ
nPN

rN
˚,Um

p
pX,XzKn;Sq,

defined by BUmpωq “ 〈pω, 0q, p〉Um , where Kp is a compact support of ω (cf. [5, Defi-
nition 2.6]). We have the commutative diagram

rN
˚

p,c
pX;Sq B //

ρUm,c��

lim
ÝÑnPN

rN
˚

p
pX,XzKn;Sq
ρ1Um��

rN
˚,Um

p,c
pX;Sq BUm // lim

ÝÑnPN
rN
˚,Um

p
pX,XzKn;Sq,

(6)

where the vertical maps are defined by restriction. Both are quasi-isomorphisms. It
suffices to apply [5, Proposition 2.6] (for the left one) and the fact that inductive
limits commute with cohomology and [3, Theorem B] (for the right one).
‚ Step 4. The operator B˚ is an epimorphism.
Let Ξ “ 〈pγ, ηq,m〉 P lim

ÝÑN
rN
˚

p
pX,XzK;Sq be a cycle. Then we have the following

equalities 〈Dpγ, ηq,m〉 “ 〈pdγ, γ ´ dηq,m〉 “ 0. The cochain θ “ ρUmpγq ´ dpf̃m ! ηq

is a cycle of rN
˚,Um

p,c
pX;Sq since (i), (ii) and dθ “ dρUmpγq “ 0. In fact,

BUm,˚rθs “ r〈pθ, 0q,m` 3〉Ums “
„〈
pρUmpγq ´ dpf̃m ! ηq, 0q,m` 3

〉
Um



“p1q

„〈
pρUmpγq, f̃m ! ηq,m` 3

〉
Um



“p2q r〈pρUmpγq, ηq,m` 3〉Ums

“ rρ1Ump〈pγ, ηq,m` 3〉qs “p3q rρ1Ump〈pγ, ηq,m〉qs “ ρ1˚UmrΞs,

where “p1q comes from Dpf̃m ! η, 0q “ pdpf̃m ! ηq,´f̃m ! ηq, “p2q from f̃m “ 1 on

XzKm`2 and “p3q from the fact that η P rN˚p pXzKmq.

The properties of the previous diagram (6) give the existence of rωs PH
˚

p,c
pX;Sq

with ρ˚Um,crωs “ rθs verifying ρ1˚UmpB
˚rωsq “ BUm,˚pρ˚Um,crωsq “ BUm,˚rθs “ ρ1˚UmrΞs,



322 MARTINTXO SARALEGI-ARANGUREN

which gives rΞs “ B˚rωs.

3. Stratified sets and refinements

A refinement of a stratified space pX,Sq is another stratified space pX, T q whose
strata are formed using the strata of the original stratification. We prove that it is
possible to go from S to T by modifying just a discrete family of strata: the simple
refinement.

3.1. Stratified spaces
A stratified space6 is a Hausdorff topological space X endowed with a partition S,

whose elements are called strata, verifying the following conditions (S1)–(S6):

(S1) The family S is locally finite.

(S2) An element of S is a connected manifold.

(S3) Frontier Condition. Given two strata S, S1 P S, we have7: S X S1 ‰ H ùñ S Ă
S1.

(S4) Given two strata S, S1 P S, we have: S X S1 ‰ H and S ‰ S1 ùñ dimS ă
dimS1.

(S5) The family tdimS P Su is bounded.

Stratified and filtered spaces are related as follows.

Lemma 3.1. Let pX,Sq be a stratified space. Then the filtration H “ X´1 Ď X0 Ď

X1 Ď ¨ ¨ ¨ Ď Xn´1 Ĺ Xn “ X, given by

Xk “ \tS P S | dimS ď ku

(cd. (S5)) defines a filtered space on X whose associated stratification is S.

Proof. For the first statement it suffices to prove that each Xk is a closed subset of X.
Let us consider x P Xk. Property (S1) gives x P Xk “ tS P S | dimS ď ku “ tS P S |
dimS ď ku. So, there exists S P S with x P S and dimS ď k. If S1 is the stratum of
S containing x then condition (S4) gives dimS1 ď dimS and therefore x P Xk.

We have XkzXk´1 “ \tS P S | dimS “ ku. Again, conditions (S1) and (S4) imply
that the elements of the RHS of the equality are closed subsets of XkzXk´1. So, the
stratification of the filtered space is S.

These are not equivalent notions since, for example, the strata of a filtered space
are not necessarily manifolds.

The relation S ĺ S1 defined by S Ă S1, is an order relation on S (see [4, Propo-
sition A.22]). The notation S ă S1 means S ĺ S1 and S ‰ S1. So, condition (S4) is
equivalent to

(S4) S ă S1 ùñ dimS ă dimS1.

The depth of a family of strata S 1 Ă S is depthS 1 “ supti P N | DS0 ă S1 ă ¨ ¨ ¨ ă

Si with S0, . . . , Si P S 1u. Conditions (S4) and (S5) give

6This definition is not a standard one in all sources. For example, it is more restrictive than that of
[4, 8].
7This condition is equivalent to say that the closure of a stratum is the union of strata.
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Lemma 3.2. Let pX,Sq be a stratified space. Then depthS 1 ă 8.

In this work we shall use the formula

S “ S \
ğ

QăS

Q. (7)

Let us see that. The inclusion Ą is clear. Let x P S. Consider Q P S containing x.
Since QX S ‰ H then we get Ă from (S3).

The examples of 2.2: induced, product, cone and join stratification, are also strati-
fied spaces, if we begin with a stratified space pX,Sq. Any point x P X, with txu R S,
can be added as a new stratum. This gives the stratification Sx “ txu \ tpSztxuqcc |
S P Su.

The following result will be important for the understanding of the local structure
of the stratified spaces we are interested in.

Proposition 3.3. Let pX,Sq be a stratified space and let m P N˚. Then, there exists
a stratified homeomorphism

h : p̊cpSm ˚Xq, c̊S‹mq Ñ pBm`1 ˆ c̊X, pI ˆ c̊Sqp0,vqq. (8)

Proof. We find in [2, 5.7.4] the homeomorphism h : c̊pSm ˚Xq Ñ Bm`1 ˆ c̊X :
defined by

hprrz, ys, rsq “

"

p2rz, ry, rsq if }z} ď 1{2
prz{}z}, ry, 2rp1´ }z}qsq if }z} ě 1{2.

(9)

Let us verify that h preserves the stratifications. We write u the apex of the cone
c̊pSm ˚Xq. We distinguish three cases:

� hpuq “ p0, vq.

� hpSmˆs0, 1rq “ pBm`1 ˆ tvuqztp0, vqu since hprrz, ys, rs “ prz, vq if }z} “ 1.

� The restriction h : Bm`1 ˆXˆs0, 1rÑ Bm`1 ˆX ˆ s0, 1r is given by

pz, y, rq ÞÑ

"

p2rz, y, rq if }z} ď 1{2

prz{}z}, y, 2rp1´ }z}qq if }z} ě 1{2.

It is clearly a stratified homeomorphism.

3.2. Refinements
We say that the stratified space pX,Sq is a refinement of the stratified space

pX, T q,8 written pX,Sq Ÿ pX, T q, if S ‰ T and

(S6) @S P S DT P T such that S is embedded submanifold of T .

The stratum T is also denoted by S
I

. We have

dimS ď dimS
I

and codimS
I

ď codimS, for each S P S. (10)

Notice that

S,Q P S with S ĺ Q ùñ S
I

ĺ Q
I

(11)

(cf. (S3)). In this work, we shall distinguish several types of strata.

8We also say that pX, T q is a coarsening of pX,Sq.
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Definition 3.4. Let pX,Sq Ÿ pX, T q be a refinement. A stratum S P S is a source

stratum if dimS “ dimS
I

. In this case, we also say that S is a source stratum of

T P T , if T “ S
I

. We also use the following types of strata:

� A “ tS P S { dimS “ dimS
I

u: source strata.

� V “ tS P S { dimS ă dimS
I

u: virtual strata.

� M “ tmaximal strata of V with dimM
I

maximalu: v-maximal strata.

� O “ tS P A { DM PM with M ĺ S,M
I

“ S
I

u: stable strata.

The refinement pX,Sq Ÿ pX, T q is simple when depthV “ 0. We always have
depthM “ 0.

Definition 3.5. Let pX,Sq Ÿ pX, T q be a refinement. A stratum S P Ssing is excep-

tional if S
I

P T reg. Moreover, if codimS “ 1 we say that S is a 1-exceptional stratum.

Any exceptional stratum is a virtual stratum.

Definition 3.6. A simple decomposition of a refinement pX,Sq Ÿ pX, T q is a finite
sequence of simple refinements: pX,Sq “ pX,R0q Ÿ ¨ ¨ ¨ Ÿ pX,Rmq “ pX, T q.

Example 3.7. A key result of this work is Proposition 3.10 giving the existence of sim-
ple refinements. The relevance of this kind of refinement is given by Proposition 4.4,
where we get a nice local description of the simple refinement in the framework of
CS-sets.

Before proving these results, we give an example of a refinement pX,Sq ŸI pX, T q
described as composition of two simple refinements pX,Sq ŸJ pX,S 1q and pX,S 1q ŸK
pX, T q through a stratified space pX,S 1q.

Q1

Q2 Q3
R1

S3

S1 S2

R3 R2

pX,Sq

Refinement J
AzO “ tQ1, Q2, Q3,

R1, S1, S2u

V “M “ tS3u

O “ tR2, R3u

Q1

Q2 Q3
R1

R4

S1 S2

pX,S 1q

Refinement I
AzO “ tQ3, R1, S1, S2u

VzM “ tQ1, Q2u

M “ tS3u

O “ tR2, R3u

Q3
R5

R4

S4

pX, T q

Refinement K
AzO “ tQ3, R4u

V “M “ tQ1, Q2u

O “ tR1, S1, S2u

J

I

K

In the simple refinement J (resp. K) a stratum of M melts into a stratum of
S 1 (resp. T ) and, for each of them, 1 or 2 strata of O also disappear into a bigger
stratum with same dimension: S3, R2, R3 ; R4 (resp. Q1, S1, S2 ; S or Q2, R1 ;

R5). Among the strata of V those of M are the first to disappear.
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The objective of the following lemmas is to prove Proposition 3.10: a refinement
can be decomposed as a sequence of simple refinements.

Lemma 3.8. Let pX,Sq ŸI pX, T q be a refinement with S ‰ T . Then

(a) M ‰ H.

(b) For each S P S there exists a source stratum P P S of S
I

with S ĺ P .

(c) Given two strata R,Q P T with R ĺ Q there exist two source strata R1, Q1 P S of
R and Q respectively with R1 ĺ Q1.

Proof. (a) Since S ‰ T then there exists a stratum S P S with S ‰ S
I

. If M “ H

then V “ H and then S
I

“ \tP P A | P I

“ S
I

u, open connected subsets of S
I

(cf.

(S6)). By connectedness of S
I

we conclude that tP P A | P I

“ S
I

u contains just one

element, necessarily S. The contradiction S
I

“ S implies that M ‰ H.
(b) By definition we have

S
I

“ \tP P A | P
I

“ S
I

u \

´

\tP P V | P
I

“ S
I

u

¯

, (12)

where the elements of the first term are open subsets of S
I

. This decomposition is

locally finite (cf. (S1)). By dimension reasons, O “ \tP P A | P I

“ S
I

u “ \tsource

strata of S
I

u is an open dense subset of S
I

(cf. (S4), (S6)). Condition S Ă O implies

the existence of a source stratum P of S
I

with S X P ‰ H. Property (S3) gives (b).
(c) Item (b) gives a source stratum R1 P S of R. Since \ {source strata of Q} “

\iPIQi is an open dense subset of Q then R1 Ă R Ă Q “ \iPIQi “pS1q YiPIQi. So,

there exists Qi P S, source stratum of Q, with R1 XQi ‰ H. Since R1 ĺ Qi (cf. (S3))
we end the proof taking Q1 “ Qi.

The subsets M
I

we study now play an important rôle in the construction of the
simple decomposition of a refinement. They are the new strata on the first step of
this decomposition.

Lemma 3.9. Let pX,Sq ŸI pX, T q be a refinement. Consider a stratum M PM. We
define

M
I
“ \tQ | Q P O \M and Q

I

“M
I

u.

Then

(a) M
I

is a connected open subset of M
I

,

(b) Q is an embedded sub-manifold of M
I
, if Q PM and Q

I

“M
I

, and

(c) Q is an open subset of M
I
, if Q P O and Q

I

“M
I

.

Proof. Without loss of generality we can suppose X “M
I

. We have S
I

“M
I

for
each S P S.

(a) The subset F “ \tS P VzMu is a closed subset of X (cf. (7) and (S4)) not
meeting M

I
. Given S P VzM we have dimS ‰ dimX (since S P V) and dimS ‰

dimX ´ 1 (since S RMq. Then, F it is a locally finite union of sub-manifolds of
X whose codimension is at least 2 (cf. (S1), (S4)). So, Y “ XzF is an S-saturated

connected open subset of M
I

containing M
I
.
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By construction, we have VY “M, that is, SY “M\A. Let us suppose A ‰ O.
By dimension reasons, if S P AzO then S “ S (cf. (7) and (S4)). Property (S2) gives
S “ Y and then S “M which is impossible. So, SY “M\O. Then M

I
“ Y which

is a connected open subset of M
I

.

(b) Condition (S6) implies that Q is an embedded sub-manifold of M
I

. Since
Q ĂM

I
then (a) gives the result.

(c) Finally, dimQ “ dimQ
I

“ dimM
I

implies that Q is an open subset of M
I

(cf.
(S6)). Since Q ĂM

I
, condition (a) gives (c).

Proposition 3.10. Any refinement pX,Sq Ÿ pX, T q, with S ‰ T , has a simple
decomposition.

Proof. Let us define dS,T “ dimM
I

where M PM. This number is independent of
the choice of M by definition of M. Condition S ‰ T implies M ‰ H (cf. Lem-
ma 3.8 (a)) and therefore dS,T ě 0. We proceed by induction on dS,T . If dS,T “ 0
then the dimension of the strata of M is 0. Then V “M, which gives depthV “ 0.
We conclude that the refinement is simple.

Now, in the inductive step, we can suppose that dS,T ą 0. It suffices to construct
a chain of refinements pX,Sq ĺ pX,Rq ĺ pX, T q, where the first one is simple and
dR,T ă dS,T .

Let M,N PM be two strata with M
I
XN

I
‰ H. This implies M

I

XN
I

‰ H

and therefore M
I

“ N
I

. So, M
I
“ \tQ P O \M | Q ĂM

I

u “ \tQ P O \M | Q Ă

N
I

u “ N
I
. We get the dichotomy M

I
“ N

I
or M

I
XN

I
“ H. In order to avoid repeti-

tions, we fix a family tMi ĂM | i P ∇u such that YtM
I
|M PMu “ \tM

i,I
| i P ∇u.

We define

R “ SzpO \Mq \ tM
i,I
| i P ∇u. (13)

Let us verify all the properties.

‚ pX,Rq is a stratified space. By definition of stable strata we have \tQ |
Q P O \Mu “ \tM

i,I
| i P ∇u. Then R is a partition of X. Condition (S1)S gives

condition (S1)R. Condition (S2)R comes from (S2)S and Lemma 3.9 (a). For the
proof of (S3)R and (S4)R, it suffices to prove:

(a) S X P ‰ H ñ S Ă P and dimS ă dimP .
(b) S XM

I
‰ H ñ S ĂM

I
and dimS ă dimM

I
,

(c) S XM
I
‰ H ñ S ĄM

I
and dimM

I
ă dimS,

(d) N
I
XM

I
‰ H ñ M

I
“ N

I
.

where S, P P SzpO \Mq and M,N PM. Let us see that.

(a) This follows directly from (S3)S and (S4)S .

(b) Locally finiteness of S (cf. (S3)S) gives M
I
“ YtQ | Q P S and Q ĂM

I
u.

So, there exists Q P O \M with Q
I

“M
I

and S XQ ‰ H. So, S Ă Q ĂM
I

(cf. (S3)S). Since S R O \M we get S ‰ Q and then dimS
(S4)S
ă dimQ

(10)
ď dimQ

I

“

dimM
I Lemma 3.9paq

“ dimM
I
.

(c) Condition S XM
I
‰ H implies the existence of Q PM\O with Q

I

“M
I

and Q ĺ S (cf. (S3)S). By definition of stable strata we can suppose that Q PM,
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which implies S P A since S RM. If M
I

“ S
I

then S P O, which is impossible. So,

M
I

‰ S
I

. Since M
I

“ Q
I (11)

ĺ S
I

then M
I

ă S
I

and we get dimM
I (S4)T

ă dimS
I

.

Let us consider a virtual stratum V P V included in S
I

. There exists a maximal
stratum W P V with V ĺ W (cf. Lemma 3.2). Since V

I

ĺ W
I

(cf. (11)) then we have

dimM
I

ă dimS
I

“ dimV
I (S4)S
ď dimW

I

,

which is impossible by definition of M. So, the subset S
I

does not contain any virtual
stratum.

By connectedness of S
I

the formula (12) implies that S
I

contains just one stratum

of S, that is, S
I

“ S. We get M
I
ĂM

I

“ Q
I

Ă SI “ S and dimM
I
“ dimM

I

“

dimQ
I

(S4)S
ď dimS

I

“ dimS (cf. Lemma 3.9 (a)).

(d) If N
I
XM

I
‰ H then N I

XM
I

‰ H and therefore M
I

ĺ N
I

(cf. (S3)T ).

Lemma 3.9 (a), (S4)T and (11) give dimM
I
“ dimM

I

ď dimN
I

“ dimN
I
. By defini-

tion of M we get that previous ď becomes “. Finally, condition (S4)T gives M
I

“ N
I

and therefore M
I
“ N

I
.

‚ pX,Sq Ÿ pX,Rq is a simple refinement. The strata of SzpM\Oq remain
equal. The other strata verify condition (S6)S,R following Lemma 3.9. So, pX,Sq Ÿ
pX,Rq is a refinement. The only strata whose dimension increases when passing from
S to R are the strata of M: dimM ă dimM

I
. So

VS,R “MS,R “M “MS,T (14)

which gives depthVS,R “ depthMS,T “ 0.
‚ pX,Rq Ÿ pX,T q is a refinement with dR,T ă dS,T . A stratum Q P SzpO \

Mq goes to Q
I

, where it is an embedded sub-manifold from (S6)S,R. The strata

M
I
, M PM, are open subsets of M

I

. So, pX,Rq Ÿ pX, T q is a refinement. Since

dimM
I
“ dimM

I

, for each M PM, then M
I
P R is a source stratum. The same

is true for the strata of AzO. This gives VR,T “ VzM “ VS,T zMS,T and therefore
dR,T ă dS,T .

4. CS-sets

The invariance result we study in this work applies to CS-sets, a weaker notion
than that of stratified pseudomanifold. Here, a link of a stratum is not necessarily a
CS-set but a filtered space [8, example 2.3.6]. We also describe the local structure of
a simple refinement between two CS-sets.

4.1. CS-sets
A filtered space pX,Sq is an n-dimensional CS-set if any regular stratum is an

n-dimensional manifold, and for any singular stratum S P S and for any x P S there
exists a stratum preserving homeomorphism9

ϕ : pRi ˆ c̊L, I ˆ cLq Ñ pV,Sq,

9A homeomorphism which is also a stratified map. The involved stratifications are described in
Example 2.2.
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where

(a) V Ă X is an open subset containing x,

(b) pL,Lq is a compact filtered space,

(c) ϕp0, vq “ x and ϕpRi ˆ tvuq “ V X S.

The pair pV, ϕq is a S-conical chart, or simply conical chart, of x. The link of ϕ is
pL,Lq. Since the links are always non-empty sets then the open subset XzΣ is dense.
Closed strata of S are exactly the minimal strata of S. On the other hand, the open
strata of S are the maximal strata of X, they coincide with the n-dimensional strata
of X.

A perverse CS-set is a triple pX,S, pq where pX,Sq is a CS-set and p is a perversity
on pX,Sq.

We find in [20] a comparison between different notions of stratification. In this
work we need the following property.

Proposition 4.1. Any CS-set is a stratified space.

Proof. Conditions (S2) and (S5) come from definition. Property (S1) is proved in [8,
Lemma 2.3.8]. Let us verify (S3) and (S4). Since it is a local question, we set X “

Ri ˆ c̊L with S “ Ri ˆ tvu. We can suppose S ‰ S1 and therefore S1 “ Ri ˆQˆ s0, 1r
for some Q P L. Since S1 “ Ri ˆ cQ we get S Ă S1. We also have dimS ă dimS1.

Consider a refinement pX,Sq Ÿ pX, T q between two CS-sets, which makes sense
following previous Proposition. The identity I : pX,Sq Ñ pX, T q is, in fact, a stratified
map (cf. (10)). We write pX,Sq ŸI pX, T q.

Simple decompositions and CS-sets are compatible.

Proposition 4.2. A refinement pX,Sq Ÿ pX, T q between two different CS-sets pos-
sesses a simple decomposition made up of CS-sets.

Proof. It suffices to prove that the first element pX,Rq of the simple decomposition
constructed in the proof of Proposition 3.10 is a CS-set.

We use the following notation: pX,SqŸIpX,RqŸJpX, T q and pX,SqŸEpX, T q the
original refinement. We know that the manifolds XzΣS and XzΣT are dense open
subsets of X. So, dimpX,Sq “ dimpX, T q.

It remains to construct an R-conical chart of any point x P ΣS . We consider the

strata S P S and S
I

P R containing x. We distinguish two cases.
+ S P AS,R. Let ϕ : pRm ˆ c̊L, I ˆ c̊Lq Ñ pV,Sq be an S-conical chart of x with

link pL,Lq. Since dimS “ dimS
I

then S X V “ S
I

X V “ ϕpRm ˆ tvuq. A stratum
of RV zSI is a union of strata of SV zS , then it is of the form ϕpRmˆs0, 1rˆ‚q. So, there

exists a filtration L1 on L such that ϕ : pRmˆs0, 1rˆL, I ˆ I ˆ L1q Ñ pV zS
I

,Rq is a
stratified homeomorphism. This is also the case for ϕ : pRm ˆ c̊L, I ˆ c̊L1q Ñ pV,Rq.
We get that pϕ, V q is an R-conical neighborhood of x with link pL,L1q.

+ S P VS,R. Notice first that VS,R “MS,T (cf. (14)). By construction of R, the
stratum of R containing the point x is S

I
(cf. (13)). Let ϕ : pRm ˆ c̊L, I ˆ c̊Lq Ñ

pV, T q be a T -conical chart of x with link pL,Lq. It suffices to prove that pV, T q “
pV,Rq.
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Since S
I

is an open subset of S
I

(cf. Lemma 3.9 (a)) we can suppose

S
I
X V “ S

I

X V “ ϕpRm ˆ tvuq. (15)

By definition of MS,T we have that the only virtual S-stratum on V is V X S. So,

there are no virtual pS, T q-strata on V zS
I

. We conclude from Lemma 3.8 (a) that

pV zS
I

,Sq “ pV zSI , T q and therefore pV zS
I

,Sq “ pV zSI ,Rq. Using (15) we get the
claim pV, T q “ pV,Rq.

Remark 4.3. Notice that the coarsening of a CS-set is not necessarily a CS-set. Let
us give an example.

X0

X1 X1X1

X3X3

I

(X,S) (X, T )

On the CS-set pX,Sq the link of the
strata of X1 (resp. of the stratum X0)
is S1 (resp. T 2). This lack of uniformity
implies that the coarsening pX, T q is not
a CS-set.

The following result describes the construction of compatible conical charts asso-
ciated to a simple refinement.

Proposition 4.4. Let pX,Sq ŸI pX, T q be a simple refinement between two CS-sets.

We consider a point x P ΣS and we write S P S and S
I

P T the strata containing x.
We distinguish three cases.

(a) S is a source stratum. Then there exists

– an S-conical chart pϕ, V q of x, whose link is pL,Lq, and
– a T -conical chart pϕ, V q of x, whose link is pL,L1q for some filtration L1

on L.

(b) S is an exceptional stratum. Let b “ dimS
I

´ dimS ě 1. Then there exists

– a S-conical chart pφ,W q of x, whose link is pSb´1, Iq.

(c) S is a virtual stratum and S
I

is a singular stratum. Let b “ dimS
I

´ dimS ě 1.
Then there exists

– a T -conical chart pψ,W q of x, whose link is pE; Eq, and
– a S-conical chart pφ,W q of x, whose link is pSb´1 ˚ E, E‹b´1q.

Proof. The case (a) has been studied in the proof of Proposition 4.2, since S P A.

We treat the cases (b) and (c), where dimS ă dimS
I

. We have S P V “M, since
the decomposition is simple. Notice that depthM “ 0. Then we can suppose that
M “ tSu, since (b) and (c) are local questions. In other words, S “ tSu \A. This

implies S “ T on XzS and therefore on S
I

zS. The stratification S induces on S
I

the
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stratification

tS, pS
I

zSqccu with S ĺ pS
I

zSqcc. (16)

(b) Since S is an embedded sub-manifold of S
I

(cf. (S6)) then there exists a home-

omorphism φ : Ra ˆ Rb “ Ra ˆ c̊Sb´1 ÑW , where W Ă S
I

is an open neighborhood

of x and φpRa ˆ tvuq “ S XW , with a “ dimS. Do not forget that S
I

is a regular
stratum of T , which implies that W is an open subset of X. From (16), we conclude
that φ : pRa ˆ c̊Sb´1, I ˆ c̊Iq Ñ pW, T q is a stratified homeomorphism and therefore
pφ,W q is a T -chart of x whose link is pSb´1, Iq.

(c) Without loss of generality we can suppose that: pW, T q “ pRa`b ˆ c̊E, I ˆ c̊Eq,
ψ “ Id , S

I

“ Ra`b ˆ tvu and x “ p0, vq. Since S is an embedded sub-manifold of

S
I

(cf. (S6)) then we can suppose S “ Ra ˆ t0u ˆ tvu. From (16) we get that the
stratification S induces the stratification tRa ˆ t0u ˆ tvu,Ra ˆ pRbzt0uqcc ˆ tvuu on

S
I

“ Ra`b ˆ tvu.
Since all the strata of pS,W zSq are source strata then S “ T on W zS

I

“ Ra`b ˆ
p̊cEztvuq (cf. Lemma 3.8 (a)). This gives that ψ : pRa ˆ pRb ˆ c̊Eq, I ˆ pI ˆ c̊Eqp0,vqq
Ñ pW,Sq is a stratified homeomorphism. We consider the homeomorphism g : Rb Ñ
Bb given by gpxq “ 2 arctanp}x}q ¨ x{π. Finally , we define

φ “ ψ ˝ pId ˆ g´1 ˆ Id q ˝ pId ˆ hq : pRa ˆ c̊pSb´1 ˚ Eq, I ˆ c̊E‹b´1q Ñ pW,Sq,

which is a stratified homeomorphism (cf. Proposition 3.3). We get the S-conical chart
pφ,W q of x whose link is pSb´1 ˚ E, E‹b´1q.

4.2. Charts and perversities

Consider a CS-set pX,Sq and a conical chart

ϕ : pRm ˆ c̊L, I ˆ c̊Lq Ñ pV,Sq

of a point x P S, where S P Ssing. A perversity p on pX,Sq induces a perversity on the
LHS which is described as follows. By restriction, p determines a perversity on pV,Sq
still denoted by p. We call again p the perversity induced on pRm ˆ c̊L, I ˆ c̊Lq by
the stratified homeomorphism ϕ. A such perversity is determined by a perversity on
the link pL,Lq, also denoted by p, and by the number ppSq following these formulæ:

ppRm ˆQˆs0, 1r
loooooooomoooooooon

“ϕVXR

q “ ppQq “ ppRq, and ppRm ˆ tvuq “ ppvq “ ppSq, (17)

where v is the apex of c̊L.

We study the behavior of the perversities concerning the charts of Proposition 4.4.
More precisely, if I : pX,Sq Ñ pX, T q is the stratified map induced by the refinement
pX,Sq Ÿ pX, T q and p is a perversity on pX,Sq we study the relation between p
and I‹p under the previous conventions (17) following the three cases presented in
Proposition 4.4.

(a) The map I : pV,Sq Ñ pV, T q becomes pRm ˆ c̊L, I ˆ Lq Ñ pRm ˆ c̊L, I ˆ L1q,
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given by x ÞÑ x, which is a stratified map. Recall that ϕpV X Sq “ Rm ˆ tvu “ ϕpV X

S
I

q (cf. (15)). Previous conventions give the equalities

ppSq “ ppRm ˆ tvuq “ ppvq and I‹ppS
I

q “ I‹ppRm ˆ tvuq “ I‹ppvq. (18)

(b) The map I : pW,Sq Ñ pW, T q becomes the stratified map pRa ˆ c̊Sb´1, I ˆ
c̊Iq Ñ pRa`b, Iq given by px, rz, rsq ÞÑ px, g´1przqq where gpxq “ 2 arctanp}x}q

π}x} ¨ x. The

strata S, pS
I

zSqcc P S and S
I

P T become respectively Ra ˆ tuu,Ra ˆ
`

Sb´1
˘

cc
ˆ

s0, 1r and Ra`b, where u is the apex of the cone c̊Sb´1. We have I‹p “ 0 and previous
convention (17) gives the formula

ppSq “ ppRa ˆ tuuq “ ppuq. (19)

(c) The map I : pW,Sq Ñ pW, T q becomes the stratified map

ψ´1 ˝ φ : pRa ˆ c̊pSb´1 ˚ Eq, I ˆ c̊E‹b´1q Ñ pRa ˆ Rb ˆ c̊E, I ˆ I ˆ c̊Eq

given by

px, rrz, ys, rsq ÞÑ

#

px, g´1p2rzq, ry, rsq if }z} ď 1{2,

px, g´1prz{}z}q, ry, 2rp1´ }z}qsq if }z} ě 1{2.

The strata S, pS
I

zSqcc PS and S
I

P T become respectively Raˆtuu,Raˆ
`

Sb´1
˘

cc
ˆ

s0, 1r and Ra ˆ Rb ˆ tvu, where u is the apex of the cone c̊pSb´1 ˚ Eq and v is the
apex of the cone c̊E. The other strata oh the LHS are source strata. Previous con-
vention (17) gives the formulæ

ppRq “ ppRa ˆDb ˆQˆs0, 1r
looooooooooomooooooooooon

“φVXR

q “ ppQq,

I‹ppR
I

q “ I‹ppRa ˆ Rb ˆQˆs0, 1r
looooooooooomooooooooooon

“ψVXR
I

q “ I‹ppQq,

pppS
I

zSqccq “ ppRa ˆ
`

Sb´1
˘

cc
ˆs0, 1rq “ pp

`

Sb´1
˘

cc
q,

ppSq “ ppRa ˆ tuuq “ ppuq,

I‹ppS
I

q “ I‹ppRa ˆ Rb ˆ tvuq “ I‹ppvq,

(20)

where R P R with R
I

‰ S
I

.

4.3. Comparison tools

The invariance results we prove in two final sections follow the same pattern: a
stratified map induces an isomorphism in (co)homology. To achieve this objective
we use these two results. The first one is used with compact supports (cf. [6, Theo-
rem 5.1]) and the second one is used with closed supports (cf. [3, Proposition 13.2]).

Proposition 4.5. Let FX be the category whose objects are (stratified homeomor-
phic to) open subsets of a given CS set pX,Sq and whose morphisms are stratified
homeomorphisms and inclusions. Let Ab˚ be the category of graded abelian groups.
Let F˚, G˚ : FX Ñ Ab be two functors and Φ: F˚ Ñ G˚ a natural transformation
satisfying the conditions listed below.
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(a) F˚ and G˚ admit exact Mayer–Vietoris sequences and the natural transformation
Φ induces a commutative diagram between these sequences.

(b) If tUαu is an increasing collection of open subsets of X and Φ: F˚pUαq Ñ G˚pUαq
is an isomorphism for each α, then Φ: F˚pYαUαq Ñ G˚pYαUαq is an isomor-
phism.

(c) Consider pϕ, V q a conical chart of a singular point x P S with S P S. If
Φ: F˚pV zSq Ñ G˚pV zSq is an isomorphism, then so is Φ: F˚pV q Ñ G˚pV q.

(d) If U is an open subset of X contained within a single stratum and homeomorphic
to an Euclidean space, then Φ: F˚pUq Ñ G˚pUq is an isomorphism.

Then Φ: F˚pXq Ñ G˚pXq is an isomorphism.

Proposition 4.6. Let FX be the category whose objects are (stratified homeomorphic
to) open subsets of a given paracompact second countable10 CS-set X and whose
morphisms are stratified homeomorphisms and inclusions. Let Ab˚ be the category
of graded abelian groups. Let F˚, G˚ : FX Ñ Ab be two functors and Φ: F˚ Ñ G˚ a
natural transformation satisfying the conditions listed below.

(a) F˚ and G˚ admit exact Mayer–Vietoris sequences and the natural transformation
Φ induces a commutative diagram between these sequences.

(b) If tUαu is a disjoint collection of open subsets of X and Φ: F˚pUαq Ñ G˚pUαq
is an isomorphism for each α, then Φ: F˚p

Ů

α Uαq Ñ G˚p
Ů

α Uαq is an isomor-
phism.

(c) Consider pϕ, V q a conical chart of a singular point x P S with S P S. If
Φ: F˚pV zSq Ñ G˚pV, zSq is an isomorphism, then so is Φ: F˚pV q Ñ G˚pV q.

(d) If U is an open subset of X contained within a single stratum and homeomorphic
to an Euclidean space, then Φ: F˚pUq Ñ G˚pUq is an isomorphism.

Then Φ: F˚pXq Ñ G˚pXq is an isomorphism.

Remark 4.7. A priori, in order to apply Proposition 4.5 and Proposition 4.6 one needs
to verify condition (c) for any conical chart of X. Reading carefully the proof of these
Propositions one notices that it is enough to verify (c) for a neighborhood basis of
each point x of X.

Associated to a conical chart ϕ : Ri ˆ c̊LÑ V of the point x, we can construct
a neighborhood basis Bx “

 

ϕε : s´ε, εr
i
ˆ c̊εLÑ Vε | ε ą 0

(

of x, where c̊ε “ Lˆ
r0, εr{Lˆ t0u and Vε “ ϕps ´ ε, εri ˚̂cεLq. Notice that all this open subsets are strat-
ified homeomorphic after homotethy.

So, in order to apply Proposition 4.5 and Proposition 4.6 it suffices to verify con-
ditions (c) for a conical chart of each point of X.

Notice that the family Fx “
 

ϕε : r´ε, εs ˆ cεLÑ Vε | ε ą 0
(

is a neighborhood
basis for the point x made up of closed subsets. In other words, the space X is locally
compact.

10In the original reference [3, Proposition 13.2] the pseudomanifold X needs to be separable. A sec-
ond countable space is separable (see for example [25, Theorem 16.9]) so we can change this last
hypothesis in the statement of the Proposition.



REFINEMENT INVARIANCE OF INTERSECTION (CO)HOMOLOGIES 333

4.4. Morphisms
Consider a stratified map f : pX,S, pq Ñ pY, T , qq between two perverse CS-sets.

If the perversities verify f˚Dq ď Dp then we have the following induced morphisms.

(a) f˚ : H
p

˚
pX;Sq Ñ H

q

˚
pY ; T q and f˚ : H

˚

p
pX;Sq Ñ H

˚

q
pY ; T q (cf. [6, Proposi-

tion 3.11]).

(b) f˚ : H
˚

p,c
pX;Sq Ñ H

˚

q,c
pY ; T q if the map f is a proper map. This comes from

Section 2.5.d and from the fact that the family tf´1pKq | K Ă Y compactu is
cofinal in the family of compact subsets of X if f is proper.

(c) f˚ : H
p

˚
pX;Sq Ñ H

q

˚
pY ; T q, if fpX

p
q Ă ΣpY,T q, where X

p
“ \tS | S P Ssing and

ppSq ą tpSqu (cf. [6, Proposition 3.11]). An adapted version of this result is needed
in this work (see Lemma 5.5).

(d) f˚ : H
BM,p

˚
pX;Sq Ñ H

BM,q

˚
pX, T q and f˚ : H

BM,p

˚
pX;Sq Ñ H

BM,q

˚
pX, T q (cf. Sec-

tion 2.5.d).

If the perversities verify f˚q ď p then we have the following induced morphisms:

(e) f˚ : H
˚

q
pY ; T q ÑH

˚

p
pX;Sq if f‹q ď p (cf. [3, Theorem A]).

(f) f˚ : H
˚

q,c
pY ; T qÑH

˚

p,c
pX;Sq if the map f is a proper map. This comes from 2.9.d

and from the fact that the family tf´1pKq | K Ă Y compactu is cofinal in the
family of compact subsets of X if f is proper.

5. Refinement invariance for CS-sets

We prove the main result of this work: the refinement invariance of all the homolo-
gies and cohomologies of Section 2 : Theorem 5.7 for coarsenings and Theorem 5.9 for
refinements. In the first case, we need to work with a particular type of perversities,
the K-perversities.

5.1. K-perversities
These are the perversities for which refinement invariance holds. Roughly speaking,

they are M -perversities defined on the LHS of a refinement pX,Sq Ÿ pX, T q whose
restriction to the strata of the RHS is a classical perversity verifying the growing
condition of a Goresky–MacPherson perversity.

Definition 5.1. Let pX,Sq Ÿ pX, T q be a refinement. A perversity p on pX,Sq is a
K-perversity if it verifies conditions (K1) and (K2).

(K1) We have, for any strata S,Q P S with S ĺ Q and S
I

“ Q
I

,

ppQq ď ppSq ď ppQq ` tpSq ´ tpQq, (21)

(K2) We have, for any strata S,Q P S with dimS “ dimQ and S
I

“ Q
I

,

ppQq “ ppSq, (22)

Remark 5.2. Notice these two conditions are equivalent to conditions

DppQq ď DppSq ď DppQq ` tpSq ´ tpQq and DppQq “ DppSq. (23)

Also, condition (21) is always verified when both strata S and Q are regular strata.
If the stratum Q is regular and the stratum S is singular (i.e., S is an exceptional
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stratum), then condition (21) becomes

0 ď ppSq ď tpSq. (24)

In particular, the existence of a K-perversity implies the non-existence of 1-excep-
tional strata since 0 ď tpSq “ ´1 is not possible.

Before proving the main results of this work, we need some technical lemmas.

Lemma 5.3. Let pX,Sq ŸI pX, T q be a refinement. Any K-perversity p verifies
I‹ppT q “ ppSq for each T P T where S P S is a source stratum of T .

Proof. We know from Section 2.3 that I‹ppT q “ mintppQq | Q P S and Q
I

“ T u. For

any Q P S with Q
I

“ T there exists a source stratum S P S with Q ĺ S and S
I

“ T
(see Lemma 3.8 (b)). So, I‹ppT q “pK1q mintppSq | S P S source stratum of T u. Con-
dition (22) ends the proof.

Lemma 5.4. Let pX,Sq Ÿ pX, T q be a refinement. For any K-perversity p we have
I‹DI‹p ď Dp.

Proof. Given a stratum S P S, there exists a source stratum Q P S of S
I

verifying
S ĺ Q (cf. Lemma 3.8 (b)). We have

I‹DI‹ppSq “ DI‹ppS
I

q “ tpS
I

q ´ I‹ppS
I

q

source
“ tpQ

I

q ´ ppQq ďp1q tpQq ´ ppQq “ DppQq
(K1)
ď DppSq,

where p1q comes from (10) except when Q is an exceptional stratum. In this case

codimQ ě 2 and therefore tpQ
I

q “ 0 ď tpQq (cf. Remark 5.2).

Lemma 5.5. Let pX,Sq ŸI pX, T q be a refinement between two CS-sets. For any K-
perversity p we have the induced morphisms

I‹ : H
p

˚
pX;Sq Ñ H

I‹p

˚
pX; T q,

I‹ : H
˚

I‹p
pX; T q Ñ H

˚

p
pX;Sq,

I‹ : H
˚

I‹p,c
pX; T q Ñ H

˚

p,c
pX;Sq.

Proof. If we prove that the operator I‹ : C
p

˚
pX;Sq Ñ C

I‹p

˚
pX; T q is well defined then,

by duality, the operator I‹ : C
˚

I‹p
pX; T q Ñ C

˚

p
pX;Sq is also well defined. Following

[6, Proposition 3.11] and Lemma 5.4 it suffices to prove IpX
p
q Ă ΣpX,T q. If this is

not true, then there exist Q P S and S P Ssing with Q ĺ S, ppSq ą tpSq and Q
I

P

T reg. Since Q
I

ĺ(11) S
I

then S
I

P Sreg. Then S is an exceptional stratum. This is
impossible (cf. (24)). Last point comes from Section 2.5.d.

Lemma 5.6. Let pX,Sq ŸI pX,Rq ŸJ pX, T q be two refinements. If p is a K-per-
versity on pX,Sq, relatively to the refinement E “ J ˝ I, then

(a) p is a K-perversity, relatively to the refinement I, and

(b) I‹p is a K-perversity, relatively to the refinement J .

Proof. Property (a) comes directly from the fact that S
I

“ S
J

implies S
E

“ S
I
J

“

Q
I
J

“ Q
E

, if S,Q P S. Let us prove (b) in two steps.
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(K1)I‹p Consider S,Q P R with S ĺ Q and S
J

“ Q
J

. Lemma 3.8 (c) gives two
I-source strata S1, Q1 P S, of S and Q respectively, with S1 ĺ Q1. We have I‹ppSq “
ppS1q and I‹ppQq “ ppQ1q (cf. Lemma 5.3) and

S1
E

“ S1
I
J

“ S
J

“ Q
J

“ Q1
I
J

“ Q1
E

(25)

then

I‹ppQq “ ppQ1q
(K1)p
ď ppS1q “ I‹ppSq

(K1)p
ď ppQ1q ` tpS1q ´ tpQ1q

source strata
“ I‹ppQq ` tpS

1
I

q ´ tpQ1
I

q “ I‹ppQq ` tpSq ´ tpQq.

(K2)I‹p Consider two strata S and Q P R with dimS “ dimQ and S
J

“ Q
J

.
Lemma 3.8 (b) gives two source strata S1, Q1 P S of S and Q respectively, rela-

tively to the refinement I. Then S1
E

“ Q1
E

(cf. (25)) and dimS1 “ dimS1
I

“ dimS “

dimQ “ dimQ1
I

“ dimQ1. Applying (K2)p we get ppS1q “ ppQ1q. On the other hand,
Lemma 5.3 gives I‹ppSq “ ppS1q, I‹ppQq “ ppQ1q and therefore we get the claim
I‹ppSq “ I‹ppQq.

5.2. Main results
We give the two invariance results of the various intersection (co)homologies: by

coarsening and by refinement.

Theorem 5.7 (Invariance by coarsening). Let pX,Sq Ÿ pX, T q be a refinement
between two CS-sets. For any K-perversity p on pX,Sq the identity I : X Ñ X induces
the isomorphisms

(R1) H
p

˚
pX;Sq – H

I‹p

˚
pX; T q, (R2) H

˚

p
pX;Sq – H

˚

I‹p
pX; T q,

(R3) H
˚

p,c
pX;Sq – H

˚

I‹p,c
pX; T q, (R4) H

p

˚
pX;Sq – H

I‹p

˚
pX; T q,

(R5) H
˚

p
pX;Sq – H

˚

I‹p
pX; T q, (R6) H

˚

p,c
pX;Sq – H

˚

I‹p,c
pX; T q,

If, in addition, X is second countable then

(R7) H
BM,p

˚
pX;Sq – H

BM,I‹p

˚
pX; T q, (R8) H

BM,p

˚
pX;Sq – H

BM,I‹p

˚
pX; T q,

(R9) H
˚

I‹p
pX; T q –H

˚

p
pX;Sq, (R10) H

˚

p,c
pX;Sq – H˚

I‹p,c
pX; T q

Proof. Notice first that the identity I induces the morphisms (R1), . . . , (R10). This
comes from Lemma 5.4, 2.3, Paragraph 4.4 and Lemma 5.5. We proceed in several
steps.

(R2) and (R5). Apply the Universal coefficient Theorem of Section 2.5.e to (R1)
and (R4).

(R3) and (R6). Considering (3) it suffices to prove that I induces the isomor-

phisms H
˚

p
pX,XzK;Sq –H˚

I‹p
pX,XzK; T q and H

˚

p
pX,XzK;Sq –H

I‹p

˚
pX,XzK; T q,

for each compact subset K Ă X. Properties (R2), (R5) and the long exact sequences
of 2.5.d give the result.

(R7) and (R8). Since X is second countable, it is hemicompact (see [23, Re-

mark 1.3]). Considering (4) it suffices to prove H
p

˚
pX,XzKSq – H

I‹p

˚
pX,XzK; T q

and H
p

˚
pX,XzK; Sq – H

I‹p

˚
pX,XzK; T q, where K is a compact subset of X.



336 MARTINTXO SARALEGI-ARANGUREN

Properties (R1), (R4) and the long exact sequences of 2.5.d give the result.
(R10). Since X second countable then it is hemicompact, paracompact and there-

fore normal (see [23, Remark 1.3], [25, Theorem 20.10]). Considering Proposition 2.1

it suffices to prove H
˚

p
pX,XzK;Sq –H

˚

I‹p
pX,XzK; T q, where K Ă X is compact.

Property (R9) and the long exact sequence of 2.9.d give the result.
(R1), (R4) and (R9). Without loss of generality we can suppose that the refine-

ment is simple (cf. Proposition 4.2 and Lemma 5.6). We verify the conditions of
Proposition 4.5, for (R1) and (R4), and Proposition 4.6, for (R9). The functor Φ
comes from I : X Ñ X.

(a) It suffices to consider the Mayer–Vietoris sequences of 2.5.a, 2.7.a and 2.9.a.11

(b) The chains have compact support, so we get (R1) and (R4). The case (R9) is
immediate.

(d) Since SU “ I implies TU “ I then property (D) becomes a tautology.
(c) Consider a singular point x P X. Following Remark 4.7 we distinguish three

cases.
(C-a) x P S, source stratum of S. Considering Proposition 4.4 (a) and using

the local calculations 2.5.b and 2.9.b, we need to prove

pR1q H
p

˚
pL,Lq–HI‹p

˚
pL,L1q ùñ H

p

˚
p̊cL, c̊Lq–HI‹p

˚
p̊cL, c̊L1q,

pR4q H
p

˚
pL,Lq–HI‹p

˚
pL,L1q ùñ H

p

˚
p̊cL, c̊Lq–HI‹p

˚
p̊cL, c̊L1q,

pR9q H
p

˚
pL,Lq–H

I‹p

˚
pL,L1q ùñ H

p

˚
p̊cL, c̊Lq–H

I‹p

˚
p̊cL, c̊L1q.

Since the perversity p verifies ppSq “ I‹ppS
I

q (cf. Lemma 5.3) then we have ppvq “
I‹ppvq (cf. (18)). The result comes now directly from the local calculations 2.5.b
and 2.9.b.

(C-b) x P S, exceptional stratum of S. Considering Proposition 4.4 (b) and
using the local calculations 2.5.b and 2.9.b, we need to prove

pR1q H
p

˚

`

c̊Sb´1, c̊I
˘

–G, pR4q H
p

˚

`

c̊Sb´1, c̊I
˘

–G, pR9q H
˚

p

`

c̊Sb´1, c̊I
˘

–R.

where b “ codimS ě 1. Since 0 ď ppSq ď tpSq “ b´ 2 (cf. (24)) then we have 0 ď
ppuq ď b´ 2 (cf. (19)). The result comes now directly from the local calculations 2.5.b
and 2.9.b.

(C-c) x P S, virtual stratum, with S
I

singular stratum of S. Considering
Proposition 4.4 (c) and using the local calculations 2.5.b and 2.9.b, we need to prove

pR1q H
p

˚

`

c̊pSb´1 ˚ Eq, c̊E‹b´1

˘

– H
I‹p

˚
p̊cE, c̊Eq,

pR4q H
p

˚

`

c̊pSb´1 ˚ Eq, c̊E‹b´1

˘

– H
I‹p

˚
p̊cE, c̊Eq,

pR9q H
˚

p

`

c̊pSb´1 ˚ Eq, c̊E‹b´1

˘

– H
˚

I‹p
p̊cE, c̊Eq,

where b “ dimS
I

´ dimS ě 1.
Since S ĺ pS

I

zSqcc (cf. (16)) and pppS
I

zSqccq ď ppSq ď pppS
I

zSqccq ` b (cf. (21))
then pppSb´1qccq ď ppuq ď pppSb´1qccq ` b (cf. (20)). Similarly, we get DpppSb´1qccq ď

Dppuq ď DpppSb´1qccq ` b (cf. (23)).

Since ppSq “ I‹ppS
I

q (cf. Lemma 5.3) then we have ppvq “ I‹ppvq (cf. (20)).

11Notice that X is second countable, Hausdorff and locally compact (Remark 4.7). Then, the pseu-
domanifold X is paracompact (cf. [1, II.12.12]).
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Applying the local calculations 2.5.b,c and 2.9.b,c the question becomes

pR1q H
p

˚
pE, Eq – H

I‹p

˚
pE, Eq,

pR4q H
p

˚
pE, Eq – H

I‹p

˚
pE, Eq,

pR9q H
˚

p
pE, Eq –H

˚

I‹p
pE, Eq,

The stratum S belongs to V “M (cf. (14)). Since any other R P S meeting the
conical chart W verifies S ă R then R is a source stratum and then ppRq “ I‹ppRq
(cf. Lemma 5.3). From (20) we get p “ I‹p on E. The claim is proved.

Remark 5.8. The existence of 1-exceptional strata may impeach the above isomor-

phisms. This is the case for (R4), . . . (R10). For example H
0

˚

`

c̊S0, c̊I
˘

“ 0 ‰ G “

H
0

˚
ps´1, 1r, Iq. But we have H

0

˚

`

c̊S0
˘

“ G “ H
0

˚
ps´1, 1r, I, c̊Iq. In fact, the local cal-

culations H
p

0

`

c̊S0,S
˘

and H
p

0

`

c̊S0;S
˘

are different:

H
p

0

`

c̊S0, c̊I
˘

“

"

H
0
pS0q if Dppvq ě 0,
G if Dppvq ă 0,

H
p

0

`

c̊S0, c̊I
˘

“

"

H
0
pS0q if Dppvq ě 0,
0 if Dppvq ă 0.

We observe that condition H
p

˚

`

c̊S0, c̊I
˘

–G of (C-c) is never fulfilled, while we just

need Dppvq ă 0 to have H
p

˚

`

c̊S0, c̊I
˘

–G of (C-c).
Condition (21) can be weakened in cases (R1), (R2) and (R3) as follows: dealing

with 1-exceptional strata S, it suffices to ask DppSq ă 0, that is, ppSq ě 0 and not
0 ď ppSq ď tpSq. So, these strata are allowed for (R1), (R2) and (R3).

Theorem 5.9 (Invariance by refinement). Let pX,Sq Ÿ pX, T q be a refinement
between two CS-sets. We suppose that there are no 1-exceptional strata. For any
perversity q on pX, T q the identity I : X Ñ X induces the isomorphisms

(R1) H
I‹q

˚
pX;Sq – H

q

˚
pX; T q, (R2) H

˚

I‹q
pX;Sq – H

˚

q
pX; T q,

(R3) H
˚

I‹q,c
pX;Sq – H

˚

q,c
pX; T q, (R4) H

I‹q

˚
pX;Sq – H

q

˚
pX; T q,

(R5) H
˚

I‹q
pX;Sq – H

˚

q
pX; T q, (R6) H

˚

I‹q,c
pX;Sq – H

˚

q,c
pX; T q.

If, in addition, X is second countable then

(R7) H
BM,I‹q

˚
pX;Sq – H

BM,q

˚
pX; T q, (R8) H

BM,I‹q

˚
pX;Sq – H

BM,q

˚
pX; T q,

(R9) H
˚

I‹q
pX; T q –H

˚

q
pX;Sq, (R10) H

˚

I‹q,c
pX;Sq – H˚

q,c
pX; T q

Proof. It suffices to apply Theorem 5.7 to the perversity I‹p (cf. Paragraph 2.3), if
this perversity is a K-perversity. This is the case when 1-codimensional exceptional
strata do not appear. Let us verify properties (K1) and (K2).

(K1) We have I‹qpQq “ qpQ
I

q “ qpS
I

q “ I‹qpSq ď I‹qpQq ` tpSq ´ tpQq, if we
prove the inequality tpQq ď tpSq. This is clear if S and Q are regular strata or sin-
gular strata at the same time (cf. (S4)). It remains the case where S is an excep-
tional stratum and Q is a regular stratum. The inequality becomes tpSq ě 0, that is,
codimS ě 2. This comes from the non-existence of 1-exceptional strata.

(K2) We have I‹qpQq “ qpQ
I

q “ qpS
I

q “ I‹qpSq.

In cases (R1), (R2) and (R3), 1-exceptional strata S may appear in the case
ppSq ě 0 (cf. Remark 5.8).
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5.3. Topological invariance
One of the two more important properties of the intersection homology is the topo-

logical invariance [15]. Next Corollaries show that the refinement invariance implies
topological invariance in some cases. We find the well known topological invariance
of the intersection homology [15] (see also [19, 13]) and those of tame intersection
homology [9] (closed supports) and [11] (compact supports). We also get the topo-
logical invariance of the blown-up intersection cohomology [3, Theorem G] (closed
supports) and [5, Theorem A] (compact supports).

Before giving the result, there are two important tools to highlight.
‚ Intrinsic stratification (cf. [18, 19]). Any stratified space pX,Sq has a smallest

refinement: the intrinsic stratified space pX,S˚q. It is a canonical object: we have
S˚ “ T ˚ for any stratification T defined on X. If pX,Sq is a CS-set then pX,S˚q is
also a CS-set.
‚ Classical perversities versus M-perversities. The former depend on the codimen-

sion of the strata while the latter are defined on the strata themselves.
A King perversity is a map p : NÑ Z verifying pp0q “ 0 and ppkq ď ppk ` 1q ď

ppkq ` 1 for each k P N˚ (cf. [19]). It verifies

ppkq ď pp`q ď ppkq ` `´ k, (26)

if 1 ď k ď `. A King perversity p induces a perversity, still denoted by p: ppSq “
ppcodimSq.

A Goresky–MacPherson perversity is a King perversity p with pp0q “ pp1q “ pp2q “
0 (cf. [15]). It verifies, for each k ě 2,

0 ď ppkq ď k ´ 2 “ tpkq. (27)

Corollary 5.10. Let pX,Sq be a CS-set endowed with a positive King perversity p.
Consider the intrinsic refinement pX,Sq ŸI pX,S˚q. The identity map I : X Ñ X
induces the isomorphisms

H
p

˚
pX;Sq – H

p

˚
pX;S˚q, H

˚

p
pX;Sq – H

˚

p
pX;S˚q, H

˚

p,c
pX;Sq – H

˚

p,c
pX;S˚q,

if pp`q ě 0 when ` is the codimension of an exceptional stratum. We also have

H
p

˚
pX;Sq – H

p

˚
pX;S˚q, H

˚

p
pX;Sq – H

˚

p
pX;S˚q, H

˚

p,c
pX;Sq – H

˚

p,c
pX;S˚q,

if 0 ď pp`q ď tp`q. If, in addition, X is second countable then we have

H
˚

p
pX;Sq–H

˚

p
pX;S˚q, H

˚

p,c
pX;Sq–H

˚

p,c
pX;S˚q, H

BM,p

˚
pX;Sq–H

BM,p

˚
pX;S˚q.

Proof. Let us verify that p is a K-perversity.
(K1) By definition of the perversity p, we need to prove

ppcodimQq ď ppcodimSq ď ppcodimQq ` tpcodimSq ´ tpcodimQq.

This is clear if S,Q are regular strata or singular strata (cf. (S4) and (26)). It
remains the case where S is an exceptional stratum and Q is a regular stratum. The
inequality becomes 0 ď ppcodimSq ď tpcodimSq which is true from the hypothesis
and Remark 5.8.

(K2) We have ppSq “ ppcodimSq “ ppcodimQq “ ppQq.
The classical perversity p induces the perversity p on pX,Sq by the formula
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ppSq “ ppcodimSq. In fact, the perversity I‹p of pX, T q also comes from the clas-
sical perversity p:

I‹ppT q
Lemma 5.3
“ ppSq “ ppcodimSq

source
“ ppcodimT q “ ppT q,

where T P T and S P S is source stratum of T . Now, it suffices to apply Theorem 5.7.

Remark 5.11. (1) Let pX,Sq be a CS-set endowed with a Goresky–MacPherson per-
versity p. Since p ě 0 (cf. (27)), then the previous Corollary implies that the coho-

mologies H
p

˚
pX;Sq, H˚

p
pX;Sq and H

˚

p,c
pX;Sq are independent of the stratification

S. We do not have a similar result for tame intersection homologies since condition
0 ď p ď t (cf. (27)) implies that tame intersection homology coincides with the usual
intersection homology.

Let us suppose that X is second countable. When 1-exceptional strata do not
exist then we can apply the above Corollary and conclude that the cohomologies

H
˚

p
pX;Sq, H

˚

p,c
pX;Sq and H

BM,p

˚
pX;Sq are independent of the stratification S.

(cf. (27)).
(2) Consider p a K-perversity. Condition (K2) means that the restriction of p

to the S-stratification lying on each stratum T P T is, in fact, a classical perversity
(excepted the condition pp0q “ 0). On the other hand, property (K1) is, in fact, a
growing condition of the type (26), even weaker. Although it is not completely exact,
we can think a K-perversity as a perversity whose restriction to any stratum T P T
is a King perversity.
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General perversities and topological invariance. Illinois J. Math., 63(1):127–
163, 2019.

[7] D. Chataur, M. Saralegi-Aranguren, and D. Tanré. Blown-up intersection
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