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MINIMAL MODELS FOR MONOMIAL ALGEBRAS

PEDRO TAMAROFF

(communicated by Graham Ellis)

Abstract
We give, for any monomial algebra A, an explicit description

of its minimal model, which also provides us with formulas for
a canonical A∞-structure on the Ext-algebra of the trivial A-
module. We do this by exploiting the combinatorics of chains going
back to works of Anick, Green, Happel and Zacharia, and the alge-
braic discrete Morse theory of Jöllenbeck, Welker and Sköldberg.
We then show how this result can be used to obtain models for
algebras with a chosen Gröbner basis, and briefly outline how to
compute some classical homological invariants with it.

1. Introduction

Understanding A∞-structures associated to differential graded associative (dga)
algebras is central to understanding in turn, the homotopy category of the category
Alg of dga algebras. More precisely, one can, in principle, compute in the homotopy
category of Alg by considering the category of quasi-free dga algebras or, equivalently,
A∞-coalgebras, modulo the usual relation of homotopy between morphisms in Alg:
the quasi-free dga algebras are cofibrant in Alg, where the weak equivalences are the
quasi-isomorphisms and the fibrations are the degree-wise epimorphisms; see [14] and
Proposition 1.5 in [28].

In particular, we may use A∞-coalgebras to understand usual (non-dg) associa-
tive algebras. For any augmented algebra A over a field k one can produce, from
the bar construction BA of A, the class of minimal A∞-coalgebra structures on
TorA(k, k). Among other things, these determine A up to isomorphism, and may
be used to compute its Hochschild cohomology or obtain the minimal model of A; see
[17,18]. The explicit computation of such higher structures is therefore of interest.
The machinery of Gröbner bases and homological perturbation theory suggest that
a possible step towards solving this problem is to first obtain an answer for mono-
mial algebras. In this paper we provide a complete description of a canonical minimal
A∞-coalgebra structure on TorA(k, k) for a monomial algebra A in terms of the com-
binatorics of its chains. Equivalently, we completely describe a minimal model of A as
the ∞-cobar construction Ω∞TorA(k, k). The results extend without modification to
describe minimal models of monomial quiver algebras in terms of the combinatorics
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of their chains; see [11].
Concretely, let γ be a basis element of Torr+1

A (k, k), represented by an Anick chain
of length r ∈ N and let us take n ∈ N�2. A decomposition of γ is a tuple (γ1, . . . , γn)
of chains of respective lengths (r1, . . . , rn) satisfying r1 + · · ·+ rn = r − 1 and whose
concatenation, in this order, is γ. Our result is the following.

Theorem. For each monomial algebra A there is a minimal model B → A where B
is the ∞-cobar construction on TorA(k, k). The differential d is such that for a chain
γ ∈ TorA(k, k),

dγ = −
∑
n�2

(−1)(
n+1

2 )+|γ1|γ1 · · · γn,

where the sum ranges through all possible decompositions of γ.

This recovers, in particular, the results in [12] describing cup products in
ExtA(k, k) for a monomial quiver algebra A using a multiplicative basis of chains,
and the results in [13] describing the A∞-algebra structure of ExtA for monomial
algebras which are p-Koszul.

The paper is organised as follows. In Section 2 we recall the relevant definitions and
constructions from homological and homotopical algebra to be used throughout the
paper. In particular, we recall the essentials from [1], the central results of algebraic
discrete Morse theory presented in [15], and the dual version of the homotopy transfer
theorem for A∞-algebras from [21]. In Section 3 we use the results of [15] to produce a
homotopy retract datum from the bar construction of A to TorA(k, k) and therefore
a minimal A∞-coalgebra structure on TorA(k, k), which we describe explicitly in
Section 4 in terms of decompositions of Anick chains into concatenations of smaller
chains, and we note that our results generalize directly to the case of algebras defined
by quivers with monomial relations. Finally, in Section 5 we outline how to exploit
the results of Section 4 to compute invariants of algebras and models of algebras with
a chosen Gröbner basis, and briefly explain how our model has been successfully used
to study the support variety theory of monomial algebras [6].

We fix once and for all a field k. All unadorned hom and ⊗, which denote the usual
bifunctors on graded vector spaces, will be taken with respect to k. We let ks−1 be
the graded vector space concentrated in degree −1, where it is one dimensional, and
write s−1 for its generator. If V is a graded vector space, we write s−1V for ks−1 ⊗ V ,
and denote s−1 ⊗ v by s−1v, and write V ∨ for the graded dual of V .
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2. Recollections

We recall that a monomial algebra over k is a quotient of a free algebra TV on
a finite dimensional k-module V by an ideal generated by finitely many monomials.
We will follow the conventions and definitions from [20], and we refer the reader
to it for the essentials on weight graded differential graded algebras. In particular,
we follow their convention regarding gradings: if a dga algebra has an additional
grading by weight, refer to it as the weight grading, as opposed to the homological
grading, to avoid any confusion. Hence, the grading of a graded algebra with a zero
differential is homological: a weight grading is, for us, an extra grading coming from
some additional structure so that, for example, our monomial algebras will be weight
graded but concentrated in homological degree zero.

As explained in the introduction, we will completely describe, for a given monomial
algebra A, a minimal model B → A. Recall this is a quasi-isomorphism onto A from
a quasi-free dga algebra B (that is, a dga algebra whose underlying weight graded
algebra is free) whose differential satisfies the Sullivan condition [20, �B.6.8]; although
this condition is necessary to have a well-behaved model of A, it will not be central to
our exposition, and the fact that our model satisfies this condition will be immediate
to check.

Although this gives us, a priori, information about A in the homotopy category
of Alg, there is a rich feedback loop between homotopical and homological algebra,
already present in the original work of Quillen, and successfully pursued in [14,17],
among others. Without going into details, we will content ourselves with giving a few
examples:

� A model of A, that is, its homotopy type, can be computed entirely by homo-
logical and perturbative methods, starting with homological invariants of it.

� From this one may compute the Hochschild homology and cohomology of A
and, in particular, obtain information about the derived category of its repre-
sentations, and the representations of its enveloping algebra.

� In fact, the homotopy type of the dg Lie algebra of derivations of a model
determines the deformation theory of A.

All results of this paper can be proved for quiver algebras defined by monomial rela-
tions; for readability, we present all arguments in the case of associative algebras (that
is, for one-vertex quivers) and then merely state the corresponding generalization.

2.1. Bar resolution and Tor

Let A be a weight graded k-algebra. Observe that if Ω∞C → A is a minimal model
of A, then the space of indecomposable elements C of Ω∞C can be identified with
TorA(k, k) and is, in fact, the Quillen homology of Ω∞C: it will become apparent
in what follows that our choice of basis for TorA(k, k), that of Anick chains, will be
central in describing our choice of minimal model of A.

Write AMod and ModA for the respective categories of left and right A-modules.
The bifunctor −⊗A − : ModA × AMod → kMod gives us, upon derivation, the
classical bifunctor TorA(−,−) : ModA × AMod → kGMod to the category of graded
k-modules, defined as follows. For M ∈ ModA and N ∈ AMod, let us pick respective
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projective resolutions P → M and Q → N in ModA and AMod. The diagram

P ⊗A N ←− P ⊗A Q −→ M ⊗A Q

connects the above three complexes by natural quasi-isomorphisms, up to our choice
of resolutions, and their homology is the graded k-module TorA(M,N). Let us remark
that TorA(M,N) is usually denoted by TorA(M,N) but that for typographical pur-
poses we will instead write it TorA(M,N). When A is connected or, more generally,
augmented, we will write TorA for TorA(k, k), where k is made into an A-module via
the augmentation A → k.

There is a particularly useful way we can construct such bifunctor following the def-
inition above. Concretely, if R → A is any projective resolution of the A-bimodule A,
then the homology of the complex M ⊗A R⊗A N is TorA(M,N). The advantage of
this is we need only choose one resolution, namely that of A as an A-bimodule, to
obtain resolutions for every left or right A-module, and we now fix this choice. Define
B(A,A,A), the double-sided bar resolution of A, to be the chain complex such that

for each n ∈ N0, we have Bn(A,A,A) = A⊗A
⊗n

⊗A, the free A-bimodule with basis

A
⊗n

, where A is the kernel of the augmentation A → k.
For each such integer, denote a generic bimodule basis element in degree n by

[a1| · · · |an]. Its differential is then given by

−a1[a2| · · · |an] +

n−1∑
i=1

(−1)i−1[a1| · · · |aiai+1| · · · |an] + (−1)n−1[a1| · · · |an−1]an

and is extended A-bilinearly. In particular, if n = 0 we have B0(A,A,A) = A⊗A and
there is an augmentation B0(A,A,A) → A given by multiplication which renders the
augmented complex B(A,A,A) → A contractible both as a complex of left and as
a complex of right A-modules. From this it follows that if M is right A-module
and N a left A-module, the complex B(M,A,N) := M ⊗A B(A,A,A)⊗A N com-
putes TorA(M,N).

From now on we assume that A is connected, which makes it naturally augmented,
and endows k with a trivial A-module structure on both sides, in which elements of
positive degree act by zero. From the previous remarks it follows that the complex
B(k, A,A) is a resolution of the right A-module k by free right A-modules, which
we will denote by B(A,A) and call the bar resolution of k, so that TorA(k, k) may
be computed as the homology of the complex B(k, A,k), which we simply denote by
BA and call the bar construction of A. Concretely, we have for each n ∈ N0 a natural

isomorphism (BA)n → A
⊗n

, which we consider an identification, with differential
given on basis elements [a1| · · · |an] by

d[a1| · · · |an] =

n−1∑
i=1

(−1)i−1[a1| · · · |aiai+1| · · · |an].

The complexBA admits a diagonal Δ′
2 : BA→BA⊗BA given by deconcatenation,

that makes it into a non-unital dga coalgebra. Concretely, on basis elements [a1| · · · |an]
of degree n ∈ N0 we have that

Δ′
2[a1| · · · |an] =

n−1∑
i=1

[a1| · · · |ai]⊗ [ai+1| · · · |an].
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2.2. Anick’s resolution

In his celebrated article [1], Anick constructs an A-free resolution of the trivial
module for any augmented algebra A equipped with a Gröbner basis. This construc-
tion is generalized for quiver algebras in [2], where the authors use the notion of chains
for such algebras from [11]. Since we will use the description of TorA by means of
Anick’s resolution, let us quickly recall his results.

Let us write S for a set of generators of A, the variables, and let f : k〈S〉 → A be the
quotient map by the ideal of relations of A, which is a map of augmented k-algebras.
We weight grade A by the length of a monomial, and give S a total order. This induces
on the monoid of monomials MS on S a well ordering in such a way that m < m′ if
|m| < |m′| (here |m| is the length of a monomial), or if m and m′ are of the same
length but m < m′ in the lexicographical order, also known as the dictionary order,
induced from the total order of the letters in S: if m = x1 · · ·xt and m′ = y1 · · · yt are
monomials of the same length, then m < m′ if xi < yi for the first index j ∈ [t] such
that xj 	= yj . Given monomials u, v ∈ MS , say v is a divisor of u if u = u′vu′′ for
monomials u′, u′′, to obtain a partial ordering ⊆ on MS . A subset I of MS is an order
ideal of monomials if it is a lower set for ⊆. Note that the reverse ordering associated
to ⊆ is sometimes used in the literature: for us, v ⊆ u means that v is a divisor of u.
It is readily checked by induction that the set N = {x ∈ MS : f(x) /∈ 〈f(y) : y < x〉}
is an order ideal of monomials, and that f(N) is a basis of A as a k-module.

FromN Anick extracts the basic building blocks for his resolution, the obstructions.
Concretely, let V consist of those x ∈ MS that are not in N , but all y � x are in N .
These are simply the maximal elements of the order ideal N , and thus form an
anti-chain. Its elements are the obstructions. From the definitions it follows that an
element is in MS �N precisely when it contains as a divisor an obstruction. In case
A is monomial, N consists of those monomials that contain no monomial relation
as a divisor, and the obstructions are the minimal relations of A. Now set V −1 = k,
V 0 = kS and V 1 = kV , to begin to construct a right A-free resolution

· · · −→ V 2 ⊗A
δ2−→ V 1 ⊗A

δ1−→ V 0 ⊗A
δ0−→ V −1 ⊗A −→ 0

of k. For each n ∈ N we now obtain a vector space V n with a basis of monomials,
called the n-chains, in the following way. An n-prechain is a monomial xi1 · · ·xit

in B for which there exist strictly increasing sequences of integers (a1, . . . , an) and
(b1, . . . , bn) with a1 = 1 and bn = t such that the sequences are interlaced, meaning
that ai+1 � bi for each i ∈ {1, . . . , n− 1}, and such that for each j ∈ {1, . . . , n}, the
monomial xiaj

· · ·xibj
is an obstruction.

In particular, the collection of 1-prechains, which coincides with that of 1-chains, is
a basis for V 1. We say an n-prechain is an n-chain if the two previous sequences may
be chosen so that xi1 · · ·xis is not an m-prechain for any s < bm and m ∈ {1, . . . , n}.
Plainly, a chain is a prechain that satisfies a minimality condition regarding the
overlappings between the obstructions that constitute it. It is readily verified that in
this case these two sequences are uniquely determined, there is a unique s = bn−1 < t
such that xi1 · · ·xis is an (n− 1)-chain and the tail xis+1 · · ·xit contains no divisor
that is an obstruction. This is the key observation to construct a sequence of boundary
maps (δn : V

n ⊗A → V n−1 ⊗A)n�2 such that

δn(xi1 · · ·xit) = xi1 · · ·xis ⊗ xis+1 · · ·xit + lower terms.
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If A is monomial, there are no lower terms in the differential and this resolution is
minimal, so that for each n ∈ N, Torn+1

A is identified with the vector space V n with
basis consisting of the n-chains: this is the content of Lemma 3.3 in [1]. Let us make
the important remark that, in what follows, we adhere to such identification strictly:
our main result depends critically on using Anick chains to model TorA.

Since it will be useful to illustrate some of the rather technical constructions that
will follow, let us consider the algebra J = T (x, y)/(x2, y2x− xy2 − xyx) and the
monomial algebra K = T (x, y, z)/(xy2, y2z). In the case of the algebra J with the
order y > x, one can check that the specified generator for its ideal of relations con-
stitute a Gröbner basis. In the case of K this is immediate for any order, since the
relations are monomial and there are no redundant relations. For J , we obtain that
for each n ∈ N, the set of n-chains is {xn+1, y2xn}, corresponding to n overlappings
of the relation x2 with itself, and of an overlapping of y2x with n− 1 copies of the
relation xn. In the case of K, we get finitely many Anick chains: the 0-chains are
{x, y, z}, the 1-chains are the relations {xy2, y2z}, and the 2-chains are the overlap-
pings {xy2z, xy3z}, and there are no other chains.

2.3. Algebraic discrete Morse theory

Let C be a non-negatively graded complex of k-modules. Fix a basis X = {Xt}t�0

of homogeneous elements of C, so that for each t ∈ N0, the set Xt is a basis of Ct.
Given c ∈ X we introduce the notation

dc =
∑
c′∈X

[c : c′]c′,

where [c : c′] ∈ k. Let G = G(C,X) be the directed weighted graph with vertices the
set X and with an edge c → c′ if c′ appears in dc with non-zero coefficient [c : c′]
which is, in that case, the weight of c → c′. A finite subset M of edges of G is a
Morse matching if it satisfies the following Morse conditions :

M1. Each vertex of G is in at most one edge of M .
M2. The weights of edges of M are invertible.
M3. The graph GM obtained by inverting the edges of M in G has no directed cycles.

If c′ → c is a edge in GM with c → c′ ∈ M , we set its weight to be −[c : c′]−1. In our
situation the coefficients [c : c′] will be either 1 or −1, which means M2 is always
satisfied. We write XM for the collection of vertices not appearing in M , which we
call critical. Write P (c, c′) for the set of paths in GM from c to c′, and assign a path
the product of the weights of the edges it contains. Finally, write Γ(c, c′) for the sum
of all the weights of paths from c to c′ in GM .

We define the Morse complex of C with respect to M , which we denote by CM , as
the complex with basis the critical vertices XM and with differential given, on basis
elements, by

dc =
∑

c′∈XM
t−1

Γ(c, c′)c′,

whenever c ∈ Xt. The result of main interest to us in [15] is the following theorem,
which shows how to produce a homotopy retract datum from C to CM given a Morse
matching M on C relative to a basis X.
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Theorem 2.1. The complex CM is homotopy equivalent to C. More precisely, there
are maps f : C → CM and g : CM → C given on basis elements by

f(c) =
∑

c′∈XM
t

Γ(c, c′)c′, g(c) =
∑

c′∈Xt

Γ(c, c′)c′

for c ∈ Xt, respectively c ∈ XM
t , which are inverse homotopy equivalences. In fact,

fg = 1 and gf − 1 = dh+ hd where for a basis element c ∈ Xt,

h(c) =
∑

c′∈Xt+1

Γ(c, c′)c′.

Note that since for any two basis elements we have defined the coefficient Γ(c, c′) as
a sum through paths, it is important that M is finite for the theorem above to hold.
We can, however, consider matchings M of the complex C if C is the colimit of a finite
sequence of finite subcomplexes {F pC} that is compatible with the matching, in the
sense that (F pC)M is a filtration by subcomplexes of CM . This last condition means
Γ(c, c′) is well defined and the last theorem extends in this situation. In particular, we
will consider the situation of N-multigraded complexes such that each homogeneous
subcomplex is finite, and in this case the filtration by weight of tuples fulfills the
condition above.

Let us note that in the homotopy h we can only have a path from an element in
degree t to one in degree t+ 1 if it is given by a sequence of edges e′0e1e

′
1 · · · eje

′
j

where e′i is an inverted edge of the matching and ei is a direct edge. Indeed, the
first Morse condition forbids a concatenation of inverted edges, which means we also
cannot have two consecutive non-inverted edges. Finally, let us observe that if c ∈ CM

is a cycle then g(c) = c, that the last observation means that h2 = 0, and that hg = 0
and fh = 0. Thus (f, g, h) is a homotopy datum that satisfies the side conditions, as
defined in Section 2.5.

2.4. Anick’s resolution via Morse theory

Let A be a weight graded k-algebra presented by generators {x1, . . . , xn} and ideal
of relations I, and assume that {f1, . . . , fm} is a reduced Gröbner basis with respect to
a fixed monomial order <. Following [15], we show how to obtain the Anick resolution
of A as the Morse complex of an acyclic matching on the normalized bar resolution
B(A,A) of k, which we now denote more simply by B.

Let in(I) denote the ideal of leading terms of elements of I, which is generated as
an ideal by the leading terms of the elements in {f1, . . . , fm}. A monomial is normal
if it is not divisible by a leading term of an element in {f1, . . . , fm}, and we write SM
for the collection of such monomials. A monomial is reducible if it is not normal, and
we say that uv = 0 minimally if for every prefix v′ of v, the monomial uv′ is normal.
The set SM is a basis of A as a k-module. In particular, given two normal monomials
u and v we can write uv =

∑
w∈SM λww where |w| � |uv| for any w with λw 	= 0.

Observe that if A is a monomial algebra, that is, if the relations of A are given by
monomials, the normal monomials are those that do not contain as a subword any
monomial relation, and reducible monomials are zero in A.

We now define a Morse matching on B by induction. Recall that we denote a
generic basis element of the bar resolution by [a1| · · · |an]. Define M1 to be the collec-
tion of edges of the form [xi|w1|w2| · · · |wt] −→ [xiw1|w2| · · · |wt]. The critical vertices
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B(1) with respect to M1 are the variables [x1], . . . , [xn] in degree 1, and those words
[x1|w1| · · · |wt] of normal monomials such that x1w1 can be reduced. We proceed
inductively to define Mj for j > 1. Having defined Mj−1, let B(j−1) be the set of
critical vertices with respect to M1 ∪ · · · ∪Mj−1, and define Ej to be the set of edges
that connect vertices of B(j−1). Suppose that

[xi1 |w2| · · · |wj−1|u1|u2|wj+1| · · · |wt] → [xi1 |w2| · · · |wj−1|wj |wj+1| · · · |wt]

is an edge in Ej . In particular, wj = u1u2. We say e satisfies the matching condition if

B1. the monomial u1 is a prefix of wj ,

B2. the source of e is in B(j−1) and,

B3. for each prefix v1 of u1 and each v2 such that v1v2 = wj , the vertex

[xi1 |w2| · · · |wj−1|v1|v2|wj+1| · · · |wt]

is not in B(j−1).

We let Mj be the collection of edges in Ej that multiply monomials at the jth bar
and satisfy the matching condition. Then the set B(j) is given by the variables [xi] in
degree 1, the elements [xi1 |w] such that xi1w is a minimal monomial generating the
ideal of leading terms of I, and the elements of the form [xi|w2|w3| · · · |wt] such that
for each prefix u of wj the vertex [xi|w2| · · · |wj−1|u|wj+1| · · · |wt] is not in B(j−1)

and the term wjwj+1 is reducible. We set M =
⋃

j�1 Mj to be the desired Morse

matching, and let BM be the collection of critical vertices with respect to M .

Lemma 2.2. Assume that A is a weight graded monomial k-algebra. Let j ∈ N. The
elements of Mj consist of those edges [xi|u1| · · · |uj−1|uj | · · · ]→ [xi|u1| · · · |uj−1uj | · · · ]
such that xiu1 = u1u2 = · · · = uj−2uj−1 = 0 minimally and uj−1uj 	= 0. Moreover,
the collection M is a Morse matching.

Proof. This is a particular case of [15, Lemma 4.2].

We now describe the critical vertices BM . Let m1, . . . ,ml be minimal monomial
generators of the ideal of leading monomials of I, such that for each j ∈ {1, . . . , l} we
have mj = ujvjuj+1 where u1 is a variable. We call the term [u1|v1u2|v2u3| · · · |vlul+1]
fully attached if for all j ∈ {1, . . . , l − 1} and each prefix u of vj+1uj+2 the monomial
vjuj+1u is normal. We denote by Bj the set of fully attached terms of degree j � 2
and let B1 consist of the variables. We refer the reader to [15] for the proof of the
following lemma, valid for any weight graded k-algebra with a Gröbner basis, as in
the beginning of this section.

Lemma 2.3. The fully attached tuples are exactly the critical vertices, and the com-
plex CM is the Anick resolution of A. In case A is monomial, the critical vertices
are the variables [x1], . . . , [xn] along with those terms [xi|u1| · · · |ur] where if we set
xi = u0, we have that ujuj+1 = 0 minimally for j ∈ {0, . . . , r − 1}.

Let us briefly explain how one can go back and forth from an Anick chain γ to
a cycle in TorA. If γ is a 1-chain then it is a monomial relation x1 · · ·xt, and the
corresponding bar cycle (and critical vertex) is [x1|x2 · · ·xt]. Now suppose that γ
is an n-chain. Then there exist a unique (n− 1)-chain γ′ and a unique monomial
t such that γ = γ′t, and the bar term corresponding to γ is [x1|u1| · · · |ul|t] where
everything before t is the bar structure corresponding to γ′. In this way, for example,
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if γ is a 2-chain corresponding to an overlap of a relation x1 · · ·xt with another
relation xj · · ·xtxt+1 · · ·xs, then the bar structure of the corresponding critical vertex
is [x1|x2 · · ·xt|xt+1 · · ·xs]. To illustrate, in the case of J , for each n ∈ N, the bar
element corresponding to xn+1 is [x| · · · |x], where there are exactly n bars, and the
bar element corresponding to y2xn is [y|yx|x| · · · |x] where, again, we have n bars. In
the case of the algebra K, the Anick chains correspond to the bar elements

[x], [y], [z], [x|y2], [y|yz], [x|y2|z] and [x|y2|yz].

2.5. Homotopy transfer theorem and A∞-coalgebras

Recall that an A∞-coalgebra is a graded k-module V along with sequence of locally
finite maps (Δn : V → V ⊗n)n∈N, where for each n ∈ N we have |Δn| = n− 2, that
satisfy the following Stasheff identities

SI(n) :
∑

r+s+t=n

(−1)r+st(1r ⊗Δs ⊗ 1t)Δu = 0.

That such sequence of maps be locally finite means that for each element v ∈ V the
set {Δn(v) : n ∈ N0} contains finitely many nonzero terms. We write (V,Δ) for an
A∞-coalgebra, and we call it minimal whenever Δ1 vanishes. Observe that every
graded vector space, every complex, and every dga coalgebra is, in an obvious way,
an A∞-coalgebra. Remark our A∞-coalgebras are non-unital and positively graded.
We warn the reader that conventions for the signs appearing in the Stasheff identities
above vary in the literature. As explained in [21, Section 2], one can go from this

convention to that of J. Stasheff by multiplying Δn by the sign (−1)(
n

2).
We can associate to every A∞-coalgebra (V,Δ) a dga algebra (Ω∞V, b), its ∞-

cobar construction, as follows. The underlying algebra to Ω∞V is the free associative
algebra on the suspension s−1V . Define the family of maps

(bn : s
−1V −→ (s−1V )⊗n)n∈N

by conjugation with the isomorphisms s : s−1V → V and (s−1)⊗n : V ⊗n → (s−1V )⊗n.
This sequence gives a map s−1V → Ω∞V , and we then have a unique derivation
b : Ω∞V → Ω∞V that restricts to s−1V → Ω∞V on s−1V . A straightforward com-
putation shows that b2 = 0 is equivalent to the Stasheff identities, so we have a dga
algebra. Observe that since V is positively graded, Ω∞V is non-unital and non-
negatively graded. If V has a weight grading, as it happens for TorA whenever A is
a weight graded algebra, Ω∞V inherits a weight-grading from V .

The∞-cobar construction allows us to define the category of A∞-coalgebras, which
we denote by Cog∞, quite painlessly: its objects are the A∞-coalgebras and the hom-
sets are given by

homCog∞(C,C ′) = homAlg(Ω∞C,Ω∞C ′).

Plainly, Cog∞ is the full subcategory of Alg consisting of dga algebras that are
quasi-free, that is, those which are free as graded algebras if we forget about their dif-
ferential. Since in the category Alg we have defined the notion of homotopy between
maps and weak equivalences, the quasi-isomorphisms, these notions are available to
us in Cog∞ by creating them with the functor Ω∞; see [18]. Observe, moreover, that if
F : V � W is a map between A∞-coalgebras, it is determined uniquely by a sequence
of maps (fn : V → W⊗n)n∈N satisfying appropriate commutativity conditions with
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the coproducts of V and W . In view of this, we will identify such a map F with
the sequence f = (fn)n∈N, and write Ω∞(f) for F . Abusing notation a little, for a
second sequence (gn)n∈N, we write fg for the map corresponding to the composition
Ω∞(f)Ω∞(g).

Let C be a dga coalgebra, and assume that V is a complex of k-modules which is
a deformation retract of C, that is, there is a homotopy retract datum

V C
i

p
h , 1− ip = dh+ hd, pi = 1,

which we denote by (i, p, h). We assume that such datum satisfies the side conditions,
that is, all three maps h2, hi and ph are zero, in which case we call it a contraction.
The following result, which is a simplified form of Theorem 5 in [21], shows how to
transfer on V an A∞-coalgebra structure from the dga coalgebra structure of C and,
further, how to produce from the homotopy retract datum another homotopy datum
of A∞-coalgebras.

Theorem 2.4. Let (C,Δ′
2) be a dga coalgebra and consider a homotopy retract as

above. There exists an A∞-coalgebra structure on V and a homotopy retract datum

Ω∞V Ω∞C
j

q
k , 1− jq = bk + kb, qj = 1.

The A∞-coalgebra structure on V is given by Δ1 = dV and, for n ∈ N�2, by Δn =
p⊗nΔ′

ni, where for n ∈ N�3 the arrows Δ′
n : C → C⊗n are defined by

Δ′
n =

∑
s+t=n
s,t>0

(−1)s(t+1)(Δ′
sh⊗Δ′

th)Δ
′
2,

with the convention that Δ′
1h = 1.

Figure 1: A right comb

There is a non-inductive definition of the maps (Δn)n∈N that will be useful to have
in mind when we discuss A∞-coalgebra structures on TorA, which can also be found
in [21, Section 4]. Let T be a planar binary tree with n leaves, and let us assign to
it a sign ϑ(T ) as follows. For each vertex v of T , let r1 be the number of paths from
a leaf of T to the root that pass through the first (left) input of v, and let r2 be the
number of those that pass through the second (right). Set ϑT (v) = r1(r2 + 1) and
ϑ(T ) =

∑
v∈T ϑT (v). It will be important later on to observe that if T is the right

comb with n leaves then ϑ(T ) =
(
n+1
2

)
− 1. Let us write ΔT for the cooperation of

arity n obtained by decorating the leaves of T by p, the root of T by i, the inner
vertices by Δ′

2 and the inner edges by h; see Figure 1 in [21, Section 4]. We then have
the following result.
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Theorem 2.5. Let n ∈ N. Then Δn is given by the sum
∑

T (−1)ϑ(T )ΔT as T ranges
through all planar binary trees with n leaves.

3. The A∞-coalgebra structure on Tor

3.1. The homotopy retract

Let A be an algebra with a reduced Gröbner as in the construction of Jöllenbeck–
Welker. Using the contraction

TorA ⊗A B(A,A)
i

p
h , 1− ip = dh+ hd, pi = 1

obtained from Subsection 2.3 and from the Morse matching for B(A,A) described in
Subsection 2.4 we obtain, upon tensoring to the right with k, a contraction

TorA BA
i

p
h , 1− ip = dh+ hd, pi = 1,

from the dga coalgebra BA to its homology, TorA. This and the Homotopy Transfer
Theorem 2.4 provide us with a minimal A∞-coalgebra structure on TorA, and which
we will describe in detail by means of the combinatorics of Anick chains. It is worth-
while to note that one may obtain this retract directly, by applying the methods
of [15] to the bar construction BA.

We recall that by construction hi = 0, that is, h vanishes on TorA. Suppose now
that γ = [xi1 |u1| · · · |ur] is a bar term representing an Anick chain in TorA. We then
have that Δ′

2(γ) =
∑

γ(i) ⊗ γ(i) where each left term γ(i) is also a chain: γ(i) is the
unique i-chain obtained from γ by removing a right divisor. Since Δn is obtained by
projecting the map Δ′

n : BA → BA⊗n, defined recursively in Theorem 2.4, we obtain
the following.

Proposition 3.1. For n � 3 we have that Δ′
n = (−1)n(1⊗Δ′

n−1h)Δ
′
2 on TorA.

Proof. Let γ be a chain. Looking at the recursive definition of higher coproducts
given by 2.4, any term which contains Δ′

sh on the left for some s � 2 will act by zero
on Δ′

2(γ), since the all the terms to the left of the tensor appearing in this sum are
also chains, and we already know hi = 0.

3.2. Description of the homotopy

In this section, we consider only the case when A is monomial. From the last
proposition of the previous section, it follows, in particular, that Δ′

3 = −(1⊗Δ′
2h)Δ

′
2

on TorA, so the only tree that appears in Δ3 is the right comb. Given n ∈ N�3, we
would like to show this is the case for the higher coproduct

Δn : TorA −→ Tor⊗n
A

defined by p⊗nΔ′
ni. We will need an explicit description of the homotopy h. Because

it will be useful later on, we also give a description of the projection p: this is the
content of the following lemma. Let us say a bar term [u0| · · · |ur] is attached if for
i ∈ {1, . . . , r}, we have ui−1ui = 0.

Suppose that γ = [u0| · · · |ur] is attached but is not a chain. Then there is a largest
i1 such that ui = u′

iu
′′
i and such that η1 = [u0| · · · |u

′
i] is a chain. Remark that by this
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we mean the bar structure is also the correct one; for example, [t|t2] and [t2|t] both
have underlying monomial the chain t3 in k[t]/(t3) but only the first is a 1-chain. It
may happen that i = 0, in which case u′

0 is simply the first variable in u0, as it does
for [t2|t]. We define

γ1 = (−1)i1+1[η1|u′′
i1
|ui1+1| · · · |ur], Γ1 = [η1|u′′

i1
ui1+1| · · · |ur].

If Γ1 is a chain or zero, stop. Else, there is some largest i2 > i1 such that, keeping in
with the notation above, η2 = [u0| · · · |u

′
i1
| · · · |u′′

i2
] is a chain. In which case, set

γ2 = (−1)i2+1[η2|u′′
i2
|ui2+1| · · · |ur], Γ2 = [η2|u′′

i2
ui2+1| · · · |ur].

Continuing in this way, we obtain terms γ = Γ0, . . . ,Γn and γ1, . . . , γn, where Γn is
either zero or a chain. For convenience, we will agree that γm = 0 for m > n, and note
that the sign accompanying γa is (−1)ia+1, where ia is simply the length of the largest
chain ηa contained in γa, starting from the left. If γ is a bar term in degree r + 1
whose underlying monomial is an r-chain, we will write Γ for the r-chain obtained
from γ at the end of the algorithm above, which we observe has no signs. Observe
that by construction, the sequence (ia)a�1 is strictly increasing, until it stabilizes.

Lemma 3.2. With the notation above, we have that

h(γ) =

n∑
i=1

γi, p(γ) = Γ.

Proof. Suppose that γ = [u0| · · · |ur] is attached. From the description of the Morse
graph in Lemma 2.2, we see that there is a unique inverted edge from γ to the element
γ1 in the previous paragraph. The face maps of γ1 are all zero or γ except possibly
for Γ1, up to sign. If Γ1 is critical, there is no inverted edge leaving Γ1, and so h
is what we claim. Else, we can repeat the argument above. The claim for p follows,
since there is a unique path from γ to Γ in the Morse graph, which is obtained by
following the terms γ1,Γ1, γ2,Γ2, . . . that we described above. Finally, the signs can
be read off from the definition of the Morse graph and the differential of the bar
construction. Indeed, the signs in the bar construction are such that when a bar is
removed and two terms are multiplied, there is a sign (−1)N where N is the number
of terms preceding the first factor that was multiplied, and the Morse graph inverts
and negates every sign, effectively changing every −1 to a 1, and vice-versa. A close
look shows that these are precisely the signs we have incorporated in our description
of the elements γ1, γ2, . . . and Γ1,Γ2, . . ., which completes the proof the Lemma.

It is useful to observe that uniqueness follows precisely because our algebra is
monomial, and hence one can either “undo” a differential in the Morse graph in a
unique way, or fail to do so. If we had more complex rewriting rules, it would be a
priori possible to obtain a term in multiple ways from reduced monomials, causing
our paths to branch and making the description of the action of h and p above much
more complicated. In the language of the Morse graph of M , we have the following
corollary.

Corollary 3.3. Let c be a vertex in GM of degree t that is not critical. There is a
unique element c′ of degree t+ 1 and a unique element c′′ of degree t, which is either
zero or critical, a unique path in GM from c to c′ and, if c′′ is nonzero, a unique edge
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from c′ to c′′. Thus, the coefficients in the homotopy of Theorem 2.1 are all 1 or −1
and p(c) coincides with c′′.

Proof. The proof of Lemma 3.2 shows there is a unique path to follow when computing
the action of the homotopy h on a non-critical vertex, and is given by the successive
terms γ1, γ2, . . . and Γ1,Γ2, . . . that we wrote down explicitly before its proof. The
conclusion that the coefficients in the homotopy are all −1 or 1 follow also from the
careful description of the terms above, since we gave the signs explicitly. The unique
element c′′ corresponds to Γ, while the unique element c′ corresponds to the last
non-zero term in the sequence (γ1, γ2, . . .).

To illustrate, let us consider a third algebra L = T (t)/(tN ) where N > 2. We then
have

h[

m︷ ︸︸ ︷
tN−1|t] = −

m∑
i=0

[

i︷ ︸︸ ︷
t|tN−1 |t|tN−2|

m−i−1︷ ︸︸ ︷
t|tN−1 |t],

where the brackets mean the terms are repeated the indicated amount of times. Note
that, since in every summand the homotopy extracted a chain of odd homological
degree, all the signs are the same. Using the results of Section 4 the reader may
recover the A∞-coalgebra structure on TorA for p-Koszul monomial algebras, dual to
the A∞-algebra structure on ExtA obtained in [13].

3.3. The exchange rule and the right comb

We now prove the desired result that when computing the higher coproducts in
TorA obtained from the homotopy retraction datum of Section 2.4, the only con-
tributing tree is the right comb. The following exchange rule for h and Δ′

2 will easily
imply this result.

Lemma 3.4. If γ is attached then Δ′
2(h(γ)) = (h⊗ 1)Δ′

2(γ) modulo TorA ⊗BA.

Proof. This is a direct computation, albeit a bit cumbersome. We will use the nota-
tion of Section 3.2. Let γ = [u0| · · · |ur] and write Δ′

2(γ) =
∑r

i=1 γ(i) ⊗ γ(i). From the
definitions it follows that if j ∈ {1, . . . , r} then:

1. (γ(j))
a = 0 if j < ia.

2. (γa)(j) is a chain for j � ia + 1.

3. (γa)(j) = (γ(j−1))
a for j � ia + 1.

4. (γa)(j) = γ(j−1) for j > ia + 1.

That (1) holds follows, for if the chain we want to extract from γ appears after the
jth bar, then γ(j) will be too short to contain it. It is clear that (2) holds, since γa has
been “straightened” to chain structure up to the iath bar, and we already observed
any initial bar term of a chain is again a chain. Note that (3) says that we can either
straighten γ to a chain up to step a and then truncate far from where this chain ends,
or we can truncate γ at worst at the boundary and then straighten it to a chain: the
result is the same. Finally, (4) says that the tail of γ is not affected if cut beyond the
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straightening bar. This means that we can write

Δ′
2(h(γ)) =

∑
a�1

∑
j�r+1

(γa)(j) ⊗ (γa)(j)

=
∑
a�1

∑
j�ia+1

(γa)(j) ⊗ (γa)(j) +
∑
a�1

∑
ia<j−1�r

(γa)(j) ⊗ (γa)(j)

=
∑
a�1

∑
j�ia+1

(γa)(j) ⊗ (γa)(j) +
∑
a�1

∑
ia<j−1�r

(γ(j−1))
a ⊗ γ(j−1)

=
∑
a�1

∑
j�ia+1

(γa)(j) ⊗ (γa)(j) +
∑
a�1

∑
ia�j�r

(γ(j))
a ⊗ γ(j),

where the third equality uses (iii) and (iv), and from (ii) it follows the first summand
is in TorA ⊗BA. Finally, from (i) it follows that the second sum is, in fact, equal to
(h⊗ 1)(Δ′

2(γ)), which completes the proof of the lemma.

Corollary 3.5. We have (h⊗ 1)Δ′
2h = 0 on attached bar terms.

Proof. This now follows from our exchange rule and the fact h has square zero and
vanishes on TorA.

Theorem 3.6. Let n ∈ N�3 and let γ ∈ TorA be an element represented by an Anick
chain. The only tree that contributes to Δ′

n(γ), and hence to Δn(γ), is the right comb.

Proof. The fact that h vanishes on TorA means that, at the root, the left edge must
be a leaf. Knowing this, the exchange rule means that if T is planar and contains any
subtree of the form

Δ

h

h

which corresponds to (h⊗ 1)(Δ′
2h), the operator ΔT will vanish identically. This

means that the only tree that may possibly give a nonzero contribution to Δn is the
right comb.

Let us also record here the following easy proposition, which means, plainly, that
the computation of the A∞-structure of TorA depends only on the local information
on a given chain. Thus, there seems to be no upshot from looking at induced maps
when relations are added.

Proposition 3.7. Suppose A is a monomial algebra and B is obtained by adjoining
to A a non-redundant monomial relation. Let ϕ : A → B be the quotient map. Then
the map Torϕ : TorA → TorB identifies TorA as a sub-A∞-coalgebra of TorB in such
a way that the coproducts of TorA are the restriction of those of TorB through Torϕ.

Proof. Since B is obtained from A by adjoining a non-redundant monomial relation,
the collection of Anick chains for B can be computed from those of A by adding
a (possibly infinite) new collection of chains, and the map Torϕ is injective since it
is induced by the inclusion map on Anick chains. To see that this a strict map of
A∞-coalgebras, meaning that it induces on TorA the correct higher coproducts, we
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note that we can arrange it so that the contraction on the bar complex of B onto
TorA restricts to a contraction for the bar complex of A: according to the work of
Jollenbeck–Welker, this datum can be produced exclusively from the Anick chains
from B, and their procedure does not alter the underlying monomial of a chain
in the monomial case, and hence restricts to the bar complex of A. Finally, the
higher coproducts are built from the coproduct of the bar construction of B and
the contraction, and for each Anick chain, this computation depends only on the
underlying chain, and not on the inclusion of A into B.

4. Description of the minimal model

We now aim to give a more refined description of the terms appearing in a higher
coproduct of a fixed chain γ, as stated in the following theorem. It will follow imme-
diately from Theorem 4.6 and its proof. Unless stated otherwise, we are working
exclusively with monomial algebras in what follows.

Theorem 4.1. Let γ be a chain and n ∈ N�2. The terms that appear in Δn(γ) are
exactly those of the form γ1 ⊗ · · · ⊗ γn with (γ1, . . . , γn) a decomposition of γ. More-
over, if γi is of length ri for each i ∈ {1, . . . , n}, the coefficient of γ1 ⊗ · · · γn is (−1)N

where

N =

(
n+ 1

2

)
+ r1 +

n−1∑
i=1

(n− i)(ri + 1).

4.1. Combinatorics of chains and tails

Suppose that γ = xi1 · · ·xis is an Anick chain, with associated interlaced sequences
{(aj), (bj)}. We will say a variable xis is an overlapping variable if s ∈ [aj+1, bj), and
we will say that a bar is inserted at xis if it is inserted immediately after it. A bar
term obtained from γ is regular if it is obtained by inserting bars at non-overlapping
variables, and it is coregular if it is obtained by inserting bars at overlapping variables.
It may happen that aj+1 = bj , in which case we agree that xiaj+1

is both overlapping

and non-overlapping. This always happens, for example, if A is quadratic. The follow-
ing figure illustrates our definitions for the 4-chain [t|t3|t|t3|t] in k〈t|t4〉, where white
circles represent overlapping variables, black ones represent non-overlapping variables,
the cross represents the only variable that is both overlapping and non-overlapping,
and bars mark the obstructions that constitute the chain.

• • • •◦ ◦ ◦ ◦×

Lemma 4.2. Let γ be a monomial which is an r-chain. Any (co)regular bar term
obtained by inserting

1. exactly r bars into γ is either attached and nonzero or is zero,

2. less than r bars into γ is zero, and

3. more than r bars into γ is not attached and nonzero or is zero.

Proof. We prove this by induction on r. If r = 1, then γ is simply a monomial relation.
Certainly inserting no bars gives a bar term of degree one which is zero and, since
there are no overlapping variables to keep track of, inserting any bar gives a regular
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bar term, which is certainly nonzero, and inserting one more bar gives a non-attached
term. Assume then r � 1 and that our claim holds for r-chains, and that we have an
(r + 1)-chain. We consider the three cases above separately:

1. We have inserted r + 1 bars regularly: if the bar term is zero, we are done. Else
the bar term obtained in nonzero, and there must be at least one bar inserted
in a non-overlapping variable of the last chain. Moreover, there must be exactly
one, else, by removing the tail of the r + 1 chain, we would obtain a regular
bar term from an r-chain which is nonzero but has r − 1 bars, which cannot
happen. Having settled this, we now remove the tail and proceed by induction.

2. We have inserted less than r + 1 bars regularly: if no bar has been inserted
on non-overlapping variables of the last monomial relation, we are done. Else,
there is one variable inserted there. Removing the tail now gives a regular bar
term obtained from an r-chain were less than r bars have been inserted, and
induction does the rest.

3. We have inserted more than r + 1 bars regularly: if two or more bars have been
inserted in non-overlapping variables of the last monomial relation, we get a
zero term, since removing the tail gives a bar term where at most r − 1 bars
have been inserted regularly into an r-chain. If there is exactly one bar in the
tail, we may remove it and proceed inductively.

Analogous considerations apply to coregular terms.

We now note that the homotopy h, which introduces and shifts bars in bar terms,
produces bar terms whose subchains, starting from the left, have bars introduced
regularly.

Lemma 4.3. If γ is an element of Torr+1
A corresponding to an r-chain, it has its r

bars inserted regularly. In particular, if γ is an attached term, and if γa is a nonzero
summand in h(γ), following the notation of Lemma 3.2, then for j � ia, the j-chain
(γa)(j+1) has its j bars inserted regularly.

Proof. The insertion of bars follows Anick’s interlaced sequence associated to a chain
in such a way that we insert bars at variables xi1 , xib1

, . . . , xibr−1
which are not

overlapping, since the overlapping variables are precisely at the half-open intervals
[aj , bj−1) for j ∈ {2, . . . , r − 1}.

Let us now introduce the definitions that will be central to our proof of Theo-
rems 4.1 and its equivalent formulation, Theorem 4.6, which we already stated the
Introduction. Let γ be an r-chain and j ∈ N. We will say a bar term Γ is a j-tail of
γ if there is a term of the form γ1 ⊗ · · · ⊗ γj ⊗ Γ in Δ′

j+1(γ) appearing with nonzero
coefficient, where the first j tensors are chains, and, moreover, Γ is a concatenation
of at least two chains γj+1, . . . , γn, in this order. Moreover, if for i ∈ [n] we have that
γi is an ri chain, we require that r1 + · · ·+ rn = r − 1. The length of Γ is n− j. Let
us call the n-tuple (γ1, . . . , γn) a decomposition of γ. Remark that there is the notion
of “tail” of a chain given in [1], but that this is not a special case of our definition,
and that Γ may be a tail for several choices of the tuple (γj+1, . . . , γn).

We continue by observing that j-tails are obtained by cutting a chain in the form
of a bar term either at a bar or at some place between bars.

Lemma 4.4. Fix j ∈ N and suppose that γ = [u0|u1| · · · |ur] is an r-chain, and that Γ
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is a j-tail of γ, with first chain γj+1. Then there exists i ∈ {1, . . . , r} and a decompo-
sition ui = u′

iu
′′
i such that u′′

i 	= 1, u′′
i ui+1 = 0 minimally and Γ = [u′′

i | · · · |ur]. More-
over:

1. This decomposition is nontrivial whenever j > 1.

2. The tail Γ contains exactly rj+1 + · · ·+ rn bars.

3. There is a unique (j − 1)-tail Γ′ and a unique term in Δ′
2h(Γ

′) of the form
γj ⊗ Γ that gives rise to Γ, and it appears with a sign as a coefficient.

Proof. The case that j = 1 and n is arbitrary is obvious, so let us assume j > 1, our
claim true for (j − 1)-tails, and analyse the claim for j.

Observe that by Theorem 3.6, if Γ is a j-tail of γ, it must come from a (j − 1)-tail
Γ′ of γ by applying the operator Δ′

2h on the last factor. We will prove that Γ has
the desired form and, moreover, that there is a unique way to obtain Γ from Γ′, so
that if the term corresponding to Γ′ appears with coefficient 1 or −1, then so does
the term corresponding to Γ. The description of h from Lemma 3.2 and the inductive
hypothesis applied to Γ′ means that Γ′ = [u′′

i |ui+1| · · · |ur] with u′′
i ui+1 = 0 minimally,

or Γ′ has no bars. In the latter case the chain γj+2 is a variable and then Γ is obtained
by removing this variable: we have that h(Γ′) = [γj+1 | · · · ] and we obtain Γ uniquely
from Γ′.

Let us then consider the case Γ′ has bars, so that it contains r − 1− (r1 + · · ·+ rj)
bars by induction, and its first terms overlap minimally. We can certainly find some
k > i and a decomposition uk = u′

ku
′′
k in such a way that the underlying monomial

of the bar term [u′′
i |ui+1| · · · |uk−1|u

′
k] is precisely γj . Observe that the bar structure

of γj is coregular, for it interlaces with that of γ. By Lemma 4.2 there are exactly rj
bars in such term, so that k = i+ rj . We now analyse two cases.

Case 1: u′′
i is a variable. In such case, it follows that [u′′

i |ui+1| · · · |u
′
i+rj

] is a honest

chain belonging to TorA. We claim that the decomposition uk = u′
ku

′′
k is non-trivial,

that u′′
kuk+1 = 0 minimally and that h(Γ′) is, up to signs, equal to the bar term

[u′′
i |ui+1| · · · |u

′
i+rj

|u′′
k |uk+1| · · · |ur]

which means, of course, that the description of Γ is the correct one. Indeed, note
that if the decomposition were trivial, we would have a sequence of chains γj+1 · · · γn
underlying a (j + 1)-tail with less than rj+1 + · · ·+ rn bars. As before, the starting
chain γj+1 appears with bars inserted coregularly, so we may remove it along with
exactly rj+1 bars. Repeating this argument, we end up with a coregular bar term
underlying an rn-chain with less than rn bars, which contradicts Lemma 4.2. To see
that u′′

kuk+1 = 0, note that otherwise we again would have a bar term [u′′
kuk+1| · · · |ur]

whose underlying monomial has rj+1 + · · ·+ rn − 1 bars. The fact that the over-
lap u′′

kuk+1 is minimal follows from the fact that overlap ukuk+1 is minimal. The
description of h(Γ′) shows that Γ is obtained uniquely from Γ′, possibly with a sign.

Case 2: u′′
i is not a variable. Arguing as before, we see that the overlap uk = u′

ku
′′
k

is not trivial, and that u′′
kuk+1 = 0 minimally. We can write u′′

i = xv were x is a
variable and v a monomial, and we have that h(Γ′) has first term [x|v|ui+1| · · · |ur].
Set j∗ to be the last k � j for which γk is a 0-chain. Our bar counting argument
then shows that the concatenation γj · · · γj∗ must be contained in the monomial u′′

i ,
and then using our description of h it is clear we may extract the term γj ⊗ · · · ⊗ γj∗
uniquely by iteration of Δ2h. Let us assume then that γj is not a 0-chain. In such case,
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vui+1 	= 0, since γj begins with a minimal monomial relation which, by minimality,
must, in fact, be xvui+1. Since u

′′
i ui+1 is a minimal monomial relation of A, it follows

that [x|vui+1| · · · |u
′
k] begins with the initial 1-chain from γj , so that if γj is a 1-chain,

we are done: this term is of the form [x|vu′
k]. Else, we can find the initial 2-chain

of γ in the form [x|vui+1|u
′
i+2]: since ui+1ui+2 is a minimal monomial relation of A,

the second monomial relation of γj must be contained in a monomial of the form
vui+1u

′
i+1 where u′

i+1 is a proper initial divisor of ui+1. Continuing this way, we see
the Anick structure of γj is interlaced inside that of γ, and that the last term in h(Γ′)
is [x|vui+1| · · · |u

′
k|u

′′
k |uk+1| · · · |ur], proving the description of Γ is the correct one.

We also observe that the summands of h(Γ′) different from this one cannot create
a summand corresponding to Γ so that again Γ is obtained uniquely from Γ′. Indeed,
the only way to produce a bar term in the left factor with the same underlying
monomial as γj , we would have to use Δ′

2 to break such a term of h(Γ′) precisely
at the bar dividing u′

k and u′′
k , presently only on the last term. If we do it at a bar

before or after this one, the resulting term has either its left factor or its right factor
non-attached, since it contains [· · · |u′

k|u
′′
k | · · · ]. This same argument shows that the

previous summands of Δ′
2h(Γ

′) cannot contribute to Δj+1: the only place where we
may break them is at the last opened bar, say [· · · |u′

t|u
′′
t | · · · ], but the fact we can

continue the algorithm of Section 3.2 means that u′′
t has nonzero product with ut+1,

and hence this term does not contribute to Δj+1.
The final claim regarding the number of bars in Γ is immediate from the above.

The following proposition is the central result about tails and chains we were after.

Proposition 4.5. Let γ be a chain, n ∈ N�2 and let (γ1, . . . , γn) be a decomposition
of γ. For each j ∈ [n− 1] there is a unique j-tail Γ of γ with underlying monomial
γj+1 · · · γn and a unique term γ1 ⊗ · · · ⊗ γj ⊗ Γ in Δ′

j+1(γ), and it appears with coef-
ficient 1 or −1.

Proof. Let (γ1, . . . , γn) be a decomposition of γ and let Γ be a j-tail as in the state-
ment of the Theorem. The claim is obvious for j = 1. Moreover, Lemma 4.4 shows that
once we know that a (j − 1)-tail Γ′ corresponding to this decomposition of appears in
Δ′

j(γ), there is a unique summand in Δ′
2h(Γ

′), with coefficient 1 or −1, that produces
the term corresponding to Γ, which is what we wanted.

Remark that the operators (Δ′
j)j�2 produce other terms than the ones described

in the last proposition. However, the proof of Lemma 4.4 shows these terms have zero
projection to tensor powers of TorA, since they contain factors that are not attached.

4.2. Main theorem

We now recall the promised description of the minimal model of a monomial
algebra A. It follows immediately from Proposition 4.5 and Lemma 3.2, which in
particular, describes the signs appearing in the homotopy h.

Theorem 4.6. For each monomial algebra A there is a minimal model B → A where
B = Ω∞TorA, and for a chain γ ∈ TorA the differential d acts by

dγ = −
∑
n�2

(−1)(
n+1

2 )+|γ1|γ1 · · · γn,

where the sum ranges through all possible decompositions of γ.
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Proof. We need only address the claim about signs and the differential d. We already
know that whenever Δ2h extracts an r-chain, it produces a sign (−1)r+1. More-
over, whenever h goes through an r-chain γ it produces a sign (−1)r+1. Thus when
creating the term γ1 ⊗ · · · ⊗ γn by extracting γn−1, we have a sign (−1)L where

L =
∑n−1

i=1 (ri + 1). Inductively accounting for the signs created by Δ3, . . . ,Δn−1, for
the missing sign r1 + 1 that is not created by Δ2 and for the sign given by 2.5, we
obtain a sign congruent to(

n+ 1

2

)
+ r1 +

n−1∑
i=1

(n− i)(ri + 1) (mod 2),

which is the integer N in Theorem 4.1. To see the claim about the minimal model,
we observe that (s−1)⊗n(γ1 ⊗ · · · ⊗ γn) = (−1)Ms−1γ1 ⊗ · · · ⊗ s−1γn where M is the

integer
∑n−1

i=1 (n− i)(ri + 1), giving the final result.

The canonical identification of ExtA := ExtA(k, k) as Tor∨A gives us a result dual
to Theorem 4.1 about the A∞-algebra structure on ExtA. Remark that it is quite
crucial to have done all the work with A∞-coalgebras and then dualizing to A∞-
algebras, and not otherwise, since not every A∞-algebra is dualizable; see [3, �2.2]. It
is important, however, to pay attention to the Koszul signs arising from the natural
maps Dn : Ext⊗n

A → (Tor⊗n
A )∨ for n ∈ N: if f1 ⊗ · · · ⊗ fn is an element in the domain,

and if we pick c1 ⊗ · · · ⊗ cn ∈ Tor⊗n
A , then

Dn(f1 ⊗ · · · ⊗ fn)(c1 ⊗ · · · ⊗ cn) = (−1)Nf1(c1)⊗ · · · ⊗ fn(cn),

where N =
∑n

i=2(|c1|+ · · · + |ci−1|)|fi|. Observe that if f : V →W is a map between
complexes, then f∨(ϕ) = (−1)|f ||ϕ|ϕf , which explains the introduction of signs in
the higher products of the graded dual ExtA of TorA. Concretely, for each n ∈ N�2,
define μn : Ext⊗n

A → ExtA by

μn(ϕ1 ⊗ · · · ⊗ ϕn) = (−1)n(|ϕ1|+···+|ϕn|)Dn(ϕ1 ⊗ · · · ⊗ ϕn)Δn.

Let us say an A∞-algebra structure on ExtA is canonical if it is A∞-quasi-isomorphic
to the dga algebra BA∨. We have the following result.

Theorem 4.7. There is a canonical A∞-algebra structure on ExtA given as follows.
If n ∈ N�2 and if γ∨

1 , . . . , γ
∨
n are chains in ExtA of lengths r1, . . . , rn, respectively,

then μn(γ
∨
1 ⊗ · · · ⊗ γ∨

n ) = (−1)Mγ∨ if the concatenation γ = γ1 · · · γn is a chain of
length r = r1 + · · ·+ rn + 1 where M is the integer

(
n+1
2

)
− 1 +

∑
i<j ri(rj + 1) +

r1 + r. Otherwise, this higher product is zero.

Let us make the model explicit for the monomial algebra K, we will address the
algebra J later (but note that its associated monomial algebra has the same Anick
chains as J). The dg model for K is a free algebra T (x, y, z, α, β,Γ,Λ) where the first
three generators are in homological degree 0, the next two in homological degree 1
and the last two in homological degree 2. The differentials are as follows:

dα = xy2, dβ = y2x, dΓ = xβ − αz, dΛ = xyβ − αyz.

These can be read off the (unique) 3-decompositions of the relations into a concate-
nation of variables (0-chains), the 2-decompositions of xy2z into x · y2z and xy2 · z,
and the 3-decompositions of xy3z into x · y · y2z and xy2 · y · z.
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4.3. The extension to monomial quiver algebras

We now observe that the results of these notes extend without any non-trivial
modification to the more general class of monomial quiver algebras.

Fix a quiver Q = (Q0, Q1, s, t) and a set R of paths in Q of length at least two,
none of which is a divisor of another. We call A = kQ/(R) a monomial quiver algebra.
Let us write k for the semi-simple k-algebra kQ0, so that there is an augmentation
A → k. We set TorA = TorA(k, k), and write BA for the bar construction of A, where
unadorned ⊗ are now taken over k. Thus, a generic basis element of BA in degree
n ∈ N is of the form [a1| · · · |an] where t(ai) = s(ai+1) for each i ∈ {1, . . . , n− 1}. Since
k is semi-simple over k, we can consider this alternative bar construction instead.

The methods of Subsection 2.3 go through to produce a homotopy retract datum
from BA to TorA, and select a basis of TorA of critical vertices given by chains:
Tor1A has basis {[a] : a ∈ Q1}, and for n ∈ N a basis of Torn+1

A is given by bar
terms [u0| · · · |un] where t(ui) = s(ui+1) and uiui+1 = 0 minimally for each i ∈ {0, . . . ,
n− 1}. The description of the action of the homotopy on fully attached terms is
unchanged, as is the exchange rule.

The notion of a decomposition of a chain carries through to this setting, as well as
the technical work of Section 3. As an end result we obtain the following description
of a minimal model for monomial quiver algebras: there is no change on the Morse
matching, the action of the homotopy and the exchange rule, or any other detail: the
fact that we can do things relative to k makes any pathology that can arise in kQ
due to non-concatenable arrows disappear, since elements of the bar construction just
look like those in the usual one over k, but with the extra condition of concatenability.
This last condition ensures that spurious cycles, say of the form [x|y], arising from
zero multiplication due x and y not being concatenable, disappear, so everything
works like in the case Q is a bouquet. We refer the reader to [5, Lemma 2.1] where
it is shown the relative double sided bar construction is a projective resolution of
A = kQ/(R) as an A-bimodule (note the hypothesis that A be finite dimensional is
not really needed there).

Let us remark that we also have, implicitly, obtained comparison maps between
the bar resolution B(A,A) of k and the Green–Happel–Zacharia resolution TorA ⊗τA
of k that are part of a homotopy retract datum; see [11] for details. Naturally, we
have a dual result for the Yoneda algebra ExtA(k, k) of A, which we also record.

Theorem 4.8. For each quiver monomial algebra A there is a minimal model B → A
where B = Ω∞TorA, and for a chain γ ∈ TorA the differential d acts by

dγ = −
∑
n�2

(−1)(
n+1

2 )+|γ1|γ1 · · · γn,

where the sum ranges through all possible decompositions of γ.

Theorem 4.9. There is a canonicalA∞-algebra structure on ExtA given as follows. If
n ∈ N�2 and if γ∨

1 , . . . , γ
∨
n are chains in ExtA of respective lengths (r1, . . . , rn), then

μn(γ
∨
1 ⊗ · · · ⊗ γ∨

n ) = (−1)Mγ∨

if the concatenation γ = γ1 · · · γn is a chain of length r = r1 + · · ·+ rn + 1 where M
is the integer

(
n+1
2

)
− 1 +

∑
i<j ri(rj + 1) + r1 + r. Otherwise, this higher product is

zero.
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Let us remark that the theorem above is a common generalisation of the results
in [12] and in [13], the latter in the case of monomial algebras. In the first the
authors describe a multiplicative basis of ExtA for A a monomial quiver algebra
given in terms of Anick chains, and show if γ1 and γ2 are chains, then γ1 
 γ2 is zero
unless the concatenation γ1γ2 is a chain, in which case γ1 
 γ2 = γ1γ2. In the second,
the authors describe the higher products in ExtA for monomial algebras that are p-
Koszul, and show that the chains involved in a product μp(γ1 ⊗ · · · ⊗ γp) are all of odd
homological degree. A calculation shows that the only term that contributes to a sign
in the integer M of Theorem 4.7 is the binomial coefficient

(
p+1
2

)
. Switching to the

sign convention for the Stasheff identities used in [13] removes this sign, and then our
result coincides with their result exactly: the higher product of γ1 ⊗ · · · ⊗ γp ∈ Ext⊗n

A

is zero unless the chains γ1, . . . , γp concatenate, in this order, to a chain γ of the
correct homological degree, in which case μp(γ1 ⊗ · · · ⊗ γp) = γ.

5. Some applications

5.1. Computation of invariants and operations

We now use our description of the minimal model of a monomial algebra to obtain
a model of its Hochschild cochain complex; we refer the reader to [8, 2.1] for the
definition of this cohomology theory and a panorama of its relation to deformation
theory, higher structures, and homotopy theory of algebras. If f : B → B′ is a map
of dga algebras, a map ∂ : B → B′ is an f -derivation if ∂μ = μ(f ⊗ ∂ + ∂ ⊗ f), and
we write Derf (B,B′) for the space of such f -derivations. When B = B′ and f is
the identity of B, we write Der(B) for such space. For convenience, we will denote
Ω∞TorA by B in what follows. We write HH∗(A) for the Hochschild cohomology of
an algebra A with coefficients in itself.

Having obtained a minimal model α : B → A for A, we can produce a cochain
complex to compute the Hochschild cohomology of A as follows. There is a map
τ : TorA → A of degree −1 which extends uniquely to the map of algebras α, such
that τ [x] = x for each variable of x ∈ A. This is a twisting cochain in the sense of [22]:
it satisfies the Maurer–Cartan equation

∂τ +
∑
n�1

(−1)(
n

2)τ [n] = 0,

where τ [n] : C → A is defined by the composition μ(n)τ⊗nΔn. Indeed, ∂τ is zero since
A has trivial differential, and for an Anick chain γ, τ [n](γ) is zero for trivial reasons
unless γ is a 1-chain of length n, in which case τ [n](γ) is simply the image of γ in A,
a relation, and is thus zero. Note the Maurer–Cartan equation is equivalent to the
fact αd vanishes, where d is the map of Theorem 4.6.

From this we obtain the twisted hom-complex associated to τ , which we denote
by homτ (TorA, A). Its underlying graded vector space is hom(TorA, A), the space of
graded k-linear maps TorA → A, and its differential is obtained as follows. Let us write
DA for the space of α-derivations Derα(B,A) and TA for the twisted chain complex
homτ (TorA, A). Observe that if f : Tor0A → A is an element of T 0

A , which amounts
to an element a ∈ A, we have a map df : Tor1A → A given by df [x] = [a, x], which
extends uniquely to a derivation in DA, and gives us a map jA : A → DA. Moreover,
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if F ∈ DA is a derivation, the fact that αd = 0 means that d∗(F ) = (−1)|F |−1Fd is
an α-derivation, and DA is then a cochain complex with differential d∗. We form the
cone of jA which we denote by A⊕DA[−1] and now record the following proposition
and refer the reader to [3, �2.3] for details.

Proposition 5.1. There is an isomorphism A⊕DA[−1] → TA of graded vector
spaces that sends a derivation in the domain to the suspension of its restriction to
TorA and identifies A with hom(Tor0A, A). The differential of TA is induced from this
isomorphism, so that if f : TorA → A is a linear map of nonzero degree, df is the
suspension of the restriction of d∗(F ) to TorA, where F is the unique derivation in
DA extending f . If f : Tor0A → A is linear, then df : Tor1A → A is the map given by
x �−→ [f [], x].

The usual Hochschild complex is the twisted complex homπ(BA,A) where
π : BA → A is the projection onto A from the bar construction of A, with twisted dif-
ferential ∂∗

BA + [π,−]. The map A⊕Der(B,A) → A⊕Der(ΩBA,A) induced by the
homotopy equivalence B → ΩBA from Theorem 2.4, induces, in turn, a morphism
homτ (TorA, A) → homπ(BA,A). Since Ω∞(q) is a homotopy equivalence, this map
is a quasi-isomorphism, so the cohomology of TA is precisely HH∗(A).

The next proposition addresses the computation of cup products in HH∗(A) using
the complex TA which computes it. We note that, in fact, this complex is an A∞-
algebra, and that its multiplication induces the cup product in Hochschild cohomol-
ogy. We refer the reader to [18, Chapter 8, �1] for details.

Proposition 5.2. For each n ∈ N�2, define a higher product μn : T
⊗n
A → TA so that

for linear maps f1, . . . , fn ∈ TA,

μn(f1 ⊗ · · · ⊗ fn)(γ) = (−1)Nμ
(n)
A (f1 ⊗ · · · ⊗ fn)Δn(γ),

where we set N = n(|f1|+ · · ·+ |fn|+ 1). These maps define on TA an A∞-algebra
structure, and on cohomology the map μ2 induces the cup product of HH∗(A).

It is fair to observe that the construction of our minimal model requires the con-
struction of a homotopy retract datum from BA to TorA, and thus of comparison
morphisms, which are usually difficult to produce. However, the construction of this
retraction is streamlined by the machinery of algebraic discrete Morse theory and, in
fact, one may attempt to apply the methods outlined in [15] to any algebra admit-
ting a Gröbner basis to produce a model of it. Let us also remark that one need
not recourse to comparison maps to produce models of algebras. In the article [7],
for example, the authors produce models for monomial operads, in particular, for
monomial algebras, without doing this. As explained in that article, one may use
this model to understand not necessarily monomial algebras admitting a Gröbner
basis by the method of homological perturbation theory. Remark, too, that in [23]
the authors produce chain comparison maps between the Bardzell resolution of a
monomial quiver algebra and its usual bar resolution, and succeed in using them
to compute the Gerstenhaber bracket on Hochschild cohomology of some examples.
It may be the case that the maps of [23] are a part of a homotopy retract datum
provided by algebraic discrete Morse theory [15,24].
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5.2. Computation of Tamarkin–Tsygan calculi

We noted that the twisted complex TA is naturally isomorphic to the complex
A⊕DA[−1]. The morphism α : B → A induces a map α⊕ α∗ : B ⊕Der(B)[−1] →
A⊕DA[−1] by post-composition, which one can check is a quasi-isomorphism. The
domain of this map is, naturally, a dg Lie algebra, whose cohomology is HH∗(A), and
it is not hard to prove its Lie bracket induces the Gerstenhaber bracket on HH∗(A),
which gives a description of the Gerstenhaber bracket of A in terms of a model,
without having recourse to the bar construction of A or comparison morphisms. It
seems the first intrinsic definition of the Gerstenhaber bracket was given in [25] by
Stasheff, where it is shown, among other things, that the Lie bracket in the complex
Coder(BA) of coderivations of the bar construction of A induces the Gerstenhaber
bracket on HH∗(A).

It is important to note that the computation of HH∗(A) through this dg Lie algebra
is plausible, for example, if the model has finitely many generators; see [9] for two
examples. In the case of monomial quiver algebras, it may very well happen that,
although TorA is locally finitely dimensional, it is not finitely dimensional. There is,
however, hope that computing Hochschild cohomology, and thus the Gerstenhaber
bracket, using derivations of a minimal model is feasible. Let us mention, too, that
one can also compute cyclic homology and non-commutative de Rham homology of
A through a model following [10], using non-commutative differential forms. These
are treated in detail, for example, in [16, Chapter 1] and [19, Chapter 2,�6].

One can, in fact, compute the Tamarkin–Tsygan calculus [26] of A through a
model; we have pursued this in [27], where we use this minimal model to compute
the Tamarkin–Tsygan calculus of some monomial algebras.

5.3. An application to support variety theory for Gorenstein monomial

algebras

In joint work with Dotsenko and Gelinas [6], we used the higher structure on TorA
obtained here and the notion of higher centres of Briggs–Gelinas to deduce that a
monomial algebra satisfies the FG conditions of Snashall–Soldberg if and only if it is
Gorenstein. We also showed that in this case, if the algebra is of Gorenstein dimension
d, there is a periodicity operator on Hochschild cohomology whose cup product map
induces isomorphism in degrees above d, and that its Tate–Hochschild cohomology is
given by its periodic Hochschild cohomology: it is simply obtained by inverting this
operator in Hochschild cohomology.

5.4. The case of algebras with a Gröbner basis

Let us put ourselves in the situation where A is a finitely generated algebra with
generators V and ideal of relations (R). Pick a Gröbner basis with respect to a
monomial order on TV , and let us write A′ for the monomial algebra associated to A
and B′ = (TW, d′) for the minimal model of Theorem 4.6. Note that since W consists
of monomials of TV , this graded space is partially ordered by looking at the support
of a chain, and this order extends to monomials lexicographically.

We claim that there exists a model B = (TW, d) of A such that for any w ∈ W ,
the terms appearing in (d− d′)(w) are smaller than w, and such that the associated
graded morphism to B → A is the model B′ → A′ in the main theorem of these
notes. As before, let (C, d) denote the complex obtained from the Anick resolution
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of A that computes TorA. Note that Proposition 3.1 is still valid if we replace TorA
with C, since at no point we used A is monomial to prove it. We also observe that
the differential on B′ preserves the support of a chain.

Naturally, to prove our claim, it suffices we do it for each higher coproduct, includ-
ing the possibly non-zero differential Δ′

1 on C. The work of Anick shows this differ-
ential decreases the order of a chain, and the claim is obvious for Δ′

2, so we may only
worry about Δ′

n for n ∈ N�3. In this case, the recursive formula of Proposition 3.1
means it suffices we do this for the homotopy h. But this follows from the fact it
is built from the differential of BA, which, after rewriting possible non-zero prod-
ucts that appear, decreases the order of the underlying monomial of any bar term,
independent of them being a cycle or not. From this we obtain the desired result:

Theorem 5.3. Let A be a finitely generated algebra with a finite Gröbner basis, and
let A′ be its associated monomial algebra. There exists a (possibly non-minimal) model
(B, d) → A such that the associated graded morphism (B, d′) → A′ is the model of
Theorem 4.6. More precisely, we can arrange it so that d− d′ decreases the order of
the underlying monomial of a chain in B.

Proof. We have given some details in the discussion preceding the statement of the
theorem to obtain a proof following the strategy used to prove our main theorem.
Alternative, one can use a homological perturbation argument completely analogous
to [7, Theorem 4.1], where instead of starting with the (usually non-minimal) model
of the authors, one starts with the minimal model of our main theorem with the
internal grading given by the underlying monomial of an Anick chain.

We remark that this theorem is not too surprising, since it is the non-linear analog
of the work of Chouhy in his PhD thesis [4], with A. Solotar. The lack of an explicit
formula for the perturbed differential makes this theorem uninteresting for computa-
tions: in concrete examples, what we usually do is produce a perturbed differential
which squares to zero, since it is usually possible to come up with a candidate of
model and, through a filtration argument, show it is indeed acyclic. However, we
would like to state the following

Conjecture 5.4. Let A be as before, and let w be a chain in the generators of the
model (B, d) → A. Then the basis elements appearing in dw are obtained as follows:

C1. Compute all possible decompositions of the chain w.
C2. Starting from the left, rewrite the chain w once, and obtain all possible decom-

positions into chains of the terms that appear after this.
C3. Repeat this procedure until all terms that appear are in normal form.

As an example, let us consider the algebra J with two generators x and y subject
to the relations x2 = 0 and y2x = xy2 + xyx, and lexicographical order with respect
to y > x. The associated monomial algebra J ′ has relations x2 = 0 and y2x = 0, and
its model has generators x0, y0, x1, y1 . . . with differential

dyn+1 = y2xn +
∑

s+t=n
s�1

(−1)sysxt, dxn+1 =
∑

s+t=n

(−1)sxsxt.

Here, for n ∈ N, the generator yn has underlying ambiguity y2xn while xn has under-
lying ambiguity xn+1, which our differential preserves. The differential then codifies
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all possible 2-decompositions of y2xn into y2xs · xt for s+ t = n, and the unique
3-decomposition y · y · xn. Similarly, xn+2 only admits 2-decompositions of the form
xs+1 · xt+1 where s+ t = n. The model corresponding to the original algebra J incor-
porates lower order terms as follows:

dyn+1 =[y2, xn]−
∑

s+t=n

xsyxt−
∑

s+t=n
t�1

(xsyt− (−1)tytxs), dxn+1 =
∑

s+t=n

(−1)sxsxt.

It is routine to check this perturbed differential squares to zero, so that we have
obtained a model of J . To illustrate our conjecture, let us consider the term y2 = y2x2.
This can be decomposed into the chains y20x1 and y1x0 and no others. Rewriting, we
obtain two terms, xy2x and xyx2. The first can be decomposed into x0y1 only, and
the second into xyx1. We can only rewrite the first monomial, and we obtain x2y2

and x2yx which rewrite to zero. We can decompose these into x1y
2 and x1y0x0, and

no other terms. Summing up, the basis elements that appear are the following:

y2x1, x1y
2, y1x0, x0y1, x1yx0, x1yx0.

These are precisely those appearing in the formula for dy2 above.
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