
Homology, Homotopy and Applications, vol. 23(1), 2021, pp.387–401

THE OPERAD THAT CO-REPRESENTS ENRICHMENT

ANDREW W. MACPHERSON

(communicated by Emily Riehl)

Abstract
I show that the theories of enrichment in a monoidal infinity-

category defined by Hinich and by Gepner–Haugseng agree, and
that the identification is unique. Among other things, this makes
the Yoneda lemma available in the latter model.

1. Introduction

The notion of an enrichment of a 1-category C in a monoidal category (V,⊗) as a
bifunctor

CV(−,−) : Cop × C → V,

together with a composition law satisfying an associativity constraint, goes back
almost as far as category theory itself.1 Trying to transplant this notion into higher
category theory, one encounters the same difficulties controlling ‘coherent associativ-
ity’ as one does when defining algebra objects; that is, one-object enriched categories.

Recently, two approaches have appeared that provide a framework of V-enrich-
ments for any monoidal ∞-category (V,⊗): the categorical algebras in V of [4] and
the V-enriched precategories of [6]. While the former work provides fundamental facts
about the category of enriched categories — such as presentability in the case V is
presentable2 — the latter adds essential methods for enriched ∞-category theory in
practice, not least of which a V-Yoneda lemma. Naturally, we want to know that
these papers describe one and the same theory.

As in the better-known setting of coherently associative algebras, the trick to defin-
ing enrichments is in selecting a gadget that indexes operations — in other words,
a co-representing object. In this case, the relevant object is a planar ∞-operad. It
is claimed in [6] that its own corepresenting operad AssX is ‘the same’ as a sim-
plicial multicategory OX defined in [4], and therefore that the attendant theories
of V-enrichments agree. However, although the author suggests the premise for the
comparison, no complete justification of the claim appears. This note fills that gap.
We show that:
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� The Gepner–Haugseng theory of categorical algebras is naturally (in V) equiv-
alent to Hinich’s V-enriched precategories;

� that the equivalence is unique — the theory has no natural autoequivalences.

I now sketch the broad strokes of the argument. In what follows, Cat denotes the
∞-category of ∞-categories and Ass the associative operad.

Theorem 1.1. There is a unique equivalence, universal in (V,⊗), between the
Gepner–Haugseng category of categorical algebras in V and the Hinich category of
V-enriched precategories.

Proof. The corepresenting planar operads in the two cases are as follows (cf. §2):

� In [4, §4.2] we have the planar operad Lgen∆
op
X ; we will use the fact [4, Cor. 4.2.8]

that it is presented by the simplicial multicategory OX .

� Hinich’s operad Ass(X) is defined [6, §3.2]3 by specifying its spaces of simplices

σ : ∆/Assop , X : Cat FunAss(σ, Ass(X)) ∼= Fun(F(σ), X)

in terms of an explicit, combinatorially defined functor F : ∆/Ass → Cat on the
category of simplices of the associative operad.4

In light of the definition of Ass(X), it is enough to exhibit the ∞-functor associated
to O as a right adjoint to a left Kan extension of F :

F̂ : Cat/Ass ⇄ Cat :O.

This follows from proposition 4.1 and corollary 3.4.

Proposition 5.1 tells us that Aut(F) is trivial, whence the adjunction data is
unique.

1.1. Perspective

The uniqueness statement in theorem 1.1 echoes the main results of [2] concerning
(∞, n)-categories — in fact, it is even more satisfying, because it is not required to fix
the inclusion of a generating subcategory to ‘orient’ the theory. We have not proved
that the uniqueness statement applies also to the subcategory of complete objects —
that is, to enriched category theory proper — but it seems likely that it holds without
modification.

A more direct connection to (∞, n)-category theory exists in the form of results
that compare the n-fold Segal space model with iterated enriched categories: see [5,
§7] for the Gepner–Haugseng model and [6, §5] for Hinich. Using the result of this
paper, it also makes sense to compare these comparisons: in other words, we could

3Warning: section number citations to [6] are based on the linked preprint version and not the final
published version.
4Note that we consider here Fun(−,−) as a space, rather than as a category.
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ask if the diagram

AlgGH
cat (nCat)

ii

[5, Thm. 7.5] ))

oo Theorem 1.1 // Alg(Quiv−(nCat))
44

[6, Cor. 5.6.1]tt

Seg(nCat)

commutes. Here the authors’ approaches diverge significantly, and it would be inter-
esting to obtain an isomorphism between these two functors.

The uniqueness statement becomes false if we restrict to V symmetric monoidal:
there is a non-trivial symmetry given by formation of the opposite category. It seems
likely that this is the entire symmetry group; however, a proof of this statement does
not seem to be immediately accessible to the methods of this paper.

1.2. Bordism description of Ass(X)

The definition of OX makes use of simplicial category model in an essential way;
meanwhile, although F can be defined without reference to a set-theoretic model, its
definition uses laborious explicit combinatorics. Only Lgen∆

op
X has a truly universal

feel, though this too is unsatisfactory as it only gives the correct object when X is a
space. Is there a holistic approach to constructing the adjunction F a O?

Here is a sketch of how Ass(X) may be defined using bordism theory. First, we
recall that the associative operad Ass = ∆op has a realisation as a bordism category
in which:

� objects are finite disjoint unions of embedded intervals in the line Rx;

� morphisms from X0 to X1 are surfaces Σ (with corners) embedded in the plane
Rx × [0, 1]t, transverse at {0, 1}, with identifications ∂iΣ := Σ ∩ Rx × {i} ∼= Xi.
The surfaces must be simply-connected and π0(∂1Σ) → π0(Σ) bijective.

As usual, composition is defined by glueing surfaces at marked ends.

For a given such surface Σ, let us call horizontal the part of the boundary not
contained in Rx × {0, 1}. Then Ass(X) will be the operad whose objects (colours)
are 1-manifolds as above whose boundary points are labelled with objects of X,
and whose morphisms are embedded surfaces with horizontal boundary marked with
morphisms of X (oriented according to a fixed orientation of the ambient plane and
with suitable source and target). Its structural morphism Ass(X) → Ass obtained by
forgetting the labelling.

A look at the pictures in [6], or in §4 of this paper, will confirm the equivalence of
this description. I leave a fuller development of this approach for another day.

1.3. Outline of the paper

In §2 we go over general conventions and review the relevant material from [4, 6].
In §3 we make some reductions to the case of 1-categories; this section addresses the
matter of extensions of adjunctions, and model-categorical issues (especially those
concerning sCat/Ass). In §4 we carry out the main argument — this is conceptually
straightforward, but tedious in practice. Finally, §5 addresses the symmetries of F .



390 ANDREW W. MACPHERSON

Acknowledgments

I thank David Gepner, Rune Haugseng and Aaron Mazel-Gee for illuminating
conversations on the subject of enriched and higher categories; especially Rune, who
introduced me to the work [6] which is the subject of the present paper.

2. Preliminaries

2.1. Category theory

This paper is based on the (∞, 1)-category theory developed in [9, 8]. Hence
categories, by default, are (∞, 1)-categories, while classical (1, 1)-categories whose
mapping objects are sets are said to be 1-truncated or classical categories. The (∞, 1)-
category of (∞, 1)-categories is denoted Cat. The (∞, 1)-category of (∞, 1)-functors
between two objects X, Y : Cat is denoted Fun(X,Y ); where necessary, we will also
consider this as a space (by taking its maximal sub-groupoid), indicating when we
do so in the text. The category of monoidal ∞-categories is denoted Cat⊗, and the
category of (planar) ∞-operads is Op.

Since one of the objects being compared is defined as a simplicial category, it was
not possible to entirely avoid model category techniques. The methods we actually
use are quite restricted:

� The notion of Quillen adjunction and the fact, proved in [11], that it induces
an adjunction between the associated (∞, 1)-categories.

� The Bergner model structure on the category sCat of simplicially enriched
categories.
We also need some facts about the slice model structure; see §3.

2.2. The 1-category of 1-categories

The category of 1-categories is naturally organised into a (2, 1)-category, with paths
in the mapping types given by natural isomorphism of functors. However, we will
need to work in Cat1 as a subcategory of the model category sCat, which is usually
formulated as a (1, 1)-category (since this is the domain of Quillen’s model category
theory). We will therefore work in the (1, 1)-category Cat1 of strict 1-categories up
to isomorphism, rather than up to categorical equivalence. Beware that the natural
functor Cat1 → Cat is not fully faithful.

We should also fix a strict model of the simplex category ∆ (although it does not
matter which one). For sake of argument, let us say we chose a model whose objects
are natural numbers, so that there is a unique object in each isomorphism class.
The reader will see that Hinich’s functor F , sketched in §4.3, takes values in strict
categories by definition.

Remark 2.1 (The 2-category of 1-categories). Alternatively, using the theory of [10]
it is also possible to consider sCat as a model (2, 1)-category, in which case we may
also treat Cat1 as a (2, 1)-category. This approach entails additional complication
for our combinatorial construction of the main adjunction §4.4: we should provide
commutativity isomorphisms for the naturality squares inspected in §4.5 and §4.6,
which themselves should satisfy a further identity.
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In fact, the arguments as written essentially provide the required isomorphisms.
The additional compatibility, on the other hand, hardly seems worth the effort to
formulate.

2.3. Membership declaration
Objects of categories (either variables or constants) are declared with a colon,

i.e. a : A states that a is an object of A (hence is equivalent to the usual notation
a ∈ A). As usual, we may also write f : A → B or g : C ∼= D to declare a function or
isomorphism; the category in which this morphism or isomorphism lives, if unclear,
is underset.

2.4. Approaches to enriched categories
There have been various attempts to get enriched category theory working using

model categories. The earliest attempts used classical enrichment compatible with a
model structure; this approach continues to suffer from the disadvantages encoun-
tered in the special case of simplicially enriched categories, and it is impractical for
addressing (∞, n)-category theory. More recently, a more general notion of ‘weak’
enrichment was developed in [12]. For an overview, see the introduction to [4].

The notion of a V-enriched category, for (V,⊗) a general monoidal ∞-category,
was introduced in [4]. The more flexible language of [6], although it appeared later,
was apparently developed concurrently. It is worth mentioning that Hinich proves a
Yoneda lemma [6, Cor. 6.2.7].

In both cases the definition of the 1-category VCat of V-enriched categories pro-
ceeds in two stages:

1. First we define a notion which in this paper we will call an algebroid in V over a
space X, encoding the V-valued Hom-bifunctor X ×X → V with its associative
composition law. (These are the objects called ‘categorical algebras’ in [4] and
‘enriched precategory’ in [6].)

2. Second, localise to a full subcategory of complete (or univalent) algebroids.
These are those algebroids for which the underlying space X classifies objects
[4, §5.2].

In this paper, we will not go into details on the localisation stage.

2.5. Corepresenting algebroids
To a monoidal category V and space X each of the references [4, 6] defines the

category of algebroids in V over X by constructing a corepresenting object. Hinich
also gives a definition when X is a category.

� To X [4] functorially attaches a certain generalised planar operad ∆op
X → ∆op

[4, §4.1], which will corepresent algebroids with space of objects X. Note: ∆op
X =

(∆/X)op.
The authors then define categorical algebras:

Algcat(V) = AlgGH
cat (V) := Opgen

planar(∆
op
X ,V⊗)

as a category of morphisms between generalised planar operads.
Since the target is a monoidal category, it makes no difference if we replace
∆op

X with its nearest (non-generalised) operad quotient Lgen∆
op
X . When X is
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presented as a simplicial groupoid, this is modelled by a simplicial multicategory
OX [4, §4.2] (itself actually defined for any simplicial category X).

� The associative operad is denoted Ass(= ∆op). Hinich associates toX the planar
operad Ass(X) [6, (3.2.8)]. The category of V-enriched precategories is then
defined as the category of operad morphisms Op(Ass(X),V⊗).

It is reasonable to regard Ass(X) as always corepresenting algebroids over X, even
for X a general (∞, 1)-category, while ∆op

X is correct only when X is a space (some
of the arrows end up pointing the wrong way in general).

Being a mapping category, as X and V varies, it defines a bifunctor [6, (3.5.3)]

Algbrd: Catop ×Cat⊗ → Cat.

Fixing V : Cat⊗ and integrating over Cat yields a Cartesian fibration

Algd(V) → Cat

whose total space is by definition the category of all algebroids in V.

2.6. A clarification
A couple of remarks are required to fully equate the language of [6] with the form

presented in §2.5.

� The paper is written in a generalised setting of operads over a ‘strong approx-
imation’ to a (symmetric) operad [6, (2.5.2)]. In this language, Ass = ∆op is a
strong approximation to the associative operad, and Op/Ass is (definitionally)
the same as the category of non-symmetric operads appearing in [4, §3].

� Rather than defining them directly as a mapping category, Hinich actually
defines V-enriched precategories as algebras in the ‘Day convolution’ internal
mapping operad

QuivX(V) = Funop(Ass(X),V⊗)

from Ass(X) to (V,⊗). This object is defined for so-called flat operads, a class
which includes Ass(X) [6, §3.3]. By [6, Cor. 2.6.5], algebras in this category
compute operad morphisms, so this agrees with the formula written here.

3. A Quillen adjunction

Before formulating the main statement 3.3, we must address some technical mat-
ters: since F is defined only on ∆/Ass and not Cat/Ass, we should address the issue
of extending adjunction data on this subcategory to a genuine adjunction with a left
Kan extension.

Definition 3.1 (Formal adjunction). Let C∧ and D be categories with C ⊆ C∧ a

dense full subcategory, and let C
L→ D

R→ C∧ be two functors. A formal adjunction
L a R between L and R is the data of a natural isomorphism

c : C, d : D C∧(c,Rd) ∼= D(Lc, d)

(i.e. an isomorphism of functors of c, d). By the Yoneda lemma, L is uniquely deter-
mined by R as the pullback C → Fun(D,S)op, c 7→ D(c,R−). The converse holds by
density of C in C∧.
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If C = C∧, then using [1, Lemma 4.1] to exchange the bifunctor C(c,Rd) with a
correspondence C tD ⊆ M → ∆1, the data of a formal adjunction is equivalent to
that of a usual adjunction of ∞-categories [9, Def. 5.2.2.1].

Lemma 3.2 (Extending a formal adjunction). Let adj : L a R, C → D → C∧ be a
formal adjunction. Suppose that L admits a (pointwise) left Kan extension L∧ : C∧ →
D. Then there is a unique adjunction L∧ a R extending the given formal adjunction.
In particular, Aut(L) = Aut(L∧).

Proof. By the definition of the Kan extension, for c : C∧ we have

D(L∧c, d) ∼= lim
c′:C/c

D(Lc′, d) ∼= lim
c′:C/c

C(c′, Rd) ∼= C∧(c,Rd)

where the last line follows from colimc′:C/c
c′ ∼= c because C is dense in C∧.

3.1. Hinich’s functor F
We recall that Hinich’s functor F is, by definition, formally left adjoint to Ass, as

in:

∆/Ass
��

��

F // Cat

Assww

Cat/Ass.

Moreover, F actually lifts to a functor into Cat1.

3.2. Model structure on a slice
The slice category sCat/Ass inherits sets of fibrations, cofibrations, and weak equiv-

alences from the corresponding sets in the Bergner model structure by inverse image
along the forgetful functor sCat/Ass → sCat. It is well-known that because Ass is
fibrant, this is also a model structure. By [3, Cor. 7.6.13], its localisation is the ∞-
category Cat/Ass.

3.3. Gepner–Haugseng’s OX

Gepner–Haugseng’s OX is a functor of a simplicial category X : sCat valued in
simplicial multicategories. Throughout, we tacitly replace this multicategory with its
operad of operators (reviewed in [4, §2.2]), which is a simplicial category over Ass.

It follows from the definition, and the fact that weak equivalences are preserved
by products, that OX descends to a functor Cat → Cat/Ass.

We are now ready to formulate our main reduction step in the proof of Theorem 1.1.

Proposition 3.3 (F̂• a O•). Suppose given a formal adjunction adj : F a O between
F and the restriction of O to the category Cat1 of 1-categories.

Then there is an extension of adj to a Quillen adjunction

F̂• : sCat/Ass ⇄ sCat :O

between the Bergner model structure on sCat and the slice structure on sCat/Ass.

Proof. We define the functor F̂• : sCat/Ass → sCat by applying the left Kan exten-

sion F̂ : Cat1Ass → Cat1 in each dimension. (Note that O is also defined by applying
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the same operation in each dimension, as products of simplicial sets are calculated
dimension-by-dimension.) Then mapping sets are computed using an end:

FunAss(S•, (OX)•) = endn,mFunAss(Sm,OXn)

= endn,mFun(F̂(Sm), Xn)

= Fun(F̂•S•, X•)

so that F̂• a O•.
Moreover, O preserves weak equivalences and fibrations because weak equivalences

and fibrations of simplicial sets are preserved by products and the mapping spaces
in OX are products of those in X. In other words, it is a right Quillen functor, so
F̂ a O is a Quillen adjunction.

Corollary 3.4 (F a O). Suppose given a formal adjunction adj : F a O between F
and the restriction of O to the category Cat1 of classical 1-categories. There is an
extension to an adjunction

F̂ : Cat/∆op ⇄ Cat :O

between O and a left Kan extension F̂ of F .

Proof. By [11], the derived functors of a Quillen adjunction yield an adjunction of
the localised ∞-categories.

4. The technical bit

In this section, we will construct the adjunction at the level of the (1, 1)-category
Cat1 of 1-categories (cf. §2.2). This comparison is straightforward, and it is foreshad-
owed in [6, (3.2.9)], but sadly the specifics are rather fiddly.

Proposition 4.1 (F a O). There is a formal adjunction

∆/Ass
��

��

F // Cat1

Oxx

Cat1/Ass

between Hinich’s functor F and the restriction of Gepner–Haugseng’s O to classical
1-categories.

4.1. Notation
In what follows, we denote objects of Ass = ∆op in the format [n], corresponding

to the n-simplex ∆n : ∆ in the opposite category. If σ : ∆k → Ass is a k-simplex of
Ass, we write σi for its ith vertex, so σi = [n] for some n : N.

If O → Ass is a category over Ass, such as a planar operad, then write O[n] for
the fibre of the structure functor over [n] : Ass.

Inert. Let us write [k] ⊆ [n] when [k] is a convex subset of the totally ordered set
[n] (dual to an inert morphism [n] → [k] in Ass [4, Def. 3.1.1]). If f : [m] → [n] is a
morphism in Ass, there is an induced pullback operation f−1 on the poset of convex
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subsets. It is constructed by taking the convex hull of the image under the dual map
∆n → ∆m.

Decomposition. In this case, the n convex inclusions i : [1] ⊆ [n] induce a decom-
position of [m] as a concatenation cati:[1]⊆[n][mi] = f−1i. This decomposition is used
to formulate the key axiom in the definition of a planar operad [4, Def. 3.1.3, (ii)].

4.2. Graphs
Denote by ∆[0,1] ⊂ ∆ the full subcategory spanned by ∆0 and ∆1. An oriented

graph Γ defines a presheaf of sets on ∆[0,1] by defining Map(∆k,Γ) to be the set of
vertices of Γ if k = 0 and the union of the sets of (oriented) edges and of vertices for
k = 1. The graph may be recovered from its associated presheaf: the vertices are the
0-simplices, the edges are the non-degenerate 1-simplices, and the face maps yield the
incidence relation.

Accordingly, we define the category of oriented graphs to be the category Grf =
PSh0(∆[0,1]) of presheaves of sets on ∆[0,1]. Left Kan extension of the inclusion
∆[0,1] ⊂ Cat yields a colimit-preserving functor

〈−〉 : Grf → Cat, (1)

free category functor. It factors through Cat1 (whether we consider the latter as a
(1, 1)-category or a (2, 1)-category).

The finite inhabited totally ordered sets may be thought of as oriented graphs with
vertices the elements of the set and edges the nearest-neighbour order relations. Under
this correspondence, the n-simplex corresponds to an An+1 graph. Let ∆Grf ⊂ Grf
be the full subcategory spanned by these objects. The free category functor fits into
a square

∆Grf //

��

∆

��

Grf // Cat.

The map ∆Grf → ∆ is the inclusion of a subcategory whose morphisms, in terms of
the usual terminology for morphisms in ∆, are generated by the degeneracy and outer
face maps.

We denote by ∆
[0,1]
/Ass ⊂ ∆Grf

/Ass ⊂ ∆/Ass the corresponding comma categories.

4.3. Summary of the definition of F
The definition of the functor F is rather involved — it occupies 5 pages of [6, §3.2]

— and since the proof of 4.1 will follow the same lines it will be helpful to have a
summary of it here.

1. First, F [0,1] is defined explicitly on the full subcategory ∆[0,1] ⊆ ∆ spanned by
the zero and one-simplices of Ass:

(a) It is defined as a map on the set {∆0}/Ass of zero-simplices by the formula:

F [0,1](σ : ∆0 → Ass) := {[1] ⊆ σ0} × {x,y}, (2)

where {[1] ⊆ σ0} is the set (of cardinality #σ0 − 1) of edges of σ0.
Let us denote by F0 : ∆/Ass → Set the functor that associates to σ : ∆k →
Ass the disjoint union of F [0,1](τ), where τ ranges over all vertices of ∆k.
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Note that this is a left Kan extension of the restriction of F to the domain
{∆0}Ass of (2). In general, F(σ) will be a category with underlying set of
objects F0(σ).

(b) For the set of 1-simplices I will not reproduce the full definition [6, (3.2.3)];
suffice it to say that for the generating case σ1 = [1], F [0,1](σ) is described
by the diagram

x01 y01
// x12 ··· y(n−2)(n−1)

// x(n−1)n y(n−1)n

rrx01

jj

y01

where the vertices of the two rows are F [0,1](σ0) and F [0,1](σ1), respec-
tively. This diagram appears as [6, (3.2.4), fig. (30)]. More generally, for
any σ : ∆1 → Ass, the result is a finite disjoint union of categories equiva-
lent to ∆1.

(c) The action of F [0,1] on the two face maps of ∆[0,1] is such that their coprod-
uct is the inclusion

F0(σ) = F [0,1](σ0) t F [0,1](σ1) ↪→ F [0,1](σ)

for any σ : ∆1 → Ass that was implicit in the preceding diagram. For the
degeneracy map, note only that the image of a degenerate edge on the vertex
[n] is the graph

x01 y01

��

··· x(n−1)n y(n−1)n

��
x01

OO

y01 ··· x(n−1)n

OO

y(n−1)n

which maps in a unique way to F [0,1]([n]) preserving the labelling.
By illustration, the face maps are sections of the degeneracy map, that is,
they obey the simplicial identities; hence these formulae define a functor

F [0,1] : ∆
[0,1]
/Ass → Grf .

2. By left Kan extension we may immediately extend F [0,1] to a functor of oriented
graphs FGrf : Grf/Ass → Grf , and in particular, of ∆Grf

/Ass. The canonical map

FGrf
0 → FGrf is the inclusion of the set of objects.

(Actually, Hinich’s definition uses an explicit colimit [6, (3.2.5)] over the poset
of cells of the graph ∆k. This poset is a reflective subcategory of the full comma
category ∆[0,1] ↓Grf ∆

k with reflector given by taking the image. In particular,
it is cofinal, and so this colimit does indeed compute the left Kan extension.)

3. Finally, one defines functoriality for the inner face maps, which encode compo-
sition in Ass and hence in the multicategory AssX . Since F(σ) = FGrf(σ) is a
poset, and we already have the action of inner face maps on the underlying set
F0(σ), it is merely a condition for them to be functors. This is checked in [6,
Lemma 3.2.7].

4.4. Vertices and edges
We will define the natural isomorphism FunAss(−,O−) ∼= Fun(F(−),−) separately

for each object and morphism in ∆[0,1]. (We are allowed to do this because we are
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now working in Cat1.) All isomorphisms constructed are natural in X.
(|σ| = 0). The operad OX has set of objects Ob(X)×Ob(X) which we identify

with Map({x,y}, X) in the order implied by the orthography.

adj0 : FunAss(σ,OX) = Ob(OX(σ0))

= (Ob(X)×Ob(X)){[1]⊆σ0}

= Fun({[1] ⊆ σ0} × {x,y}, X)

(Note that there is exactly one other way to identify these spaces naturally in X,
which simply reverses the factors. The arguments of §5 show that it is not possible
to make this identification compatible with edges.)

(|σ| = 1). A 1-simplex σ : ∆1 → Ass is the data of a morphism σ0 → σ1 in Ass. As
in Definition 4.3-i)-(b) of F , we separate the case that σ1 = [1].

� (σ1 = [1]). Write [n] = σ0. The equivalence of Map(F(σ), X) with [4, Def. 4.2.4]
is defined by the labelling

x0 y1 // x1 ··· yn−1
// xn−1 yn

tt
y0

ii

xn

(3)

of Hinich’s diagram with Gepner–Haugseng’s variables: the set of such diagrams
is precisely

OX((x0, y1)︸ ︷︷ ︸
u1

, . . . , (xn−1, yn)︸ ︷︷ ︸
un

; (y0, xn)︸ ︷︷ ︸
v

) = X(y0, x0)× · · · ×X(yn, xn) (4)

as a functor of (xi, yi)
n
i=0 = (uj , v)

n
j=1, that is, it is the set of n-ary operations

of OX .
Now integrating over (Xop ×X)n,

adj1 : FunAss(σ,OX) =

∫
u:OX [n]

∫
v:OX [1]

OX(u, v) (5)

=

∫
u:(Xop×X)n

∫
v:Xop×X

OX(u, v)

=

∫
u:(Xop×X)n

∫
v:Xop×X

n∏
i=0

X(yi, xi) by def. (4)

= Fun(F(σ), X). by labelling (3)

For reasons of formatting I have found it necessary to mix Gepner–Haugseng’s
variables x, y with my own variables u, v, underset in (4). Fully expanded, the
definition of the polymorphism set in this notation is as follows:

OX ((ux
1 , u

y
1 ), . . . , (u

x
n, u

y
n); (v

x, vy)) =X (vx, ux
1 )×

n∏
i=1

X
(
uy
i−1, u

x
i

)
×X (uy

n, v
y) .

(6)
The mapping from my variables to Hinich’s is indicated by the superscripts.
This also Beware that Gepner–Haugseng xs and ys do not occur in quite the
same order as Hinich’s xs and ys as described in Definition 4.3-i)-(c).
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� (General case). As explained in §4.1, to each segment i : [1] ⊆ σ1 ' [m] there cor-
responds by pullback a segment [ni] ' σi

0 ⊆ σ0, and σ0 = cati:[1]⊆σ1
σi
0. Denote

by σi the corresponding arrow [ni] → [1] so that σ = cati:[1]⊆σ1
σi.

(Potential confusion: this concatenation is postcomposition of maps into Ass

with the concatenation operation there, not composition of 1-simplices.)
By definition,

F(σ) :=
∐

i:[1]⊆σ1

F(σi) (7)

and so we calculate:

FunAss(σ,OX) =

∫
u:OX [n]

∫
v:OX [m]

OX(u, v)

=

∫
u:OX [n]

∫
v:OX [m]

∏
i:[1]⊆σ1

OX(ui, vi) OX is an operad

=
∏

i:[1]⊆σ1

∫
u:OX [ni]

∫
v:OX [1]

OX(u, v)
∫
↔

∏
(cf. 4.2) (8)

=

n∏
i=1

Fun(F(σi), X) via adj (5)

= Fun(F(σ), X). by def. (7)

4.5. Naturality
Face maps. Compatibility with face maps is the commutativity of∫∫

u,v
OX(u, v)

adj1 //

��

Fun(F(σ), X)

��

oo

(Ob(X)×Ob(X))n+m
adj0 // Fun(F(σ0), X)× Fun(F(σ1), X)oo

for any edge σ : ∆
[0,1]
/Ass. Now by definition, adj1 covers an identification between the

bottom two terms defined by the labelling (3), which we must check is indeed given
by adj0, after relabelling variables. The appropriate relabelling is explained in (6).

Degeneracy. Since the operad structure gives us a decomposition

FunAss(σ,OX)

��

(Xop ×X){[1]⊆σ0}

��

FunAss(δσ,OX) (Xop ×X){[1]⊆σ0}×∆1

for any vertex σ, it suffices to check that the square

Xop ×X

��

adj0 // Fun(F(σ), X)

��

oo

(Xop ×X)∆
1 adj1 // Fun(F(δσ), X)oo

commutes in the case σ0 = [1]. But then, applying adj0 to u = (ux, uy) yields the
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diagram

ux uy

id
��

ux

id

OO

uy

which the reader will readily see is a special case of the labelling (3) applied to
OX(u, u) = OX((ux, uy), (ux, uy)).

Remark 4.2. I comment here on the exchange of products with Grothendieck integral
that occurs in line (8). We have used here the commutativity of a diagram∏

i Fun(Ci,S) //

��

∏
i RFib(Ci)

��

Fun(
∏

i Ci,S) // RFib(Ci)

I don’t know a reference for this fact, but it can be deduced rather easily from the
naturality of the construction in C and the fact that

∫
preserves products (and indeed,

all limits).

4.6. Inner face maps
For our adjunct isomorphism adj to be natural in ∆Ass, rather than merely ∆Grf

Ass ,
is yet another condition: that the square

FunAss(σ,OX) oo //

◦
��

Fun(F(σ), X)

��

FunAss(τ,OX) oo // Fun(F(τ), X)

induced by the inner face map ∆1 → ∆2 is commutative. Here τ is the inner edge
of the 2-simplex σ : ∆Ass, whereby the left-hand vertical arrow is the composition
law in OX . Since [4, Def. 4.2.4] is not absolutely explicit about the definition of
this composition law, the most I can show here is that what they say corresponds
intuitively to the behaviour of the right-hand vertical arrow.

The functor F(τ) → 〈F(σ)〉 (see (1) for notation) sends each morphism of F(τ)
to a (unique) composition of edges of the graph F(σ). Hence, the right-hand vertical
arrow above takes a representation of the graph F(σ) in X to the representation of
F(τ) obtained by composing the corresponding morphisms in X. It is reasonable to
suppose that this is what Gepner–Haugseng meant by defining composition ”in the
obvious way, using composition in X”.

The compositions that actually occur are those which, in terms of the bordism
interpretation sketched in the introduction, lie along ‘horizontal’ boundary compo-
nents of the surface with boundary F(σ). For more information, consult the pictures
in [6, (3.2.6)].

5. Unicity

In this section, we will show that the automorphism group of F is trivial. We
continue to use the conventions explained in §§4.1, 4.3.
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Proposition 5.1. The automorphism groups of F : ∆/Ass → Cat1 and of its com-
posite with groupoid completion BF : ∆/Ass → S are trivial.

Proof. We will argue for BF ; the argument for F is the same, except a bit shorter.
So let φ : Aut(BF). By naturality with respect to the face maps ∆0 → ∆k, the action
of φ on F(σ) must preserve the decomposition of the set of objects as

∐
i:∆k F(σi).

Since by [6, Lemma 3.2.5] each F(σ) is simply-laced, if φ is the identity on each
0-simplex, then it is the identity. Thus, it suffices to show that φ acts trivially on BF
of 0-simplices.

Decomposition into segments. Each segment [1] ⊆ σ0 yields a graph

x y

· · · yi−1 xi yi xi+1 · · ·

from which it may be seen that φ must preserve each pair {xi,yi}, and moreover, act
on that pair through φ | BF([1]).

(φ | BF([1])). It remains to show that φ | BF([1]) is necessarily trivial. This follows
from the diagram

x1 y1 x2 y2

x y

associated by BF to the 1-simplex [2] → [1] given by the inner face map: no symmetry
of this diagram preserves both the decomposition into top and bottom rows and of
the top row into two pairs.

Remark 5.2 (Opposite). The formation of opposites as discussed in [6, §2.9] has the
following expression in the variables of the present section:

OXop [(ux
1 , u

y
1 ), . . . , (u

x
n, u

y
n); (v

x, vy)] = Xop(vx, ux
1 )×

n−1∏
i=1

Xop(uy
i , u

x
i+1)×Xop(uy

n, v
y)

= X(vy, uy
n)×

n−1∏
i=1

X(ux
n−i+1, u

y
n−i)×X(ux

1 , v
x)

= OX [(uy
n, u

x
n), . . . , (uy

1 , u
x
1 ); (vy, vx)]

= Orev
X [(uy

1 , u
x
1 ), . . . , (uy

n, u
x
n); (vy, vx)] ,

where Orev denotes the reversed operad. In other words, the right Quillen functor
O can be made Z/2Z-equivariant with respect to the action by opposite on sCat
and reversal on sCat/Ass. Correspondingly, the ∞-adjunction F a Ass is also Z/2Z-
equivariant. Since the adjunction has no automorphisms, this equivariance is even
unique.
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