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A. KAYGUN and S. SÜTLÜ
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Abstract
For every n ⩾ 1, we calculate the Hochschild homology of

the quantum monoids Mq(n), and the quantum groups GLq(n)
and SLq(n) with coefficients in a 1-dimensional module coming
from a modular pair in involution.

Introduction

In this article we calculate the Hochschild homology of the quantum monoids
Mq(n), and quantum groups GLq(n) and SLq(n), [17, 24], with coefficients in a 1-
dimensional module f−1

q
k coming from a modular pair in involution (MPI) defined on

GLq(n) and SLq(n) when q is not a root of unity. To this end, we present an effective
algorithm that calculates the explicit classes, and generates the corresponding Betti
sequences. We also show that these homologies with coefficients in the MPI are direct
summands of the Hochschild homologies of GLq(n) and SLq(n) with coefficients in
themselves.

To achieve our goal, we introduce a general Hochschild-Serre type spectral sequence
for flat algebra extensions of the form Q ⊆ P through which calculating the homology
of P reduces to calculating the homology of Q and the Q-relative homology of P . We
then calculate the homology of Mq(n) by using the lattice of extensions Mq(a, b) ⊆
Mq(n) with 1 ⩽ a, b ⩽ n, and related reductions in homology. Since GLq(n) is the
localization of Mq(n) at the quantum determinant, it is almost immediate to obtain
the homology of GLq(n) from that ofMq(n) by a localization in homology [20, 1.1.17].
Calculating the homology of SLq(n) becomes immediate since GLq(n) = SLq(n)⊗
k[Dq,D−1

q ] as algebras where Dq is the quantum determinant [19, Proposition].

The Hochschild and cyclic homology of SLq(2) are calculated in [22, 26] using a
specific resolution for SLq(2). The Hochschild homology of SLq(2) with coefficients
in itself twisted by the modular automorphism is calculated in [5]. The Hochschild
cohomology of SLq(n) with coefficients in ηkη (Definition 3.1 and Proposition 3.3)
is computed in [6] using the Koszul approach similar to [26]. In [6] the authors also
show that Hochschild homology and cohomology of SLq(n) satisfy Poincare duality.
The Hochschild homology of the restricted dual Oh(G) of the quantum universal
enveloping algebra Uh(g), on the other hand, is described in [3] for a semi-simple Lie
group G with its Lie algebra g.
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In [14] we calculated the homology of several algebras including ofMq(2). However,
calculating homologies of Mq(n), GLq(n), SLq(n) etc. for n > 2 are beyond the reach
of the methods we developed in [14]. We needed new tools and techniques to deal
with more general types of extensions as we observed in [12]. Thus the method we
develop in Section 1 in this paper evolved out of [14] and [12] with a different set of
assumptions.

One has to note that one can use the ordinary Tor functor instead of the Hochschild
homology functor since, with the exception of Sections 3.4 through 3.6, the coefficient
modules we primarily use are all 1-dimensional. However, on Section 3 onward we
preferred to state our results in terms of the Hochschild homology for uniformity, to
smooth over few subtle technical difficulties we encounter in our calculations, and
ultimately we would like to use the results of this paper to calculate the Hopf-cyclic
cohomology of GLq(n) and SLq(n) in the future.

Here, we would like to mention two articles by Kadison [8, 9] which we were
not aware until our anonymous referee pointed them out, for which we are grateful.
The results of the first article [8] are relevant for algebra extensions Q ⊆ P where
Q is amenable, i.e. has Hochschild homological dimension 0. We worked with such
extensions in the context of smash biproducts in [14], but we do not work with
amenable algebras in this paper. On the other hand, the main hypothesis of the
second article [9] amounts to a degeneration of the spectral sequence we use in this
paper akin to a generation required in [10, 11, 12]. However, we do not assume such
a degeneration in this paper.

Plan of the paper
After developing a Hochschild-Serre type spectral sequence for flat algebra exten-

sions Q ⊆ P in Section 1, we review some basic facts and definitions about quantum
monoids Mq(n), and groups GLq(n) and SLq(n) in Section 2. Then in Section 3 we
calculate the Hochschild homology ofMq(n), GLq(n) and SLq(n) for every n ⩾ 1 with
coefficients in a 1-dimensional module f−1

q,n
k defined using a modular pair in involution

(f−1
q,n, 1) for the Hopf algebras GLq(n) and SLq(n). In Section 4, we explicitly write

our calculations for the cases n = 2, 3, 4.

Notation and conventions
We fix a ground field k and an element q ∈ k× which is not a root of unity. All

unadorned tensor products ⊗ are over k. All algebras are assumed to be unital and
associative, but not necessarily commutative or finite dimensional over k. We use
〈X〉 to denote the two-sided ideal generated by a subset X of elements in an algebra,
and Spank(X) for the k-vector space spanned by a subset X of elements in a vector
space. For a fixed vector space V , we use Λ∗(V ) to denote the exterior algebra over
V , but used only as a vector space. For a fixed algebra A, we use CB∗(A) and CH∗(A)
respectively for the bar complex and the Hochschild complex of the algebra A. Also,
for a left A-module Y and a right A-module X, we use CB∗(X,A, Y ) for the two sided
bar construction [21, Sect. II.2.3]. We use H∗(A) to denote the Hochschild homology
of A. If the complexes, and therefore, homology includes coefficients other than the
algebra A, we will indicate this using a pair (A,M).
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1. A Hochschild-Serre type spectral sequence

In this section, we assume P and Q are unital associative algebras, together with
a fixed morphism of algebras φ : Q → P .

1.1. The mapping cylinder algebra

Let Z := P ⊕Q be the unital associative algebra given by the product

(p, q) · (p′, q′) = (pp′ + pφ(q′) + φ(q)p′, qq′)

for any (p, q), (p′, q′) ∈ Z. The unit of the product is (0, 1) ∈ Z. Accordingly, Q ⊆ Z
is a unital subalgebra and P ⊆ Z is an ideal. Moreover, since P is a unital algebra,
the homology of its bar complex vanishes in any positive degree. As such, P ⊆ Z is
an H-unital ideal, [27].

Remark 1.1. Note that the mapping cylinder Z of a morphism of unital algebras
φ : Q → P is isomorphic to the direct product algebra P ×Q via the isomorphism
φ̂ : Z → P ×Q given by

φ̂(p, q) = (p+ φ(q), q).

However, in P ×Q neither P nor Q are unital subalgebras, but they are embedded as
H-unital ideals. One can treat Q as a unital subalgebra of P ×Q if we use the image
of φ̂ restricted to Q. In the sequel, we use the mapping cylinder Z and the obvious
embedding q 7→ (0, q) (which is now a monomorphism of unital algebras) instead of
the product ring P ×Q and the embedding φ̂|Q : Q → P ×Q since the former makes
the spectral sequence arguments we present in this section easier to construct.

If we consider the chain of algebra morphisms Z
φ̂−−→ P ×Q

π1−−−→ P , one can think
of every P -module as a Z-module. Let X be a right P -module, and Y a left P -module
which can both can be considered as Z-modules via

x ◁ (p, q) := x ◁ p+ x ◁ φ(q), (p, q) ▷ y = p ▷ y + φ(q) ▷ y

for any x ∈ X, any y ∈ Y , and any (p, q), (p′, q′) ∈ Z.

1.2. A filtration on the two-sided bar construction

Let us now consider the bar complex CB∗(Z), and the two-sided bar construc-
tion CB∗(X,Z, Y ) := X ⊗Z CB∗(Z)⊗Z Y of the mapping cylinder algebra Z with
coefficients in a right P -module X and a left P -module Y .
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We consider first the increasing filtration on CB∗(X,Z, Y ) given by

Gi
i+j =

∑
n0+···+ni=j

X ⊗ P⊗n0 ⊗ Z ⊗ · · · ⊗ P⊗ni−1 ⊗ Z ⊗ P⊗ni ⊗ Y ⊆CBi+j(X,Z, Y ).

The bar differential interacts with the filtration as d(Gi
i+j) ⊆ Gi

i+j−1. Then the asso-
ciated graded complex is given by

E0
i,j := Gi

i+j/G
i−1
i+j

∼=
⊕

n0+···+ni=j

X ⊗ P⊗n0 ⊗Q⊗ · · · ⊗ P⊗ni−1 ⊗Q⊗ P⊗ni ⊗ Y,

(1.1)
with induced differentials. However, since we cannot reduce the number of Q’s in the
quotient complex, one can think of the quotient complex as a graded product of the
two-sided bar constructions with induced differentials

E0
i,∗=CB∗(X,P,Q)⊗QCB∗(Q,P,Q)⊗Q · · ·⊗QCB∗(Q,P,Q)︸ ︷︷ ︸

(i−1)-times

⊗QCB∗(Q,P, Y ), i ⩾ 1.

where P acts on Q via 0, and for i = 0

E0
0,∗ := CB∗(X,P, Y ).

Accordingly, the E1-term is given by

E1
i,j = Hi+j(E

0
i,∗; d0) =

{
TorPj (X,Y ) if i = 0,

0 if i 6= 0.

The spectral sequence then degenerates, and we arrive at the following result.

Proposition 1.2. Given two algebras P and Q, together with an algebra morphism
φ : Q → P , let Z be the mapping cylinder algebra, X a right P -module, and Y be a
left P -module. Then, TorZn (X,Y ) ∼= TorPn (X,Y ) for all n ⩾ 0.

Remark 1.3. The result we obtain in Proposition 1.2, and later in Proposition 1.4 are
trivial change of ring results as in [1, Proposition VI.4.1.2]. However, the method we
use itself here is quite useful, and will allow us to write Proposition 1.5 and Propo-
sition 1.6 which, in turn, relates the absolute homology with the relative homology
using a spectral sequence.

1.3. A filtration on the Hochschild homology
It is possible to adapt this setting to the Hochschild homology complex. To this

end, given a P -bimodule M , we start with the increasing filtration

Gi
i+j =

∑
n0+···+ni=j

M ⊗ P⊗n0 ⊗ Z ⊗ · · · ⊗ P⊗ni−1 ⊗ Z ⊗ P⊗ni ⊆ CHi+j(Z,M)

of CH∗(Z,M). It follows from the observation b(Gi
i+j) ⊆ Gi

i+j−1 that the Hochschild
complex CH∗(Z,M) is a filtered differential complex. The associated graded complex
is then

E0
i,j := Gi

i+j/G
i−1
i+j =

⊕
n0+···+ni=j

M ⊗ P⊗n0 ⊗Q⊗ · · · ⊗ P⊗ni−1 ⊗Q⊗ P⊗ni

together with the induced differential b0 : E
0
i,j −→ E0

i,j−1 given similar to that of (1.1)
where P acts on Q by 0. Hence, the first page of the associated differential complex
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appears to be

E1
i,j = Hi+j(E

0
i,∗; b0) =

{
Hj(P,M) if i = 0,

0 if i 6= 0.

The spectral sequence then degenerates, and we arrive at the following result.

Proposition 1.4. Given two algebras P and Q, together with an algebra morphism
φ : Q → P , let Z be the mapping cylinder algebra. Then, Hn(Z,M) ∼= Hn(P,M) for
any n ⩾ 0, and any P -bimodule M .

1.4. A second filtration on the two-sided bar construction
Let P and Q be two algebras as above, but this time we assume φ : Q → P is a

left (or right) flat algebra morphism. In other words, P is flat as a left (resp. right)
Q-module via φ : Q → P . Let us now consider the increasing filtration

F i
i+j =

∑
n0+···+ni=j

X ⊗Q⊗n0 ⊗ Z ⊗ · · · ⊗Q⊗ni−1 ⊗ Z ⊗Q⊗ni ⊗ Y ⊆ CBi+j(X,Z, Y )

on the two-sided bar construction CB∗(X,Z, Y ). Since d(F i
i+j) ⊆ F i

i+j−1, the two-
sided bar construction CB∗(X,Z, Y ) becomes a filtered differential complex; whose
associated differential graded complex is

E0
i,j = F i

i+j/F
i−1
i+j =

⊕
n0+···+ni=j

X ⊗Q⊗n0 ⊗ P ⊗ · · · ⊗Q⊗ni−1 ⊗ P ⊗Q⊗ni ⊗ Y,

together with the induced differentials d0 : E
0
i,j −→ E0

i,j−1 coming from the two-sided
bar construction CB∗(X,Z, Y ). As in the case of our first filtration, one can view the
resulting complex as a graded multi-product of bar constructions

CB∗(X,Q,P )⊗P CB∗(P,Q, P )⊗P · · · ⊗P CB∗(P,Q, P )︸ ︷︷ ︸
(i−1)-times

⊗P CB∗(P,Q, Y ). (1.2)

In view of the assumption (that P is flat as a Q-module), the E1-term is given by

E1
i,j = Hi+j(E

0
i,∗; d0) =


TorQj (X ⊗Q P ⊗Q · · · ⊗Q P︸ ︷︷ ︸

i-times

, Y ) if P is flat as
a left Q-module,

TorQj (X,P ⊗Q · · · ⊗Q P︸ ︷︷ ︸
i-times

⊗QY ) if P is flat as
a right Q-module.

Keeping in mind that this spectral sequence converges to the Tor-groups of the map-
ping cylinder algebra Z, which are in turn identified with the Tor-groups of the algebra
P in the previous subsection, we obtain the result which may be summarized in the
following proposition.

Proposition 1.5. Given two algebras P and Q, together with the left (resp. right)
flat algebra morphism φ : Q → P , let X a right P -module and Y be a left P -module.
Then, there is a spectral sequence such that

E1
i,j = TorQj (X ⊗Q P ⊗Q · · · ⊗Q P︸ ︷︷ ︸

i-times

, Y ) ⇒ TorPi+j(X,Y ),

(
resp. E1

i,j = TorQj (X,P ⊗Q · · · ⊗Q P︸ ︷︷ ︸
i-times

⊗QY ) ⇒ TorPi+j(X,Y )
)
.
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1.5. A second filtration on the Hochschild homology

We can present the arguments of the previous subsection in terms of the Hochschild
homology as well.

To this end, we begin with the increasing filtration

F i
j+i =

∑
n0+···+ni=j

M ⊗Q⊗n0 ⊗ Z ⊗ · · · ⊗Q⊗ni−1 ⊗ Z ⊗Q⊗ni ,

that satisfies b(F i
i+j) ⊆ F i

i+j−1. Then the associated graded complex is

E0
i,j = F i

j+i/F
i−1
j+i =

⊕
n0+···+ni=j

M ⊗Q⊗n0 ⊗ P ⊗ · · · ⊗Q⊗ni−1 ⊗ P ⊗Q⊗ni .

Passing to the homology with respect to b0 : E
0
i,j −→ E0

i,j−1, an analogue of (1.2), we
arrive at the first page of the spectral sequence which is given by

E1
i,j = Hi+j(E

0
i,∗; b0) = Hj

(
Q,M ⊗Q P ⊗Q · · · ⊗Q P︸ ︷︷ ︸

i-times

)
that converges to H∗(Z,M) which is isomorphic to H∗(P,M) by Proposition 1.4.
Thus, we have proved the following proposition.

Proposition 1.6. Given two algebras P and Q, together with the left (resp. right)
flat algebra morphism φ : Q → P , let M be a P -bimodule. Then there is a spectral
sequence whose first page is given by

E1
i,j = Hj(Q,M ⊗Q P ⊗Q · · · ⊗Q P︸ ︷︷ ︸

i-times

)

that converges to the Hochschild homology H∗(P,M).

2. Quantum linear groups

2.1. The algebra of quantum matrices Mq(n,m)

Let n and m be two positive integers. Following [7, Lemma 2.10], we define
Mq(n,m) as the associative algebra on nm generators xij where 1 ⩽ i ⩽ n and 1 ⩽
j ⩽ m. These generators are subject to the following relations

xjℓxiℓ = q xiℓxjℓ for all 1 ⩽ i < j ⩽ n and 1 ⩽ ℓ ⩽ m, (2.1)

xℓjxℓi = q xℓixℓj for all 1 ⩽ i < j ⩽ m and 1 ⩽ ℓ ⩽ n, (2.2)

xℓixkj = xkjxℓi for all 1 ⩽ k < ℓ ⩽ n and 1 ⩽ i < j ⩽ m, (2.3)

xkixℓj − xℓjxki = (q−1 − q)xkjxℓi for all 1 ⩽ k < ℓ ⩽ n and 1 ⩽ i < j ⩽ m. (2.4)

For convenience, we are going to use Mq(n) for Mq(n, n). We also use the following
convention: for a ⩽ n and b ⩽ m when we writeMq(a, b) ⊆ Mq(n,m) we mean that we
use the subalgebra generated by xij for 1 ⩽ i ⩽ a and 1 ⩽ j ⩽ b in Mq(n,m). Notice
that these generators are subject to the same relations, and therefore, the canonical
map Mq(a, b) → Mq(n,m) is injective.
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It follows from (2.1) and (2.2) that all column or row subalgebras

Colℓ := 〈xiℓ | 1 ⩽ i ⩽ n〉, Rowℓ := 〈xℓj | 1 ⩽ j ⩽ n〉

are isomorphic to the quantum affine n-space knq which is defined as the k-algebra

Mq(1, n) ∼= Mq(n, 1) ∼= knq := k{x1, . . . , xn}/〈xjxi − q xixj | i < j〉.

See [4, Subsect.3.1] for themultiparametric version. Next,we note from[24, Thm.3.5.1]
and [17, Prop. 9.2.6] that

B =

 ∏
1⩽i,j⩽n

x
tij
ij | tij ⩾ 0


is a vector space basis of Mq(n), with respect to any fixed order of the generators.

2.2. The bialgebra structure on Mq(n)
The algebra Mq(n) of quantum matrices is a bialgebra whose comultiplication

∆: Mq(n) → Mq(n)⊗Mq(n) is given by

∆(xij) :=
∑
k

xik ⊗ xkj

and whose counit ε : Mq(n) → k is given by

ε(xij) = δij .

Let us note that we suppress the summations in the expression of a coproduct. How-
ever, here it serves merely to highlight the summation over the middle indices of the
matrix generators.

2.3. The quantum determinant
Let Sn be the group of permutations of the set {1, . . . , n}, and let ℓ(σ) ∈ N be the

length of σ ∈ Sn. Let also I := {i1, . . . , im} and J := {j1, . . . , jm} be two subsets of
{1, . . . , n} such that i1 < · · · < im and j1 < · · · < jm. Then, the element

DIJ :=
∑

σ∈Sm

(−q)ℓ(σ) xiσ(1)j1 · · ·xiσ(m)jm =
∑

σ∈Sm

(−q)ℓ(σ) xi1jσ(1)
· · ·ximjσ(m)

∈ Mq(m)

is called the quantum m-minor determinant as defined in [17, Sect. 9.2.2] and [24,
Sect. 4.1].

On one extreme we have DIJ = xij for I = {i} and J = {j}. On the other extreme,
if we let I = J = {1, . . . , n} we get the quantum determinant which is denoted by Dq.
The quantum determinant is in the center of Mq(n). Moreover, if q is not a root of
unity, then the center of Mq(n) is generated by the quantum determinant. For this
result see [17, Prop. 9.9], [24, Thm. 4.6.1], or [23].

2.4. The quantum general linear group GLq(n)
The quantum group GLq(n) is obtained by adjoining D−1

q to the bialgebra Mq(n).
More precisely,

GLq(n) =
Mq(n)[t]

〈tDq − 1〉
.
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Let us note from this definition that Mq(n) is a subalgebra of GLq(n). In terms of
generators and relations, GLq(n) is the algebra generated by n2 + 1 generators xij

and t with i, j ∈ {1, . . . , n}, satisfying the same relations as (2.1)–(2.4), and

Dqt = tDq = 1,

xijt = txij .

On the other hand, GLq(n) is the localization Mq(n)Dq
of Mq(n) with respect to Dq

as in [24, Sect. 5.3] and [20, Prop. 1.1.17]. As such, the bialgebra structure on Mq(n)
extends uniquely to GLq(n) [24, Lemma 5.3.1] since the quantum determinant Dq

is a group-like element. Furthermore, GLq(n) is a Hopf algebra with the antipode
S : GLq(n) → GLq(n) given by

S(xij) := (−q)j−iAjiD−1
q , S(D−1

q ) := Dq,

where Aij := DIJ with I = {1, . . . , n} − {i}, and J = {1, . . . , n} − {j}. The matrix[
qi−jAij

]
1⩽i,j⩽n

is called the quantum cofactor matrix of [xij ]1⩽i,j⩽n, and the Hopf algebra GLq(n)
is called the quantum general linear group.

2.5. The quantum special linear group SLq(n)

Next, we recall briefly the quantum version of the special linear group. It is given
as the quotient space

SLq(n) :=
GLq(n)

〈Dq − 1〉
=

Mq(n)

〈Dq − 1〉
,

which happens to be a Hopf algebra with the bialgebra structure induced from
GLq(n), or from Mq(n), and the antipode S : SLq(n) → SLq(n) is given by

S(xij) := qj−iAji

induced from GLq(n). The Hopf algebra SLq(n) is called the quantum special linear
group.

Actually, one can write GLq(n) as a direct product of SLq(n) and the Laurent
polynomial ring over the quantum determinant k[Dq,D−1

q ].

Proposition 2.1 ([19, Proposition]). There is an isomorphism of algebras of the
form

GLq(n) ∼= SLq(n)⊗ k[Dq,D−1
q ].

It is worth mentioning that the isomorphism in Proposition 2.1 is an algebra iso-
morphism, and not an isomorphism of Hopf algebras.

2.6. Modular pairs of involution for GLq(n) and SLq(n)

Below, we shall calculate the Hochschild homologies of the Hopf algebras GLq(n)
and SLq(n), with a one dimensional coefficient module that arises from a modular
pair in involution (MPI). Let us recall from [16], see also [2] for the original coho-
mological version, that given a Hopf algebra H, a pair (δ, σ) consisting of an algebra
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homomorphism δ : H → k and a group-like element σ ∈ H is called an MPI if

δ(σ) = 1, S̃2
σ = Id,

where

S̃σ(h) := σS(h(1))δ(h(2))

for any h ∈ H.

Proposition 2.2. Let f−1
q,n : GLq(n) → k (resp. f−1

q,n : SLq(n) → k) be given by

f−1
q,n(xij) := δijq

(n+1)−2i. Then, (f−1
q,n, 1) is a MPI for the Hopf algebra GLq(n), (resp.

for the Hopf algebra SLq(n)).

Proof. We will give the proof for GLq(n). The proof for the case of SLq(n) is similar,
and therefore, is omitted. It is given in [24, Lemma 5.4.1] that fq,n : GLq(n) → k
given by

fq,n(xij) = δijq
2i−(n+1)

is an algebra homomorphism, i.e. a character. Then, its convolution inverse
f−1
q,n : GLq(n) → k is also a character. The claim then follows from the observation
that

S̃2 = fq,n ∗ S2 ∗ f−1
q,n

and that, by [24, Thm. 5.4.2], S2 = f−1
q,n ∗ Id ∗fq,n where ∗ is the convolution multi-

plication on the set of characters of Hopf algebras.

Remark 2.3. As for GLq(n), there is a second choice of MPI. It follows at once from
the fact that

fq,n(Dq) = fq,n

(∑
σ∈Sn

(−q)ℓ(σ) x1σ(1) · · ·xnσ(n)

)
=
∑
σ∈Sn

(−q)ℓ(σ) fq,n(x1σ(1)) · · · fq,n(xnσ(n)) = qn(n+1)−2(1+···+n) = 1,

and that Dq ∈ GLq(n) is central, the pair (f−1
q,n,Dq) is a MPI.

3. Hochschild homology of Mq(n)

3.1. Homology of quantum matrices Mq(n,m)
Given a sequence (q1, . . . , qn) of scalars in k, and let α : Mq(n) → k be the character

given by

α(xij) = δijqi.

Accordingly, the counit

ε(xij) = δij ,

the characters

fq,n(xij) = δijq
2i−1−n and f−1

q,n(xij) = δijq
n−2i+1

of Proposition 2.2, and finally the character η : Mq(n,m) → k given by

η(xij) = 0, (3.1)
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for 1 ⩽ i ⩽ n and 1 ⩽ j ⩽ m correspond to the sequences

ε ↔ (1, . . . , 1),

fq,n ↔ (q−n+1, q−n+3, . . . , qn−1),

f−1
q,n ↔ (qn−1, qn−3, . . . , q−n+1),

η ↔ (0, . . . , 0).

Let, now, α, β : Mq(n,m) → k be two characters given by two sequences of scalars as
defined above. Let also αkβ denote the Mq(n,m)-bimodule k with the actions given
by

xij ▷ 1 = α(xij) and 1 ◁ xij = β(xij)

for any xij ∈ Mq(n,m). In addition, the absence of a subscript such as αk or kα
indicates that the action on the unspecified side is given by the counit.

The following result gives us the license to consider only the 1-dimensional bimod-
ules whose right action is given by the counit.

Proposition 3.1. Given any characters α and β defined by a sequence of scalars
(qa1 , . . . , qan) and (qb1 , . . . , qbn) as defined above, there is an automorphism
να : Mq(n,m) → Mq(n,m) so that α−1βk coincides with βkα, the latter being equipped
with the να-twisted Mq(n,m) action.

Proof. We define

να(xij) := q−aixij

and observe that the relations (2.1) through (2.4) are invariant under this action. The
action of Mq(n,m) twisted by να is defined as

1 ◀ xij = α(να(xij)) = δijq
−aiqai = δij

and the left action is given as

xij ▶ 1 = β(να(xij)) = δijq
biq−ai

for every generator xij .

Lemma 3.2. The Hochschild homology of the quantum affine n-space Mq(n, 1) ∼=
Mq(1, n) with coefficients in ηkη is given by

Hℓ(Mq(1, n), ηkη) ∼= k⊕ (nℓ).

Proof. Setting Q := k[x11] ⊆ Mq(1, n) =: P , we have

H∗(Mq(1, n), ηkη)⇐E1
i,j =Hj(k[x11], ηkη⊗k[x11]Mq(1, n)⊗k[x11] · · ·⊗k[x11]Mq(1, n)︸ ︷︷ ︸

i-many

)

∼=Hj(k[x11], ηkη ⊗ Mq(1, n− 1)⊗ · · · ⊗ Mq(1, n− 1)︸ ︷︷ ︸
i-many

),
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where the k[x11] action is still given by η on the coefficient complex. Thus, the E1-
term of the spectral sequence splits as

E1
i,j = Hj(k[x11], ηkη)⊗ Mq(1, n− 1)⊗ · · · ⊗ Mq(1, n− 1)︸ ︷︷ ︸

i-many

∼= CHi(Mq(1, n− 1), ηkη)⊗Hj(k[x11], ηkη)

since the action of Mq(1, n− 1) on Hj(k[x11], k) is again given by η. On the other
hand for k[x11] we have

Hj(k[x11], ηkη) =

{
k if j = 0, 1,

0 otherwise.

Then we see that

Hℓ(Mq(1, n), ηkη) ∼= Hℓ(Mq(1, n− 1), ηkη)⊕Hℓ−1(Mq(1, n− 1), ηkη).

The result follows from recursion.

Let Λ∗(X) denote the exterior algebra generated by a set X of indeterminates.
The following result follows from an easy dimension counting.

Proposition 3.3. We have isomorphisms of vector spaces of the form

Hℓ(Mq(n,m), ηkη) ∼= Λℓ(xij | 1 ⩽ i ⩽ n, 1 ⩽ j ⩽ m)

for every m,n ⩾ 1 and ℓ ⩾ 0.

Proof. Let prove this by induction on n. For n = 1 the result is given by Lemma 3.2.
Assume we have the prescribed result for n. Consider the extension Mq(n,m) ⊆
Mq(n+ 1,m) with the canonical embedding. Then by Proposition 1.6 we get

H∗(Mq(n+ 1,m), ηkη)

⇐ E1
i,j = Hj(Mq(n,m),Mq(n+ 1,m)⊗Mq(n,m) · · · ⊗Mq(n,m) Mq(n+ 1,m)︸ ︷︷ ︸

i-times

)

∼= Hj(Mq(n,m),CHi(Mq(1,m), ηkη))
∼= Hj(Mq(n,m), ηkη)⊗ CHi(Mq(1,m), ηkη)

since Mq(n,m) acts by η on the coefficient complex. Accordingly, we get the E2-page

E2
i,j = Hj(Mq(n,m), ηkη)⊗Hi(Mq(1,m), ηkη)

in which all differentials are 0, and therefore we obtain

Hℓ(Mq(n+ 1,m), ηkη) ∼=
⊕

i+j=ℓ

Hj(Mq(n,m), ηkη)⊗Hi(Mq(1,m), ηkη).

Then we also see that

dimkHℓ(Mq(n+1,m), ηkη)=
∑

ℓ1+ℓ2=ℓ

dimkHℓ1(Mq(n,m), ηkη) ·dimkHℓ2(Mq(1,m), ηkη)

=
∑

ℓ1+ℓ2=ℓ

(
nm

ℓ1

)(
m

ℓ2

)
=

(
(n+ 1)m

ℓ

)
as we wanted to show.
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Remark 3.4. The results of Lemma 3.2 and Proposition 3.3 are well-known in the con-
text of Koszul duality [26, 6] since the algebras Mq(n,m) are quadratic, and there-

fore, are Koszul for every n,m ⩾ 1. Thus H∗(Mq(n,m), ηkη) ∼= TorMq(n,m)
∗ (kη, ηk) ∼=

Ext∗Mq(n,m)(kη, kη) is isomorphic to the Koszul dual Mq(n,m)!. Since Mq(n,m) and
k[xij | 1 ⩽ i ⩽ n, 1 ⩽ j ⩽ m] are isomorphic as graded vector spaces, we get that
Mq(n,m)! and Λ∗(xij | 1 ⩽ i ⩽ n, 1 ⩽ j ⩽ m) are isomorphic as graded vector spaces.
See [26, 6] for details. Note that this argument works only for ηkη, and fails to work
with other one dimensional coefficients.

3.2. Homology of Mq(n)
In this subsection we compute the Hochschild homology of the algebra Mq(n) of

quantum matrices with coefficients in α = (qa1 , . . . , qan), where a1, . . . , an ∈ Z.
To this end, we begin with the extension Rown ⊆ Mq(n) that yields, in the relative

complex,

αk ⊗Rown
Mq(n)⊗Rown

· · · ⊗Rown
Mq(n)︸ ︷︷ ︸

i-times

∼= αk ⊗Mq(n− 1, n)⊗ · · · ⊗Mq(n− 1, n)︸ ︷︷ ︸
i-times

.

Hence, the E1-page of the spectral sequence is

E1
i,j

∼= Hj(Rown,CHi(Mq(n− 1, n), αk)).

We then note that the elements xni ∈ Rown, for i 6= n, act on the coefficient complex
via η, whereas xnn act via a scalar qan on the left. On the right, the action of xnn is
via another scalar determined by the total degree of the terms in xin in CHi(Mq(n−
1, n), αk) for 1 ⩽ i ⩽ n− 1. Accordingly,

E1
i,j

∼=
⊕
a

Hj(Rown, qankq−a)⊗ CH
(a)
i (Mq(n− 1, n), αk),

where CH(a)
∗ denotes the subcomplex of terms whose total degree in xin, for i =

1, . . . , n− 1, are precisely a ∈ Z. Let us remark also that since these terms act by η,
the graded subspace CH(a)

∗ (Mq(n− 1, n), αk) of CH∗(Mq(n− 1, n), αk) is indeed a
subcomplex.

For the homology of the row algebra this time, we use the lattice of extensions
Rown(a, b) ⊆ Rown, where Rown(a, b) is the subalgebra of Rown generated by xna,
. . . , xnb. Thus, we may express

Hj(Rown, qankq−a) =
⊕
c

Hc(Rown(b+ 1, n), qankq−a+c−j )⊗ Λj−c(xn1, . . . , xnb)

for every 1 ⩽ b ⩽ n− 1. In particular,

Hj(Rown, qankq−a) =
⊕
c

Hc(Rown(n, n), qankq−a+c−j )⊗ Λj−c(xn1, . . . , xnn−1).

Since Rown(n, n) = k[xnn], the direct sum above has only two non-zero terms: those
with c = 0 and c = 1. Therefore,

Hj(Rown, qankq−a) =
(
H0(k[xnn], qankq−j−a)⊗ Λj(xn1, . . . , xnn−1)

)
⊕
(
H1(k[xnn], qankq−j−a+1)⊗ Λj−1(xn1, . . . , xnn−1)

)
.
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On the other hand, we observe that the homology is zero unless qankq−a+c−j is sym-
metric. Thus,

Hj(Rown, qankq−a) =


Λj
q(xn1, . . . , xnn−1) if a = −an − j ⩾ 0,

Λj−1(xn1, . . . , xnn−1)xnn if a = −an − j + 1 ⩾ 0,

0 otherwise.

As a result, the E1-page of the spectral sequence reduces to

Hℓ(Mq(n), αk) ⇐ E1
i,j

∼=CH
(−an−j)
i (Mq(n− 1, n), αk ⊗ Λj(xn1, . . . , xn,n−1))

⊕ CH
(−an−j+1)
i (Mq(n− 1, n), αk ⊗ Λj−1(xn1, . . . , xn,n−1)xnn).

Now, let Coln(a, b) be the subalgebra generated by xan, . . . , xbn inMq(n− 1, n). Then,
in view of Proposition 1.6 we have

H
(a)
i (Mq(n− 1, n), αk ⊗ Λj(x1n, . . . , xnn))

⇐ E1
r,s = H(a)

s (Coln(1, n− 1),CHr(Mq(n− 1), αk ⊗ Λj(x1n, . . . , xnn))).

Since Coln(1, n− 1) acts on the coefficient complex via η, the E1-page splits, and we
arrive at

H
(a)
i (Mq(n− 1, n), αk ⊗ Λj(x1n, . . . , xnn))

∼=Hi−a(Mq(n− 1), αk ⊗ Λj(x1n, . . . , xnn)⊗ Λa(x1n, . . . , xn−1,n)).

From these we get the E2-page

E2
i,j

∼=Hi+j+an
(Mq(n− 1), αk ⊗ Λj(xn1, . . . , xn,n−1)⊗ Λ−an−j(x1n, . . . , xn−1,n))

⊕Hi+j+an−1(Mq(n− 1), αk ⊗ Λj−1(xn1, . . . , xn,n−1)xnn

⊗ Λ−an−j+1(x1n, . . . , xn−1,n)).

Therefore,

Hℓ(Mq(n), αk) ∼=
⊕
j,s

Hℓ+an−s(Mq(n− 1), αk ⊗ Λj(xn1, . . . , xn,n−1)

⊗ Λ−an−j(x1n, . . . , xn−1,n))⊗ Λs(xnn).

Now, consider the subspace S∗
n of Λ∗(xij | 1 ⩽ i, j ⩽ n) generated by xin and xnj

with 1 ⩽ i ⩽ n− 1 and 1 ⩽ j ⩽ n− 1. Also, we use S∗
n(b) to denote the homogeneous

vector subspace of S∗
n of terms whose total degree over terms of type xin and xni is b.

We observe that

Hℓ(Mq(n), αk) ∼=
⊕
s

Hℓ+an−s(Mq(n−1), αk ⊗ S∗
n−1(−an))⊗ Λs(xnn)

∼=
⊕
β,s

Hℓ+an−s(Mq(n−1), αkβ−1)⊗S∗
n−1(b1, . . . , bn−1,−an)⊗Λs(xnn)

∼=
⊕
β,s

Hℓ+an−s(Mq(n−1), αβk)⊗S∗
n−1(b1, . . . , bn−1,−an)⊗Λs(xnn).

The sum is taken over all β = (qb1 , . . . , qbn), where the multi-degree (b1, . . . , bn) indi-
cates that we consider the k-vector space spanned by monomials Γ that has the total
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degree degi(Γ) = bi in terms of xsi and xit for all s, t = 1, . . . , n and i = 1, . . . , n, and
we set

degi(xij) = degi(xji) =


−1 if j < i,

0 if j = i,

1 if j > i.

(3.2)

It follows at once that bn = −an, since there are no indices j > n. Proceeding the
computation recursively, we arrive at the following result.

Theorem 3.5. Fix a sequence of non-zero scalars α=(qa1 , . . . , qan), and let us define

Λ∗
(α)(xij | 1 ⩽ i, j ⩽ n)

as the subspace of differential forms with multi-degree (a1, . . . , an) where the ai is the
total degree – in the sense of (3.2) – of terms involving the indeterminates xsi and
xit for s, t = 1, . . . , n, and i = 1, . . . , n. Then,

Hℓ+|α|(Mq(n), αk) ∼=
⊕
s

Λℓ−s
(α) (xij | 1 ⩽ i 6= j ⩽ n)⊗ Λs(x11, . . . , xnn)

as vector spaces for every n ⩾ 1, ℓ ⩾ 0.

3.3. Homologies of GLq(n) and SLq(n) with coefficients in f−1
q,n

k

We are going to derive the homology of GLq(n) and SLq(n) from that of Mq(n)
by using the localization of the Hochschild homology.

Let us first recall the localization of the homology, [20, Prop. 1.1.17].

Proposition 3.6. Given an algebra A, and a multiplicative subset S ⊆ Z(A) so that
1 ∈ S and 0 /∈ S, and an A-bimodule M , there are the following canonical isomor-
phisms:

H∗(A,M)S ∼= H∗(A,MS) ∼= H∗(AS ,MS),

where

MS := Z(A)S ⊗Z(A) M,

Z(A) denotes the center of A, and Z(A)S stands for the localization of Z(A) at S.

Now, in view of the fact thatGLq(n) is the localization ofMq(n) at S= {Dn
q |n⩾ 0},

we obtain the Hochschild homology of GLq(n) readily from the above localization
result.

Theorem 3.7. For every ℓ ⩾ 0, and every n ⩾ 1,

Hℓ(Mq(n), f−1
q,n

k) = Hℓ(GLq(n), f−1
q,n

k) ∼= Hℓ(SLq(n), f−1
q,n

k)⊕Hℓ−1(SLq(n), f−1
q,n

k).

Proof. Let us recall from [23, Thm. 1.6], see also [25], that

Z(Mq(n)) = k[Dq],

and that GLq(n) = Mq(n)S for the multiplicative system S = {Dn
q | n ⩾ 0} generated



HOMOLOGY OF QUANTUM LINEAR GROUPS 23

by the quantum determinant. Accordingly, we have

Z(Mq(n))S = k[Dq,D−1
q ],

and

f−1
q,n

kS = k[D−1
q ]⊗ f−1

q,n
k

is the GLq(n)-bimodule so that the Mq(n)-bimodule structure concentrated on f−1
q,n

k,

and the k[D−1
q ]-bimodule structure is on k[D−1

q ]. Then we have

H∗(GLq(n), f−1
q,n

kS) ∼= k[D−1
q ]⊗H∗(GLq(n), f−1

q,n
k)

so that the GLq(n)-bimodule structure on f−1
q,n

k is determined by the trivial action of

D−1
q . On the other hand,

H∗(Mq(n), f−1
q,n

k)S ∼= k[D−1
q ]⊗H∗(Mq(n), f−1

q,n
k),

where the GLq(n)-bimodule structure is given in such a way that the Mq(n)-bimodule
structure is on H∗(Mq(n), f−1

q,n
k), and the D−1

q -action structure is concentrated on

k[D−1
q ]. Proposition 3.6 then yields the first claim. The second part the computation

follows from [19, Proposition] and [14, Theorem 2.7].

3.4. Homologies of GLq(n) and SLq(n) with twisted coefficients in them-
selves

LetH be a Hopf algebra and let α : H → k be a character. Using α we can define an
algebra automorphism a 7→ α(a(1))a(2) whose inverse is given by a 7→ α(S(a(1)))a(2).
Then one can twist the regular representation of H on itself as

h ▶ x = α(h(1))h(2)x

for every h, x ∈ H. Let us denote this module by αH, and the resulting Hochschild
homology H∗(H, αH) by Hα

∗ (H).
Now, for the Hopf algebras GLq(n) and SLq(n), one can use the character f−1

q,n of
Proposition 2.2, to write a map from the Hochschild homology of H with coefficients
in f−1

q,n
k to its twisted Hochschild homology. The proof of the following Proposition is

by direct verification, and therefore, is omitted. See also [16, Prop. 3.2].

Proposition 3.8. Let H be the Hopf algebra GLq(n) or SLq(n). Then there is a

characteristic homomorphism θ̃ : H∗(H, f−1
q,n

k) → H
f−1
q,n

∗ (H), given by

θ̃ℓ(h
1 ⊗ · · · ⊗ hℓ) := S(h1

(1) · · ·h
ℓ
(1))⊗ h1

(2) ⊗ · · · ⊗ hℓ
(2) (3.3)

for every ℓ ⩾ 1.

A more conceptual way of thinking of the morphism (3.3) is the following. Consider
the adjoint action of H on the twisted regular representation given by

hx = f−1
q,n(h(1))h(2)xS(h(3)).

The adjoint module ad(f−1
q,n

H) splits as a direct sum of the submodule f−1
q,n

k and

its complement which is the kernel of the counit. Thus we get that H∗(H, f−1
q,n

k) =
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TorH∗ (k, f−1
q,n

k) is a direct summand of TorH∗ (k, ad(f−1
q,n

H)) which is isomorphic to

H
f−1
q,n

∗ (H).

3.5. Transfer of classes

Following [13] along the lines of [16], let H be a Hopf algebra with an MPI (δ, σ),
and let A be an H-comodule algebra equipped with a δ-trace; that is, a functional
τ : A → k satisfying

τ(xy) = τ(yx(1))δ(x(2))

for any x, y ∈ A. Then, there is a characteristic map

γ : H∗(A) → H∗(H, δk) (3.4)

which is, on the chain level, given by

γ(a0 ⊗ · · · ⊗ an) := τ(a0a1⟨0⟩ · · · a
n
⟨0⟩)a

1
⟨1⟩ ⊗ · · · ⊗ an⟨1⟩,

where a 7→ a⟨0⟩ ⊗ a⟨1⟩ denotes the right H-coaction on A.

However, the unique Haar functional h : GLq(n) → k (resp. h : SLq(n) → k) has
the modularity

h(xy) = h(y(f−1
q,n ▷ x ◁ f−1

q,n)) = f−1
q,n(x(1))h(yx(2))f

−1
q,n(x(3)),

for any x, y ∈ GLq(n) (resp. SLq(n)), see for instance [17, Prop. 11.3.34] and [24,
Thm. 5.4.2].

Accordingly, (3.4) may be modified into

γ̃ : H
fq,n
∗ (Mq(n)) → H∗(GLq(n), f−1

q,n
k) (3.5)

given by

γ̃ℓ(a
0 ⊗ · · · ⊗ aℓ) := h(a0a1(1) · · · a

ℓ
(1))a

1
(2) ⊗ · · · ⊗ aℓ(2), ℓ ⩾ 0.

More generally, we have the following twisted analogue of [16, Prop. 3.1].

Proposition 3.9. Let (A, H) be any one of the pairs (Mq(n), SLq(n)), (Mq(n),
GLq(n)), (GLq(n), GLq(n)), (GLq(n), SLq(n)), or (SLq(n), SLq(n)). Then there is
a characteristic map in homology of the form

H
fq,n
∗ (A) → H

f−1
q,n

∗ (H). (3.6)

Proof. A direct computation reveals that (3.5) works just as well in the form of

γ̃ : H
fq,n
∗ (A) → H∗(H, f−1

q,n
k).

The claim, then, follows from the composition with (3.3).

3.6. Untwisting the homology

As for the untwisting, we have two options. The first comes from [18] and the cap
product of twisted homology and cohomology.
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Let us recall from [18, Sect. 3] that if A is an unital associative algebra with two
automorphisms σ and η, there is a cap product of the form

∩ : Hσ
n (A)⊗Hm

η (A) → Hη◦σ
n−m(A), m ⩽ n,

given explicitly by

(a0 ⊗ · · · ⊗ an) ∩ φ := η(a0)φ(a1 ⊗ · · · ⊗ am)⊗ am+1 ⊗ · · · ⊗ an.

Here the left regular action of A on itself is twisted by the automorphisms via
a ▶ x = η(a)x.

Proposition 3.10. For A = H = GLq(n) or A = H = SLq(n), assume we have a
twisted fq,n-trace φ ∈ H0

fq,n
(A) = H0(A, fq,nA). Then the characteristic map (3.6)

can be extended to a map of the form

H∗(H, f−1
q,n

k) → H∗(H).

The second option for untwisting comes from Hopf-cyclic cohomology:

Proposition 3.11. For A = H = GLq(n) or A = H = SLq(n), the characteristic
map (3.6) can be extended to a map of the form

Hm(H, f−1
q,n

k) → Hm+1(H),

for every m ⩾ 0.

Proof. The Hopf algebra H is a module algebra over the Laurent polynomial Hopf
algebra k[α, α−1] where α is the automorphism defined as α(h) = fq,n(h(1))h(2). The
rest follows from an untwist as in [15, Section 2.9] but for Hochschild homology.

4. Explicit calculations

4.1. Mq(2), GLq(2) and SLq(2)
The character f−1

q,2 is given by the sequence (q, q−1). Then, |α| = 0 and

Hℓ(Mq(2), (q,q−1)k) =
⊕
s

Λℓ−s
(q,q−1)(x12, x21)⊗ Λs(x11, x22).

One can write 4 different exterior products between x12 and x21, and

deg((1)) = (0, 0),

deg((x21)) = deg((x12)) = (1,−1),

deg((x12, x21)) = (2,−2)

from which we only take the degree (1,−1)-terms of exterior degree 1. Thus

Hℓ(Mq(2), f−1
q,2

k)=


0 if ℓ = 0 or ℓ⩾ 4,

Spank((x12), (x21)) if ℓ = 1,

Spank((x11, x12), (x11, x21), (x12, x22), (x21, x22)) if ℓ = 2,

Spank((x11, x12, x22), (x11, x21, x22)) if ℓ = 3.

(4.1)

The Betti numbers of the homology are given in Figure 1.
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m 1 2 3
dimk Hm(Mq(2), f−1

q,2
k) 2 4 2

dimk Hm(GLq(2), f−1
q,2

k) 2 4 2

dimk Hm(SLq(2), f−1
q,2

k) 2 2

Figure 1: The Betti numbers for Mq(2), GLq(2) and SLq(2)

Let us note also that (4.1) simply illustrates what each representative of
H∗(Mq(2), f−1

q,2
k) ∼= H∗(GLq(2), f−1

q,2
k) is made of. They can be converted into actual

representatives quite straightforwardly as

(xki, xkj) =1⊗
(
xki ⊗ xkj − q−1 xkj ⊗ xki

)
,

for any 1 ⩽ k ⩽ n, and any 1 ⩽ i < j ⩽ n. The very same pattern holds for (xik, xjk).
As for the 3-classes, we have

(x11, xij , x22) = 1⊗
(
− q2 x11 ⊗ xij ⊗ x22 + q xij ⊗ x11 ⊗ x22 + q x11 ⊗ x22 ⊗ xij

+ x22 ⊗ xij ⊗ x11 − q x22 ⊗ x11 ⊗ xij − q xij ⊗ x22 ⊗ x11

+ (1− q2)xij ⊗ xji ⊗ xij

)
both for (i, j) = (1, 2) and (j, i) = (1, 2).

Let us next compare our results with those of [5]. To this end we begin, in view of
Theorem 3.7, with

Hℓ(SLq(2), f−1
q,2

k) =


0 if ℓ = 0 or ℓ ⩾ 3,

Spank((x12), (x21)) if ℓ = 1,

Spank((x11, x12), (x11, x21)) if ℓ = 2.

Next, we use (3.3), that is,

θ̃ : H1(SLq(2), f−1
q,2

k) → H
f−1
q,2

1 (SLq(2)),

to obtain the classes

θ̃(x12) = x22 ⊗ x12 − q x12 ⊗ x22 ∈ H
f−1
q,2

1 (SLq(2))

and

θ̃(x21) = −q−1 x21 ⊗ x11 + x11 ⊗ x21 ∈ H
f−1
q,2

1 (SLq(2)).

Moreover, it is immediate to observe that

x22 ⊗ x12, x12 ⊗ x22, x21 ⊗ x11, x11 ⊗ x21 ∈ H
f−1
q,2

1 (SLq(2)),

which are the classes obtained in Case 4. of [5, Subsect. 4.5]. We do note that there is
a q ↔ q−1 difference between [5] and the present note, and that the twisting automor-
phism σf−1

q,2
: SLq(2) → SLq(2) given by x 7→ f−1

q,2 (x(1))x(2) corresponds to σq−1,q−1 in

[5, Prop. 3.1].
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We proceed to

θ̃ : H2(SLq(2), f−1
q,2

k) → H
f−1
q,2

2 (SLq(2)).

We have,

(x11, x12) := x11 ⊗ x12 − q−1 x12 ⊗ x11 ∈ H2(SLq(2), f−1
q,2

k)

and

(x11, x21) := x11 ⊗ x21 − q−1 x21 ⊗ x11 ∈ H2(SLq(2), f−1
q,2

k).

Accordingly, we obtain

θ̃((x11, x21)) = θ̃(x11 ⊗ x21 − q−1 x21 ⊗ x11) = 1⊗
(
x11 ⊗ x21 − q−1 x21 ⊗ x11

)
,

and

θ̃((x11, x12)) = θ̃(x11 ⊗ x12 − q−1 x12 ⊗ x11) =

x2
22 ⊗

(
x11 ⊗ x12 − q−1 x12 ⊗ x11

)
− q x12x22 ⊗

(
x11 ⊗ x22 − q−1 x12 ⊗ x21

)
+ q x12x22 ⊗

(
x22 ⊗ x11 − q x21 ⊗ x12

)
+ q2 x2

12 ⊗
(
x21 ⊗ x22 − q−1 x22 ⊗ x21

)
,

while we refer the reader to Case 4. of [5, Subsect. 4.6] for a comparison of the classes
obtained there.

Finally, we turn our attention to the noncommutative covolume form dA ∈
Hσmod

3 (SLq(2)), where σmod = σq2,1 is the modular automorphism given by

σmod(x) := f−1
q,2 (x(1))x(2)f

−1
q,2 (x(3)),

for any x ∈ SLq(2). Accordingly, it follows from (3.3) that there is

θ̃ : H∗(SLq(2), δmod
k) → Hσmod

∗ (SLq(2)),

where the character δmod : SLq(2) → k is given by δmod = f−1
q,2 ∗ f−1

q,2 , more explicitly,

δmod(x11) = q2 x11, δmod(x12) = 0 = δmod(x21), δmod(x22) = q−2 x22.

Then, we deduce from Theorem 3.5 and Theorem 3.7 that

Hℓ(GLq(2), δmod
k)=Hℓ(Mq(2), δmod

k)=



0 if ℓ ⩽ 1 or ℓ⩾ 5,

Spank((x12, x21)) if ℓ = 2,

Spank((x12, x21, x22),

(x12, x11, x21)) if ℓ = 3,

Spank((x12, x11, x21, x22)) if ℓ = 4,

and that

Hℓ(SLq(2), δmod
k) =


0 if ℓ ⩽ 1 or ℓ ⩾ 4,

Spank((x12, x21)) if ℓ = 2,

Spank((x12, x11, x21)) if ℓ = 3,
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where

(x12, x11, x21) := q2 x11 ⊗ x12 ⊗ x21 − q x12 ⊗ x11 ⊗ x21 − q2 x11 ⊗ x21 ⊗ x12

+x12⊗x21⊗x11−x21⊗x12⊗x11+q x21⊗x11⊗x12 ∈H3(SLq(2), δmod
k).

Accordingly,

dA = θ̃((x12, x11, x21))

= −q x2
12x21 ⊗

(
x21 ⊗ x22 ⊗ x11 + (1− q)x11 ⊗ x21 ⊗ x21 + (q2 − 1)x21 ⊗ x11 ⊗ x21

+ x22 ⊗ x11 ⊗ x21 − q x22 ⊗ x21 ⊗ x11 + (q − q2)x21 ⊗ x21 ⊗ x11

+ q x11 ⊗ x21 ⊗ x22 − x11 ⊗ x22 ⊗ x21 − q2 x21 ⊗ x11 ⊗ x22

)
+ x22 ⊗

(
q2 x11 ⊗ x12 ⊗ x21 − q x12 ⊗ x11 ⊗ x21 + x12 ⊗ x21 ⊗ x11 − x21 ⊗ x12 ⊗ x11

+ q x21 ⊗ x11 ⊗ x12 − q2 x11 ⊗ x21 ⊗ x12

)
− q x12 ⊗

(
(q − q2)x11 ⊗ x21 ⊗ x21 + (1− q)x21 ⊗ x21 ⊗ x11 − x21 ⊗ x12 ⊗ x21

)
.

4.2. Mq(3), GLq(3) and SLq(3)
The character f−1

q,3 is given by (q2, 1, q−2) and |α| = 0. The exterior degree 1 terms
are

deg((x12)) = deg((x21)) =(1,−1, 0),

deg((x13)) = deg((x31)) =(1, 0,−1),

deg((x23)) = deg((x32)) =(0, 1,−1)

and we need terms of degree signature (2, 0,−2). We must solve a system of Z-linear
equations

(α1, α2, α3)

1 −1 0
1 0 −1
0 1 −1

 = (2, 0,−2),

where αi ∈ {0, 1, 2}. The only solutions are

(α1, α2, α3) = (2, 0, 2) or (α1, α2, α3) = (1, 1, 1).

For the first solution, there is only one term of exterior degree 4: (x12, x21, x23, x32).
On the other hand, for the second solution there are 8 such terms of exterior degree 3.
Then we use the exterior algebra on x11, x22 and x33 to promote these terms to higher
degrees. In short, we have:

H3+ℓ(Mq(3), (q2,1,q−2)k) =

Spank

(
(x12, x13, x23), (x12, x13, x32), (x12, x31, x23), (x12, x31, x32), (x21, x13, x23),

(x21, x13, x32), (x21, x31, x23), (x21, x31, x32)
)
⊗ Λℓ(x11, x22, x33)

⊕ Spank((x12, x21, x23, x32))⊗ Λℓ−1(x11, x22, x33).

The Betti numbers of the homology are given in Figure 2.
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m 3 4 5 6 7
dimk Hm(Mq(3), f−1

q,3
k) 8 25 27 11 1

dimk Hm(GLq(3), f−1
q,3

k) 8 25 27 11 1

dimk Hm(SLq(3), f−1
q,3

k) 8 17 10 1

Figure 2: The Betti numbers for Mq(3), GLq(3) and SLq(3)

4.3. Mq(4), GLq(4) and SLq(4)

The character f−1
q,4 is now given by the sequence α = (q3, q, q−1, q−3) with |α| = 0.

The exterior degree 1 terms are

deg((x12)) = deg((x21)) =(1,−1, 0, 0), deg((x23)) = deg((x32)) =(0, 1,−1, 0),

deg((x13)) = deg((x31)) =(1, 0,−1, 0), deg((x24)) = deg((x42)) =(0, 1, 0,−1), (4.2)

deg((x14)) = deg((x41)) =(1, 0, 0,−1), deg((x34)) = deg((x43)) =(0, 0, 1,−1)

and we need the total multi-degree (3, 1,−1,−3). Thus we solve

(α1, α2, α3, α4, α5, α6)


1 −1 0 0
1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1
0 0 1 −1

 = (3, 1,−1,−3)

again with the restriction that αi ∈ {0, 1, 2}. The Betti numbers of this case are given
in Figure 3.

m 2 3 4 5 6 7 8 9 10 11 12 13 14
dimk Hm(Mq(4), f−1

q,4
k) 8 40 80 96 176 408 560 408 176 96 80 40 8

dimk Hm(GLq(4), f−1
q,4

k) 8 40 80 96 176 408 560 408 176 96 80 40 8

dimk Hm(SLq(4), f−1
q,4

k) 8 32 48 48 128 280 280 128 48 48 32 8

Figure 3: The Betti numbers for Mq(4), GLq(4) and SLq(4)
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