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Abstract
The element P1

2 of the mod 2 Steenrod algebra A has the property
(P1

2)
2 = 0. This property allows one to view P1

2 as a differential on
H∗(X,F2) for any spectrum X. Homology with respect to this dif-
ferential, M(X,P1

2), is called the P1
2 Margolis homology of X. In this

paper we give a complete calculation of the P1
2 Margolis homology of

the 2-local spectrum of topological modular forms tmf and identify
its F2 basis via an iterated algorithm. We apply the same techniques
to calculate P1

2 Margolis homology for any smash power of tmf .

Convention. Throughout this paper we work in the stable homotopy category of
spectra localized at the prime 2.

1. Introduction

The connective E∞ ring spectrum of topological modular forms tmf has played
a vital role in computational aspects of chromatic homotopy theory over the last
two decades [Goe10], [DFHH14]. It is essential for detecting information about the
chromatic height 2, and it has the rare quality of having rich Hurewicz image. There
is a K(2)-local equivalence [HM14]

LK(2)tmf ≃ EhG48

2 ,

where E2 is the second Morava E-theory at p = 2 and G48 is the maximal finite sub-
group of the Morava stabilizer group G2. The spectrum EhG48

2 can be used to build
the K(2)-local sphere spectrum (see [BG18]). The homotopy groups of tmf approx-
imate both the stable homotopy groups of spheres and the ring of integral modular
forms. In many senses, tmf is the chromatic height 2 analogue of connective real
K-theory ko. Further, the homotopy groups of tmf are completely known [Bau08].

Let us now recall the definition of the element P1
2 ∈ A. Milnor described the

mod 2 dual Steenrod algebra A∗ as the graded polynomial algebra [Mil58, App. 1]

A∗
∼= F2[ξ1, ξ2, ξ3, . . . ],

where |ξi| = 2i − 1. The Steenrod algebra A has an F2-basis dual to the monomial
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basis of A∗. The elements of the F2-basis of A which are dual to ξ2
s

t are denoted
by Ps

t , and the elements P0
t are denoted by Qt−1. When s < t, the elements Ps

t are
exterior power generators, i.e. (Ps

t )
2 = 0. Thus, any left A-module K can be regarded

as a complex with differential given by the left multiplication by Ps
t (for s < t). This

leads to the following definition.

Definition 1.1 ([Mar83]). Let K be any left A-module and 0 6 s < t. Let

LP
s

t : K −→ K

denote the left action by Ps
t . The left Ps

t Margolis homology group of K, ML(K,Ps
t ),

is defined as

ML(K,Ps
t ) :=

Ker LP
s
t : K → K

Im LP
s
t : K → K

.

For a right A-module K, one can similarly define the right Ps
t Margolis homology

group of K as

MR(K,Ps
t ) :=

KerRP
s
t : K → K

ImRP
s
t : K → K

,

where RP
s
t is the right action by Ps

t on K.

Notation 1.2. For a spectrum X, M(X,Ps
t ) will denote ML(H∗(X),Ps

t ) or equiv-
alently MR(H∗(X),Ps

t ).

Computations of Margolis homology underlymany essential computations in homo-
topy theory. For example, Adams work on BP 〈1〉 cooperations [Ada74] relies on the
computations of M(BP 〈1〉,Qi) for i = 0, 1. Calculations like M(bo,Qi) for i = 0, 1
are essential ingredients in the work of Mahowald on bo-resolutions [Mah81]. More
recently, Culver describedBP 〈2〉 resolutions [Cul19] by understandingM(BP 〈2〉,Qi)
for i = 0, 1, 2. Computation of M(tmf ∧n,Q2) is an essential ingredient in [BBB+].

The element Qi is primitive for all i ∈ N. In other words, the comultiplication map
∆ on A sends Qi to

∆(Qi) = Qi ⊗1 + 1⊗ Qi . (1)

Consequently, Qi acts on H∗(X) as a derivation, namely it follows the Leibniz rule

Qi(xy) = Qi(x) · y + x · Qi(y),

whenever X is a ring spectrum. The Leibniz rule implies the Künneth isomorphism
[Mar83, Proposition 17, p. 343]

M(X ⊗ Y,Qi) ∼= M(X,Qi)⊗M(Y,Qi)

and hence, M(X,Qi) is an F2 algebra whenever X is a ring spectrum. As a result,
computation of Qi Margolis homology and its description is often fairly straightfor-
ward.

On the other hand, for s > 0, Ps
t is not a primitive element of A. In particular,

∆(P1
2) = P1

2 ⊗1 + Q1 ⊗Q1 +1⊗ P1
2

and its action on H∗(X) for a ring spectrum X, does not follow the Leibniz rule.
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Instead, we have

P1
2(xy) = P1

2(x)y + Q1(x)Q1(y) + xP1
2(y). (2)

As a result, the product of two P1
2 cycles may not necessarily be a P1

2 cycle, hence
M(X,P1

2) may not admit any multiplicative structure even if X is a ring spectrum.
This is the main reason why the P1

2 Margolis homology calculations are significantly
more complicated.

Let us now consider the spectrum tmf . It is well-known ([HM14], [Mat16]) that

H∗(tmf ;F2) ∼= F2[ζ
8
1 , ζ

4
2 , ζ

2
3 , ζ4, ζ5, . . . ] ⊂ A∗

is a subalgebra of A∗. Here the elements ζi are the images of ξi under the antipode
of the Hopf algebra A∗ (see Section 2). The right action of Qi is given by the formula
(see [Cul19, §2] for details)

Qi(ζn) = ζ2
i+1

n−i−1.

Then, since the Qi are derivations, it can be easily seen that

M(tmf ,Q0) = F2[ζ
8
1 , ζ

4
2 ], M(tmf ,Q1) =

F2[ζ
8
1 , ζ

2
3 , ζ

2
4 , . . . ]

〈ζ43 , ζ
4
4 , . . . 〉

,

and M(tmf ,Q2) =
F2[ζ

4
2 , ζ

2
3 , ζ

2
4 , . . . ]

〈ζ82 , ζ
8
3 , ζ

8
4 , . . . 〉

.

In this paper, we give a complete calculation of M(tmf ∧r,P1
2) for arbitrary r > 1. In

fact, the calculation for r > 1 follows from the case r = 1, because after forgetting
the internal grading one can construct a non-canonical isomorphism (see Section 4)

M(tmf ∧r,P1
2)

∼= M(tmf ,P1
2).

For the case r = 1, we give an iterated algorithm (see Definition 3.14) that con-
structs an F2-basis of M(tmf ,P1

2). We give a complete description of M(tmf ,P1
2) in

Theorem 3.16 which is the main result of this paper. Although M(tmf ,P1
2) is not

an algebra, we notice that M(tmf ,P1
2) is a module over an infinitely generated exte-

rior algebra S (see Lemma 3.1 for a description of S). Theorem 3.16 also describes
M(tmf ,P1

2) as an S-module.
The key tool we use is the length spectral sequence (9), which we define in Section 2.

The length spectral sequence admits a d0 differential and a d2 differential and collapses
at the E3 page. The Leibniz rule does hold for the d0, but not for d2. In order to
work around this issue, we notice that the E2 page admits an action of S (i.e. d2 are
S linear) and we use it to simplify the computation of E∞ = E3.

We also notice that almost identical calculations lead to a complete description of
M(((BZ/2)×k)+,P

1
2). The methods developed in this paper can be considered as a

blueprint for computations of P 1
t Margolis homology of a variety of other A-modules.

Our calculations ofM(tmf ∧r,P1
2) have many applications, as the spectrum tmf has

a wide range of applications, particularly in chromatic homotopy theory. First note
that the cohomology of tmf , as a module over the Steenrod algebra A, is isomorphic
to (see [HM14], [Mat16])

H∗(tmf ;F2) ∼= A//A(2), (3)

whereA(2) is the subalgebra ofA generated by Sq1, Sq2 and Sq4. This, and a change of
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rings isomorphism, imply that the E2 page of the Adams spectral sequence converging
to tmf ∗X (for a spectrum X) is

Es,t
2 := Exts,tA(2)(H

∗(X),F2). (4)

One can detect infinite families in the E2 page via the map

q : Exts,tA(2)(H
∗(X),F2) −→ Exts,t

Λ(P1
2)
(H∗(X),F2).

The codomain of q can be understood by calculating M(X,P1
2). Note that

Exts,t
Λ(P1

2)
(F2,F2) ∼= F2[h2,1],

where |h2,1| = (1, 6) and

F2[h2,1]⊗M(X,P1
2) ⊂ Exts,t

Λ(P1
2)
(H∗(X),F2)

accounts for all the elements with positive s filtration. This shows that the knowledge
of M(X,P1

2) is crucial in detecting patterns in the E2-page of (4).

Motivation I — Towards homotopy groups of K(2)-local sphere

Computation of the homotopy groups of LK(n)S
0 — the sphere spectrum localized

with respect to Morava K-theories K(n) at various primes p and heights n — is the
central question of chromatic homotopy theory. It is sometimes easier to compute
π∗LK(n)X for finite complexes other than the sphere, although very little data like this
is known at n = p = 2 anyway. Recently, Bhattacharya and Egger introduced a family
of finite spectra Z [BE20a], and π∗LK(2)Z has been computed [BBB+, BE20b],
the first example of a finite complex at p = 2 whose K(2)-local homotopy groups are
completely determined. The finite complex Z can be constructed from the sphere
spectrum, by a succession of cofiber sequences of self-maps (see [BE20a]), the last
one of which is

Σ5A1 ∧ Cν
w

−→ A1 ∧ Cν −→ Z.

In a quest to leverage the knowledge of π∗LK(2)Z to π∗LK(2)S
0, one must first attempt

to compute the K(2)-local homotopy groups of A1 ∧ Cν. Very briefly, our strategy is
to use the v2-local tmf -based Adams spectral sequence

Er,t
1 = v−1

2 πt(tmf ∧ tmf
∧r

∧A1 ∧ Cν) =⇒ πt−r(LK(2)A1 ∧ Cν)

and compare it with that of Z. One can identify the E1-page of the above spectral
sequence using the classical Adams spectral sequence

Es,t
2 = Exts,tA (H∗(tmf ∧ tmf

∧r
∧A1 ∧ Cν),F2) ⇒ πt−s(tmf ∧ tmf

∧r
∧A1 ∧ Cν).

(5)
Because of (3) and the fact that H∗(A1 ∧ Cν) ∼= A(2)//Λ(Q2,P

1
2), and the change of

rings isomorphism, the E2-page of the spectral sequence (5) has the form

Exts,t
Λ(Q2,P

1
2)
(H∗(tmf

∧r
),F2).

Hence, computation of M(tmf ∧r,P1
2) is essential for understanding the E2-page

of (5).
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Motivation II — tmf resolution of the sphere spectrum
The connective spectrum bo is not a flat ring spectrum, hence the E2 page of the

bo-based Adams spectral sequence does not have a straightforward expression like the
classical Adams spectral sequence. However, Lellmann and Mahowald [LM87] were
able to calculate the d1 differentials (also see [BBB+20]) and gave a description of
the “v1-periodic part” of the E2-page. They identified the free Eilenberg–MacLane
summand of bo∧r. To identify this free summand one needs to identify the A(1) free
summand of

H∗(bo∧r) ∼= A//A(1)⊗r.

This can be done by calculating M(bo∧r,Q0) and M(bo∧r,Q1) and using the follow-
ing theorem due to Margolis.

Theorem 1.3 ([Mar83, Chapter 19, Theorem 6]). An A(n)-module K is free if and
only if M(K,Ps

t ) = 0 whenever s+ t 6 n+ 1 with s < t.

To emulate the strategy of Lellmann and Mahowald to understand the tmf -based
Adams spectral sequence for S0 one needs to first identify the A(2)-free part of

H∗(tmf ∧r) ∼= (A//A(2))⊗r.

Potentially, this can be identified using the knowledge of M(tmf ∧r,Qi) for i = 0, 1, 2
and M(tmf ∧r,P1

2), along with Theorem 1.3.

Motivation III — Infinite loop space of tmf
There are A-modules J(k), called Brown–Gitler modules [BG73], which assemble

into a doubly graded A-algebra, denoted here by J(∗)∗. Moreover, there is an A-
module isomorphism J(∗)∗ ∼= F2[x1, x2, . . . ] where xi ∈ J(2i)1 and the left A action
on J(∗)∗ is [Sch94]

Sq(xi) = xi + x2
i−1.

In fact, J(k)∗ can be thought of as inheriting this action by virtue of being a subobject
of A. Because of this, minor modifications to methods of this paper apply to the calcu-
lation of M(J(k),P1

2). By [KM13] there is a spectral sequence, obtained by studying
Goodwillie towers, relating the knowledge of H∗(tmf ;F2) to that of H∗(Ω

∞tmf ;F2)
(also see [HM16] which provides a spectral sequence relating the cohomology of tmf
to the cohomology of its infinite loop-space H∗(Ω∞tmf ;F2)). Roughly speaking, this
relies on computing certain derived functors, usually labeled Ω∞

s , in the category of
unstable modules over A. It turns out that there is an isomorphism (see [Goe86] or
[HK00])

Ω∞
s Σ−t(A//A(2))∗ ∼= Exts,tA(2)(F2, J(∗)),

so that these computations require an understanding of the J(k) as modules over
A(2), the hardest part of which is understanding how P1

2 acts.

Organization of the paper
In Section 2, we recall some facts about the Steenrod algebra and its dual. We

introduce the spectral sequence (9), which computes the P1
2 Margolis homology of

tmf , and discuss the d0 differentials in it.
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In Section 3, we compute the E3 = E∞ page of the spectral sequence (9). We
do that by introducing building blocks MJ and computing M(MJ ,P

1
2). Then we

establish the relationship between M(tmf ,P1
2) and M(MJ ,P

1
2) in Theorem 3.16.

In Section 4, we show how to apply the same methods to calculate P1
2 Margolis

homology for tmf ∧r and ((BZ/2)×k)+. Theorem 3.16 essentially gives the complete
answer in these cases.
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2. Action of P1
2 and the length spectral sequence

The dual Steenrod algebra A∗ = π∗(HF2 ∧HF2) has the structure of a graded
commutative algebra which Milnor [Mil58] showed to be a polynomial algebra

A∗
∼= F2[ξ1, ξ2, ξ3, . . . ],

where |ξi| = 2i − 1. Milnor defined Sq(r1, r2, . . .) ∈ A as the dual of ξr11 ξr22 . . . and
showed that they form an F2 basis of the Steenrod algebra A, known as the Milnor
basis. The Ps

t elements are defined as

Ps
t = Sq(r1, . . .), where ri =

{

0, i 6= t,

2s, i = t.

The action of an element a ∈ A on an A-algebra follows the product rule given by
the Cartan formula, i.e.

a(x · y) = Σia
′
i(x) · a

′′
i (y),

where ∆(a) = Σia
′
i ⊗ a′′i is the comultiplication in the Hopf algebra A.

Remark 2.1. We would like to note that standard commonly used notation for the
generators of the dual Steenrod algebra at p = 2 differs from the notation in the
original paper [Mil58], and we are grateful to John Rognes for explaining this to us.
In [Mil58, Appendix 1], Milnor denotes the polynomial generators of the dual Steenod
algebra at p = 2 by ζi, so that A∗

∼= F2[ζ1, ζ2, . . .] and defines Sq(r1, r2, . . .) as dual to
the element ζr11 ζr22 · · · . It has since become standard in the literature [MT68, Ada74,
Mar83] to use a different notation and to denote the polynomial generators which
were denoted by ζi in [Mil58, Appendix 1] by ξi, in order to match the notation for
the odd primary Steenrod algebra. Hence in current standard notation Sq(r1, r2, . . .)
is dual to ξr11 ξr22 · · · . The symbol ζi is now usually used to denote the image of ξi
under the antipode of the Hopf algebra χ : A∗ → A∗, induced by the ‘flip map’ on
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HF2 ∧HF2. The elements ζi = χ(ξi) can be computed recursively using the formula
∑

i+j=k

ξ2
j

i χ(ξj) = 0, together with the assumption that ξ0 = 1 and ξi = 0 when i < 0.

The homology of tmf is the subalgebra of A∗ ([HM14], [Mat16, Theorem 5.13])

T := H∗(tmf ;F2) ∼= (A//A(2))∗ = F2[ζ
8
1 , ζ

4
2 , ζ

2
3 , ζ4, ζ5, . . . ].

Thus the action of A on T is simply the restriction of the action of A on A∗.
The right action of A on A∗ is determined by the action of the total squaring

operation Sq = 1 +
∑

i>0 Sq
i [Pea14, Lemma 3.6]

(ζi) Sq = ζi + ζ2i−1 + ζ4i−2 + · · ·+ ζ2
i−1

1 + 1 (6)

which is a ring homomorphism.

Remark 2.2 (Action of the total squaring operation). There are multiple ways to
define the action of A on A∗. While we will be using the action defined by (6), we
would like to collect other commonly used actions here. By [Mah81], the right and
left actions of Sq on ξi are given by the formulas

Sq(ξi) = ξi + ξ2i−1, (ξi) Sq = ξi + ξi−1,

while the left action on ζi is

Sq(ζi) = ζi + ζi−1 + · · ·+ ζ1 + 1.

From these formulas we can derive

Qi−1(ξn) = ξ2
i

n−i, (ζn)Qi−1 = ζ2
i

n−i;

the second equation can also be found in [Cul19].

�
Important Notation 2.3. Since we only work with the right action of Sq in this

paper, we will write a(x) to denote the right action of a ∈ A on x ∈ H∗(tmf ) for the
rest of the paper. Thus, from now on

a(x) := (x)a.

We now focus on the action of P1
2 = Sq(0, 2) = Sq2 Sq4 + Sq4 Sq2 on T. From (6),

one can easily see that Sq2i acts trivially on ζn, when i > 0 and n 6= 1. It follows
immediately that

P1
2(ζi) = 0.

Beware! This does not mean that P1
2(ζiζj) = 0, as the Leibniz rule does not hold.

Since ∆(P1
2) = P1

2 ⊗1 + Q1 ⊗Q1 +1⊗ P1
2, we obtain the product formula

P1
2(xy) = P1

2(x)y + Q1(x)Q1(y) + xP1
2(y). (7)

Using Q1(ζi) = ζ4i−2, we get

P1
2(ζiζj) = ζ4i−2ζ

4
j−2, P1

2(ζ
2
i ) = ζ8i−2. (8)

Formulas become more complicated for triple products, e.g.

P1
2(ζiζjζk) = ζ4i−2ζ

4
j−2ζk + ζ4i−2ζjζ

4
k−2 + ζiζ

4
j−2ζ

4
k−2,

and in general we have the following result.
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Lemma 2.4. The action of P1
2 on T is given by the formula

P1
2(ζi1 . . . ζin) =

∑

16j<k6n

ζi1 . . . ζin
ζijζik

Q1(ζij )Q1(ζik)

=
∑

16j<k6n

ζi1 . . . ζij−1
ζ4ij−2ζij+1

. . . ζik−1
ζ4ik−2ζik+1

. . . ζin ,

where indices are allowed to repeat.

Proof. Follows from an inductive argument on n, using (7) and the facts that P1
2(ζi) =

0 and Q1(ζi) = ζ4i−2.

The technique developed in this paper begins with the following observation. Con-
sider the subalgebra

E := F2[ζ
8
1 , ζ

4
2 , ζ

2
3 , ζ

2
4 , ζ

2
5 , . . . ] ⊂ T = F2[ζ

8
1 , ζ

4
2 , ζ

2
3 , ζ4, ζ5, . . . ]

which we will call the even subalgebra of T, as every element in E has even grading.
Since |Q1 | = 3 and every element in E has even grading, Q1 must act trivially on E .
Thus, P1

2 restricted to E⊗r follows the Leibniz rule, therefore (E⊗r,P1
2) is a differential

graded algebra, and hence, M(E⊗r,P1
2) is an algebra. Using (8) and the Künneth

isomorphism, we can easily deduce the following result.

Lemma 2.5. The P1
2 Margolis homology of E is given by

M(E ,P1
2)

∼= Λ(ζ42 , ζ
4
3 , ζ

4
4 , . . . ).

Moreover

M(E⊗r,P1
2)

∼= M(E ,P1
2)

⊗r ∼= (Λ(ζ42 , ζ
4
3 , ζ

4
4 , . . . ))

⊗r.

Notation 2.6. For a set A, we let F2〈A〉 denote the F2-vector space which has the
generating set A.

Now consider the quotient K := T//E ∼= F2 ⊗E T. We have an isomorphism K ∼=
Λ(ζ4, ζ5, . . . ), and the induced action of Q1 and P1

2 on K is trivial. The algebra K
admits a natural increasing filtration

Gp(K) := F2〈ζi1 . . . ζik |k 6 p〉,

induced by the length of the monomials. We call it the length filtration.
This length filtration on K induces an increasing filtration {Gp(T)}p>0 on T, where

Gp(T) is the pullback of Gp(K) (in vector spaces) along the quotient map T ։ K

Gp(T) T

Gp(K) K.

Definition 2.7. Let I be a finite tuple of natural numbers, and for I = {i1, . . . , in}
let ζI denote the monomial ζi11 . . . ζinn . Then the length L of ζI is defined by

L(ζI) =

|I|
∑

j=1

(ij mod 2).
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In other words, L(ζI) counts the number of odd exponents in ζI . Then Gp(T) is
the span of monomials ζI of length less than or equal to p

Gp(T) ∼= F2〈ζ
I |L(ζI) 6 p〉.

The length function L measures “how far” a given monomial in T is from the even
subalgebra E . Since there is an F2-vector space isomorphism

T ∼= E ⊗ T//E = E ⊗ K

any monomial m ∈ T can be uniquely written as e · k where e ∈ E and k ∈ K.

Example 2.8. If m = ζ43ζ
5
5ζ

3
8 , then there is an unique expression m = e · k, where

e = ζ43ζ
4
5ζ

2
8 ∈ E and k = ζ5ζ8 ∈ K.

The following lemma shows that the action of Q1 and P1
2 preserves the length

filtration.

Lemma 2.9. Let m ∈ T be any monomial.

(i) If m ∈ E, then Q1(m) = 0 and P1
2(m) ∈ E.

(ii) If m /∈ E, then Q1(m) is a sum of monomials of length exactly L(m)− 1 and

P1
2(m) = mL +mL−2,

where mL is a sum of monomials of length exactly L(m) and mL−2 is a sum of
monomials of length exactly L(m)− 2.

Proof. When m ∈ E , Q1(m) = 0 by the Leibniz rule. Using Lemma 2.4 we have
P1
2(m) ∈ E and L(P1

2(m)) = L(m) = 0.

Now assume m /∈ E , which means m = e · k for some e ∈ E and some 1 6= k ∈ K.
Note that k is of the form ζi1 . . . ζin , where indices do not repeat.

The action of Q1 is given by the formula

Q1(ζi1 . . . ζin) =
n∑

k=1

ζi1 . . . ζik−1
ζ4ik−2ζik+1

. . . ζin ,

where we allow repetition of indices. Since Q1 acts trivially on E , it follows that

Q1(e · k) = e · Q1(k).

From the formula above we see that Q1(k) 6= 0 and L(Q1(k)) = L(k)− 1. Hence,

L(Q1(m)) = L(e · Q1(k)) = L(Q1(k)) = L(k)− 1 = L(e · k)− 1 = L(m)− 1.

Next, note that

P1
2(m) = P1

2(e) · k + Q1(e) · Q1(k) + e · P1
2(k) = P1

2(e) · k + e · P1
2(k).

From Lemma 2.4, we see that L(P1
2(k)) = L(P1

2(k))− 2 assuming P1
2(k) 6= 0. Now set

mL = P1
2(e) · k and mL−2 = e · P1

2(k)

Lemma 2.10. The Hopf algebra Λ(Q1,P
1
2) is commutative and cocommutative.
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Proof. Commutativity follows from the fact that P1
2 and Q1 commute, see [AM71],

Lemma 1.3(2) (in the notation of [AM71], P1
2 = P2(2) and Q1 = P2(1)). Cocommu-

tativity follows from the fact that the diagram

Λ(Q1,P
1
2)

∆

∆

Λ(Q1,P
1
2)⊗ Λ(Q1,P

1
2)

flip

Λ(Q1,P
1
2)⊗ Λ(Q1,P

1
2)

commutes, because of (1) and (2).

If M is a Λ(Q1,P
1
2)-module then let C•

M denote the periodic chain complex

. . .
P
1
2−→ M

P
1
2−→ M

P
1
2−→ . . . .

Its homology groups are isomorphic in each degree, i.e.

Hi(C
•
M ) ∼= Hj(C

•
M )

for all i, j ∈ Z. We use M(M,P1
2) to denote this common homology group. When

M = T, the filtration G•(T) induces a filtration on C•
T
. By Lemma 2.9, P1

2 respects
the length filtration. This means we have a short exact sequence of chain complexes

0
⊕

p∈Z
Gp−1(C•

T
)

⊕

p∈Z
Gp(C•

T
)

⊕

p∈Z

Gp(C•

T
)

Gp−1(C•

T
) 0.

Upon taking the homology, this short exact sequence of chain complexes produces an
exact couple, resulting in a spectral sequence

Ep,q
1 := Hq

(
Gp(C•

T
)

Gp−1(C•
T
)

)

⇒ Hq(C•
T).

We rewrite this spectral sequence as

Ep
1 := M

(
Gp(T)

Gp−1(T)
,P1

2

)

⇒ M(tmf ,P1
2), (9)

and we call it the length spectral sequence.

The E1 page of (9) is easy to calculate. Note that the length filtration G•(T) is
multiplicative, i.e.

Gp(T) ·Gp′

(T) ⊂ Gp+p′

(T),

hence the associated graded

⊕

p>0

Gp(T)

Gp−1(T)
∼= E ⊗ K

is an F2-algebra. The action of Λ(Q1,P
1
2) on E ⊗ K is defined using the Cartan formula

as in the definition below.

Definition 2.11 ([Mar83], p. 186). Let Γ be any Hopf algebra. For two Γ-modules
M and N , the underlying F2 vector space of M ⊗N is simply M ⊗F2

N , and Γ acts
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via the diagonal map, i.e.

a(m⊗ n) =
∑

i

ai(m)⊗ a′i(n),

where a ∈ Γ and ∆(a) =
∑

i ai ⊗ a′i, where ∆ is the coproduct of the Hopf algebra.

Now we describe the action of P1
2 on a monomial m ∈

⊕

p>−1
Gp(T)

Gp−1(T) . Write m =

e⊗ k for some e ∈ E and k ∈ K. By Definition 2.11

P1
2(m) = P1

2(e⊗ k) = P1
2(e)⊗ k.

Since P1
2 restricted to E follows the Leibniz rule, the E1 page of (9) is also an F2-

algebra and isomorphic to

E∗
1
∼= M(E ⊗ K,P1

2)
∼= M(E ,P1

2)⊗K ∼= Λ(ζ42 , ζ
4
3 , . . . )⊗ Λ(ζ4, ζ5, . . . ).

In order to avoid confusion regarding the multiplicative structure of E∗
1 , it is conve-

nient to rename the generators.

Notation 2.12. We set xi := ζi+3 and ti := ζ4i+1. Further, for finite subsets I =
{i1, . . . , in} ⊂ N and J = {j1, . . . , jm} ⊂ N, we let tI and xI denote the monomi-
als ti1 . . . tin and xj1 . . . xjn respectively. We use tIxJ to denote the tensor product
tI ⊗ xJ .

Lemma 2.9 and Lemma 2.10 imply that we have a commutative diagram of chain
complexes

0
⊕

p G
p(C•

T
)

Q1( )

⊕

p G
p+1(C•

T
)

Q1( )

⊕

p
Gp+1(C•

T
)

Gp(C•

T
)

Q1( )

0

0
⊕

p G
p−1(C•

T
)

⊕

p G
p(C•

T
)

⊕

p
Gp(C•

T
)

Gp−1(C•

T
) 0.

Consequently there is an action of Q1 on each page of (9), which shifts the length
filtration by −1. In particular, we note Q1(xi) = ti and in general

Q1(tIxJ) =
∑

j∈J

tjtIxJ−{j}. (10)

Let m ∈ T be any monomial, mL and mL−2 be as in Lemma 2.9, and let [m] denote
the equivalence class in the E1 page of (9) represented by m. Lemma 2.9 implies that
the d1 differential of (9) is trivial,

d2([m]) = [mL−2]

for the class of the monomial m ∈ T in the E1 page, and the spectral sequence (9)
collapses at the E3 page. If we write m ∈ T as m = e · k, where e ∈ E and k ∈ K, then

d2([m]) = [e · P1
2(k)] = [e] · [P1

2(k)].

This means that the d2 differential of (9) is M(E ,P1
2)-linear. It follows from the



390 PRASIT BHATTACHARYA, IRINA BOBKOVA and BRIAN THOMAS

formula of Lemma 2.4 that

d2(tIxJ) =
∑

K∈J[2]

tKtIxJ−K , (11)

where J [2] is the set of subsets of J which contain two elements.
The formula for the d2 differentials is intimately related to the action of Q1 on

the E2 page of (9). The Λ(Q1)-module structure on E•
2 (see (10)) can be extended

to the Λ(Q1,P
1
2)-module structure using the algebra structure of E•

2 and the product
formula (7), together with

P1
2(xi) = P1

2(ti) = 0.

The action of P1
2 that results from this procedure is

P1
2(tIxJ) =

∑

K∈J[2]

tKtIxJ−K (12)

on the monomial basis, which can be extended to all of E•
2 using F2-linearity. Notice

that the action we obtain through this process coincides with the formula for the d2
differentials (11).

3. The reduced length

For convenience, we denote the E2-page of (9) by

R = Λ(ti : i > 1)⊗ Λ(xi : i > 1),

which is an F2-algebra, as well as a Λ(Q1,P
1
2)-module, where the actions of Q1 and

P1
2 are given by (10) and (12) respectively. In this section we analyze the Λ(Q1,P

1
2)-

module structure of R, which leads us to a description of

E•
∞

∼= . . . ∼= E•
3
∼= H(E•

2 , d2)
∼= M(R,P1

2).

The main idea here is to notice (this will be shown in Lemma 3.3) that the action of
P1
2 is linear with respect to the subalgebra

S := Λ(tixi|i ∈ N+) ⊂ R,

which implies that M(R,P1
2) admits an S-module structure.

Lemma 3.1. The subalgebra S ⊂ R is a trivial Λ(Q1,P
1
2)-submodule which splits off

as a Λ(Q1,P
1
2)-module.

Proof. For any element tIxI ∈ S, it is clear from (10) and (11) that

Q1(tIxI) = 0 = P1
2(tIxI).

Thus S is a trivial submodule.
Now observe from (10) and (11) that none of the monomials tIxI ∈ S is a summand

of Q1(tI′xJ ′) or P1
2(tI′xJ ′) for any choice of I ′ and J ′. Hence, S is a split summand.

Corollary 3.2. Every element of S is a nonzero cycle in the M(R,P1
2).

Lemma 3.3. The action of P1
2 on R is S-linear.
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Proof. It is enough to show that

P1
2(tixi · tIxJ) = (tixi) · P

1
2(tIxJ). (13)

If i ∈ I, then titI = 0. Hence both the LHS and the RHS of (13) are zero.

If i ∈ J , then xixJ = 0, hence LHS of (13) is zero. On the other hand,

RHS = tixi ·
∑

K∈J[2]

tKtIxJ−K

=
∑

i∈K∈J[2]

titKtIxixJ−K + ti ·




∑

i/∈K∈J[2]

titIxixJ−K



 = 0,

as titK = 0 when i ∈ K and xixJ−K = 0 when i /∈ K.

Now consider the case when i /∈ I ∪ J . Let I ′ = I ∪ {i} and J ′ = J ∪ {i}. Then,

P1
2(tixi · tIxJ) = P1

2(tI′xJ ′) =
∑

K∈J ′[2]

tKtI′xJ ′−K

=
∑

i∈K∈J ′[2]

tKtI′xJ ′−K +
∑

i/∈K∈J ′[2]

tKtI′xJ ′−K

=
∑

i/∈K∈J ′[2]

tKtI′xJ ′−K

= tixi ·
∑

K∈J[2]

tKtIxJ−K

= tixi · P
1
2(tIxJ).

Remark 3.4. While the E2 page of (9) admits an F2-algebra structure, the E3 page
does not admit any multiplicative structure. This is because the d2 differentials do
not follow the Leibniz rule and the product of d2 cycles may not be a cycle. For
example, xi for all i ∈ N+, is a d2-cycle, whereas xixj for i 6= j supports a differential
d2(xixj) = titj by (11). Even if α, β and α · β are P1

2 cycles it is unclear that the
pairing [α] · [β] = [α · β] is well-defined in the E3 page.

Corollary 3.5. M(R,P1
2) is a module over the ring S.

Proof. By Lemma 3.3, there exists a pairing µ : S ⊗R → R such that the diagram

S ⊗R
µ

1⊗P
1
2

R

P
1
2

S ⊗R
µ

R

commutes. It follows that M(R,P1
2) is an S module.

As a result, we only need to understand the action of P1
2 on the generators of R

when viewed as an S-module. In order to approach this problem we introduce the
notion of reduced length.
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Definition 3.6. For any monomial tIxJ ∈ R the reduced length ℓ is

ℓ(tIxJ) = |J − I| = |J ∩ Ic| = |J | − |J ∩ I|,

where Ic denotes the complement of I.

Note that the length of tIxJ ∈ R is given by the formula L(tIxJ) = |J |; in other
words, it is counting the number of factors of xJ . Whereas, ℓ(tIxJ) counts only those
factors xj in xJ for which tj is not a factor of tI . For example,

ℓ(x1) = ℓ(t1x1x2) = ℓ(t1t2x1x2x3) = ℓ(t1t2t3x4) = 1,

ℓ(x1x2) = ℓ(t1x1x2x3) = ℓ(t1t2t3t4x5x6) = 2.

Remark 3.7. The reduced length function ℓ measures “how far” a given monomial in
R is from the subalgebra S.

For each i ∈ N+, let Mi := Λ(Q1){xi} ⊂ R denote the Λ(Q1,P
1
2)-submodule iso-

morphic to Λ(Q1) and generated by xi. For an indexing set K ⊂
finite

N+, let

MK :=
⊗

j∈K

Mj ⊂ R

with the convention that M∅ := F2. If the indexing set is [n] = {1, . . . , n} ⊂ N+, then
we write M[n] to denote M{1,...,n}.

In Figure 1, Figure 2 and Figure 3 we present Mi, M{1,2} and M{1,2,3} respectively
as a Λ(Q1,P

1
2)-module. In these figures the dotted curved lines depict the action of

Q1 and dashed straight lines depict the action of P1
2.

ti

xi

Figure 1: Mi as a module over Λ(Q1,P
1
2)

t1t2

t1x2 t2x1 + t1x2

x1x2

Figure 2: M[2] as a module over Λ(Q1,P
1
2), where [2] = {1, 2}

Note that the set W := {tIxJ ∈ R|I ∩ J = ∅} forms a generating set for R as an
S-module as any monomial tIxJ ∈ R can be uniquely written as a product of an
element of W and a monomial in S:

tIxJ = tI∩JxI∩J · tI−(I∩J)xJ−(I∩J).
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t1t2t3

t1t2x3 + t1t3x2 + t2t3x2

t3x1x2 + t2x1x3 + t1x2x3

x1x2x3

t1t2x3 + t2t3x1

t3x1x2 + t1x2x3

t1t3x2 + t1t2x3

t2x1x3 + t3x1x2

Figure 3: M[3] as a module over Λ(Q1,P
1
2), where [3] = {1, 2, 3}

For any finite subset K ⊂ N+,

WK := {tIxJ |I ∪ J = K, I ∩ J = ∅} ⊂ W

forms an F2-basis for MK , i.e. F2〈WK〉 = MK . Since

W =
⊔

K ⊂
finite

N+

WK

and F2〈WK〉 = MK is closed under the action of Q1 and P1
2 (these actions preserve

the total indexing set K, by (10) and (11)), we learn that

R//S ∼= F2 ⊗S R ∼= R⊗S F2
∼=
⊕

K

MK

is an isomorphism of Λ(Q1,P
1
2)-modules. Consequently, we have the following lemma.

Lemma 3.8. Let SK ⊂ S denote the subalgebra Λ(tIxI |I ⊂ N+ −K). There is a
Λ(Q1,P

1
2)-module isomorphism

⊕

K ⊂
finite

N+

SK ⊗MK
∼= R.

Proof. Consider the F2-vector space isomorphism

ι : R −→
⊕

K ⊂
finite

N+

SK ⊗MK

which sends

tIxJ 7→ tI∩JxI∩J ⊗ tI−(I∩J)xJ−(I∩J) ∈ SK ⊗MK ,

where K = I ∪ J − I ∩ J . The map ι−1 sends

tBxB ⊗ tK−AxA 7→ tB∪(K−A) · xB∪A,

where A ⊂ K. This map is also a Λ(Q1,P
1
2)-module isomorphism as SK ⊂ S is a

trivial Λ(Q1,P
1
2)-module by Lemma 3.1.

Hence we can reduce the problem of computingM(R,P1
2) to computingM(MK,P1

2)
for various finite subsets K of N+. Thus, we first need to understand the structure of
MK as a Λ(Q1,P

1
2)-module.
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Remark 3.9. Let [n] denote the indexing set {1, . . . , n} ⊂ N+. If |K| = n, then there
exists the unique order preserving bijection

ι : [n] −→ K

and it induces an isomorphism ι : M[n]

∼=
−→ MK . Thus it is enough to understand

Λ(Q1,P
1
2)-module structure of M[n] for all n ∈ N+.

As depicted in Figure 3, M[3] splits as a Λ(Q1,P
1
2)-module

M[3]
∼= Λ(Q1,P

1
2){x1x2x3} ⊕ Λ(Q1){t3x1x2 + t1x2x3} ⊕ Λ(Q1){t2x1x3 + t3x1x2}

(14)
as a sum of a free Λ(Q1,P

1
2)-module and two copies of Λ(Q1).

Remark 3.10. The splitting of (14) is a consequence of Lemma 2.10. Since Λ(Q1,P
1
2)

is cocommutative, for any Λ(Q1,P
1
2)-module M and σ ∈ F2[Σn], the induced map

σ : M⊗n −→ M⊗n

is a map of Λ(Q1,P
1
2)-modules. Note that in the group ring F2[Σ3], the identity

element can be written as a sum of idempotent elements

1 = e+ f1 + f2.

For example, one can choose e = 1+ (1 2 3) + (1 2 3), f1 = 1+ (1 2) + (1 3) + (1 3 2)
and f2 = 1+ (1 2) + (1 3) + (1 2 3). Then we have

M⊗3 ∼= e(M⊗3)⊕ f1(M
⊗3)⊕ f2(M

⊗3).

When M ∼= Λ(Q1), we get the decomposition of (14).

The splitting of (14), along with the following fact about finite dimensional Hopf
algebras, is the key to understanding the structure of MK .

Theorem 3.11 ([NZ89]). If H is a finite dimensional connected Hopf algebra over
a field F, then for any H-module M , H⊗M is a free H-module.

Let us denote by A the Λ(Q1,P
1
2)-module isomorphic to Λ(Q1) and let B := A⊗A.

Then using (14) and Theorem 3.11, we notice that

M[3]
∼= B ⊗A ∼= {Free} ⊕A⊕2, M[4]

∼= {Free} ⊕B⊕2, M[5]
∼= {Free} ⊕A⊕4,

where {Free} denotes a free Λ(Q1,P
1
2) module. This iterative process can be continued

as described in Lemma 3.12 below. We use A{y}, resp. B{y}, to specify that y
generates A, resp. B, as a Λ(Q1,P

1
2) module. For example, Mi

∼= A{xi}.

Lemma 3.12. There exist elements h2r+1,i ∈ M[2r+1] with ℓ(h2r+1,i) = r + 1 such
that, as a Λ(Q1,P

1
2)-module,

M[2r+1]
∼= {Free} ⊕

(
2r⊕

i=1

A{h2r+1,i}

)

.

There exist elements h2r,i ∈ M[2r] with ℓ(h2r+1,i) = r + 1 such that, as a Λ(Q1,P
1
2)-

module

M[2r]
∼= {Free} ⊕

2r−1

⊕

i=1

B{h2r,i}.
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Proof. Our proof is by induction on r. From Figure 1, Figure 2 and Figure 3, the
claim is true for k = 1, 2, 3. Note that

h1,1 = x1, h2,1 = x1x2, h3,1 = (t3x1 + x3t1)x2, h3,2 = (t2x3 + t3x2)x1.

Now assume that the result is true for 2r − 1, i.e.

M[2r−1]
∼= {Free} ⊕

⊕

16i62r−1

A{h2r−1,i},

where ℓ(h2r−1,i) = r and {Free} is a free Λ(Q1,P
1
2)-module. It follows that

M[2r]
∼= M[2r−1] ⊗M2r

∼= ({Free} ⊗A{x2r})⊕
⊕

16i62r−1

B{h2r−1,i · x2r}.

By Theorem 3.11, the first summand is, again, a free module. Set

h2r,i = h2r−1,i · x2r

and notice ℓ(h2r−1,ix2r) = ℓ(h2r−1,i) + ℓ(x2r) = r + 1.
To complete the inductive argument, observe

M[2r+1]
∼= M[2r−1] ⊗B{x2rx2r+1}

∼=

(

{Free} ⊕
⊕

16i62r−1

A{h2r−1,i}

)

⊗B{x2rx2r+1}

∼= {Free} ⊕
⊕

16i62r−1

(A{h2r+1,2i−1} ⊕A{h2r+1,2i}),

where one can define the generators h2r−1,j from Figure 3 by replacing x1, x2, x3 with
h2r−1,i, x2r and x2r+1 respectively. More specifically, one can define

h2r+1,2i−1 = Q1(h2r−1,i · x2r+1) · x2r, h2r+1,2i = h2r−1,i · Q1(x2rx2r+1).

It is easy to check that ℓ(h2r+1,j) = r + 1.

Following the proof of Lemma 3.12, we can provide an explicit basis ofM(MK ,P1
2).

By Remark 3.9 it suffices to provide a basis for M(M[n],P
1
2) for all n > 1. We do so

inductively (see Definition 3.14), however we must treat the odd and the even case
separately, essentially because of Lemma 3.12. Since A is a trivial Λ(P1

2)-module,
M(A,P1

2)
∼= A, and we get

M(M[2r+1],P
1
2)

∼= M

(
2r⊕

i=1

A{h2r+1,i},P
1
2

)

∼=

2r⊕

i=1

A{h2r+1,i}.

Thus the collection

{h2r+1,i : 1 6 i 6 2r} ∪ {Q1(h2r+1,i) : 1 6 i 6 2r}

is an F2-basis of M(M[2r+1],P
1
2). When n is even, say n = 2r, then

M(M[2r],P
1
2)

∼=

2r−1

⊕

i=1

M(B{h2r,i},P
1
2).

Now note that, if B{x⊗ y} = A{x} ⊗A{y} (where x and y are generators), then

{Q1(x)⊗ y, x⊗ Q1(y)}
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is an F2-basis of M(B{x⊗ y},P1
2). Using the fact that

h2r,i = h2r−1,i · x2r,

we get Corollary 3.13 and Definition 3.14 thereafter.

Corollary 3.13. Let M(MK ,P1
2)l = {x ∈ M(MK ,P1

2)|ℓ(x) = l}.
If |K| = 2r + 1, then

dimM(MK ,P1
2)l =

{
2r, if l = r, r + 1,
0, otherwise.

If |K| = 2r, then

dimM(MK ,P1
2)l =

{
2r, if l = r,
0, otherwise.

Proof. Lemma 3.12 implies

M[2r+1]
∼= {Free} ⊕

⊕

16i62r

A{h2r+1,i},

where ℓ(h2r+1,i) = r + 1. By Lemma 2.9 we have ℓ(Q1(h2r+1,i)) = r. Thus {h2r+1,i}
is the basis for M(M[2r+1],P

1
2)r+1 and {Q1(h2r+1,i)} is the basis for M(M[2r+1],P

1
2)r.

Applying Remark 3.9 we deduce the statement about dimension for any MK with
|K| = 2r + 1.

For the even case we have from Lemma 3.12

M[2r]
∼= {Free} ⊕

⊕

16i62r−1

B{h2r,i},

where ℓ(h2r,i) = r + 1. Then for each i, M(B{h2r,i},P
1
2) = M(B{h2r,i},P

1
2)r is an

F2 vector space of dimension 2 generated by {h2r−1,i · t2r,Q1(h2r−1,i) · x2r}.

Definition 3.14. We define the basis B[n],l of M(M[n],P
1
2)l for 0 6 l 6 n inductively

starting with B[1],0 = {t1} and B[1],1 = {x1}. Suppose we have defined

B[2r−1],l :=







{h2r−1,1, . . . , h2r−1,2r−1} if l = r,
{Q1(h2r−1,1), . . . ,Q1(h2r−1,2r−1)} if l = r − 1,

∅ otherwise.

Then define:

B[2r],r :={h2r−1,1 · t2r, . . . , h2r−1,2r−2 · t2r}∪{Q1(h2r−1,1) ·x2r, . . . ,Q1(h2r−1,2r−2) ·x2r}

and set B[2r],l := ∅ if l 6= r.
Nowdefine h2r+1,2i−1=Q1(h2r−1,i)·(x2r+1 ·x2r) and h2r+1,2i=h2r−1,i ·Q1(x2rx2r+1)

and set

B[2r+1],l :=







{h2r+1,1, . . . , h2r+1,2r−2} if l = r + 1,
{Q1(h2r+1,1), . . . ,Q1(h2r+1,2r−2)} if l = r,

∅ otherwise.

We let B[n] denote the union
⋃

l B[n],l. Let BK denote the image of the B[n] under the
isomorphism ι : M[n] → MK of Remark 3.9.
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Example 3.15 (Examples of BK). We explicitly identify B[n] using Definition 3.14 for
n 6 4, and for n = 1, 2, 3 we can compare to Figures 1, 2 and 3, to see that B[n] is
indeed the basis for M(M[n],P

1
2).

� B[1] = {t1, x1},

� B[2] = {t1x2, t2x1},

� B[3] = {t1t2x3 + t1t3x2, t1t2x3 + t2t3x1} ∪ {t3x1x2 + t2x1x3, t3x1x2 + t1x2x3},

� B[4] = {t1t2x3x4 + t1t3x2x4, t1t2x3x4 + t2t3x1x4, t3t4x1x2 + t2t4x1x3, t3t4x1x2

+ t1t4x2x3}.

Note that PK := F2〈BK〉 ⊂ MK is a split summand. This is because the inclu-
sion map PK →֒ MK induces M(−,P1

2)-isomorphism, or equivalently, the quotient
MK/PK is a free Λ(P1

2)-module.

Theorem 3.16. Let K be a finite subset of N+. Let

SBK := {tIxI · b | I ∩K = ∅ and b ∈ BK} ⊂ R.

Then

B :=
⊔

K ⊂
finite

N+

SBK

forms a basis of the F2-vector space M(tmf ,P1
2) and

M(tmf ,P1
2)

∼=
⊕

K ⊂
finite

N+

F2〈SBK〉 ∼=
⊕

K ⊂
finite

N+

SK ⊗M(MK ,P1
2)

is an isomorphism of F2-vector spaces.

Proof. By Lemma 3.8, we have a Λ(Q1,P
1
2) module isomorphism

R ∼=
⊕

K ⊂
finite

N+

SK ⊗MK .

Therefore, the linearity of the action of P1
2 (see Corollary 3.5) with respect to elements

in S gives us

M(tmf ,P1
2)

∼= M(R,P1
2)

∼= M

(
⊕

K ⊂
finite

N+
SK ⊗MK ,P1

2

)

∼=
⊕

K ⊂
finite

N+
SK ⊗M(MK ,P1

2)
∼=
⊕

K ⊂
finite

N+
SK ⊗ PK

∼=
⊕

K ⊂
finite

N+
F2〈SBK〉.

Remark 3.17. Let e denote the exchange map e : R → R which sends

e : tIxJ 7→ tJxI .

It seems to be the case that [m] ∈ M(tmf ,P1
2) if and only if [e(m)] ∈ M(tmf ,P1

2).
The source of such symmetry is unclear to the authors, although it might be related
to Spanier–Whitehead duality.
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Finally, we would like to say a word about the module structure of M(tmf ,P1
2)

over S. Note that the collection of elements

BS := {tIxI |I ⊂
finite

N+}

forms an F2-basis of S. The S-module structure on M(tmf ,P1
2) is extended from a

pairing at the level of bases

BS ⊗ SBK
µ
−→ SBK

s⊗ (s′ · b) 7→

{

(s · s′) · b, if I ∩K = ∅,

0, if I ∩K 6= ∅.

Remark 3.18. Recall that H∗(tmf ) was described in terms of ζi. We can convert an
element of the Margolis homology expressed in terms of ti and xi back to an expression
involving ζi using the identifications of Notation 2.12. For example,

t4t9x2x6 + t2t9x4x6

can be identified with the class represented by element ζ55ζ
4
10ζ9 + ζ43ζ

4
10ζ7ζ9 ∈ T.

4. P
1
2 Margolis homology of tmf ∧r and ((BZ/2)×k)+

4.1. P1
2 Margolis homology of tmf ∧r

Note that

H∗(tmf ∧r) ∼= H∗(tmf )⊗r ∼= T
⊗r.

We first extend the notion of length to T⊗r. For a monomial ζI1 | . . . |ζIr for ζIi ∈ T⊗r,
which is a tensor product of monomials in T, we define

L(ζI1 | . . . |ζIr ) = L(ζI1) + · · ·+ L(ζIr ).

We define the even subalgebra Er of T⊗r as the span of those monomials in T⊗r

whose lengths are zero. Observe that,

Er
∼= E⊗r.

The notion of length leads to an increasing filtration on T⊗r, called the length filtra-
tion, by setting

Gp(T⊗r) = {(ζI1 | . . . |ζIr ) |L(ζI1 | . . . |ζIr ) 6 p}.

Let Kr = K⊗r, where K is as defined in Section 2. Just like in the case r = 1, we get
a length spectral sequence and its E1 page is

E•
1
∼= M(Er,P

1
2)⊗Kr ⇒ M(tmf ∧r,P1

2). (15)

Since the action of P1
2 follows the Leibniz rule when restricted to E , we get

M(Er,P
1
2)

∼= M(E ,P1
2)

⊗r.
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Notation 4.1. For shorthand, we denote

xi,j = (1| . . . |1
︸ ︷︷ ︸

j−1

|ζi+3| 1| . . . |1
︸ ︷︷ ︸

r−j

), ti,j = (1| . . . |1
︸ ︷︷ ︸

j−1

|ζ4i+1| | . . . |1
︸ ︷︷ ︸

r−j

).

With this notation we have

Q1(xi,j) = ti,j .

Using Notation 4.1, we see that the E1 page of the length spectral sequence (15),
as an algebra, is isomorphic to

Rr := Λ(ti,j : i ∈ N− {0}, 1 6 j 6 r)⊗ Λ(xi,j : i ∈ N− {0}, 1 6 j 6 r).

It is easy to see that the map induced by the reindexing map

ι : (i, j) 7→ r(i− 1) + j,

produces a (non-canonical) isomorphism of algebras between Rr (the E2 page of (15))
and R (the E2 page of (9)), after forgetting the internal grading. This is also an
isomorphism of Λ(Q1,P

1
2)-modules. Thus we have an isomorphism

ι∗ : M(tmf ,P1
2)

∼=
−→ M(tmf ∧r,P1

2)

induced by the ι. Therefore, Theorem 3.16 essentially gives a complete calculation of
M(tmf ∧r,P1

2).

Example 4.2. For example, let us assume r = 3. Then the element t2t4x6x9 +
t2t6x4x9 ∈ M(tmf ,P1

2) (see Example 3.15) corresponds to the element

t1,2t2,1x2,3x3,3 + t1,2t2,3x2,1x3,3 ∈ M(tmf ∧3,P1
2)

under the bijection obtained from the above reindexing. When expressed in terms of
ζis (see Notation 4.1), the same element can be expressed as

ζ43 |ζ
4
2 |ζ5ζ6|1 + ζ5|ζ

4
2 |ζ

4
3ζ6|1.

Remark 4.3 (P1
2 Margolis homology of Brown–Gitler spectra). It is well-known that

H∗(tmf ) ∼=
⊕

i>0

H∗(Σ
8iboi),

where boi are certain Brown–Gitler spectra associated with bo. In [Mah81] Mahowald
defined a multiplicative weight function, which is given by w(ζi) = 2i−1. H∗(Σ

8iboi)
is the summand of H∗(tmf ) which consists of elements of Mahowald weight exactly
equal to 8i. We assign Mahowald weight of ti,j and xi,j as

w(ti,j) = w(xi,j) = 2i+1.

It follows that the Margolis homology M(boq1 ∧ · · · ∧ boqr ,P
1
2) is a summand of

M(tmf ∧r,P1
2). It consists of all polynomials of M(tmf ∧r,P1

2) expressed in terms
of xi,j and ti,j such that w(xi,j) = w(ti,j) = 4qj .

Remark 4.4. While it is true that Rr
∼= R⊗r, as an F2-algebra as well as a Λ(Q1,P

1
2)-

module, it is not useful for the purposes of calculating M(Rr,P
1
2). This is because
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P1
2 does not obey the Leibniz rule and

M(Rr,P
1
2) 6

∼= M(R,P1
2)

⊗r.

However we overcome this difficulty by producing a Λ(Q1,P
1
2)-module isomorphism

ι∗ at the expense of forgetting the internal grading.

4.2. P1
2 Margolis homology of ((BZ/2)×k)+

The space BZ/2 is also known as RP
∞, the real infinite-dimensional projective

space. It is well-known that

H∗((BZ/2)+,F2) ∼= F2[x]

and therefore

H∗(((BZ/2)×k)+,F2) ∼= F2[x1, . . . xk].

It can be seen that P1
2(xi) = 0 and Q1(xi) = x4

i . We again define the length function
on the monomials in the usual way

L(xi1
1 . . . xik

k ) = (i1 mod 2) + · · ·+ (ik mod 2).

The even complex E , which is the span of elements of length zero, is isomorphic to

E = F2[x
2
1, . . . , x

2
k].

It can be seen that P1
2(x

2
i ) = x8

i . Now observe that Q1 acts trivially on E , hence P1
2

acts as a derivation and, therefore,

M(E ,P1
2)

∼= Λ(x4
1, . . . , x

4
k).

Now the length function gives us an increasing length filtration

Gp(F2[x1, . . . , xk]) = F2〈x
i1
1 . . . xik

k : L(xi1
1 . . . xik

k ) 6 p〉.

This results in a length spectral sequence which only has d0 and d2 differentials. If
we denote x4

i by ti for convenience, we can see that the action of Q1 on the E1-page
of the length spectral sequence

E•
1 = Λ(t1, . . . , tk)⊗ Λ(x1, . . . , xk) ⇒ M(((BZ/2)×k)+,P

1
2)

is determined by the formula Q1(xi) = ti and the Leibniz rule. Since the d2-differen-
tials are determined by the Q1-action on the E1-page, we conclude that the length
spectral sequence above is a sub spectral sequence of (9), in fact, isomorphic to
it when k = ∞. Thus, when k is finite, we can recover a complete description of
M(((BZ/2)×k)+,P

1
2) from Theorem 3.16. More precisely, we obtain

M(((BZ/2)×k)+,P
1
2)

∼=
⊕

K⊂[k]

SK ⊗M(MK ,P1
2),

where SK = Λ(tixi | i ∈ [k]−K) and M(((BZ/2)×k)+,P
1
2) is a module over S[k].

Example 4.5. M(RP∞
+ ,P1

2)
∼= F2〈x1, t1, t1x1〉, where the internal degrees of x1 and t1
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are 1 and 4 respectively and S[1] = Λ(t1x1). Similarly,

M((RP∞ × RP
∞)+,P

1
2)

∼= F2〈x1, x2, t1, t2, t1x1, t2x2,

t1x2, t2x1, t1x1x2, t2x2x1, t1t2x2, t1t2x1〉,

where the internal degrees of xi and ti are 1 and 4 respectively. Here S[2] = Λ(t1x1,
t2x2). If we denote

H∗((RP∞ × RP
∞)+) ∼= F2[y, z],

where |y| = |z| = 1, then one may choose x1 = [x], x2 = [y], t1 = [x4] and t2 = [y4].
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