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(communicated by Daniel Isaksen)

Abstract
We consider a nontrivial action of C2 on the type 1 spectrum Y :=

M2(1) ∧ C(η), which is well-known for admitting a 1-periodic v1–self-
map. The resultant finite C2-equivariant spectrum YC2 can also be
viewed as the complex points of a finite R-motivic spectrum YR. In
this paper, we show that one of the 1-periodic v1–self-maps of Y can
be lifted to a self-map of YC2 as well as YR. Further, the cofiber of
the self-map of YR is a realization of the subalgebra AR(1) of the
R-motivic Steenrod algebra. We also show that the C2-equivariant
self-map is nilpotent on the geometric fixed-points of YC2 .

1. Introduction

In classical stable homotopy theory, the interest in periodic vn–self-maps of finite
spectra lies in the fact that one can associate to each vn–self-map an infinite family
in the chromatic layer n stable homotopy groups of spheres. Therefore, interest lies in
constructing type n spectra and finding vn–self-maps of lowest possible periodicity on
a given type n spectrum. This, in general, is a difficult problem, though progress has
been made sporadically throughout the history of the subject [T,DM,BP,BHHM,
N, BEM, BE]. With the modern development of motivic stable homotopy theory,
one may ask if there are similar periodic self-maps of finite motivic spectra.

Classically any non-contractible finite p-local spectrum admits a periodic vn–self-
map for some n > 0. This is a consequence of the thick-subcategory theorem [HS,
Theorem 7], aided by a vanishing line argument [HS, §4.2]. In the classical case all the
thick tensor ideals of Spp,fin (the homotopy category of finite p-local spectra) are also
prime (in the sense of [B]). The thick tensor-ideals of the homotopy category of cellular
motivic spectra over C or R are not completely known (but see [HO,K]). However,
one can gather some knowledge about the prime thick tensor-ideals in Ho(SpR

2,fin) (the
homotopy category of 2-local cellular R-motivic spectra) through the Betti realization
functor

β : Ho(SpR
2,fin) Ho(SpC2

2,fin)

using the complete knowledge of prime thick subcategories of Ho(SpC2

2,fin) [BS].
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The prime thick tensor-ideals of Ho(SpC2

2,fin) are essentially the pull-back of the
classical thick subcategories along the two functors, the geometric fixed-point functor

ΦC2 : Ho(SpC2

2,fin) Ho(Sp2,fin)

and the forgetful functor

Φe : Ho(SpC2

2,fin) Ho(Sp2,fin).

Let Cn denote the thick subcategory of Ho(Sp2,fin) consisting of spectra of type at
least n. The prime thick subcategories,

C(e, n) = (Φe)−1(Cn) and C(C2, n) = (ΦC2)−1(Cn),

are the only prime thick subcategories of Ho(SpC2

2,fin).

Definition 1.1. We say a spectrum X ∈ Ho(SpC2

2,fin) is of type (n,m) if Φe(X) is of

type n and ΦC2(X) is of type m.

For a type (n,m) spectrum X, a self-map f : X → X is periodic if and only if at
least one of {Φe(f),ΦC2(f)} are periodic (see [BGH, Proposition 3.17]).

Definition 1.2. Let X ∈ Ho(SpC2

2,fin) be of type (n,m). We say a self-map f : X → X
is

(i) a v(n,m)–self-map of mixed periodicity (i, j) if Φe(f) is a vn–self-map of period-
icity i and ΦC2(f) is a vm–self-map of periodicity j,

(ii) a v(n,nil)–self-map of periodicity i if Φe(f) is a vn–self-map of periodicity i and
ΦC2(f) is nilpotent, and,

(iii) a v(nil,m)–self-map of periodicity j if Φe(f) is a nilpotent self-map and ΦC2(f)
is a vm–self-map of periodicity j.

Example 1.3. The sphere spectrum SC2
is of type (0, 0). The degree 2 map is a

v(0,0)–self-map. In general, if we consider the vn–self-map of a type n spectrum with
trivial action of C2, then the resultant equivariant self-map is a v(n,n)–self-map.

Example 1.4. Let S1,1
C2

denote the C2-equivariant sphere which is the one-point com-
pactification of the real sign representation. The unstable twist-map

εu : S1,1
C2
∧ S1,1

C2
S1,1

C2
∧ S1,1

C2

stabilizes to a nonzero element ε ∈ π0,0(SC2
). Let h = 1− ε ∈ π0,0(SC2

) be the stabi-
lization of the map

hu = 1− εu : S3,2
C2

S3,2
C2
.

Note that on the underlying space ε is of degree −1, while on the fixed points it is
the identity. Therefore Φe(h) is multiplication by 2, whereas ΦC2(h) is trivial. Thus
h is a v(0,nil)–self-map, and the cofiber CC2(h) is of type (1, 0).
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Example 1.5. The equivariant Hopf map η1,1 ∈ π1,1(SC2
) is the Betti realization of

the R-motivic Hopf map η [M2, DI4]. Up to a unit, it is the stabilization of the
projection map

ηu1,1 := π : S3,2
C2
' C2 \ {0} CP1 ∼= S2,1

C2
,

where the domain and the codomain are given the C2-structure using complex con-
jugation. On fixed-points, the map π is the projection map

π : R2 \ {0} RP1,

which is a degree 2 map. From this we learn that while Φe(η1,1) is nilpotent, ΦC2(η1,1)
is the periodic v0–self-map. Hence, η1,1 is a v(nil,0)–self-map and the cofiber C(η1,1)
is of type (0, 1).

Remark 1.6. In the C2-equivariant stable homotopy groups, the usual Hopf map
(sometimes referred to as the ‘topological Hopf map’) is different from η1,1 of Exam-
ple 1.5. The ‘topological Hopf map’ η1,0 ∈ π1,0(SC2

) should be thought of as the
stabilization of the unstable Hopf map

ηu1,0 : S3,0
C2

S2,0
C2
,

where both domain and codomain are given the trivial C2-action.

Definition 1.7. We say a spectrum X ∈ Ho(SpR
2,fin) is of type (n,m) if β(X) is of

type (n,m). We call an R-motivic self-map

f : X → X

a v(n,m)–self-map, where m and n are in N ∪ {nil} (but not both nil), if β(f) is a
C2-equivariant v(n,m)–self-map.

Remark 1.8. The maps ‘multiplication by 2’ (of Example 1.3), h (of Example 1.4),
and η1,1 (of Example 1.5) admit R-motivic lifts along β and provide us with examples
of a v(0,0)–self-map, v(0,nil)–self-map and v(nil,0)–self-map of the R-motivic sphere
spectrum SR, respectively.

A theorem of Balmer and Sanders [BS] asserts that C(e, n) ⊂ C(C2,m) if and only
if n > m+ 1. In particular, C(e, n) is contained in C(C2, n− 1). Consequently, there
are no type (n,m) (C2-equivariant or R-motivic) spectra if n > m+ 2. Their result
also implies the following:

Proposition 1.9. Let X ∈ Ho(SpC2

2,fin) be of type (n+ 1, n) for some n. Then X
cannot support a v(n+1,nil)–self-map.

The proposition holds since the cofiber of such a self-map would be of type (n+2, n),
contradicting the results of Balmer–Sanders. In particular, neither the C2-equivariant
cofiber CC2(h) nor the R-motivic cofiber CR(h) supports a v(1,nil)–self-map. However,

it is possible that CC2(h) as well as CR(h) can admit a v(1,0)–self-map or a v(nil,0)–self-

map. In fact, η1,1 ∈ π1,1(SR) and η1,1 ∈ π1,1(SC2
) induce v(nil,0)–self-maps of CR(h)

and CC2(h) respectively. In Section 5, we show that:
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Theorem 1.10. The spectrum CR(h) does not admit a v(1,0)–self-map.

However, it is possible that CC2(h) admits a v(1,0)–self-map (see Remark 5.3 for
details). In contrast to the classical case, there is no guarantee that a finite C2-
equivariant or R-motivic spectrum will admit any periodic self-map, or at least noth-
ing concrete is known yet. This question must be studied!

In this paper, we consider the classical spectrum

Y := M2(1) ∧ C(η)

that admits, up to homotopy, 8 different v1–self-maps of periodicity 1 [DM, Section 2]
(see also [BEM]). We ask ourselves if the v1–self-maps are equivariant upon providing
Y with interesting C2-equivariant structures. We will consider four C2-equivariant lifts
of the spectrum Y,

(i) YC2

triv, where the action of C2 is trivial,

(ii) YC2

(2,1) := CC2(2) ∧ CC2(η1,1), with ΦC2(YC2

(2,1)) = M2(1) ∧M2(1),

(iii) YC2

(h,0) := CC2(h) ∧ CC2(η1,0), with ΦC2(YC2

(h,0)) = ΣC(η) ∨ C(η), and,

(iv) YC2

(h,1) := CC2(h) ∧ CC2(η1,1), with ΦC2(YC2

(h,1)) = ΣM2(1) ∨M2(1).

The C2-spectra YC2

triv, YC2

(2,1) and YC2

(h,1) are of type (1, 1), and YC2

(h,0) is of type (1, 0).

There are unique R-motivic lifts of the classes 2, h, η1,0, and η1,1, and therefore we

have unique R-motivic lifts of YC2

triv, YC2

(2,1), Y
C2

(h,0), and YC2

(h,1) which we will simply

denote by YR
triv, YR

(2,1), YR
(h,0), and YR

(h,1), respectively. In this paper we prove:

Theorem 1.11. The R-motivic spectrum YR
(h,1) admits a v(1,nil)–self-map

v : Σ2,1YR
(h,1) YR

(h,1)

of periodicity 1.

By applying the Betti realization functor we get:

Corollary 1.12. The C2-equivariant spectrum YC2

(h,1) admits a 1-periodic v(1,nil)–self-
map

β(v) : Σ2,1YC2

(h,1) YC2

(h,1).

Corollary 1.13. The geometric fixed-point spectrum of the telescope

β(v)−1YC2

(h,1)

is contractible.

Classically, the cofiber of a v1–self-map on Y is a realization of the finite subalgebra
A(1) of the Steenrod algebra A. We see a very similar phenomenon in the R-motivic
as well as in the C2-equivariant cases. The C2-equivariant Steenrod algebra AC2 as
well as the R-motivic Steenrod algebra AR admit subalgebras analogous to A(1) (gen-
erated by Sq1 and Sq2) [H,R2], which we denote by AC2(1) and AR(1), respectively.
We observe that:
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Theorem 1.14. The spectrum CR(v) := Cof(v : Σ2,1YR
(h,1) → YR

(h,1)) is a type (2, 1)

complex whose bigraded cohomology is a free AR(1)-module on one generator.

Corollary 1.15. The bigraded cohomology of the C2-equivariant spectrum

CC2(β(v)) ' β(CR(v))

is a free AC2(1)-module on one generator.

Our last main result in this paper is the following.

Theorem 1.16. The spectrum YR
(h,0) does not admit a v(1,0)–self-map.

The above results immediately raise some obvious questions. Pertaining to self-
maps one may ask: Does YR

(2,1) admit a v(1,nil)–self-map? Does YR
(2,1) or YR

(h,1) admit

a v(1,1)–self-map? Does YR
triv, YR

(2,1) or YR
(h,1) admit a v(nil,1)–self-map? Or more gen-

erally, how many different homotopy types of each kind of periodic self-maps exist?
Related to AR(1), one may inquire: How many different AR-module structures can be
given toAR(1)? Can thoseAR-modules be realized as a spectrum? Are the realizations
of AR(1) equivalent to cofibers of periodic self-maps of YR

(i,j)? We hope to address

most, if not all, of the above questions in our upcoming work (see Remark 3.13,
Remark 4.13 and Remark 5.3).

1.1. Outline of our method
We first construct a spectrum AR

1 which realizes the algebra AR(1) using a method
of Smith (outlined in [R1, Appendix C]) which constructs new finite spectra (poten-
tially with larger number of cells) from known ones. The idea is as follows. If X is a
p-local finite spectrum then the permutation group Σn acts on X∧n. One may then
use an idempotent e ∈ Z(p)[Σn] to obtain a split summand of the spectrum X∧n. As
explained in [R1, Appendix C], Young tableaux provide a rich source of such idem-
potents. For a judicious choice of e and X, the spectrum e(X∧n) can be interesting.

We exploit the relation that h · η1,1 = 0 in π∗,∗(SR) [M2] to construct an R-motivic
analogue of the question mark complex QR. The cell-diagram of QR is as described in
Figure 1 below. For a choice of idempotent element e in the group ring Z(2)[Σ3], we

QR =

h

η1,1

.

Figure 1: Cell-diagram of the R-motivic question mark complex.

observe that e(H∗,∗(QR)⊗3) is a free AR(1)-module. This is the cohomology of an R-
motivic spectrum ẽ(Q∧3

R ), which we call Σ1,0AR
1 (see (6) for details). The observation

requires us to develop a criterion that will detect freeness for modules over certain
subalgebras of AR. Writing MR

2 for the R-motivic cohomology of a point, we prove:
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Theorem 1.17. A finitely generated AR(n)-module M is free if and only if

1. M is free as an MR
2 -module, and

2. F2 ⊗MR
2

M is a free F2 ⊗MR
2
AR(n)-module.

The cohomology of AR
1 provides an AR-module structure on AR(1), which imme-

diately gives us a short exact sequence

0→ H∗,∗(Σ3,1YR
(h,1))→ H∗,∗(AR

1 )→ H∗,∗(YR
(h,1))→ 0

of AR-modules. Thus, we get a candidate for a v(1,nil)–self-map in the R-motivic
Adams spectral sequence

v ∈ Ext∗,∗,∗AR (H∗,∗(YR
(h,1)),H

∗,∗(YR
(h,1)))⇒ [YR

(h,1),YR
(h,1)]∗,∗,

which survives as there is no potential target for a differential supported by v.

Organization of the paper
In Section 2, we review the R-motivic Steenrod algebra AR, discuss the structure

of its subalgebra AR(n), and prove Theorem 1.17. In Section 3, we construct the
spectrum AR

1 that realizes the subalgebra AR(1) and prove that it is of type (2, 1). In
Section 4, we prove Theorem 1.11 and Theorem 1.14; i.e., we show that YR

(h,1) admits

a v1,nil–self-map and that its cofiber has the same AR-module structure as that of
H∗,∗(AR

1 ). In Section 5, we show the non-existence of a v(1,0)–self-map on CR(h) and

YR
(h,0); i.e., we prove Theorem 1.10 and Theorem 1.16.

Acknowledgments

The authors are indebted to Nick Kuhn for explaining some of the subtle points
of Smith’s work exposed in [R1, Appendix C], which is the key idea behind The-
orem 1.11. The authors also benefited from conversations with Mark Behrens, Dan
Isaksen, and Zhouli Xu.

2. The R-motivic Steenrod algebra and a freeness criterion

We begin by reviewing the R-motivic Steenrod algebra AR following Voevod-
sky [V]. The algebra AR is the ring of bigraded homotopy classes of self-maps of
the R-motivic Eilenberg–Mac Lane spectrum HFR

2 :

AR = [HFR
2 ,HFR

2 ]∗,∗.

The unit map SR → HFR
2 induces a canonical projection map

ε : AR −→MR
2 := [SR,HFR

2 ]∗,∗ ∼= F2[τ, ρ],

where |τ | = (0,−1) and |ρ| = (−1,−1). Further, using the multiplication map HFR
2 ∧

HFR
2 → HFR

2 one can give AR a left MR
2 -module structure as well as a right MR

2 -module
structure. Voevodsky shows that AR is a free left MR

2 -module. There is an analogue
of the classical Adem basis in the motivic setting, and Voevodsky established motivic
Adem relations, thereby completely describing the multiplicative structure of AR.
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The motivic Steenrod algebra AR also admits a diagonal map, so that its left MR
2 -

linear dual is an algebra over F2. Note that AR is an F2-algebra but not an MR
2 -algebra

as τ is not a central element since

Sq1(τ) = ρ 6= τSq1. (1)

This complication is also reflected in the fact that the pair (MR
2 ,homMR

2
(AR,MR

2 )) is a
Hopf algebroid, and not a Hopf algebra like its complex counterpart. The underlying
algebra of the dual R-motivic Steenrod algebra is given by

AR
∗ ∼= MR

2 [ξi+1, τi : i > 0]/(τ2
i = τξi+1 + ρτi+1 + ρτ0ξi+1),

where ξi and τi live in bidegree (2i+1 − 2, 2i − 1) and (2i+1 − 1, 2i − 1), respectively.
The complete description of the Hopf algebroid structure can be found in [V].

Ricka1 [R2] identified the quotient Hopf algebroids of AR
∗ (see also [H]). In par-

ticular, there are quotient Hopf algebroids

AR(n)∗ = AR
∗/(ξ

2n

1 , . . . , ξ2
n, ξn+1, . . . , τ

2n+1

0 , . . . , τ2
n, τn+1, . . . ),

which can be thought of as analogues of the quotient Hopf algebras

A(n)∗ = A∗/(ξ2n+1

1 , . . . , ξ2
n+1, ξn+2, . . . )

of the classical dual Steenrod algebra A∗. It is an algebraic fact that

τ−1(AR(n)∗/(ρ)) ∼= F2[τ±1]⊗A(n)∗ (2)

as Hopf algebras (see [DI2, Corollary 2.9]). The above isomorphism sends τi 7→
τ1−2i

ξi+1 and ξi+1 7→ τ1−2i+1

ξ2
i+1. The quotient Hopf algebroid AR(n)∗ is the MR

2 -
linear dual of the subalgebra AR(n) of AR, which is generated by the elements

{τ, ρ, Sq1,Sq2, . . . ,Sq2n}.
Although τ is not in the center (see (1)) of AR or AR(n), the element ρ is in the

center. We make use of this fact to prove the following result.

Lemma 2.1. A finitely-generated AR(n)-module M is free if and only if

1. M is free as an F2[ρ]-module, and,

2. M/(ρ) is a free AR(n)/(ρ)-module.

Proof. The ‘only if’ part is trivial. For the ‘if’ part, choose a basis B = {b1, . . . , bn} of
M/(ρ) and let b̃i ∈M be any lift of bi. Let F denote the free AR(n)-module generated
by B and consider the map

f : F→ M

that sends bi 7→ b̃i. We show that f is an isomorphism by inductively proving that f
induces an isomorphism F/(ρn) ∼= M/(ρn) for all n > 1. The case of n = 1 is true by
assumption.

1Ricka actually identified the quotient Hopf algebroids of the C2-equivariant dual Steenrod algebra.
However, the difference between the R-motivic Steenrod algebra and the C2-equivariant Steenrod
algebra lies only in the coefficient rings and results of Ricka easily identifies the quotient Hopf
algebroids of the R-motivic Steenrod algebra.
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For the inductive argument, first note that the diagram

0 F/(ρn−1) F/(ρn) F/(ρ) 0

0 M/(ρn−1) M/(ρn) M/(ρ) 0

·ρ

fn−1 fn f0

·ρ

is a diagram of AR(n)-modules (since ρ is in the center) where the horizontal rows are
exact. The map f0 is an isomorphism by assumption (2), and fn−1 is an isomorphism
by the inductive hypothesis; hence, fn is an isomorphism by the five lemma.

Proof of Theorem 1.17. The result follows immediately from Lemma 2.1 combined
with [HK, Theorem B] and the fact that AC(n) = AR(n)/(ρ).

In order to employ Theorem 1.17, we use the work of Adams and Margolis [AM],
which provides a freeness criterion for modules over finite-dimensional subalgebras
of the classical Steenrod algebra in terms of Margolis homology. Recall that, for an
algebra A and an element x ∈ A such that x2 = 0, the Margolis homology of M with
respect to x is defined as

M(M, x) =
ker(x : M→ M)

img(x : M→ M)
.

In the classical Steenrod algebra, the element Pst is defined to be dual to ξ2s

t ∈ A∗.
In terms of the Milnor basis,

Pst := Sq(0, . . . , 0︸ ︷︷ ︸
t−1

, 2s).

The element P0
t is often denoted by Qt−1. One may define the R-motivic analogues

of Pst ∈ A by setting

Qt := τ∗t and P
s

t := (ξ2s−1

t )∗

in AR(n) for s > 1, recalling that the motivic ξt plays the role of the classical ξ2
t .

It is easy to see that under the isomorphism (2), Qt corresponds to τ1−2t

Qt and P
s

t

corresponds to τ2s(1−2t)Pst .
In the context of Theorem 1.17, freeness over

F2 ⊗MR
2
AR(n) := AR(n)/(ρ, τ) ∼= AC(n)/(τ)

can be detected using Margolis homology calculations following [HK, Theorem B(i)].

Corollary 2.2. Let M be a finitely generated left AR(n)-module and let

M/(ρ, τ) := M⊗MR
2
F2.

Then M is a free AR(n)-module if and only if

1. M is free over MR
2 ,

2. M(M/(ρ, τ),Qi) = 0 for 0 6 i 6 n, and

3. M(M/(ρ, τ),P
s

t ) = 0 if 1 6 s 6 t and s+ t 6 n+ 1.
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Remark 2.3. The quotient AR(n)/(ρ, τ) fits into a short exact sequence

E(n) AR(n)/(ρ, τ) P(n) (3)

of connected finite-dimensional Hopf algebras over F2, where E(n) := ΛF2
(Q0, . . . ,Qn)

and P(n) := AR(n)/(ρ, τ,Q0, . . . ,Qn). The short exact sequence (3) splits from the
right. This right splitting map confirms that (3) is a split exact sequence of coalgebras
as all of the Hopf algebras involved in (3) admit a cocommutative comultiplication.
However, when (3) is viewed as an exact sequence of algebras, it does not split because
the algebras involved are not commutative. For example, when n = 1 then a left
splitting map in (3) would imply that Q0 commutes with Sq2 and contradicts the
fact that Q1 := [Sq2,Q0]. Dually, there is a splitting

AR(n)∗/(ρ, τ) ∼= F2[ξ1, . . . , ξn]

(ξ2n

1 , . . . , ξ2
n)
⊗ Λ(τ0, . . . , τn)

as an algebra, though it does not split as a coalgebra. This is clear from the fact that

∆(τk) ≡
k∑

i=0

ξ2i

k−i ⊗ τi 6≡ τk ⊗ 1 + 1⊗ τk mod (ρ, τ).

Remark 2.4 (A minor correction to [HK]). Note that Remark 2.3 stands in con-
tradiction to [HK, Corollary 4.2]. However, this does not affect [HK, Corollary 4.3]

which claims (P
t

t)
2 = 0. This is because P(n) is a sub-Hopf algebra of AR(n)/(ρ, τ).

We also note that the proof of [HK, Theorem B(i)] remains unaffected by this change.

3. A realization of AR(1)

Consider the R-motivic question mark complex QR, as introduced in Subsec-
tion 1.1. Let Σn act on Q∧nR by permutation. Any element e ∈ Z(2)[Σn] produces
a canonical map

ẽ : Q∧nR Q∧nR .

Now let e be the idempotent

e = 1+(1 2)−(1 3)−(1 3 2)
3

in Z(2)[Σ3], and denote by e the resulting idempotent of F2[Σ3]. For an R-motivic
spectrum X with action of Σn, we then define

ẽ(X) = hocolim
−→

(X
ẽ−→ X

ẽ−→ . . . ),

and we employ the same notation in the C2-equivariant or classical contexts. We will
use that for a spectrum X with action of Σn, we have an isomorphism

H∗(ẽX;F2) ∼= eH∗(X;F2). (4)

We record the following important property of e which is a special case of [R1,
Theorem C.1.5].

Lemma 3.1. If V is a finite-dimensional F2-vector space, then e(V ⊗3) = 0 if and
only if dimV 6 1.
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The following result, which gives the values of e on induced representations, is also
straightforward to verify:

Lemma 3.2. Suppose that W = IndΣ3

C2
F2 is induced up from the trivial representation

of a cyclic 2-subgroup. Then e(W ) ∼= F2. Moreover, for the regular representation
F2[Σ3] = IndΣ3

e F2, we have dim e(F2[Σ3]) = 2.

We also record the fact that when dimF2
V = 2 and dimF2

W = 3 then

dimF2
e(V ⊗3) = 2 and dimF2

e(W⊗3) = 8, (5)

as we will often use this.

The bottom cell of ẽ(Q∧3
R ) is in degree (1, 0), and we define

AR
1 := Σ−1,0ẽ(Q∧3

R ) = Σ−1,0hocolim
−→

(Q∧3
R

ẽ−→ Q∧3
R

ẽ−→ . . . ). (6)

The purpose of this section is to prove the following theorem.

Theorem 3.3. The spectrum AR
1 is a type (2, 1) complex whose bi-graded cohomology

H∗,∗(AR
1 ) is a free AR(1)-module on one generator.

3.1. AR
1 is of type (2, 1)

Let AC2
1 := β(AR

1 ) and QC2
:= β(QR). Note that we have a C2-equivariant split-

ting

Q∧3
C2
' ẽ(Q∧3

C2
) ∨ (1− ẽ)(Q∧3

C2
),

which splits the underlying spectra as well as the geometric fixed-points, as both Φe

and ΦC2 are additive functors.

We will identify the underlying spectrum Φe(AC2
1 ) by studying theA-module struc-

ture of its cohomology with F2-coefficients. Firstly, note that

Φe(AC2
1 ) ' Σ−1ẽ(Φe(Q∧3

C2
)) ' Σ−1ẽ(Q∧3),

where Q is the classical question mark complex, whose HF2-cohomology as an A-
module is well understood. It consists of three F2-generators a, b, and c in internal
degrees 0, 1, and 3, such that Sq1(a) = b and Sq2(b) = c are the only nontrivial
relations, as displayed in Figure 2.

H∗(Q;F2) =

a

b

c

Figure 2: We depict the A-structure of H∗(Q;F2) by marking Sq1-action by straight
(black) lines and Sq2-action by curved (blue) lines between the F2-generators. (Colors
are only available in the electronic version.)
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Because of the Kunneth isomorphism and the fact that the Steenrod algebra is
cocommutative, we have an isomorphism of A-modules

H∗+1(Φe(AC2
1 );F2) ∼= H∗(ẽ(Q∧3);F2) ∼= e(H∗(Q;F2)⊗3),

where the second isomorphism is (4).

Lemma 3.4. The underlying A(1)-module structure of H∗(Φe(AC2
1 );F2) is free on a

single generator.

Proof. Let us denote the A-module H∗(Q;F2) by V. Since dimM(V, Qi) = 1 for
i ∈ {0, 1}, it follows from the Kunneth isomorphism of Qi-Margolis homology groups,
cocommutativity of the Steenrod algebra, and Lemma 3.1 that

M(e(V⊗3), Qi) = e(M(V, Qi)
⊗3) = 0

for i ∈ {0, 1}. It follows from [AM, Theorem 3.1] that H∗(Φe(AR
1 );F2) is free as an

A(1)-module. It is singly generated because of (5).

We explicitly identify the image of e : H∗(Q;F2)⊗3 −→ H∗(Q;F2)⊗3 in Figure 3.

baa+ aba

bab+ abb

caa+ aca

cab+ cba+ bca+ acb

cbc+ bcc

cac+ acc

cbb+ bcb

cab+ bac+ acb+ abc

Figure 3: The A-module structure of H∗(Φe(AC2
1 );F2): Straight (black) lines, curved

(blue) lines, and boxed (red) lines represent the Sq1-action, Sq2-action, and Sq4-
action, respectively.

Remark 3.5. Using the Cartan formula, we can identify the action of Sq4 on
Φe(AC2

1 ). We notice that its A-module structure is isomorphic to A1[10] of [BEM].
Since such an A-module is realized by a unique 2-local finite spectrum, we conclude

Φe(AC2
1 ) ' A1[10]

and is of type 2.

Our next goal is to understand the homotopy type of the geometric fixed-point
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spectrum ΦC2(AC2
1 ). First observe that the geometric fixed-points of the C2-equiv-

ariant question mark complex QC2
is the exclamation mark complex

E := ' S0 ∨ ΣM2(1)!

This is because ΦC2(h) = 0 and ΦC2(η1,1) = 2. Secondly,

H∗+1(ΦC2(AC2
1 );F2) ∼= H∗(ẽ(E∧3);F2) ∼= e(H∗(E ;F2)⊗3)

is an isomorphism of A-modules, where again the second isomorphism is (4). We

yxx+ xyx

zxx+ xzx xyy + yxy

zxy + xzy + yxz + xyz

zyz + yzz

zyy + yzyxzz + zxz

xzy + zxy + zyx+ yzx

Figure 4: The A-module structure of H∗(ΦC2(AC2
1 );F2).

explicitly calculate the A-module structure of H∗(ΦC2(AC2
1 );F2) from the above iso-

morphism and record it in Figure 4 as a subcomplex of H∗(E ;F2)⊗3, with the con-
vention that x, y and z are generators in H∗(E ;F2) in degree 0, 1 and 2 respectively.

Lemma 3.6. There is an equivalence

ΦC2(AC2
1 ) ' M2(1) ∨ Σ

(
M2(1) ∧M2(1)

)
∨ Σ3M2(1).

In particular, ΦC2(AC2
1 ) is a type 1 spectrum.

Proof. From Figure 4, it is clear that we have an isomorphism of A-modules

H∗(ΦC2(AC2
1 );F2) ∼= H∗

(
M2(1) ∨ Σ

(
M2(1) ∧M2(1)

)
∨ Σ3M2(1);F2

)
.

It is possible that the A-module H∗(ΦC2(AC2
1 );F2) may not realize to a unique finite

spectrum (up to weak equivalence). However, other possibilities can be eliminated
from the fact that E∧3 splits Σ3-equivariantly into four components:

E∧3 ' S ∨
(

3∨

i=1

ΣM2(1)

)
∨
(

3∨

i=1

Σ2M2(1)∧2

)
∨ Σ3M2(1)∧3.

The idempotent ẽ annihilates S ' S∧3, and Lemma 3.2 implies that

ẽ

(
3∨

i=1

ΣM2(1)

)
' ΣM2(1) and
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ẽ

(
3∨

i=1

Σ2M2(1) ∧M2(1)

)
' Σ2M2(1) ∧M2(1).

Similarly, we see using (5) that

H∗
(
ẽ
(
M2(1)∧3

)) ∼= e
(

H∗ (M2(1))
⊗3
)
∼= H∗(ΣM2(1)).

Therefore, as an A-module

H∗
(
ẽ
(
Σ3M2(1)∧3

)) ∼= H∗(Σ4M2(1)).

Since, the A-module H∗(M2(1)) has a unique lift as a finite spectrum up to homotopy
(also see Remark 3.7), we conclude ẽ

(
Σ3M2(1)∧3

)
' Σ4M2(1).

As ΦC2(AC2
1 ) is the desuspension of ẽ(E∧3), the result follows.

Remark 3.7. It is well-known that if H∗(X) ∼= A(0) ∼= H∗(M2(1)) as an A-module
and X is a 2-local finite spectrum, then X ' M2(1). Firstly note that the group
Ext∗,∗A (A(0),A(0)) vanishes in stem equal to −1 and cohomological degree at least 2.
It follows that the identity map A(0)→ A(0), which is a nonzero element in degree
(0, 0) in the E2-page of the Adams spectral sequence

Es,t2 := Exts,tA (H∗(M2(1)),H∗(X))⇒ [X,M2(1)]t−s,

survives to produce a map from X to M2(1). This map, by construction, induces an
isomorphism in homology. Therefore, by Whitehead’s theorem it is an equivalence
(also see [BE, § 5]).

3.2. The cohomology of AR
1 is free over AR(1)

Next, we analyze the AR-module structure of H∗,∗(AR
1 ). We begin by recalling

some general properties of the cohomology of motivic spectra.
If X,Y ∈ SpR

2,fin such that H∗,∗(X) is free as a left MR
2 -module, then we have a

Kunneth isomorphism [DI3, Proposition 7.7]

H∗,∗(X ∧ Y ) ∼= H∗,∗(X)⊗MR
2

H∗,∗(Y ) (7)

as the relevant Kunneth spectral sequence collapses. Further, if H∗,∗(Y ) is free as a
left MR

2 -module, then so is H∗,∗(X ∧ Y ). The AR-module structure of H∗,∗(X ∧ Y )
can then be computed using the Cartan formula. The comultiplication map of AR

is left MR
2 -linear, coassociative and cocommutative [V, Lemma 11.9], which is also

reflected in the fact that its MR
2 -linear dual is a commutative and associative algebra.

Thus, when H∗,∗(X) is a free left MR
2 -module, the elements of F2[Σn] act on

H∗,∗(X∧n) ∼= H∗,∗(X)⊗MR
2
· · · ⊗MR

2
H∗,∗(X)

via permutation and commute with the action of AR. This also implies that F2[Σn]
also acts on

H∗,∗(X∧n)/(ρ, τ) ∼= H∗,∗(X)/(ρ, τ)⊗ · · · ⊗H∗,∗(X)/(ρ, τ)

and commutes with the action ofAR//MR
2 . From the above discussion we may conclude

that

H∗,∗(AR
1 ) ∼= Σ−1e(H∗,∗(QR)⊗3) (8)

is an isomorphism of AR-modules.
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We will also rely upon the following important property of the action of the motivic
Steenrod algebra on the cohomology of a motivic space (as opposed to a motivic
spectrum):

Remark 3.8 (Instability condition for R-motivic cohomology). If X is an R-motivic
space then H∗,∗(X) admits a ring structure, and, for any u ∈ Hn,i(X), the R-motivic
squaring operations obey the rule

Sq2i(u) =

{
0 if n < 2i,
u2 if n = 2i.

This is often referred to as the instability condition.

To understand the AR-module structure of H∗,∗(QR), we first make the follow-
ing observation regarding H∗,∗(CR(h)) (as CR(h) is a sub-complex of QR) using an
argument very similar to [DI1, Lemma 7.4].

Proposition 3.9. There are two extensions of AR(0) to an AR-module, and these
AR-modules are realized as the cohomology of CR(h) and CR(2). These are displayed
in Figure 5.

0 1 2 3 4 5

0

1

2

3

y0,0 y0,1

0 1 2 3 4 5

0

1

2

3

y0,0 y0,1

H∗,∗R (CR(h)) H∗,∗R (CR(2))

Figure 5: The horizontal axis represents the topological dimension, and the verti-
cal axis represents the motivic weight. Vertical lines of length (0, 1) represent τ -
multiplication, diagonal lines of length (1, 1) represent ρ-multiplication, horizontal
(black) lines represent the Sq1-action, and slope 1/2 (blue) lines represent the Sq2-
action. Note: although some of the displayed classes in positive weight do support a
Sq4, we have not displayed this action in order to avoid clutter.

Proof. For degree reasons, the only choice in extending AR(0) to an AR-module is
the action of Sq2 on the generator in bidegree (0, 0). We write y0,0 for the generator
in degree (0, 0) and y1,0 for Sq1(y0,0) in (cohomological) bidegree (1, 0). The two
possible choices are

• Sq2(y0,0) = 0 and

• Sq2(y0,0) = ρ · y1,0.

We can realize the degree 2 map as an unstable map S1,0 −→ S1,0, and we will
write CR(2)u for the cofiber. We deduce information about the AR-module structure
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of H∗,∗(CR(2)) by analyzing the cohomology ring of S1,1 ∧ CR(2)u using the instability
condition of Remark 3.8. First, note that in

H∗,∗(S1,1) ∼= MR
2 · ι1,1

we have the relation ι21,1 = ρ · ι1,1 [V, Lemma 6.8]. Also note that

H∗,∗((CR(2)u)+) ∼= MR
2 [x]/(x3),

where x is in cohomological degrees (1, 0). Therefore, in

H∗,∗(S1,1 ∧ CR(2)u) = MR
2 · ι1,1 ⊗MR

2
MR

2 {x, x2}
the instability condition implies

Sq2(ι1,1 ⊗ x) = ι21,1 ⊗ x2 = ρ · ι1,1 ⊗ x2.

Here the space-level cohomology class x2 corresponds to the spectrum-level class y1,0.
Therefore, Sq2(y0,0) = ρ · y1,0 in H∗,∗(CR(2)). This is also reflected in the fact that
multiplication by 2 is detected by h0 + ρh1 in the R-motivic Adams spectral sequence
[DI1, §8].

On the other hand h is the ‘zeroth R-motivic Hopf map’ detected by the element
h0 in the motivic Adams spectral sequence. It follows that Sq2(y0,0) = 0.

In order to express the AR-module structure on H∗,∗(X) for a finite spectrum X,
it is enough to specify the action of AR on its left MR

2 -generators as the action of τ
and ρ multiples are determined by the Cartan formula.

Example 3.10. Let {y0,0, y1,0} ⊂ H∗,∗(CR(h)) denote a left MR
2 -basis of H∗,∗(CR(h)).

The data that

• Sq1(y0,0) = y1,0,

• Sq2(y0,0) = 0,

completely determines the AR-module structure of H∗,∗(CR(h)).

Proposition 3.11. H∗,∗(QR) is a free MR
2 -module generated by a, b and c in coho-

mological bidegrees (0, 0), (1, 0) and (3, 1), and the relations

1. Sq1(a) = b,

2. Sq2(b) = c,

3. Sq4(a) = 0,

completely determine the AR-module structure of H∗,∗(QR).

Proof. H∗,∗(QR) is a free MR
2 -module because the attaching maps of QR induce trivial

maps in H∗,∗(−). The first two relations can be deduced from the obvious maps

1. CR(h)→ QR,

2. QR → Σ1,0 CR(η1,1),

which are respectively surjective and injective in cohomology.

Let hu : S3,2 → S3,2 and ηu1,1 : S3,2 → S2,1 denote the unstable maps that stabilize
to h and η1,1, respectively. The unstable R-motivic space QuR (which stabilizes to QR)
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can be constructed using the fact that the composite of the unstable maps

S4,3 S3,2 S3,2
Σ1,1ηu1,1 hu

is null. Thus H∗,∗(QuR) consists of three generators au, bu and cu in bidegrees (3, 2),
(4, 2) and (6, 3). It follows from the instability condition that Sq4(au) = 0.

Proof of Theorem 3.3. From Remark 3.5 and Lemma 3.6, we deduce that AR
1 is a

type (2, 1) complex. To show that the bi-graded R-motivic cohomology of AR
1 is free

as an AR(1)-module, we make use of Corollary 2.2.
Since H∗,∗(AR

1 ) is a summand of a free MR
2 -module, it is projective as an MR

2 -
module. In fact, H∗,∗(AR

1 ) is free, as projective modules over (graded) local rings are
free. Also note that the elements

Q0,P
1

1,Q1 ∈ AR(1)/(ρ, τ)

are primitive. Hence we have a Kunneth isomorphism in the respective Margolis
homologies, in particular we have,

M(H∗,∗(AR
1 )/(ρ, τ), x) = e(M(H∗,∗(QR)/(ρ, τ), x)⊗3)

for x ∈ {Q0,P
1

1,Q1}. Since dimF2
M(H∗,∗(QR)/(ρ, τ), x) = 1 for all x ∈ {Q0,P

1

1,Q1},
by Lemma 3.1

M(AR
1 /(ρ, τ), x) = 0

for x ∈ {Q0,P
1

1,Q1}. Thus, by Corollary 2.2 we conclude that H∗,∗(AR
1 ) is a free

AR(1)-module. A direct computation shows that

dimF2 H∗,∗(AR
1 )/(ρ, τ) = 8,

hence H∗,∗(AR
1 ) is AR(1)-free of rank one.

3.3. The AR-module structure
Using the description (8) and Cartan formula we make a complete calculation of

the AR-module structure of H∗,∗(AR
1 ). Let a, b, c ∈ H∗,∗(QR) as in Proposition 3.11.

In Figure 6 we provide a pictorial representation with the names of the generators
that are in the image of the idempotent e. For convenience we relabel the generators
in Figure 6, where the indexing on a new label records the cohomological bidegrees
of the corresponding generator. The following result is straightforward, and we leave
it to the reader to verify.

Lemma 3.12. In H∗,∗(AR
1 ), the underlying AR(1)-module structure, along with the

relations

1. Sq4(v0,0) = τ · w4,1,

2. Sq4(v1,0) = w5,2,

3. Sq4(v2,1) = 0,

4. Sq4(v3,1) = 0 = Sq4(w3,1),

5. Sq8(v0,0) = 0,

completely determine the AR-module structure.
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baa+ aba = v0,0

bab+ abb = v1,0

v2,1 = caa+ aca

v3,1 = cab+ cba+ bca+ acb

cbc+ bcc = w6,2

w5,2 = cac+ acc

cbb+ bcb = w4,1

cab+ bac+ acb+ abc = w3,1

Figure 6: We depict the AR-module structure of H∗,∗(A1). The straight (black),
curved (blue), and boxed (red) lines represent the action of motivic Sq1, Sq2, and
Sq4, respectively. Black dots represent MR

2 -generators, and a dotted line represents
that the action hits the τ -multiple of the given MR

2 -generator.

Remark 3.13. In upcoming work, we show that AR(1) admits 128 different AR-
module structures. Whether all of the 128 AR-module structures can be realized by
R-motivic spectra, or not, is currently under investigation.

4. An R-motivic v1–self-map

With the construction of AR
1 , one might hope that any one of YR

(i,j) fits into an
exact triangle

Σ2,1YR
(i,j) YR

(i,j) AR
1 Σ3,1YR

(i,j) . . .v Σv (9)

in Ho(SpR
2,fin). The motivic weights prohibit AR

1 from being the cofiber of a self-map

on Ytriv or Y(h,0), as the 2-cell in these complexes appears in weight 0, whereas in AR
1

the 2-cell is in weight 1. We will also see that the spectrum YR
(2,1) cannot be a part

of (9) because of its AR-module structure (see Lemma 4.4). If Y(i,j) = YR
(h,1) in (9),

then the map v will necessarily be a v(1,nil)–self-map because YR
(h,1) is of type (1, 1)

and AR
1 is of type (2, 1). The main purpose of this section is to prove Theorem 1.11

and Theorem 1.14 by showing that YR
(h,1) does fit into an exact triangle very similar

to (9)

Σ2,1YR
(i,j) YR

(i,j) CR(v) Σ3,1YR
(i,j) . . . ,v Σv

where CR(v) is of type (2, 1) and H∗,∗(CR(v)) ∼= H∗,∗(AR
1 ) as AR-modules.

Remark 4.1. The fact that H∗,∗(CR(v)) is isomorphic to H∗,∗(AR
1 ) as AR-modules

does not imply that CR(v) and AR
1 are equivalent as R-motivic spectra. There are

a plethora of examples of Steenrod modules that are realized by spectra of different
homotopy types.
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We begin by discussing the AR-module structures of H∗,∗(YR
(h,1)). Using Adem

relations, one can show that the element

Q1 := Sq1Sq2 + Sq2Sq1 ∈ AR(1)

squares to zero. Let Λ(Q1) denote the exterior subalgebra MR
2 [Q1]/(Q

2

1) of AR(1). Let
BR(1) denote the AR(1)-module

BR(1) := AR(1)⊗Λ(Q1) M
R
2 .

Both YR
(2,1) and YR

(h,1) are realizations of BR(1). In other words:

Proposition 4.2. There is an isomorphism of AR(1)-modules

H∗,∗(YR
(i,j))

∼= BR(1)

for (i, j) ∈ {(2, 1), (h, 1)}.
Proof. By direct inspection, H∗,∗(YR

(i,j)) is cyclic as an AR(1)-module for (i, j) ∈
{(2, 1), (h, 1)}. Thus we have an AR(1)-module map

fi : AR(1)→ H∗,∗(YR
(i,j)). (10)

The result follows from the fact that Q1 acts trivially on H∗,∗(YR
(i,j)) and a dimension

counting argument.

Remark 4.3. Let {y0,0, y1,0} be the MR
2 -basis of H∗,∗(CR(h)) or H∗,∗(CR(2)), so that

Sq1(y0,0) = y1,0, and let {x0,0, x2,1} a basis of CR(η1,1), so that Sq2(x0,0) = x2,1. If we
consider the MR

2 -basis {v0,0, v1,0, v2,1, v3,1, w3,1, w3,2, w4,2, w5,3, w6,3} of AR(1) from
Subsection 3.3, then the maps fi of (10) are given as in Table 1.

Table 1: The maps f2 and fh.

x f2(x) fh(x)
v0,0 y0,0x0,0 y0,0x0,0

v1,0 y1,0x0,0 y1,0x0,0

v2,1 y0,0x2,0 + ρ · y1,0x0,0 y0,0x2,0

v3,1 y1,0x2,0 y1,0x2,0

w3,1 y1,0x2,0 y1,0x2,0

w4,2 0 0
w5,3 0 0
w6,3 0 0

Lemma 4.4. The AR-module structures on H∗,∗(YR
(2,1)) and H∗,∗(YR

(h,1)) are given as
in Figure 7.

Proof. The result is an easy consequence of a calculation using the Cartan formula,

Sq4(xy) = Sq4(x)y + τSq3(x)Sq1(y) + Sq2(x)Sq2(y) + τSq1(x)Sq3(y) + xSq4(y),

and the fact that Sq2(y0,0) = ρy1,0 in H∗,∗(CR(2)), whereas Sq2(y0,0) vanishes in
H∗,∗(CR(h)) (see Proposition 3.9).
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H∗,∗(YR
(h,1))

ρ

H∗,∗(YR
(2,1))

Figure 7: Straight (black), curved (blue), and boxed (red) lines represent the action
of Sq1, Sq2, and Sq4, respectively. Black dots represent MR

2 -generators, and in the
case of YR

(2,1), Sq4 on the bottom cell is ρ times the top cell.

Remark 4.5. Comparing Lemma 4.4 and Lemma 3.12, we see that theAR(1)-module
map f2, as in Remark 4.3, cannot be extended to a map of AR-modules.

Corollary 4.6. There is an exact sequence of AR-modules

0 H∗,∗(Σ3,1YR
(h,1)) H∗,∗(AR

1 ) H∗,∗(YR
(h,1)) 0.π∗ ι∗ (11)

Proof. From the description of the map fh in Remark 4.3, along with Lemma 3.12
and Lemma 4.4, it is easy to check that fh extends to an AR-module map and that

ker fh ∼= H∗,∗(YR
(h,1))

as AR-modules.

The exact sequence (11) corresponds to a nonzero element in the E2-page of the
R-motivic Adams spectral sequence (also see Remark 4.8 and Remark 4.10)

v ∈ Ext2,1,1
AR (H∗,∗(YR

(h,1) ∧DYR
(h,1)),M

R
2 )⇒ [YR

(h,1),YR
(h,1)]2,1, (12)

where DYR
(h,1) := F(YR

(h,1),SR) is the Spanier–Whitehead dual of YR
(h,1). If

Notation 4.7. Note that we follow [DI1,BI] in grading ExtAR as Exts,f,wAR , where s
is the stem, f is the Adams filtration, and w is the weight. We will also follow [GI1]
in referring to the difference s− w as the coweight.

Remark 4.8. Since H∗,∗(YR
(h,1)) is MR

2 -free, an appropriate universal-coefficient spec-

tral sequence collapses and we get H∗,∗(DYR
(h,1))

∼= homMR
2
(H∗,∗(YR

(h,1)),M
R
2 ). Further,

the Kunneth isomorphism of (7) gives us

H∗,∗(YR
(h,1) ∧DYR

(h,1))
∼= H∗,∗(YR

(h,1))⊗MR
2

H∗,∗(DYR
(h,1)),

and therefore,

Ext∗,∗,∗AR (MR
2 ,H

∗,∗(YR
(h,1) ∧DYR

(h,1)))
∼= Ext∗,∗,∗AR (H∗,∗(YR

(h,1)),H
∗,∗(YR

(h,1))).

Theorem 1.11 follows immediately if we show that the element v is a nonzero per-
manent cycle. The following result implies that a dr-differential (for r > 2) supported
by v has no potential nonzero target.
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Proposition 4.9. For f > 3, Ext1,f,1
AR (H∗,∗(YR

(h,1)),H
∗,∗(YR

(h,1))) = 0.

Proof. In order to calculate Ext∗,∗,∗AR (H∗,∗(YR
(h,1)),H

∗,∗(YR
(h,1))), we filter the spectrum

YR
(h,1) via the evident maps

Y0 Y1 Y2 Y3.

SR CR(h) CR(h) ∪SR CR(η1,1) YR
(h,1)

Note that H∗,∗(Yj) are free MR
2 -modules. The above filtration results in cofiber se-

quences

Y0 Y1 Σ1,0SR,

Y1 Y2 Σ2,1SR, and

Y2 Y3 Σ3,1SR,

which induce short exact sequences of AR-modules as the connecting map

CR(Yj → Yj+1) −→ ΣYj

induces the zero map in H∗,∗(−). Thus, applying the functor Ext∗,∗,∗AR (H∗,∗(Y(h,1)),−)
to these short-exact sequences, we get long exact sequences, which can be spliced
together to obtain an Atiyah–Hirzebruch like spectral sequence

E∗,∗,∗,∗1 = Ext∗,∗,∗AR (H∗,∗(Y(h,1)),MR
2 ){g0,0, g1,0, g2,1, g3,1}

Ext∗,∗,∗AR (H∗,∗(YR
(h,1)),H

∗,∗(YR
(h,1))).

An element x · gi,j in the E2-page contributes to the degree |x| − (i, 0, j) of the abut-
ment. Thus, Proposition 4.9 is a straightforward consequence of Proposition 4.11.

Remark 4.10. Because, H∗,∗(YR
(h,1)) is MR

2 -free and finite, we have

H∗,∗(YR
(h,1))

∼= homMR
2
(H∗,∗(Y(h,1)),MR

2 ),

and therefore, Exts,f,wAR (H∗,∗(YR
(h,1)),M

R
2 ) ∼= Exts,f,wAR

∗
(MR

2 ,H∗,∗(YR
(h,1))).

Proposition 4.11. For f > 3 and (i, j) ∈ {(0, 0), (1, 0), (2, 1), (3, 1)}, we have that

Ext1+i,f,1+j
AR

∗
(MR

2 ,H∗,∗(YR
(h,1))) = 0.

Proof. Our desired vanishing concerns only the groups ExtAR
∗
(MR

2 ,H∗,∗(YR
(h,1))) in

coweights 0, 1 and 2. These groups can be easily calculated starting from the com-
putations of Ext∗,∗,∗AR

∗
(MR

2 ,MR
2 ) in [DI1] and [BI] and using the short exact sequences
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in ExtAR
∗

arising from the cofiber sequences

Σ1,1SR
η1,1−→ SR −→ CR(η1,1) and

CR(η1,1)
h−→ CR(η1,1) −→ CR(h) ∧ CR(η1,1) = YR

(h,1).

We display ExtAR
∗
(MR

2 ,H∗,∗(C
R(η1,1))) in coweights 0, 1 and 2 in the charts below.

Here horizontal, vertical, or diagonal lines denote multiplication by ρ, h0, and h1,
respectively.

ExtAR
∗

(
M2,H∗,∗(CR(η1,1)

)
in coweight zero

−2 −1 0 1 2 3 4

0

1

2

ρ

h0

ExtAR
∗

(
M2,H∗,∗(CR(η1,1)

)
in coweight one

−2 −1 0 1 2 3 4

0

1

2

τh1
h2

h0[2]

ExtAR
∗

(
M2,H∗,∗(CR(η1,1)

)
in coweight two

−2 −1 0 1 2 3 4 5 6

0

1

2

3

τ2h0

(τh1)
2 h2

2ρτh2
1[2]

h2[2]

We find that ExtAR
∗
(MR

2 ,H∗,∗(YR
(h,1))) is, in coweights zero, one, and two, also given

by the charts below.

ExtAR
∗

(
M2,H∗,∗(YR

(h,1))
)
in coweight zero

−2 −1 0 1 2 3 4

0

1

2

1
ρ

ExtAR
∗

(
M2,H∗,∗(YR

(h,1))
)
in coweight one

−2 −1 0 1 2 3 4

0

1

2

τh1
h2

h0[2]

ρ[1]

ExtAR
∗

(
M2,H∗,∗(YR

(h,1))
)
in coweight two

−2 −1 0 1 2 3 4 5 6

0

1

2

τ2h0

(τh1)
2 h2

2ρτh2
1[2]

h2[2]τh1[1]

h0h2[1]

ρh2[1]

The result follows from the above charts.
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Remark 4.12. One can also resolve Proposition 4.11 directly using the ρ-Bockstein
spectral sequence

E1 := ExtAC
∗
(F2[τ ],H∗,∗(YC

(h,1)))⊗ F2[ρ]

ExtAR
∗
(MR

2 ,H∗,∗(YR
(h,1)))

(13)

and identifying a vanishing region for Exts,f,wAC
∗

(F2[τ ],H∗,∗(YC
(h,1))). Even a rough esti-

mate of the vanishing region using the E1-page of the C-motivic May spectral sequence
leads to Proposition 4.11. Such an approach would avoid explicit calculations of ExtAR

as in [DI1] and [BI].

Proof of Theorem 1.11. By Proposition 4.9 every map

v : Σ2,1YR
(h,1) YR

(h,1)

detected by v of (12) is a nonzero permanent cycle. In order to finish the proof of
Theorem 1.11 we must show that v is necessarily a v(1,nil)–self-map of periodicity 1.
It is easy to see that the underlying map

Φe(β(v)) : Σ2Y Y

is a v1–self-map of periodicity 1 as

C(Φe(β(v))) ' Φe(β(CR(v))) ' A1[10]

is of type 1 (see Remark 3.5). On the other hand,

ΦC2(β(v)) : Σ2(ΣM2(1) ∨M2(1)) ΣM2(1) ∨M2(1)

is necessarily a nilpotent map because of [HS, Theorem 3(ii)] and the fact that a
v1–self-map of M2(1) has periodicity at least 4 (see [DM] for details) which lives in
[M2(1),M2(1)]8k for k > 1.

Proof of Theorem 1.14. Since v is a v(1,nil)–self-map and YR
(h,1) is of type (1, 1), it

follows that CR(v) is of type (2, 1). Moreover,

H∗,∗(CR(v)) ∼= H∗,∗(AR
1 )

as v is detected by v of (12) in the E2-page of the Adams spectral sequence. Thus,
H∗,∗(CR(v)) is a free AR(1)-module on single generator.

Remark 4.13. It is likely that realizing a different AR-module structure on AR(1)
as a spectrum (see also Remark 3.13) may lead to a 1-periodic v1–self-map on YR

(2,1)

as well as on YC2

(2,1). We explore such possibilities in upcoming work.
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5. Nonexistence of v(1,0)–self-map on CR(h) and YR
(h,0)

Let X be a finite R-motivic spectrum and let f : Σi,jX → X be a map such that

ΦC2(β(f)) : Σi−jΦC2(β(X)) ΦC2(β(X))

is a v0–self-map. Then it must be the case that i = j, as v0–self-maps preserve dimen-
sion. Note that both CR(h) and YR

(h,0) are of type (1, 0).

Proposition 5.1. The v1–self-maps of M2(1) are not in the image of the underlying
homomorphism

Φe ◦ β : [Σ8k,8kCR(h),CR(h)]R −→ [Σ8kM2(1),M2(1)].

Proof. The minimal periodicity of a v1–self-map of M2(1) is 4. Let v : Σ8kM2(1)→
M2(1) be a 4k-periodic v1–self-map. It is well-known that the composite

Σ8kS Σ8kM2(1) M2(1) Σ1Sv (14)

is not null (and equals P k−1(8σ) where P is a periodic operator given by the Toda
bracket 〈σ, 16,−〉).

Suppose there exists f : Σ8k,8kCR(h)→ CR(h) such that Φe ◦ β(f) = v. Then (14)
implies that the composition

Σ8k,8kSR Σ8k,8kCR(h) CR(h) Σ1,0Sv (15)

is nonzero as the functor Φe ◦ β is additive. The composite of the maps in (15) is
a nonzero element of π∗,∗(SR) in negative coweight. This contradicts the fact that
π∗,∗(SR) is trivial in negative coweights [DI1].

Proposition 5.2. The v1–self-maps of Y are not in the image of the underlying
homomorphism

Φe ◦ β : [Σ2k,2kYR
(h,0),YR

(h,0)]
R −→ [Σ8kY,Y].

Proof. Let v : Σ2kY → Y denote a v1–self-map of periodicity k. Notice that the com-
posite

S2k Σ2kY Y Y>1,
v (16)

where Y>1 is the first coskeleton, must be nonzero. If not, then v factors through the
bottom cell resulting in a map S2k → Σ2kY → S which induces an isomorphism in
K(1)-homology, contradicting the fact that S is of type 0.

If f : Σ2k,2kYR
(h,0) → YR

(h,0) were a map such that Φe ◦ β(f) = v, then (16) would

force one among the hypothetical composites (A), (B) or (C) in the diagram

Σ2k,2kSR Σ2k,2kYR
(h,0) YR

(h,0) Σ3,0SR (A)

Fib(p3) Σ2,0SR (B)

Fib(p2) Σ1,0SR (C)

p3

p2

p1
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to exist as a nonzero map, thereby contradicting the fact that π∗,∗(SR) is trivial in
negative coweights.

Remark 5.3. The above results do not preclude the existence of a v(1,0)–self-map on

CC2(h) and YC2

(h,0). Forthcoming work [GI2] of the second author and Isaksen shows

that 8σ is in the image of Φe : π7,8(SC2) −→ π7(S) and suggests that CC2(h) supports
a v(1,0)–self-map.
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