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NON-COMMUTATIVE LOCALISATION AND FINITE
DOMINATION OVER STRONGLY Z-GRADED RINGS

THOMAS HUTTEMANN
(communicated by Graham Ellis)

Abstract

Let R = @,. . Rk be astrongly Z-graded ring, and let C*
be a chain complex of modules over the positive subring P =
@~ Ri. The complex C* @p Ry is contractible (resp., C" is
Ro-finitely dominated) if and only if C* ®p L is contractible,
where L is a suitable non-commutative localisation of P. We
exhibit universal properties of these localisations, and show by
example that an Ry-finitely dominated complex need not be
P-homotopy finite.
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374 THOMAS HUTTEMANN
Introduction

Finite domination

Let Ry be a unital ring, possibly non-commutative. A chain complex C' of Ry-mod-
ules is called Ry-finitely dominated if it is a retract up to homotopy of a bounded
complex of finitely generated free Rg-modules. When C' is bounded and consists
of projective Ry-modules, C' is Ry-finitely dominated if and only if C is homotopy
equivalent to a bounded complex of finitely generated projective Ry-modules [Ran85,
Proposition 3.2 (ii)]; this is sometimes expressed by saying that C' is “of type FP”.

Non-commutative localisation

A K-ring is a unit-preserving homomorphism K — S of unital rings with do-
main K. Let ¥ be a set of homomorphisms of finitely generated projective (right)
K-modules. The K-ring f: K — S is called X-inverting if all the induced maps

o®S: PokS—Q®kS, (0:P—=Q)eXx

are isomorphisms of S-modules. The non-commutative localisation of K with respect
to ¥ is the K-ring As: K — X ~'K which is initial in the category of Y-inverting
K-rings; it exists for all ¥ [Sch85, Theorem 4.1].

Detecting contractibility and finite domination using non-commutative
localisation

Let CT be a bounded chain complex consisting of finitely generated free modules
over the polynomial ring Ro[t], where ¢ is a (central) indeterminate commuting with
all elements of Ry. Our starting point is the following pair of results obtained by
RANICKTI:

Theorem. There are sets Q4 and Q. of square matrices with entries in Ro[t], con-
sidered as maps between finitely generated free Ro|t]-modules, such that

(A) the induced complex CT @p, Ro is contractible (tensor product via the map
Rolt] = Ro, t — 0) if and only if the induced chain complex C* @ g,y Q7' Rolt]
is contractible [Ran98, Proposition 10.13];

(B) C* is Ry-finitely dominated if and only if the induced chain complex
CF @po Q3 Rolt] is contractible [Ran98, Proposition 10.11].

Content of the paper

RANICKI’s results are extended to a larger class of rings containing polynomial
rings as special examples. Let R = @, ., Rx be a Z-graded ring. The polynomial
ring R[t] has a subring, denoted R, [t], consisting of those polynomials Y, rjt* with
r, € Rg; up to the ring isomorphism symbolised by ¢ — 1, this is the N-graded ring
@k>0 Ry,. We will show that the results above remain valid mutatis mutandis if the
polynomial ring Ry[t] is replaced by the N-graded ring R.[t] throughout, where in (B)
we additionally demand the Z-graded ring R to be strongly graded. This last condition
means that the multiplication map Ry ®p, R_r — Ry is surjective for all k € Z. It is
surprising that the results rest exclusively on the (strongly) graded structure of the
underlying rings, and not on the specific form of polynomial rings in one indetermi-
nate.
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Motivation

Finiteness conditions for chain complexes are studied in algebraic topology
[Ran85, Ran98| and other subjects (e.g., Y-invariants in geometric group theory).
The present paper develops aspects of the theory from a purely algebraic point of view,
shifting the focus from (LAURENT) polynomial rings to the larger class of (strongly)
Z-graded rings instead.

Strong gradings were introduced by DADE [Dad80] to capture the quintessential
properties of group rings. The extent to which strongly Z-graded rings behave like
LAURENT polynomial rings is in fact astonishing; examples include the splitting of the
algebraic K-theory of the projective line (HUTTEMANN and MONTGOMERY [HM20]),
the relation between finite domination and NoviKOvV homology (HUTTEMANN and
STEERS [HS17]), and the fundamental theorem in algebraic K-theory for strongly
Z-graded rings (HUTTEMANN [Hiit20]). The present paper adds further entries to
the list of results that transfer to the strongly graded setting. Lest the reader gains
the impression that this is a straightforward transcription we remark that, unlike
the statements of the results, the proofs do not carry over mechanically. We also
highlight in §7 a subtle example of a finiteness property that does not carry over as
expected.

Organisation of the paper

The paper is divided into three parts, discussing Z-graded rings and non-commuta-
tive localisation, contractible complexes, and finite domination respectively. Indepen-
dently, the material is divided into numbered sections.

Conventions

All rings are unital, ring homomorphisms preserve unity, and modules are unital
and right, unless stated otherwise.

Part 1. Algebraic background
1. Constructing new rings from a Z-graded ring

For a (unital) ring R we can construct various polynomial and power series rings
using a central indeterminate ¢; the rings R[t], R[t~1], R[t,t~], R[[t], R[t~'], R(t)) =
R[[t][1/t] and R((t~1)) = R[[t~']J[1/t~1] will be of relevance. Elements of these rings
can be written as formal sums Y, ryt*, with suitable restrictions on the number and
sign of indices of non-zero coefficients ry.

Suppose now that R = @, ., Ry is equipped with the structure of a Z-graded
ring. We can then define subrings of the rings above by requiring that for all k € Z
the coefficient r, of t* lies in Rj. The resulting rings will be denoted by the sym-
bols R.[t], R.[t71], R.[t,t71], R.[[t], R.[[t71]], R«((t)) and R.((t™1)), respectively. For
example,

R.(t) = { i ret® |V eRk} .

p20  k=-p
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As a graded ring, R.[t,t7!] = R via the map symbolically described as ¢ +— 1. Simi-
larly R.[t] = @50 R and R.[t7'] = @, o Ri. We write

t"R.[t] =@ Rr and "Rt =P R, (1)

k>n k<n

which are (left and right) modules over R.[t] and R.[t™!], respectively; the symbol
t" R, [[t71] denotes the R,[[t~!]-module of formal power series involving powers of t
not exceeding n.

For later use we introduce notation for truncation of formal power series. For
—00 < ¥ < u < oo we define

Z Tkt — Z Tktk

kez
and abbreviations in the special cases £ = —oco and u = oo,
tr =tr"  and trp = try° . (2)

For example, the map

d

tI‘OI R, [t] — Ry s Z ’I”ktk — T (3)
k=0

is the “constant-coefficient” ring homomorphism which is given symbolically by ¢ — 0.

2. Strongly graded rings

Strongly graded rings and partitions of unity

Let R = R.[t,t!] be a Z-graded ring. A finite sum expression 1 = > a;n)ﬁ](fn)

with ozé-n) € R, and ﬁj(»*n) € R_,, is called a partition of unity of type (n,—n). The
ring R.[t,t!] is called strongly graded (DADE [Dad80, §1]) if there exists a partition
of unity of type (n,—n) for every n € Z; equivalently, if the multiplication map

Tn: By @ry R = Ry, xRy — 2y
is surjective for every n € Z.
Lemma 2.1. If m, is onto, then m, is an isomorphism of Ry-Rg-bimodules.

Proof. The map m, is clearly left and right Rp-linear. If 7, is onto we can choose a
partition of unity 1 = Z , a(.n) ,B(»_") and define the right Rp-linear map

kn: Ro — R, ®pr, R_p, , x»—)Za 5

J

Then we calculate

FnTn(x®y) = Za )®,6’( n)my—Za( )B( "m@y—x@y

(using B "y e Ry) so that m, is injective. O
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Lemma 2.2. Let R = R.[t,t7!] be a Z-graded ring, and let 1 =", ayn)ﬂg_m) and
1= Zj d](»")BJ(._") be two partitions of unity of types (m,—m) and (n,—n), respec-

tively. Then
— (m) (n) (—n) p(—m)
L= (a™a™)- (5775,
0,J
is a partition of unity of type (m +mn,—m —n). O

Corollary 2.3. Partitions of unity of types (1,—1) and (—1,1) exist within the
Z-graded ring R.[t,t™] if and only if it is strongly Z-graded. O

By direct calculation, similar to the proof of Lemma 2.1 above, one verifies:

Lemma 2.4. Suppose that R = R.[t,t™ ] is a strongly Z-graded ring, and let m € Z.
The multiplication map

R Qg Relt, tT] = R T, 2@y ay

is an isomorphism of R.[t]-R.[t,tt]-bimodules, with inverse given by
o Fal M s s
J

(— m)ﬂ( m)

for a partition of unity 1 =73, a; of type (—m,m). O

Note that the inverse is independent from the choice of partition of unity (since the
multiplication map is). — For later use, we record an important categorical property
of strongly Z-graded rings:

Lemma 2.5. Let R = R.[t,t7!] be a strongly Z-graded ring. The inclusion
B: R.Jt] = R,[t,t7']
is an epimorphism in the category of (unital) rings.
Proof. Let f,g: R.[t,t7'] — S be ring homomorphisms satisfying the equality
fB =gB. We need to show f = g. For this, let x € R; be homogeneous of degree

keZ. It k>0 wehave f(x) = fB8(x) = gB8(x) = g(x). Otherwise, choose a partition

of unity 1 =3, cy;k)ﬁj(_k) of type (k,—k). Then ﬁJ(_k) and ,B](_k)x lie in R, [t]. Thus

f(ﬂ](_k)x) = g(ﬁj(-_k)x)7 and we calculate
flx)=9(1) - f(z)
=2 slo 87 1) =300l - 9(B) - f (@)

J

—29 (@) £(87) - @) = Y alall) - £(5 )

_Zg (o) a5, ):Zg(oék)@(fk)w) =g(x) . O
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Finiteness properties of strongly graded rings
The homogeneous components of strongly graded rings are finitely generated pro-
jective modules over the degree-0 subring.

Lemma 2.6. Suppose that R = R.[t,t™] is a Z-graded ring that admits a partition
of unity of type (1,—1). Then for alln > 1,

e R, is finitely generated projective as a right Ry-module;

e R_, is finitely generated projective as a left Ry-module.
Similarly, if R = R.[t,t™1] admits a partition of unity of type (—1,1), then for all
n>1,

e R, is finitely generated projective as a left Ry-module;

e R_, is finitely generated projective as a right Rg-module.

Proof. Let n > 1, and let 1 = Zj agvn)ﬂj(-ﬂZ) be a partition of unity of type (n, —n)
(existence is guaranteed by Lemma 2.2). Define

fit Ry =Ry, x »—)ﬂ](_n)x .

The maps f; are right Rp-linear, and for all € R,, we calculate
Do Sy =3 e =
J J

so that (a;n), fj) is a dual basis for R,. It follows that R, is a finitely generated
projective right Rp-module by the dual basis lemma. — All the remaining claims are
proved in a similar manner. O

Corollary 2.7. Suppose that R = R,[t,t™] is a strongly Z-graded ring.

1. Foralln € Z, the homogeneous component Ry, of R.[t,t™1] is a finitely generated
projective left Ro-module and a finitely generated projective right Ry-module; in
fact, R, is an invertible Ry-bimodule.

2. If M s a projective (left or right) R.[t,t~']-module, then M is a projective
(left or right) Ro-module (with module structure given by restriction of scalars).
Similarly, any projective left or right module over R.[t] or R.[t™1] is a projective
Ry-module.

3. There exists an isomorphism R_,, @p, R.[t] = t™R.[t] of finitely generated
projective right R.[t]-modules, for every m € Z. Similarly, there exists an iso-
morphism R, @p, Re[t71] =t R.[t™Y] of finitely generated projective right
R.[t7Y]-modules.

4. For allm € 7Z, the module t~™ R, [t] is an invertible R.[t]-bimodule, and hence is
finitely generated projective as a left and right R, [t]-module. Similarly, t™ R, [t 1]
is an invertible R.[t~']-bimodule, and hence is finitely generated projective as a
left and right R.[t~]-module.

Proof. Statements 1. and 2. follow from Lemma 2.1, Corollary 2.3 and Lemma 2.6. To
prove 3. it is enough, in view of 1., to establish the isomorphism. Let 1 = Zj a§7m)6§m)
be a partition of unity of type (—m,m). The multiplication map 7: R_,, @, R«[t]
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Z =™ R, [t], sending 2 ®y to zy, has inverse given by p: z+ > a;_m) ®5](.’”)Z,
Indeed, by straightforward calculation, mp(z) = Zj Oé_*m)ﬁj(_m)z — 5 and

pr@@y) =3 al™ @ fMay = Y0l MM oy = 2@y
J J

since ﬁ](-m)a: € Ry. — The proof of 4. is similar, using partitions of unity to show that
t"™ R, [t] is the inverse R.[t]-bimodule of t~™ R, [t]. O

3. Proto-null homotopies and proto-contractions

Let C and C’ be chain complexes of right modules over the unital ring K, with
differentials d = dj: C, — Ci—1 and d' = dj,: C}, = C},_,. A proto-contraction of C
consists of module homomorphisms s = s : Cy, — C41 such that ds + sd: Cp — Cy,
is an automorphism of Cj, for all k € Z. Somewhat more generally, a (C,C")-proto-
null homotopy consists of module homomorphisms ¢ = t,: C} — C} ., such that
gr =d't+1td: Cy — C|, is an isomorphism for all k£ € Z. In fact, the maps g define

a chain isomorphism ¢g: C' N0l , and the maps t; define a null homotopy of g.

Lemma 3.1. A chain complex C' admits a proto-contraction if and only if it is con-
tractible. The chain complexes C and C' admit a (C,C")-proto-null homotopy if and
only if C =2 C" and C is contractible.

Proof. A proto-contraction is, by definition, the same as a (C, C)-proto-null homo-
topy, so it suffices to prove the second statement. If there exists a chain isomorphism
g: C — C’ with C contractible, we can choose a null homotopy ¢ of g which consti-
tutes a (C, C’)-proto-null homotopy. Conversely, any (C,C’)-proto-null homotopy ¢
determines a null homotopic chain isomorphism g = d’t + td, as explain above. Then
idc = g~ 'g is null homotopic as well so that C' is contractible. O

Given a ring homomorphism f: K — S, the family of maps sy, is called an f-proto-
contraction if the maps s, ®id form a proto-contraction of the induced complex
f+(C) =C®pf S. Similarly, the family of maps t; is called a (C,C")-f-proto-null
homotopy if the maps t; ®id form a (C ®k S, C’ @ S)-proto-null homotopy.

We are interested in proto-contractions for the following reason. Suppose we are
given C' and f as before, and another ring homomorphism g: S — T. If f.(C) =
C®k S is contractible then (¢f).(C) =CxT =2 C®x S®sT is contractible as
well, since taking tensor product preserves homotopies. If, however, (¢gf).(C) is con-
tractible it is not guaranteed that f.(C) is contractible. In favourable circumstances, a
contraction of (gf).(C) gives rise to a sequence of maps s : Cj, — Cj41 which can be
shown, thanks to special properties of the maps f and g, to be an f-proto-contraction.

4. Remarks on non-commutative localisation

Let K denote an arbitrary unital, possibly non-commutative ring. For the reader’s
convenience we collect some standard facts about non-commutative localisation.
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Proposition 4.1. Let ¥ be a set of homomorphisms of finitely generated projective
K-modules, and let f: K — S be a K-ring. Write As: K — X"'K for the non-
commutative localisation of K with respect to .

1. If f is X-inverting and injective, then Ay, is injective.

2. The non-commutative localisation \s: K — L 7YK is an epimorphism in the
category of unital rings.

3. Suppose that X is the set of all those square matrices M with entries in K
such that f(M) is invertible over S; we consider a square matriz of size k as
a map of finitely generated free modules p: K* — K* so that f(M) represents

the induced map p® S: S* — S*. Let A be a square matriz with entries in K.
Then A € X if and only if As(A) is invertible over the ring ¥~ 'K.

Proof. 1. As f is X-inverting, it factors as K A%, $-1K 5 S. This forces Ay to be
injective if f is.

2. Suppose we have two ring homomorphisms «, 8: 'K — T with a)s = B)As.
This common composition is certainly Y-inverting, so factorises uniquely through .
This means precisely that a = 3, as required.

3. Since the map f is X-invertible, it factors as K A1k LS i Aisa square
matrix in ¥ then Ax(A) is invertible in X 71K, by definition of non-commutative
localisation. If the square matrix A with entries in K is such that Ax(A) is invertible,
then fAx(A) = f(A) is invertible over S so that A € X by the specific choice of ¥. [

We will have occasion to use the following construction of pushout squares:

Proposition 4.2. Let ¥ be a set of homomorphisms of finitely generated projective
K-modules, and let f: K — S be a ring homomorphism. The square in Fig. 1 is
a pushout in the category of unital rings, where f.(X) denotes the set of induced

K
f‘/
S

Figure 1: A pushout square in the category of unital rings.

f

My
I
A
—E s f(m)s

mapsoc®S: PRk S — Q®k S witho: P — Q an element of ¥. The ring homomor-
phism f is obtained from the universal property of As; as the composition Ar.zyo f s
Y-inverting. In other words, given ring homomorphisms 3: S — T anda: X 1K — T
such that ao Xy, = P o f there exists a uniquely determined ring homomorphism
v: fo(8)7LS — T with B =wvo Af.(x) and a =wvo f, cf Fig. 2.

Proof. As for notation, given any ring homomorphism h: A — B we let h, stand for
the functor - ® 4 B. — To prove the Proposition we verify that the square has the
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K
f‘/
S

— = ulK

Ax
A

f (%)
—

Figure 2: Universal property of pushout square.

universal property of a pushout, see Fig. 2. Let a: ¥"'K — T and 3: S — T be ring
homomorphisms such that aly = §f. Given a map o: P — @ in ¥ we know that

Bufe(0) = (BF)«(0) = (aAs)«(0) = au(As)«(0)

as (Ax)«(0) is invertible so is (i fi«(0). Hence the map f is f.(X)-inverting, and
consequently factorises uniquely as (= vy (), for some ring homomorphism
v: fo(X)71S — T. From the chain of equalities

vfAs =vAp (o) f = Bf = als
we conclude that o = v f since Ay is an epimorphism by Proposition 4.1 2. O

The following purely category-theoretic lemma will be applied, in the proof of
Proposition 10.3, in the context of strongly graded rings and non-commutative local-
isation.

Lemma 4.3. Suppose that we are given a commutative pushout square

A—2 B

BJ r 5J
C#D

(in any category) with B an epimorphism. Suppose further that there exists .: C' — B
with 1B = «. Then §u =y, and § is an isomorphism.

Proof. First, since 018 = da = 03, and since (3 is an epimorphism, we have . = 7.
Next, by the universal property of pushouts there exists a (uniquely determined)
morphism ¢: D — B with ¢d = idp and ¢y = ¢. The commutative diagram of Fig. 3
can be completed along the dotted arrow by both idp and d¢; by uniqueness, this
means dp = idp. O

Part 2. N-graded rings and complexes contractible over R,

For this part we assume that R = R,[t,t"!] is an arbitrary Z-graded ring; in fact,
we are only interested in its positive subring R.[t] = @, , R which is, in effect, an
arbitrary N-graded ring.
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A———

B

%
c— 7 p
\/ s

oL="ry

(0]
v

Figure 3: Pushout diagram used in proof of Lemma 4.3.

5. Complexes contractible over R,

We characterise complexes C' of R, [t]-modules such that C ® g, [ Ro is contractible,
where the tensor product is taken via the “constant coefficient” ring homomorphism
tr?: ¢ 0 of (3).

The map ¢
Let M be an R.[t]-module. Using the notation from (1), we write {3y = ¢ for the
obvious map of R,[t]-modules

(v =C Mgt Rt = Mg, t°RuJt] =M, m®z+— ma (4)
induced by the inclusion map ¢! R,[t] — t°R,[t]. The map ( is to be thought of as a

substitute for the action of the indeterminate t. More precisely, if R.[t] = K[t] is a
polynomial ring, then ¢! R,[t] = tK[t] and the composition

M = M @ K[t] = M &gy (EK[H]) = M @y K[t] = M,

where 7(m ®r) = m®tr, is given by m — mt; that is, up to the isomorphism 7 the
map ¢ coincides with the action of the indeterminate.

Invertible matrices over R.[t]
We write an element 2 € R.[[t]] as a formal power series: 2 = > - 2,t?. The usual
proof shows that z is a unit in R.[[t] if and only if zo = t1%(2) is a unit in Ro, cf. (2).
A square matrix M with entries in R, [[t] can be written as a formal power series
M = Zp}() M,tP with matrices M, having entries in R,,; again, the usual proof shows
that the matriz M is invertible over R.[[t] if and only if My = tr°(M) is invertible
over Ry.

Notation 5.1. We let Q denote the set of all square matrices M with entries in R.[t]
such that tr(M) is an invertible matrix over Ry, that is, such that M is invertible
over R,[[t].

We apply Proposition 4.1 3 to the R, [t]-ring f: R.[t] <= R.[t]:

Lemma 5.2. A square matriz M with entries in the N-graded ring R. [t] becomes
invertible in Q' R.[t] if and only if tr°(M) is invertible over Ry. O
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The localisation Q;'R.[]

We consider an element AT € Q, of size k as an endomorphism A*: R,[t]* —
R.[t]* of the finitely generated free R, [t]-module R,[t]*. The non-commutative local-
isation

A=Ay, Rult] = Q7 Rt

can be used to characterise the Rp-contractible complexes CT as follows, generalising
known results for polynomial rings (RANICKI [Ran98, Proposition 10.13]):

Theorem 5.3. Let R.[t] = @, R be an arbitrary N-graded ring, and let Ct be
a bounded complex of finitely generated free R.[t]-modules. The following statements
are equivalent:

1. The complex C+F ®Rg. 1] Ro is conlractible, the tensor product being taken with
respect to the ring map t1°: R,[t] — Ry, t — 0.

2. The induced complex C* ®p_ 1y R.[[t] is contractible.

3. The induced complex C* ®p,_ Q;lR* [t] is contractible.

4. Themap (: C®p |y t'R,Jt] » C ®R.[1 tOR.[t] from (4) is a quasi-isomorphism.

Proof. 3. = 2. = 1.: This follows from the factorisation

tr¥: 60
E—

R.[t] S Q7' R[] — R.[1] Ry

of the ring homomorphism tr°: R.[t] — Ry.

1. = 3.: We equip the finitely generated free modules C;F with arbitrary finite bases;
denote the number of elements of the basis for C; by r,, so that C, is identified with
R.[t]"™. The differentials d;}f : C;f — CI_| are thus represented by matrices D; of
size 7,_1 X r, with entries in R.[t]. The differentials tr°(d;") in the induced complex
CT ®pg. ;1) Ro are then represented by the matrices tr(D;}), identifying C;f ®@ g, 4 Ro
with R{". By hypothesis there exists a contracting homotopy consisting of a family
of Rp-linear maps

o CF @r. iy Ro — Cr i Qg Ro
such that
tr’(df ) oo} + o otr?(d}) =1id .

The map o' is represented by a matrix S of size 7,11 X r,, with entries in Rg. The
matrices satisfy the relation

2 (D;f“ o8F+8+ o D;) — (D), ,) 0 S+ S ott?(DF) =1,

Tn
a unit matrix of size r,,. This implies, by Lemma 5.2, that the matrix
D08y +8,_1oDy
becomes invertible over erlR* [t]. Thus the S, define a Ag, -proto-contraction of ct,

cf. §3. With Lemma 3.1 we conclude that C* ®p_ 4 Q;lR* [t] is contractible as adver-
tised.
1. < 4.: From the short exact sequence

0—C* QR.[t] th*[ﬂ i> ct QR.[t] tOR*[ﬂ - C* ®p. 1 o — 0
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we infer that the canonical map cone(¢) — C ®p, (¢ Fo is a quasi-isomorphism. Thus
¢ is a quasi-isomorphism if and only if cone(¢) is acyclic if and only if CT ®p, 1 Ro
is acyclic; as the latter complex consists of projective Rp-modules, this is equivalent
to C* ®p, [ Ro being contractible. O

Theorem 5.4 (Universal property of Q' R.[t]). Let R.[t] be an arbitrary N-graded
ring. The localisation X\: R.[t] — Q7 'R.[t] is the universal R.[t]-ring making
Ro-contractible chain complexes contractible. That is, suppose that f: R.[t] — S is an
R.[t]-ring such that for every bounded complex of finitely generated free R, [t]-modules
C*, contractibility of C* ®p, [y Ro implies contractibility of C* @p, 14y S. Then there
is a factorisation

R[] 2 ORI L S

of f, with a uniquely determined ring homomorphism 1.

Proof. Tt was shown in Theorem 5.3 that the R.[t]-ring Q3" R.[t] makes Ro-contracti-
ble chain complexes contractible. Thus it is enough to verify that f is Q+—inverting;
the universal property of non-commutative localisation then yields the desired fac-
torisation and its uniqueness. Consider the element A* € Q, as a chain complex

Ct = (RI0" 25 RV .

As AT becomes invertible over Q7' R.[t], the complex C* @p, (1 Q7 R.[t] is con-
tractible, hence so is C* ®p, () Ry by Theorem 5.3. This makes CT ®p_ ;) S con-
tractible, by hypothesis on f, whence AT becomes invertible in S as required. O

Part 3. Strongly graded rings and finite domination

We now turn to the theory of Ro-finite domination of R,[t]-module complexes. We
characterise finite domination via NOVIKOV homology (Theorem 8.1) and via a non-
commutative localisation of R.[t] (Theorem 10.1). We assume throughout that R =
R.[t,t71] is a strongly Z-graded ring.

6. Algebraic half-tori and the Mather trick

Algebraic half-tori and the Mather trick
Let 1=3", agl)ﬁj(_l) be a partition of unity of type (1,—1) in R = R.[t,t7!].
Given an arbitrary R, [t]-module M, let u = up; denote the map

p: M @p, t'R[t] = M @g, t°R.[t], m@z— Zmagl) ®ﬂ§_1)z . (5)
J
The map p is Rp-balanced (hence well-defined) and independent of the choice of
partition of unity since it can be written as the composition
M ®p, t'R.[t] = M ®pr, Ro g, t" R.[t]
=~ M®R0 Ry QR R_4 XR, th*[t] — M®R0 tOR*[t]
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where the second isomorphism is induced by 71 L' Ry = Ry ®p, R_1, cf. Lemma 2.1,
and the last arrow is induced by the multiplication maps M ®pr, R1 — M and
R_1 ®p, t'R.[t] — tOR.[t].

As a matter of notation, we also introduce the inclusion map

12 M @p, t'Ri[t] - M @pg, t°Ri[t], m@z—>meux .

Moreover, it is convenient at this point to choose, once and for all, additional parti-

tions of unity
— (n) 5(=n)
L=> a;’8;,
jn
of type (n,—n), for all n > 0 (n # 1). These exist in view of our standing assumption

for this part, that the ring R = R.[t,t™!] is strongly graded.

Lemma 6.1 (Canonical resolution). Suppose that R = R.[t,t™] is a strongly Z-grad-
ed ring. Let M be a right R.[t]-module. There is a short exact sequence of R [t]-mod-
ules

0— M®p, t'R.[t] ~ M @pg, t°R.[t] 5 M =0, (6)

where p is as in (5), (tm@x) =m@x and T(M @ ) = mz.

Proof. This is similar to the proof of Proposition 3.2 in [HS17]. Since Zj aﬁl)ﬁj(fl) =
1 we have me = mp and hence w(¢ — ) = 0. It is thus enough to show that the sequence
is split exact when considered as a sequence of Rg-modules.

To begin with, the map o(m) = m®1 is certainly an Ry-linear section of 7. Next,
we define the Ry-linear map

p: M®@p, t°R.[t] = M @p, t'R.[t]

on elements of the form m ® x4, with x4 € Ry, by the formula

d—1

plm@wa) =3 3 ma)) @5, Vaa .

k=0 Ji
We note the particular cases
pm®@z) =0,
pm@x) =mex; ,
sz = s + S maf!) Ve
j

The summands s = ij mag»l:) ®B§;k)a:d, and hence the map p, do not depend on

the particular choice of partition of unity. This is because sy is the image of m ® x4
under the composition
M®p, Rg = M ®p, Ro®R, Ra
-1
%) M ®p, Rk ®r, R—k @R, Ra Z M ®pr, R—k+d ,

where o(m ® a ®b® ) =ma ® bz, and 77,6_1 does not depend on choices by Lemma 2.1.
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We have po (v — p) = id since, for an element x4 € Rq4, we calculate

po(L—pw)(m@wa) = p(m®wa) Zp ol @ B Vay)

—ZZma%ﬁ( Yz ZZZma oy @ B 85

k=0 ji k=0 Jjk
o (k) k) (k+1) k— 1)
: sza ®5 _sza.]k+l ®/6]k+1 Ld
k=0 Jk k=0 jr+1
—Zma”@ﬁmqy —Zma ®xd mery ;

the equality labelled (¢) makes use of Lemma 2.2, and of the fact that summands of
the form sj1 do not depend on choice of the partition of unity involved so that

Rg-1),, _ (k+1) k1),
ZZma a]k ®6Jk B = Sk+1 = Zmanﬂ ®Bjk+1 Td -
gk J Jk+1

It remains to verify the equality o om + (¢ — p) o p =id. For this, let = € Ry and
m € M, and calculate:

(t—p)op(m@zy) = (sza(k) ﬂj(»,:k)xd)

k=0 jk
—ZZma(k)(X) (), Zzzmaw) D g g1 g—b,
k=0 Jjk j k=0 ji
ZZ a(k ®ﬁ md—ZZmaﬁfr ®ﬁjk+kl Vg
k 0 Jr k=0 jk41

—Zmao)@)B( Oxd—Zma ®ﬁ]d
—Zma]O ]OO)®xd Zma(d)ﬂ( d)xd®1

:m®xd—mxd®1 =(id—com(m®zy) .

(As before, the equality marked (¢) holds because summands of the form s do not
depend on choice of the partition of unity involved.) This finishes the proof. O

Definition 6.2. Let C* be a complex of R, [t]-modules. The mapping cone $*(C™T)
of the map ¢ — p,

HH(CF) = cone (C+ Dpy 1R[] T OF @, tOR*[tD :

is called the algebraic half-torus of C+.
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Corollary 6.3. Let CT be a complex of R.[t]-modules. The canonical map
HT(CT) = cone (CT @p, t' R.[t] 8 ot @p, t°R. t]) — C*

induced by the short exact sequence (6) is a quasi-isomorphism. If Ct is bounded
below and consists of projective R [t]-modules, the map is a homotopy equivalence of
R..[t]-module complexes.

Proof. This is a direct consequence of standard homological algebra and Lemma 6.1
above. O

The following result, though technical, is central to the theory of finite domination.
By the previous Corollary we can replace any complex CT of R,[t]-modules by an
algebraic half-torus, up to quasi-isomorphism; the MATHER trick is the observation
that we can further replace the complex C'" within the mapping cone of the half-torus
construction by an Rg-module complex homotopy equivalent to CT.

Proposition 6.4 (The algebraic MATHER trick for algebraic half-tori). Let R =
R.[t,t7Y] be a strongly Z-graded ring, let CT be a complex of R.[t]-modules, and let
D be a complex of Ry-modules. Let ac: Ct — D and 3: D — CF be mutually inverse
chain homotopy equivalences of Rg-module complexes with H: id ~ af a specified
homotopy. Write v for the R.[t]-module complex map

Y= (a®id)o (1t —p)o (f®id): D®g, t'R.t] = D®p, t"R.[t] .

Then the square diagram (7) in Fig. 4 commutes up to a preferred homotopy J induced
by H, given by the formula

J=(a®id)o (t —p)o (H®id): (a®id)o (¢t — p) 2o (a®id) .
The homotopy J induces a preferred chain map
Z: HT(CT) = cone(t — pu) — cone(t)) ,

which is a quasi-isomorphism. If both CT and D are bounded below compleves of
projective Ro-modules, the map $HT(CT) — cone(y)) is a homotopy equivalence of
R, [t]-module complexes.

Ot @py ' Ru[t] —— O @p, tOR,[{]

a® idJ a® idJ (7)

Don 'Rl —Y s Don, (R[]

Figure 4: The MATHER trick square.
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Proof. By construction, J is a homotopy from (o ®id) o (¢ — ) to ¢ o (a ®id). Hence
we obtain a chain map of the mapping cones of the horizontal maps in the diagram,

_(a®id 0\ oy :
oy = < J a®id> :HT(CT) = cone(t — pu) — cone() ;
this map is a quasi-isomorphism since « is a homotopy equivalence (so the induced
map on homology will be represented by a lower triangular matrix with isomorphisms
on the main diagonal). O

Corollary 6.5. If CT is an Rg-finitely dominated bounded below chain complex of
projective R.[t]-modules, then C™" is R.[t]-finitely dominated, that is, C* is homotopy
equivalent to a bounded complex of finitely generated projective R.[t]-modules.

Proof. As CT is Ry-finitely dominated we can choose an Ry-linear chain homo-
topy equivalence a: CT — D from C* to a bounded complex D of finitely gener-
ated projective Rp-modules. By Corollary 6.3 and Proposition 6.4 there are quasi-
isomorphisms

Ct & HT(CT) S cone(y) (8)

with ¢: D ®g, t'R.[t] — D ®pg, t°R.[t] as defined in Proposition 6.4 a map of bound-
ed complexes of finitely generated projective R,[t]-modules. It follows that C'* is
quasi-isomorphic, hence homotopy equivalent, to a bounded complex of finitely gen-
erated projective R, [t]-modules as claimed. O

7. Finite domination and homotopy finiteness

It is an interesting question whether in the situation of Corollary 6.5 the com-
plex CT is actually R.[t]-homotopy finite, that is, homotopy equivalent to a bounded
complex of finitely generated free R.[t]-modules. In general this turns out to be false;
however, when working with R,[t,t7!] instead of R.[t] the analogous question has a
positive answer. — As before, let R = R,[t,t7!] be a strongly Z-graded ring.

Proposition 7.1. Suppose that C' is a bounded complex of finitely generated projec-
tive Ry[t,t~t]-modules. If C is Ro-finitely dominated, then C is R.[t,t~]-homotopy
finite, i.e., C' is homotopy equivalent to a bounded complex of finitely generated free
R.[t,t~Y]-modules.

Proof. Let D be a bounded chain complex of finitely generated projective Ry-modules
chain homotopy equivalent to C. Then by the MATHER trick for algebraic tori [HS17,
Lemma 3.7], C is homotopy equivalent, as an R,[t,t~!]-module complex, to the map-
ping cone of a certain self map of the induced complex D ®@p, R.[t,t~!]. Hence the
finiteness obstruction of C' in Ky (R.[t,t™1]) vanishes whence C'is R, [t,t~!]-homotopy
finite. O]

The analogous statement holds over a polynomial ring Rg[t] with a central indeter-
minate t: An Ro-finitely dominated, bounded Ro[t]-module complex CT of finitely gen-
erated projective modules is Ro[t]-homotopy finite. For C™ ~ cone(¢) as in (8) and (7),
and the finiteness obstruction of the mapping cone vanishes since tRy[t] = Ry[t]. —
In general, however, this line of reasoning fails when working over R,[t].
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Example 7.2. There exist a strongly Z-graded ring R = R.[t,t™'] together with a
bounded complex CF of finitely generated projective Ry [t]-modules such that C is
Ry-finitely dominated but not homotopy equivalent to a bounded complex of finitely
generated free R.[t]-modules. Specifically!, let K be a field and let R = R,[t,t!] be
the LEAVITT K-algebra of type (1,1), that is, the (non-commutative) K-algebra on
generators A, B, C, D subject to the relations

AB+CD=1, BA=DC=1, BC=DA=0;

we declare that A and C' have degree —1, while B and D are given degree 1. This is a
Z-graded ring since all relations are homogeneous of degree 0. It is strongly graded by
Corollary 2.3 as the relations AB + CD =1 and BA = 1 provide partitions of unity
of types (—1,1) and (1, —1), respectively. It is known that Ry can be identified with
an increasing union (J,5,Matz«(K) of matrix algebras, using the block-diagonal
embeddings x — (§ 2). It follows that Ry has IBN, and since the projection map
R.[t] = @y>0 Bk — Ro is a ring homomorphism, so does R.[t]. — The R.[t]-module
Q = t' R.[t] is finitely generated projective by Corollary 2.7 3., and the map

R[] > Q®Q, rw (Br,Dr) (9)

is an isomorphism of R, [t]-modules with inverse (z,y) — Az + Cy. In addition, @ is
not stably free: if Q @ R, [t]™ = R.[t]", then by (9) also

R, [tF” >~ (Q @ R, [t]m) ® (Q @ R*[t]m) ~ R, [t]2m+1 ;

as R.[t] has IBN, the inequality 2n # 2m + 1 renders this impossible. The class of @
in Ko (R.[t]) is thus non-zero, and has in fact order 2 in view of the isomorphism (9).
Thus the inclusion map @ — R.[t], considered as a chain complex CT, is an example
of a bounded complex of finitely generated projective R.[t]-modules not homotopy
equivalent to a bounded complex of finitely generated free R,[t]-modules. On the
other hand, the complex CT is certainly Ro-finitely dominated since the cokernel of
the inclusion map @ = t'R.[t] — R.[t] is isomorphic to Ry.

8. Ry-finite domination of R,.[t]-module complexes

We now develop a homological criterion to detect whether a chain complex C* of
R.[t]-modules is Ry-finitely dominated when considered as a complex of Rp-modules
via restriction of scalars. This happens if and only if CT has trivial NOvIKOvV homol-
ogy in the sense that the induced chain complex C* @g_ y R.((t71) is acyclic.

Theorem 8.1. Let R = R.[t,t71] be a strongly Z-graded ring, and let C* be a bound-
ed chain complex of finitely generated projective R.[t]-modules. The following state-
ments are equivalent:

1. The complex CT is Rqy-finitely dominated.

2. The complex CT @p_ [ Ro((t™1)) is contractible (i.e., CT has trivial NOVIKOV
homology).

'T am indebted to R. Hazrat for bringing this example to my attention.
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Proof. 1. = 2.: As C%" is Ry-finitely dominated, we find a bounded complex D
of finitely generated projective Ry-modules, and mutually inverse Rp-linear chain
homotopy equivalences a: Ct — D and 3: D — CT. Let 1 be as in Proposition 6.4;
together with Corollary 6.3, the MATHER trick asserts that the R.[t]-module com-
plexes CT and cone(v)) are quasi-isomorphic and thus are chain homotopy equiv-
alent (as both are bounded below and consist of projective R,[t]-modules). Thus
Ct @p, 1 R«(t71)) is homotopy equivalent to cone(y)) ®p, ) R.(t")). The latter
complex in turn is isomorphic to the mapping cone of the chain map

D &g, R.(t™") = D ®p, R.(t71)
sending the element x ® Zi< L Tit' to
af(z)® Z ritd — Z a(ﬂ(x)agl)) ® Z BJ(_l)Tjtj*l ,
Jj<k J Jj<sk
where we write elements of R.((t71)) as formal LAURENT series in ¢~!; note that in

the target of the map, 6](»_1)7’]- is the coefficient of t/~! as ﬁ](._l) has degree —1.
As D consists of finitely presented Rp-modules, we can identify both the tensor
products

D @R,y R[] @p, 1 Re(t71) = D @R, Ru((t71))
and

D@p, t' Ru[t] @p, 1 Ra(t71) = D @Ry Ru(t71)
with the twisted right-truncated power of D [HS17, Proposition 3.13], that is,

Dag, Ro(t™) = [] (D@r, Ra) © @ (D @R, Ra) -

n<0 n>0

Thus we rewrite cone(¢)) @g_ [ R« (¢ 7)) as the right-truncated totalisation [Hiit11,
Definition 1.1] of a double complex

Zp,q = (Dp+q+1 @R Rp) D (Derq @R Rp)

with vertical differential d': Z,, — Z,,-1 and horizontal differential d": Z, , —
Zp-1,q given by the formulae

d’'(z®a,y®b) = (—d(x)@a,aﬂ(x)@a—i—d(y)@b) ,
daeayeb) = (-3 a(B)al?) 6 b,0) .

The symbol “d”, without any decorations, refers to the differential of the chain com-
plex D. The columns are acyclic since Z,, . is a shift suspension of cone(af) ®@g, R,
and the chain map «f is homotopic to an identity map. It therefore follows that
Ct @p. Re(t1) =~ cone(y) @ g, Ra(t™1)) is acyclic [Hiit11, Proposition 1.2], and
hence contractible.

2. = 1.: As C'T consists of finitely generated projective R,[t]-modules, there exists
another bounded complex BT with zero differentials, consisting of finitely generated
projective R.[t]-modules, such that AT = BT & C7 is a bounded complex of finitely
generated free R, [t]-modules. We equip A;: with a basis with r; elements, and identify
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A with R.[t]"* henceforth. The differential dj: A} — A} | is thus represented by
a matrix Dy, with entries in R,[t].

Suppose, for ease of notation, that CT is concentrated in chain levels between 0
and m. We can choose integers

Ay <dpm—1 <...<dp=—1

so that Dy defines a map d; : t% R, [[t 1™ — t¥—1 R, [[t~1]"*~1; we only need to
ensure that no entry of Dj has a non-zero homogeneous component of degree
exceeding dy_1 — di. We let S denote the chain complex thus defined, with S =
t4 R, [t~1]"™ and differentials Dy. Similarly, we let N denote the chain complex with
Ni = R.((t71)™ and differentials Dj. Note that S is a subcomplex of N.

For any d < —1 there is a short exact sequence of Ryp-modules

0 Rt @ Rot] S22 R(#7Y) — é]; R; >0 (10)
j=d+1

with last term a finitely generated projective Ro-module by Corollary 2.7, as R, [t,t~}]
is strongly graded. It follows that there is a short exact sequence of Ry-module com-
plexes

O%SGEA*%N%P%O (11)

with P a bounded complex of finitely generated projective Rp-modules. In chain
degree k this sequence is actually just the ry-fold direct sum of (10) with itself, for
d = dj.

From the sequence (11) we infer that the map from the mapping cone of 5 to P is a
quasi-isomorphism. Now recall AT = BT & C* and observe the consequent splitting

N=A*@p R (t™) =BT @p. R(t7") & CT @ R(t7) . (12)

By hypothesis CT ®pg, ) R (1)) is contractible; thus N is quasi-isomorphic, via
the projection map, to B* ®p, 1) R« (t71). As taking mapping cones is homotopy
invariant, we can replace N by the latter complex and conclude that P is quasi-
isomorphic to the mapping cone of the map

)

viSeAt=SeBtect T2 prag R .

As ~ is the zero map on the CT-summand, the mapping cone of v contains the
suspension C*[1] of C* as a direct summand. Hence in the derived category of the
ring Ry, the complex CT[1] is a retract of P. Since both complexes are bounded and
consist of projective Ryp-modules, we conclude that C*[1] is a retract up to homotopy
of P whence Ct is Ro-finitely dominated as claimed. O

9. R.[t]-Fredholm matrices

Let R = R.[t,t"!] be a Z-graded ring, and let AT be a non-zero square matrix of
size k with entries in R.[t,t!]. For suitable m € Z, multiplication by AT defines an
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R, [t]-module homomorphism
AY = pu(AT,m): Rt — (t_mR*[t])k , T AT o

“suitable” means, in fact, that —m is not larger than the minimal degree of non-zero
homogeneous components of entries of AT. Suppose now that in addition to such m
we fix an integer n > m so that the map u(A™,n) is defined as well.

Lemma 9.1. There is an isomorphism of Ry-modules

—m—1
coker pu(A™,n) = coker u(A @ RY .

j=—-n

Proof. The direct sum of the exact sequence of Ry-modules

+ m
R.[t) wAzm), (™R, [t])k — coker (AT, m) =0
with the exact sequence

—m—1 —m—1

0— P RV S P RE—0

j:—n j:—n
yields a new exact sequence, which is precisely the sequence

—m—1

+ n
R.[t]* LIGAEON (7" R.[t ]) — coker (A @ RF =0 .
j=—-n
Hence coker u(A*,n) = coker u(A*, m) & @J__n ¥ as Rp-modules. O

Corollary 9.2. Suppose that R = R.[t,t™!] is strongly Z-graded. In the situation of
Lemma 9.1, the module coker (A%, n) is a finitely generated projective Ro-module if
and only if coker u(A™,m) is.

Proof. This is a consequence of Corollary 2.7 1. and Lemma 9.1. O

Proposition 9.3. Suppose that R = R.[t,t'] is a strongly Z-graded ring. Let AT
be a k x k-matriz with entries in R.[t,t71], and let m € Z be “suitable” in the sense
that multiplication by AT yields a map of finitely generated projective Ry |[t]-modules
At = p(AT,m): R.Jt]F — t ™ R.[H*, o AT -2 (see discussion above) which we
may consider as a chain complex concentrated in chain degrees 1 and 0. The fol-
lowing statements are equivalent:

1. The chain complex AT is Ry-finitely dominated.
2. The induced chain complex AT Qg R.(t™1)) is contractible.
3. The map A" is invertible over R.(t™1)), that is, the map

R(t™)F = R.(t71)F, 2= AT .z

s an isomorphism.

4. The matriz AT is invertible in the ring of all square matrices of size k with
entries in R, ((t71)).
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5. The map p(A*,m) is injective, and coker u(A*,m) is a finitely generated pro-
jective Ro-module.

Moreover, the validity of these statements does not depend on the specific choice of a
suitable m € Z.

Definition 9.4. A square matrix with entries in R.[t,t~!] satisfying one (and hence
all) of the conditions listed in Proposition 9.3 is called an R.[t]-FREDHOLM matriz.
The set of all R,[t|-FREDHOLM matrices (of arbitrary finite size) is denoted by the
symbol .

Proof of Proposition 9.3. Condition 5. is insensitive to the precise value of the suit-
able integer m, in view of Corollary 9.2.

The equivalence of conditions 1. and 2. is Theorem 8.1 above. Statements 3. and 4.
are trivially equivalent.

By Lemma 2.4, the multiplication map

R Qg Relt, tT] = R, 2@y 3y

is an isomorphism of R,[t,t~1]-modules. It follows that there is a chain of isomor-
phisms

TR Op. g R () 2 TR @, g Rt T @R, -1y R (1)
= Ru[t,t ) ®p, -1 R (t7) = Ro(t71))

with composition the multiplication map. In view of this, statements 2. and 3. are
equivalent.

If 5. holds then the chain complex AT is Rg-homotopy equivalent to the module
coker 1( AT, m), considered as a chain complex concentrated in degree 0, which shows
that 1. is satisfied in this case.

Suppose finally that 3. holds; we will show that 5. is valid as well. We infer from
the commutative square

Rt AN g

| |

Rt ) —A s R

o~

that the map p(A™, m) must be injective. Thus it remains to verify that coker pu(A™, m)
is a finitely generated projective Rp-module. Assuming m > 1, as we may in view of
Corollary 9.2, we can embed p(A™,m) into a commutative diagram of Rg-modules

R S R, e R[]

A* A* (AT, m) (13)

tIR[F —S—— R(t 1)k «—=2—— t-™R,[t]*

where ¢ > 0 is sufficiently large; it is sufficient that ¢ exceeds the maximal degree
of any non-zero homogeneous component of the entries of A*. Now in any ABELian
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category, a diagram D = (X Sy &z ) gives rise to an exact sequence, natural in D,
of the form

0= ker(6—¢) > X ®Z %Y — coker(¢ — ) = 0.

We apply this to the rows of diagram (13) above, noting that the coker term is trivial
in both cases (since ¢,m > 0). The kernel, on the other hand, is trivial in case of
the top row, and is the finitely generated projective Rp-module P = @7, Rf for the
bottom row. We arrive at the following commutative diagram with exact rows:

0 —— t'R(t7 )" @ Rt]F —— R(t™') —— 0

el

0 —— P —— tR(t~ ) @ t—"R.[t]) —— R(# ) —— 0

As the right-hand vertical map is an isomorphism by hypothesis 3., the SNAKE lemma
yields an isomorphism of P with the cokernel of the middle vertical map, which
contains the cokernel of u(A*,m): R.[t]F — ¢t ™R, [t]* as a direct summand. This
shows that coker u( A1, m) is a finitely generated projective Ro-module as desired. [

10. The Fredholm localisations Q;'R.[t] and Q' R.[t,t7!]

We now turn our attention to the non-commutative localisations
a: Rt = Q7 R[] and i R.Jt,t7 ] = Q'R

where Q4 denotes the set of R.[t|-FREDHOLM matrices as in Definition 9.4. To be
precise, we define a = \q, : R.[t] = Q' R.[t] as the non-commutative localisation
inverting all the maps

w(AT m): R[t)* — TR, [t]* (14)

of finitely generated projective R.[t]-modules, where k > 1 is arbitrary, AT € Q.
has size k, and m € Z is suitable in the sense of §9. As AT satisfies property 4.
of Proposition 9.3, the universal property of non-commutative localisation yields a
factorisation

R.[t] % Q'R — R(tY)

of the inclusion map; in particular, « is injective. — Similarly, we define v = Aq,:
R.[t,t7'] — Q7' R.[t,t~!] as the non-commutative localisation inverting all the maps

At R ETYE = Rt 1 (15)

of finitely generated free R.[t,t !]-modules, where k > 1 is arbitrary and A" € Q.
has size k. As A" satisfies property 4. of Proposition 9.3, the universal property of
non-commutative localisation yields a factorisation

Rt 7] = Q7' R[] = R(¢) (16)

of the inclusion map; in particular, v is injective.
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Applying the functor - ®g_[ R.lt, t~!] to a map as in (14) yields a map as in (15),
by Lemma 2.4. Thus 7|z, Re[t] = Q' R.[t,t 7] inverts all the maps (14) and fac-
torises through a ring homomorphism 6: Q7' R, [t] — Q7' R.[t,t7!]. That is, the maps
« and ~ fit into the commutative square diagram of Fig. 5 which, by Proposition 4.2,
is a pushout square in the category of unital rings.

R.[t] —%—— Q7'R.[Y

C ﬂ I § (17)

Rt — 1 Q7 Rt 7Y

Figure 5: Pushout square of FREDHOLM localisations.

Theorem 10.1. Let R = R,[t,t" '] be a strongly Z-graded ring, and let CT be a
bounded chain complex of finitely generated projective R.[t]-modules. The following
statements are equivalent:

1. The chain complez CT is Ry-finitely dominated.
2. The induced chain compler CT @g, Q7 'R.[t] is contractible.
8. The induced chain complex C* ®p, Q_T_lR* [t,t71] is contractible.

Proof. 1. = 2.: Suppose that C'" is Ry-finitely dominated. For ease of notation we
assume C, = 0 for n < 1. By taking direct sum with contractible one-step complexes
of the form P — P, with P suitable finitely generated projective R.[t]-modules,
we obtain a new bounded chain complex AT concentrated in non-negative chain
levels, which is homotopy equivalent to CT such that all chain modules A} are
finitely generated free over R.[t], with the possible exception of Al which is finitely
generated projective over R, [t]. Explicitly, let N be maximal with C]J{, # 0. We can
choose finitely generated projective R.[t]-module Q}, Q%_,, ..., @7, in this order,
such that C;f & Q;f © Q;f,, is finitely generated free (1 <n < N, with Q; =0 for
k > N); the bounded complex A" can then take the form

Qf +— Qf Q3 +— Q3 Qs «—— -
2] 2] 2] =)
Cf e Cf ——Cf ——Cf
2] 2] 2] =)
G =@ Qe

so that Ct is a direct summand of AT, and both the inclusion CT — A1 and the
projection AT — C'T are homotopy equivalences.
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For n >0 the module A} = C} & Q& Q. is finitely generated free. We
choose a basis consisting of r, elements, thereby identifying A7 with the finite
direct sum @@, R.[t] = (R. [t])"". The nth chain module of the induced complex
AT @p, g Re((t71)) is identified with R, ((¢71)™.

For n > 1 the differential A} — A% | of A* can be thought of as a matrix D;
with entries in R,[t]. The differential D} is the homomorphism given by projection
onto Aj = Q7.

As C7 is R.[t,t~1]-finitely dominated, Theorem 8.1 ensures that the induced com-
plex CT @p, g R.((t71)) is contractible; we choose homomorphisms

Tn: Cf @p, g Re(t71) = Oy ®p. g R (7))

forming a chain contraction. These maps give rise to a chain contraction o* of
AT @p, g Re((t™1)), by defining

o AL @ Ra(t71) = A @R Re(71))
by the formula

C
QF ®p. 1 B(t71) = AT ®@p. g R.(t71) forn=0,

on =\ (CF @ Q& Q1) @npy Re(t71)

(o) (CroioQi,®Qf,)@r.p R(t™") forn>0.
Note that the map of is defined over R.[t]. For n > 0 we think of o,} as matri-
ces with entries in R,(t7') such that D/}, -o;f + 0} |- D/ is a unit matrix of
size 1,. We can truncate the entries of the matrices o, below at some suitable
integer m < 0 (not depending on n) to obtain matrices S;" = tr,,(o,") with entries
in R.[t,t7!] such that E, = D}, - S} + S - DF, for n>2, is the sum of a unit
matrix, and a matrix the non-zero entries of which have homogeneous components of
strictly negative degree. Thus F,, is invertible over R, ((t™!)) so that E,, € Q. Sim-
ilarly, writing S;~ for the homomorphism oy we see that Fy = Dy - S + S; - Df
and Ey = D o Sf are invertible in R, ((t~1)) whence Ey, Ey € Q. as well. Here we
make use of the fact that of = S;” and D] are defined over R.[t]; in fact Ey = idg,,
and the matrix representing S;” - D] has entries in R.[t] and is hence unaffected by
truncation.

We now define a new R, [t]-module chain complex B by setting B;" = (t"R.[t])"™"
= A @p, ) t" R.[t], with differentials given by the matrices D} for n > 1, and the
projection map onto the direct summand Qf ® R[] @t R, t] for n = 1. The matri-
ces S;F for n > 0, and the homomorphism SSF , define module homomorphisms A;F —
B;H constituting an (A", BT)-a-proto-null homotopy, cf. §3, since the matrix F,, =
D -SF+ S D} is an element of Q. as explained above. Here a: R,[t] —
Q4 R, [t] is the localisation map as in (17). It follows that A* ®p_; Q' R.[t] is con-
tractible by Lemma 3.1, hence so is its direct summand C* ®p, [y QI_lR* [t].

2. = 3.: Immediate from the factorisation

R[] % Q7R — Q7 Rt t7Y

of V|r.jg, see (17) in Fig. 5.
3. = 1.: Immediate from the factorisation (16) and Theorem 8.1. O
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Theorem 10.2 (Universal property of Q_T_lR* [t]). Suppose that R.[t,t™] is a strongly
Z-graded ring. The localisation \: R.[t] — Q7' R.[t] is the universal R.[t]-ring
making Ro-finitely dominated chain complexes contractible. That is, suppose that
[ R.[t] = S is an R.[t]-ring such that for every bounded complex of finitely generated
projective R [t]-modules CT which is Ro-finitely dominated, the compler CT @p_ S

is contractible. Then there is a factorisation R.[t] 2 Q'R B S of f, with a
uniquely determined ring homomorphism 1.

Proof. 1t was shown in Theorem 10.1 above that Q7' R.[t] makes Ro-finitely domi-
nated chain complexes contractible. Thus it is enough to show that f inverts the maps
u(A*,m) of (14) for any AT € Q, and any suitable m € Z. By definition of Q. the
complex (AT, m) is Ro-finitely dominated so that, by hypothesis on f, the com-
plex u(A*t,m)®@p, (¢S is contractible. This says precisely that f inverts the map
w(AT m). O

One can also show that the localisation \: R, [t,t™!] — Q' R.[t,t™1] is the univer-
sal R, [t,t=1]-ring making Ro-finitely dominated, bounded chain complexes of finitely
generated projective R.[t]-modules complexes contractible.

We finish with proving that §: Q7' R.[t] — Q7' R.[t,t7!] is an isomorphism if
R.[t,t71] contains a homogeneous unit of non-zero degree.

Proposition 10.3. Suppose that R = R.[t,t™!] is a strongly Z-graded ring. Suppose
there exists a homogeneous unit of positive degree in R.[t,tt]. Then there is an injec-
tive ring homomorphism v: R, [t,t71] — Q7' R.[t] with 18 = o, and §: Q7' R.[t] —
Q;IR* [t,t~Y] is an isomorphism satisfying 61 = 7.

Proof. Let u € Rq N R.[t,t71]*, with d > 0. Then the 1 x l-matrix (u) is an
R.[t]-FREDHOLM matrix since the cokernel of the map

R.[t] = R.[t], r—ur
is the finitely generated projective Ryp-module gil R;. The induced map
Q7 Rt — Q7' R,

is given by multiplication with a(u) € Q7" R, [¢]. Since the induced map is an isomor-
phism, a(u) is invertible in Q' R,[t].

Given any z € R.[t,t~!] there exists k > 0 with u*z € R,[t] and thus a(ufz) €
Q7' R.[t]; we define (z) = a(u)* - a(uFz) € Q'R [t]. The element ¢(z) does not
depend on the choice of k, for if £ > k we have

alu)™ - a(utr) = a(u) Falu) T a(uFubr) = a(u) TR - a(ub)

since u‘~* € R,[t] and since « is a ring homomorphism. Note that «(z) = a(z) for
r € R,[t], and that ((u~1!) = a(u) "t

Suppose that = € R.[t,t"!] and k,£ >0 are such that u*zu=‘ € R,[t]. Then
a(uFru=t) = a(uFr)a(u)~*, since both sides equal a(u*x) after multiplication with
a(u)t. Consequently, for z,y € R.[t,t!] and k,¢ > 0 with vy, uFzu=" € R.[t] we
calculate

zy) = v(zuuly)

= a(u)™" - a(uFru uly)
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()% - a(uFzu) - a(uty)

() - a(uFz) - alu) ™ - aluly) = i) - 1(y) -

Il
2 2

Since ¢ is clearly additive, the map ¢: R,[t,t7!] — Q7' R,[t] is thus a ring homo-
morphism. Moreover, ¢ is injective as t(z) = a(u)~* - a(u¥z) vanishes if and only if
a(uFx) vanishes. It follows from Lemmas 2.5 and 4.3 that the ring homomorphism &

is an isomorphism and satisfies dr = . O
References
[Dad80] Everett Clarence Dade. Group-graded rings and modules. Math. Z.,

[HM20]

[HS17]

[Hiit11]
[Hiit20]
[Ran85]
[Ran9s]

[Sch85]

174(3):241-262, 1980.

Thomas Hiittemann and Tasha Montgomery. The algebraic K-theory of
the projective line associated with a strongly Z-graded ring. J. Pure Appl.
Algebra, 224(12):106425, 20, 2020.

Thomas Hittemann and Luke Steers. Finite domination and Novikov
homology over strongly Z-graded rings. Israel J. Math., 221(2):661-685,
2017.

Thomas Hiittemann. Double complexes and vanishing of Novikov coho-
mology. Serdica Math. J., 37(4):295-304 (2012), 2011.

Thomas Hiittemann. The “fundamental theorem” for the higher algebraic
K-theory of strongly Z-graded rings. Doc. Math., 26:1557-1600, 2021.

Andrew Ranicki. The algebraic theory of finiteness obstruction. Math.
Scand., 57(1):105-126, 1985.

Andrew Ranicki. High-dimensional knot theory. Springer Monographs in
Mathematics. Springer-Verlag, New York, 1998.

Aidan H. Schofield. Representation of rings over skew fields, volume 92 of

London Mathematical Society Lecture Note Series. Cambridge University
Press, Cambridge, 1985.

Thomas Hiittemann t.huettemann@qub.ac.uk

Thomas Hiittemann, Queen’s University Belfast, School of Mathematics and Physics,
Mathematical Sciences Research Centre, Belfast BT7 1NN, Northern Ireland, UK




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType true
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /FlateEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


