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A WELLS TYPE EXACT SEQUENCE FOR NON-DEGENERATE
UNITARY SOLUTIONS OF THE YANG–BAXTER EQUATION

VALERIY BARDAKOV and MAHENDER SINGH

(communicated by Graham Ellis)

Abstract
Cycle sets are known to give non-degenerate unitary solu-

tions of the Yang–Baxter equation and linear cycle sets are
enriched versions of these algebraic systems. The paper explores
the recently developed cohomology and extension theory for lin-
ear cycle sets. We derive a four term exact sequence relating
1-cocycles, second cohomology and certain groups of automor-
phisms arising from central extensions of linear cycle sets. This
is an analogue of a similar exact sequence for group extensions
known due to Wells. We also relate the exact sequence for lin-
ear cycle sets with that for their underlying abelian groups via
the forgetful functor and also discuss generalities on dynamical
2-cocycles.

1. Introduction

The quantum Yang–Baxter equation is a fundamental equation arising in theo-
retical physics and has deep connections with mathematics specially braid groups
and knot theory. A solution of the quantum Yang–Baxter equation is a linear map
R : V ⊗ V → V ⊗ V satisfying

R12R13R23 = R23R13R12,

where V is a vector space over a field and Rij : V ⊗ V ⊗ V → V ⊗ V ⊗ V acts as R
on the (i, j) tensor factor and as the identity on the remaining factor. If F : V ⊗ V →
V ⊗ V is the flip operator F (v ⊗ w) = w ⊗ v, then R : V ⊗ V → V ⊗ V is a solution
of the quantum Yang–Baxter equation if and only if R = F ◦R satisfies the braid
relation

R12R23R12 = R23R12R23,

in which case one says that R is a solution of the Yang–Baxter equation. Topologically,
the braid relation is simply the third Reidemeister move of planar diagrams of links
as shown in Figure 1.
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Figure 1: The braid relation

If X is a basis of the vector space V , then a map r : X ×X → X ×X satisfying
r12r23r12 = r23r12r23 induces a solution of the Yang–Baxter equation. In this case,
we say that (X, r) is a set-theoretic solution of the Yang–Baxter equation. Writing
r(x, y) = (σx(y), τy(x)) for x, y ∈ X, we say that the solution r is non-degenerate if
σx and τx are invertible for all x ∈ X. The problem of finding these set-theoretic
solutions was posed by Drinfeld [9] and has attracted a lot of attention.

A (left) cycle set, as defined by Rump [24], is a non-empty set X with a binary
operation · having bijective left translations X → X, x 7→ y · x, and satisfying the
relation

(x · y) · (x · z) = (y · x) · (y · z) (1)

for all x, y, z ∈ X. A cycle set is non-degenerate if the squaring map a 7→ a · a is invert-
ible. It is known that every finite cycle set is non-degenerate [24, Theorem 2]. Rump
showed that cycle sets are in bijection with non-degenerate unitary set-theoretic solu-
tions of the Yang–Baxter equation. These solutions give a rich class of structures and
are connected with semigroups of special type, Bieberbach groups [14], biquandles
[12, 16], colourings of plane curves [11], Hopf algebras [10] and Garside groups [7],
to name a few. Special solutions, particularly, the ones possessing self-distributivity
are intimately connected to invariants of knots and links in the 3-space and thickened
surfaces [12, 16, 17]. Cycle sets have been proved to be very useful in understanding
the structure of solutions of the Yang–Baxter equation and for obtaining general clas-
sification results. Cycle sets as braces give only unitary solutions whereas skew braces,
racks, bi-quandles etc. give general solutions. The structure of cycle sets is still far
from being completely understood, and many important questions on the topic are yet
not answered. The reader is referred to [4, 5, 7, 8, 11, 13, 19, 20, 21, 26, 27, 28, 29]
for some recent works.

A (left) brace is an abelian group (A,+) with an additional group operation ◦ such
that

a ◦ (b+ c) + a = a ◦ b+ a ◦ c (2)

holds for all a, b, c ∈ A. Braces were introduced by Rump [26] in a slightly different
but equivalent form where he showed that these algebraic systems give set-theoretic
solutions of the Yang–Baxter equation. The preceding definition is due to Cedó,
Jespers and Okniński [5]. Each abelian group is trivially a brace with a+ b = a ◦ b.
In addition, regular rings give a large supply of braces. Relations between the additive
and the multiplicative groups of a brace have been explored in many recent works,
for example, [6, 15, 22].

A (left) linear cycle set is a cycle set (X, ·) with an abelian group operation +
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satisfying the conditions

x · (y + z) = x · y + x · z (3)

and

(x+ y) · z = (x · y) · (x · z) (4)

for all x, y, z ∈ X. This notion goes back to Rump [26], who showed it to be equivalent
to the brace structure via the relation

x · y = x−1 ◦ (x+ y),

where x−1 is inverse with respect to ◦. An abelian group can be viewed as a linear
cycle set by taking x · y = y for all x, y ∈ X, and referred as a trivial linear cycle set.
Rump [26] showed that linear cycle sets are closely related to radical rings.

It was pointed out in [2] that an extension theory for cycle sets (equivalently braces)
would be crucial for a classification of these objects. This led to development of an
extension theory by Lebed and Vendramin [19, 20]. A homology and cohomology
theory for linear cycle sets (and hence for braces) was developed recently in [19]. As
in case of groups, Lie algebras, quandles or any nice algebraic system, the second
cohomology groups were shown to classify central cycle set extensions. A cohomology
theory for general cycle sets was developed in [20]. We will follow the linear cycle
set language of [19] since it gives a neat construction of cohomology and extension
theory. It is worth noting that the right and the two-sided analogues of braces and
cycle sets can be defined analogously and have been considered in the literature.

In this paper, we derive an exact sequence relating 1-cocycles, certain group of auto-
morphisms and second cohomology groups of linear cycle sets. This can be thought
of as a linear cycle set analogue of a fundamental exact sequence for groups due to
Wells [32]. For notational convenience, sometimes, we will denote the value of a map
ϕ at a point x by ϕx. We use the notation Aut, Z1 and H2 to denote group of auto-
morphisms, group of 1-cocycles and second cohomology group of a linear cycle set,
respectively. To distinguish linear cycle sets from groups, we use the bold notation
Aut, Z1 and H2 to denote group of automorphisms, group of 1-cocycles and second
cohomology of a group, respectively.

Section 2 contains preliminaries and some basic results. We prove that there is
a natural group homomorphism from the second linear cycle set cohomology to the
second symmetric cohomology of the underlying abelian group (Proposition 2.6) and
also examine this homomorphism for trivial cycle sets (Proposition 2.7). Section 3
prepares the foundation for the main result. Given a linear cycle set (X, ·,+) and
an abelian group A, we define an action of Aut(X)×Aut(A) on H2

N(X;A). As a
consequence, we obtain a lower bound on the size of H2

N(X;A) (Corollary 3.2). In
Section 4, we prove our main theorem (Theorem 4.5) that associates to each central
extension of linear cycle sets a four term exact sequence relating group of 1-cocycles,
certain group of automorphisms and second cohomology groups. Section 5 explores
properties of the important connecting map in this exact sequence (Theorem 5.3). In
Section 6, we relate the exact sequence with the corresponding Wells exact sequence
for the underlying extension of abelian groups via the forgetful functor (Theorem 6.1).
Finally, in Section 7, we discuss some generalities on bi-groupoids and dynamical
extensions of (linear) cycle sets.
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2. Preliminaries and some basic results

Recall that a bi-groupoid is a non-empty set with two binary algebraic operations.
We begin with the following immediate observation.

Lemma 2.1. Let (X, ·, ∗) be a bi-groupoid and define S : X ×X → X ×X given by
S(x, y) = (x · y, y ∗ x) for x, y ∈ X. Then the following hold:

1. The pair (X,S) is a set theoretic solution of the Yang–Baxter equation if and
only if the equalities

(x · (y · z)) = (x · y) · ((y ∗ x) · z),
((y · z) ∗ x) · (z ∗ y) = ((y ∗ x) · z) ∗ (x · y) and
(z ∗ y) ∗ ((y · z) ∗ x) = z ∗ (y ∗ x)

hold for all x, y, z ∈ X.

2. If x · y = y for all x, y ∈ X, then the pair (X,S) is a set theoretic solution of
the Yang–Baxter equation if and only if the operation ∗ is left distributive, i.e.

z ∗ (y ∗ x) = (z ∗ y) ∗ (z ∗ x) (5)

for all x, y, z ∈ X.

Recall that (X, ∗) is a (left) rack if the maps x 7→ y ∗ x are bijections and (5) holds
for all x, y, z ∈ X. Thus, assertion (2) of the preceding lemma gives a non-degenerate
solution of the Yang–Baxter equation if and only if (X, ∗) is a rack. Racks are useful
in defining invariants of framed links in the 3-space. We look for conditions under
which a rack is a cycle set. Following [18], we say that a rack X is abelian if it satisfies
the equality

x ∗ (y ∗ z) = y ∗ (x ∗ z)

for all x, y, z ∈ X. Note that this condition is equivalent to the group of inner auto-
morphisms of X

Inn(X) = ⟨Sx, x ∈ X | Sx(y) := x ∗ y, x, y ∈ X⟩

being abelian.

Proposition 2.2. If (X, ∗) is a rack such that Inn(X) is abelian, then it is a cycle
set.
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Proof. It follows from the rack axiom that

x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z)

and

y ∗ (x ∗ z) = (y ∗ x) ∗ (y ∗ z)

for all x, y, z ∈ X. Since Inn(X) is abelian, we get

(x ∗ y) ∗ (x ∗ z) = (y ∗ x) ∗ (y ∗ z),

which is desired.

2.1. Cohomology and extensions of linear cycle sets
A morphism between linear cycle sets X and Y is a map φ : X → Y satisfying

φ(x+ x′) = φ(x) + φ(x′) and φ(x · x′) = φ(x) · φ(x′) for all x, x′ ∈ X. The kernel of
φ is defined by Ker(φ) = φ−1(0). The notion of image, of a short exact sequence of
linear cycle sets, and of linear cycle subsets are defined in the usual manner.

Two linear cycle set extensions A
i
↣ E

π
↠ X and A

i′

↣ E′ π′

↠ X are called equiva-
lent if there exists a linear cycle set isomorphism φ : E → E′ such that the diagram

A
i //

id

��

E

φ

��

π // X

id

��

A
i′ // E′ π′

// X

commutes. A cohomology theory for linear cycle sets is developed in the recent works
of Lebed and Vendramin [19, 20]. Following [19], a 2-cocycle for a linear cycle set
(X, ·,+) with coefficients in the (additively written) abelian group A consists of two
maps f, g : X ×X → A satisfying the conditions

g(x, y) = g(y, x), (6)

g(x, y) + g(x+ y, z) = g(y, z) + g(x, y + z), (7)

f(x+ y, z) = f(x · y, x · z) + f(x, z) and (8)

f(x, y + z)− f(x, y)− f(x, z) = g(x · y, x · z)− g(y, z) (9)

for all x, y, z ∈ X. Note that, if (f, g) is a 2-cocycle of a linear cycle set (X, ·,+) with
coefficients in an abelian group A, then conditions (6)–(7)–(8)–(9) imply that

f(0, x) = f(x, 0) = 0 and

g(0, x) = g(x, 0) = g(0, 0)

for all x ∈ X. A pair of maps f, g : X ×X → A is called a 2-coboundary if there exists
a map λ : X → A such that

f(x, y) = λ(x · y)− λ(y) and (10)

g(x, y) = λ(x+ y)− λ(x)− λ(y) (11)

for all x, y ∈ X.
A 2-cocycle (f, g) is called normalised if g(0, 0) = 0, whereas a 2-coboundary (f, g)

is called normalised if the map λ : X → A satisfies λ(0) = 0. We denote the group
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of normalised 2-cocycles by Z2
N(X;A), and the group of normalised 2-coboundaries

by B2
N(X;A). The quotient Z2

N(X;A)/B2
N(X;A) is the normalised cohomology group

H2
N(X;A) of X with coefficients in A. We shall also need the group of normalised

1-cocycles defined as

Z1
N(X;A)=

{
λ : X→A | λ(x+ y)=λ(x) + λ(y) and λ(x · y)=λ(y) for all x, y ∈X

}
.

The following is an analogue of a similar classical result for groups [19, Lemma 5.2].

Lemma 2.3. Let (X, ·,+) be a linear cycle set, A an abelian group and two choices
f, g : X ×X → A of maps. Then the set X ×A with the operations

(x, a) + (y, b) =
(
x+ y, a+ b+ g(x, y)

)
and

(x, a) · (y, b) =
(
x · y, b+ f(x, y)

)
for a, b ∈ A, x, y ∈ X, is a linear cycle set if and only if (f, g) is a 2-cocycle.

The linear cycle set of Lemma 2.3 is denoted by X ⊕f,g A. A reformulation of
Lemma 2.3 for braces is as follows [19, Lemma 5.4].

Lemma 2.4. Let (X, ◦,+) be a brace, A be an abelian group, and f, g : X ×X → A
be two maps. Then the set X ×A with the operations

(x, a) + (y, b) =
(
x+ y, a+ b+ g(x, y)

)
and

(x, a) ◦ (y, b) =
(
x ◦ y, a+ b+ f(x, y)

)
for a, b ∈ A, x, y ∈ X, is a brace if and only if for the corresponding linear cycle set
(X, ·,+), the pair (f, g) is a 2-cocycle, where

f(x, y) = −f(x, x · y) + g(x, y) (12)

for all x, y ∈ X.

A linear cycle subset X ′ of a linear cycle set X is called central if x · x′ = x′ and
x′ · x = x for all x ∈ X and x′ ∈ X ′. A central extension of a linear cycle set (X, ·,+)
by an abelian group A is the datum of a short exact sequence of linear cycle sets

0→ A
i→ E

π→ X → 0, (13)

where A is endowed with the trivial cycle set structure, and its image i(A) is central
in E. Notice that an extension

0→ A→ E → X → 0 (14)

of abelian groups can be thought of as a central extension of linear cycle sets by
viewing each group as a trivial linear cycle set. Let Ext(X,A) denote the set of
equivalence classes of central extensions of X by A. The linear cycle set X ⊕f,g A
from Lemma 2.3 is a central extension of X by A in the obvious way. More precisely,
we have a central extension of linear cycle sets

0→ A
i→ X ⊕f,g A

π→ X → 0,
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where i(a) = (0, a) and π(x, a) = x for all a ∈ A and x ∈ X. Trivially, the underlying
extension

0→ A
i→ (X ⊕f,g A,+)

π→ (X,+)→ 0

of abelian groups is also central. As in case of groups, all central linear cycle set
extensions of X by A arise in this manner [19, Lemma 5.6].

Lemma 2.5. Let 0→ A
i→ E

π→ X → 0 be a central linear cycle set extension and
s : X → E be a set-theoretic section of π.

1. The maps f, g : X ×X → E defined by

f(x, y) = s(x) · s(y)− s(x · y) and
g(x, y) = s(x) + s(y)− s(x+ y)

take values in i(A) and (f, g) is a 2-cocycle.

2. The cocycle above is normalised if and only if s(0) = 0.

3. Extensions E and X ⊕f,g A are equivalent.

4. A cocycle (f ′, g′) obtained from another section s′ of π is cohomologous to (f, g).
If both cocycles are normalised, then they are cohomologous in the normalised
sense.

Lemma 2.5 yields a bijective correspondence

Ext(X,A)←→ H2
N(X;A). (15)

Thus, central extensions of linear cycle sets (and hence of braces) are completely
determined by their second normalised cohomology groups.

The rest of the paper centres around the extension X ⊕f,g A of a linear cycle set
(X, ·,+) by an abelian group A with respect to a given 2-cocycle (f, g). Thus, in view
of lemmas 2.3 and 2.5, we would only use the 2-cocycle conditions (6)–(9) rather than
the defining axioms of a linear cycle set.

2.2. Homomorphism from linear cycle set cohomology to group cohomol-
ogy

Let G be a group, A a G-module and H2(G;A) the second group cohomology of
G with coefficients in A. It is well-known that H2(G;A) classifies group extensions
of G by A inducing the given action of G on A [3]. Recall that a choice of group
theoretical 2-cocycle g : G×G→ A satisfying (6) is called a symmetric 2-cocycle. Let
H2

sym(G;A) be the subgroup of H2(G;A) consisting of cohomology classes of group
theoretical symmetric 2-cocycles (that is, maps satisfying conditions (6) and (7)). An
easy check shows that if both G and A are abelian groups, then H2

sym(G;A) classifies
extensions of the form

0→ A→ E → X → 0,

where E is an abelian group. It follows that A is necessarily a trivial G-module in
this case. There is a natural group homomorphism from linear cycle set cohomology
to symmetric group cohomology.
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Proposition 2.6. Let (X, ·,+) be a linear cycle set and A an abelian group viewed
as a trivial (X,+)-module. Then there is a group homomorphism

Λ: H2
N (X;A)→ H2

sym((X,+);A)

given by Λ[(f, g)] = [g].

Proof. Given a normalised 2-cocycle (f, g) ∈ Z2
N(X;A) for the linear cycle set (X, ·,+)

with coefficients in the abelian group A, conditions (6) and (7) imply that g is a group
theoretical symmetric 2-cocycle of the abelian group (X,+) with coefficients in the
abelian group A. Further, if (f, g) ∈ B2

N(X;A), then condition (11) imply that g is a
group theoretical 2-coboundary. Thus, there is a well-defined map

Λ: H2
N (X;A)→ H2

sym((X,+);A) given by Λ[(f, g)] = [g].

That Λ is a group homomorphism follows from the fact that addition of 2-cocycles is
point-wise for both linear cycle sets and groups.

Given two abelian groups G and A, let Bilin(G×G,A) denote the group of bilinear
maps from G×G to A. For trivial cycle sets, the map Λ is surjective and its kernel
can be determined precisely.

Proposition 2.7. Let (X, ·,+) be a trivial linear cycle set and A an abelian group
viewed as a trivial (X,+)-module. Then

H2
N(X;A) ∼= Bilin((X,+)× (X,+), A)×H2

sym((X,+);A).

Proof. We begin by noting that if f, g : X ×X → A is a 2-cocycle of the trivial lin-
ear cycle set (X, ·,+), then conditions (6)–(7) imply that g is a group theoretical
symmetric 2-cocycle, whereas conditions (8)–(9) imply that f is a bilinear map,
that is, f ∈ Bilin((X,+)× (X,+), A). Further, by conditions (10)–(11), (f, g) is a
2-coboundary if there exists a map λ : X → A such that

f(x, y) = 0

and

g(x, y) = λ(x+ y)− λ(x)− λ(y)

for all x, y ∈ X. Thus, it follows that

H2
N(X;A) ∼= Bilin((X,+)× (X,+), A)×H2

sym((X,+);A),

and the map Λ is simply projection onto the second factor.

Given two abelian groups (X,+) and A, where the second group A is viewed
as a trivial (X,+)-module, it follows from Proposition 2.7 that the product group
Bilin((X,+)× (X,+), A)×H2

sym((X,+);A) classifies meta-trivial linear cycle sets,
that is, extensions of a trivial linear cycle set by a trivial linear cycle set.

Question 2.8. What can we say about the homomorphism Λ for non-trivial linear
cycle sets?
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3. Action of automorphisms on cohomology of linear cycle sets

Let (X, ·,+) be a linear cycle set and A an abelian group. Let Aut(X) denote the
group of all linear cycle set automorphisms of X andAut(A) the usual automorphism
group of A. For (ϕ, θ) ∈ Aut(X)×Aut(A) and (f, g) ∈ Z2

N(X;A), we define

(ϕ,θ)(f, g) =
((ϕ,θ)

f, (ϕ,θ)g
)
,

where
(ϕ,θ)f(x, y) := θ

(
f
(
ϕ−1(x), ϕ−1(y)

))
and

(ϕ,θ)g(x, y) := θ
(
g
(
ϕ−1(x), ϕ−1(y)

))
for all x, y ∈ X.

Proposition 3.1. The group Aut(X)×Aut(A) acts by automorphisms on the group
H2

N(X;A) as
(ϕ,θ)[f, g] = [(ϕ,θ)(f, g)]

for (ϕ, θ) ∈ Aut(X)×Aut(A) and (f, g) ∈ Z2
N(X;A).

Proof. For (ϕ, θ) ∈ Aut(X)×Aut(A) and (f, g) ∈ Z2
N(X;A), we first show that

(ϕ,θ)(f, g) is a normalised 2-cocycle of the cycle set X. For x, y ∈ X, we have

(ϕ,θ)f(x+ y, z) = θ
(
f
(
ϕ−1(x+ y), ϕ−1(z)

))
= θ

(
f
(
ϕ−1(x) + ϕ−1(y), ϕ−1(z)

))
= θ

(
f
(
ϕ−1(x) · ϕ−1(y), ϕ−1(x) · ϕ−1(z)

))
+ θ

(
f
(
ϕ−1(x), ϕ−1(z)

))
due to (8)

= θ
(
f
(
ϕ−1(x · y), ϕ−1(x · z)

))
+ θ

(
f
(
ϕ−1(x), ϕ−1(z)

))
= (ϕ,θ)f(x · y, x · z) + (ϕ,θ)f(x, z),

(ϕ,θ)f(x, y + z)− (ϕ,θ)f(x, y)− (ϕ,θ)f(x, z)

= θ
(
f
(
ϕ−1(x), ϕ−1(y) + ϕ−1(z)

)
− f

(
ϕ−1(x), ϕ−1(y)

)
− f

(
ϕ−1(x), ϕ−1(z)

))
= θ

(
g
(
ϕ−1(x) · ϕ−1(y), ϕ−1(x) · ϕ−1(z)

)
− g

(
ϕ−1(y), ϕ−1(z)

))
due to (9)

= θ
(
g
(
ϕ−1(x · y), ϕ−1(x · z)

))
− θ

(
g
(
ϕ−1(y), ϕ−1(z)

))
= (ϕ,θ)g(x · y, x · z)− (ϕ,θ)g(y, z)

and

(ϕ,θ)g(x, y) + (ϕ,θ)g(x+ y, z) = θ
(
g
(
ϕ−1(x), ϕ−1(y)

)
+ g

(
ϕ−1(x) + ϕ−1(y), ϕ−1(z)

))
= θ

(
g
(
ϕ−1(y), ϕ−1(z)

)
+ g

(
ϕ−1(x), ϕ−1(y) + ϕ−1(z)

))
due to (7)

= θ
(
g
(
ϕ−1(y), ϕ−1(z)

))
+ θ

(
g
(
ϕ−1(x), ϕ−1(y + z)

))
=(ϕ,θ) g(y, z) + (ϕ,θ)g(x, y + z).

Further, (ϕ,θ)g(x, y) = (ϕ,θ)g(y, x) and (ϕ,θ)g(0, 0) = 0. Hence, (ϕ,θ)(f, g) ∈ Z2
N(X;A).
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Now, given (ϕi, θi) ∈ Aut(X)×Aut(A) for i = 1, 2, we see that

(ϕ1,θ1)(ϕ2,θ2)f(x, y) = (ϕ1ϕ2,θ1θ2)f(x, y)

= θ1θ2
(
f
(
ϕ−1
2 ϕ−1

1 (x), ϕ−1
2 ϕ−1

1 (y)
))

= θ1
(

(ϕ2,θ2)f
(
ϕ−1
1 (x), ϕ−1

1 (y)
))

= (ϕ1,θ1)
(
(ϕ2,θ2)f

)
(x, y)

for all x, y ∈ X. Similarly, one can show that

(ϕ1,θ1)(ϕ2,θ2)g(x, y) = (ϕ1,θ1)
(
(ϕ2,θ2)g

)
(x, y).

It can now easily be deduced that the group Aut(X)×Aut(A) acts on Z2
N(X;A) by

automorphisms. It only remains to be shown that the action preserves B2
N(X;A). Let

(f, g) ∈ B2
N(X;A). Then there exists λ : X → A such that conditions (10) and (11)

holds. For x, y ∈ X, we have

(ϕ,θ)f(x, y) = θ
(
f
(
ϕ−1(x), ϕ−1(y)

))
= θ

(
λ
(
ϕ−1(x) · ϕ−1(y)

)
− λ

(
ϕ−1(y)

))
= θ

(
λ
(
ϕ−1(x · y)

))
− θ

(
λ
(
ϕ−1(y)

))
= λ′(x · y)− λ′(y)

and

(ϕ,θ)g(x, y) = θ
(
λ
(
ϕ−1(x) + ϕ−1(y)

)
− λ

(
ϕ−1(x)

)
− λ

(
ϕ−1(y)

))
= λ′(x+ y)− λ′(x)− λ′(y),

where λ′ = θλϕ−1 : X → A. Hence, (ϕ,θ)(f, g) ∈ B2
N(X;A) and we are done.

Applying the orbit-stabiliser theorem to the action of Aut(X)×Aut(A) on
H2

N(X;A) yields

Corollary 3.2. If X is a finite linear cycle set, A a finite abelian group and a pair
(f, g) ∈ Z2

N(X;A), then

|H2
N(X;A)| ⩾ |Aut(X)×Aut(A)|

|(Aut(X)×Aut(A))[f,g]|
,

where (Aut(X)×Aut(A))[f,g] is the stabiliser subgroup of Aut(X)×Aut(A) at [f, g].

In general, we have Aut(X) ⩽ Aut((X,+)) for any linear cycle set (X, ·,+) and
the equality holds for trivial linear cycle sets. Corollary 3.2 and Proposition 2.7 then
yields the following.

Corollary 3.3. If G and A are finite abelian groups with A viewed as a trivial G-
module and (f, g) ∈ Z2

N(G;A), then

|H2
sym(G;A)| ⩾ |Aut(G)×Aut(A)|

|Bilin(G×G,A)| |(Aut(G)×Aut(A))[f,g]|
,

where (Aut(G)×Aut(A))[f,g] is the stabiliser subgroup of Aut(G)×Aut(A) at [f, g].
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4. An exact sequence relating automorphisms and cohomol-
ogy

Let (X, ·,+) be a linear cycle set, A an abelian group and

E : 0→ A
i→ E

π→ X → 0 (16)

a central extension of X by A. In view of Lemma 2.5, there exists a normalised
2-cocycle (f, g) such that

E ∼= X ⊕f,g A.

Further, the extension E determines a unique cohomology class [f, g] ∈ H2
N(X;A).

Fix a central extension (16) of a linear cycle set (X, ·,+) by an abelian group A
and its corresponding cohomology class [f, g] ∈ H2

N(X;A) as in Lemma 2.5. For each
(ϕ, θ) ∈ Aut(X)×Aut(A), we have (ϕ,θ)[f, g] ∈ H2

N(X;A). Since the group H2
N(X;A)

acts freely and transitively on itself by (left) translation, there exists a unique element
Θ[f,g](ϕ, θ) ∈ H2

N(X;A) such that

Θ[f,g](ϕ, θ) +
(ϕ,θ)[f, g] = [f, g].

This gives a map

Θ[f,g] : Aut(X)×Aut(A)→ H2
N(X;A). (17)

We denote Θ[f,g] by Θ for convenience of notation. Our aim is to relate certain group

of automorphisms of E to groups Aut(X), Aut(A), H2
N(X;A) and Z1

N(X;A). For this
purpose, we define

AutA(E) =
{
ψ ∈ Aut(E) | ψ(x, a) = (ϕ(x), λ(x) + θ(a)) for some

(ϕ, θ) ∈ Aut(X)×Aut(A) and map λ : X → A
}
.

Proposition 4.1. AutA(E) is a subgroup of Aut(E).

Proof. Let ψi(x, a) = (ϕi(x), λi(x) + θi(a)) for i = 1, 2. Then

ψ1ψ2(x, a) = ψ1

(
ϕ2(x), λ2(x) + θ2(a)

)
=

(
ϕ1ϕ2(x), λ1

(
ϕ2(x)

)
+ θ1

(
λ2(x)

)
+ θ1θ2(a)

)
=

(
ϕ1ϕ2(x), λ(x) + θ1θ2(a)

)
, (18)

where λ : X → A is given by

λ(x) = λ1
(
ϕ2(x)

)
+ θ1

(
λ2(x)

)
(19)

for x ∈ X and a ∈ A. Consequently, AutA(E) is closed under composition. It remains
to show that if ψ ∈ AutA(E), then ψ−1 ∈ AutA(E). But a direct computation shows
that if ψ(x, a) = (ϕ(x), λ(x) + θ(a)), then

ψ−1(x, a) =
(
ϕ−1(x), θ−1

(
− λ(ϕ−1(x))

)
+ θ−1(a)

)
,

and hence AutA(E) is a subgroup of Aut(E).

Proposition 4.2. Let (ϕ, θ) ∈ Aut(X)×Aut(A) and λ : X → A a map. Then the
map ψ : E → E given by ψ(x, a) = (ϕ(x), λ(x) + θ(a)) is an automorphism of E if
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and only if

λ(x+ y) + θ
(
g(x, y)

)
= λ(x) + λ(y) + g

(
ϕ(x), ϕ(y)

)
(20)

and

λ(x · y) + θ
(
f(x, y)

)
= λ(y) + f

(
ϕ(x), ϕ(y)

)
(21)

for all x, y ∈ X.

Proof. A direct computation shows that

ψ
(
(x, a) + (y, b)

)
= ψ

(
x+ y, a+ b+ g(x, y)

)
=

(
ϕ(x+ y), λ(x+ y) + θ

(
a+ b+ g(x, y)

))
,

ψ(x, a) + ψ(y, b) =
(
ϕ(x), λ(x) + θ(a)

)
+
(
ϕ(y), λ(y) + θ(b)

)
=

(
ϕ(x) + ϕ(y), λ(x) + λ(y) + θ(a) + θ(b) + g

(
ϕ(x), ϕ(y)

))
,

ψ
(
(x, a) · (y, b)

)
= ψ

(
x · y, b+ f(x, y)

)
=

(
ϕ(x · y), λ(x · y) + θ

(
b+ f(x, y)

))
and

ψ(x, a) · ψ(y, b) =
(
ϕ(x), λ(x) + θ(a)

)
·
(
ϕ(y), λ(y) + θ(b)

)
=

(
ϕ(x) · ϕ(y), λ(y) + θ(b) + f

(
ϕ(x), ϕ(y)

))
.

The result now follows immediately from the preceding equalities.

In view of (18), the map

Ψ: AutA(E)→ Aut(X)×Aut(A)

given by Ψ(ψ) = (ϕ, θ) is a group homomorphism.

Proposition 4.3. Im(Ψ) = Θ−1{0}.

Proof. First note that

Θ−1{0} =
{
(ϕ, θ) ∈ Aut(X)×Aut(A) | (ϕ,θ)[f, g] = [f, g]

}
,

the stabiliser subgroup of Aut(X)×Aut(A) at [f, g]. Suppose that (ϕ, θ) ∈ Θ−1{0}.
Then, by definition of cohomologous 2-cocycles, there exists a map λ : X → A such
that

(ϕ,θ)g(x, y)− g(x, y) = λ(x+ y)− λ(x)− λ(y) and
(ϕ,θ)f(x, y)− f(x, y) = λ(x · y)− λ(y)

for all x, y ∈ X. The preceding equations can be written as

θ
(
g(x, y)

)
− g

(
ϕ(x), ϕ(y)

)
= λ

(
ϕ(x) + ϕ(y)

)
− λ

(
ϕ(x)

)
− λ

(
ϕ(y)

)
and (22)

θ
(
f(x, y)

)
− f

(
ϕ(x), ϕ(y)

)
= λ

(
ϕ(x) · ϕ(y)

)
− λ

(
ϕ(y)

)
(23)

for all x, y ∈ X. We define ψ : E → E by setting

ψ(x, a) =
(
ϕ(x), − λ

(
ϕ(x)

)
+ θ(a)

)
for x ∈ X and a ∈ A. Notice that equations (22) and (23) are precisely equations (20)
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and (21), respectively. Hence, it follows from Proposition 4.2 that ψ ∈ AutA(E). Since
Ψ(ψ) = (ϕ, θ), we get Θ−1{0} ⊆ Im(Ψ). Conversely, if (ϕ, θ) ∈ Im(Ψ), then there
exists a map λ : X → A such that ψ : E → E given by ψ(x, a) := (ϕ(x), λ(x) + θ(a))
lies in AutA(E). Again, by Proposition 4.2, the map ψ being a morphism of linear cycle
sets gives equations (22) and (23). As seen above, this implies that (ϕ,θ)[f, g] = [f, g],
which completes the proof.

Proposition 4.4. Z1
N(X;A) ∼= Ker(Ψ).

Proof. Observe that ψ ∈ Ker(Ψ) if and only if there exists a map λ : X → A such
that ψ(x, a) = (x, λ(x) + a) for all x ∈ X and a ∈ A. Now, ψ is a morphism of linear
cycle sets if and only if conditions (23) and (22) hold with ϕ = idX and θ = idA.
These conditions take the form

λ(x · y) = λ
(
y) and (24)

λ(x+ y) = λ
(
x) + λ(y) (25)

for x, y ∈ X, and hence λ ∈ Z1
N(X;A). Conversely, given λ ∈ Z1

N(X;A), we see that
ψ : E → E defined as ψ(x, a) = (x, λ(x) + a) is an element of Ker(Ψ). In view of (19),
it follows that the map

ι : Z1
N(X;A)→ Ker(Ψ)

given by ι(λ) = ψ is an isomorphism of groups.

Combining (17), Proposition 4.3 and Proposition 4.4 gives the following exact
sequence

Theorem 4.5. Let X be a linear cycle set, A an abelian group and E = X ⊕f,g A the
central extension of X by A corresponding to the 2-cocycle (f, g) ∈ Z2

N(X;A). Then
there exists an exact sequence of groups

1 −→ Z1(X;A)
ι−→ AutA(E)

Ψ−→ Aut(X)×Aut(A)
Θ−→ H2

N(X;A), (26)

where exactness at Aut(X)×Aut(A) means that Im(Ψ) = Θ−1{0}.

Corollary 4.6. Let X be a linear cycle set and A an abelian group such that H2
N(X;A)

is trivial. Then every automorphism in Aut(X)×Aut(A) extends to an automor-
phism in AutA(E).

Restricting the action of Aut(X)×Aut(A) on H2
N(X;A) to that of its subgroups

Aut(X) and Aut(A) gives the following result.

Corollary 4.7. Every automorphism in Aut(X)[f ] and Aut(A)[g] can be extended to
an automorphism in AutA(E).

5. Properties of map Θ

Let (X, ·,+) be a linear cycle set and A an abelian group. Since we know the group
Aut(X)×Aut(A) acts on the group H2

N(X;A), we have their semi-direct product
H2

N(X;A)⋊
(
Aut(X)×Aut(A)

)
. Further, the group H2

N(X;A) acts on itself by (left)
translation.
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Proposition 5.1. H2
N(X;A)⋊

(
Aut(X)×Aut(A)

)
acts on H2

N(X;A) by setting

[α](ϕ,θ)[β] = [α]((ϕ,θ)[β])

for (ϕ, θ) ∈ Aut(X)×Aut(A) and [α], [β] ∈ H2
N(X;A).

Proof. For (ϕ1, θ1), (ϕ2, θ2) ∈ Aut(X)×Aut(A) and [α1], [α2], [β] ∈ H2
N(X;A), we

compute (
[α1](ϕ1,θ1)

)(
[α2](ϕ2,θ2)

)
[β] =

(
[α1]

(ϕ1,θ1)[α2]
)(

(ϕ1,θ1)(ϕ2,θ2)
)
[β]

=

(
[α1]

(ϕ1,θ1)[α2]
)(((ϕ1,θ1)(ϕ2,θ2)

)
[β]

)
= [α1]

((ϕ1,θ1)[α2]((ϕ1,θ1)((ϕ2,θ2)
[β]

)))
= [α1]

(
(ϕ1,θ1)[α2] +

(ϕ1,θ1)
((ϕ2,θ2)

[β]
))
,

since (ϕ1,θ1)[α2] ∈ H2
N(X;A), which acts on itself by translation

= [α1]
(
(ϕ1,θ1)

(
[α2] +

(ϕ2,θ2)[β]
))
,

since Aut(X)×Aut(A) acts by automorphisms on H2
N(X;A)

=

(
[α1](ϕ1,θ1)

)(([α2](ϕ2,θ2)
)
[β]

)
,

since H2
N(X;A) acts on itself by translation.

Hence, H2
N(X;A)⋊

(
Aut(X)×Aut(A)

)
acts on H2

N(X;A).

Let G be a group and A an abelian group equipped with an action of G. Then

Z1(G;A) =
{
f : G→ A | f(xy) = f(x) + xf(y) for all x, y ∈ G

}
is called the group of 1-cocycles and

B1(G;A) =
{
f : G→ A | there exists a ∈ A such that f(x) = xa− a for all x ∈ G

}
the group of 1-coboundaries [3, Chapter 4]. Further, a complement of a subgroup H
in a group G is another subgroup K of G such that G = HK and H ∩K = 1. The
following result relating 1-cocycles and complements is well-known [31, 11.1.2].

Lemma 5.2. Let H be an abelian group and G a group acting on H by automor-
phisms. Then the map f 7→ {f(g)g | g ∈ G} gives a bijection from the set Z1(G;H)
of 1-cocycles to the set {K | G = HK and H ∩K = 1} of complements of H in G.

Theorem 5.3. Let (X, ·,+) be a linear cycle set, A an abelian group along with
Θ[α] : Aut(X)×Aut(A) −→ H2

N(X;A) the map corresponding to a cohomology class

[α] ∈ H2
N(X;A). Then the following hold:

1. Θ[α] is a group theoretical 1-cocycle.

2. Any two such maps corresponding to distinct linear cycle set cohomology classes
are cohomologous as group theoretical 1-cocycles.

Proof. Suppose that

Θ = Θ[α] for [α] ∈ H2
N(X;A) and g ∈ H2

N(X;A)⋊
(
Aut(X)×Aut(A)

)
.

Then for elements [α], g[α] ∈ H2
N(X;A), there exists a unique [β] ∈ H2

N(X;A) such
that [β][α] = g[α]. Viewing [β] as an element of H2

N(X;A)⋊
(
Aut(X)×Aut(A)

)
, it



A WELLS TYPE EXACT SEQUENCE FOR NON-DEGENERATE UNITARY SOLUTIONS 45

follows that [β]−1g ∈ S[α], the stabiliser subgroup of H2
N(X;A)⋊

(
Aut(X)×Aut(A)

)
at [α], and hence

H2
N(X;A)⋊

(
Aut(X)×Aut(A)

)
= H2

N(X;A)S[α].

Further, since H2
N(X;A) acts freely on itself, it follows that S[α] is a complement

of H2
N(X;A) in H2

N(X;A)⋊
(
Aut(X)×Aut(A)

)
. By the bijection of Lemma 5.2,

let f : Aut(X)×Aut(A)→ H2
N(X;A) be the unique 1-cocycle corresponding to the

complement S[α] of H2
N(X;A) in H2

N(X;A)⋊
(
Aut(X)×Aut(A)

)
. Then

S[α] =
{
f(ϕ, θ)(ϕ, θ) | (ϕ, θ) ∈ Aut(X)×Aut(A)

}
,

that is,

[α] = f(ϕ,θ)(ϕ,θ)[α] = f(ϕ,θ)
((ϕ,θ)

[α]
)
.

Now, by definition of Θ as in (17), we obtain f(ϕ, θ) = Θ(ϕ, θ), and hence Θ is a
1-cocycle.

For the second assertion, let Θ = Θ[α] and Θ′ = Θ′
[α′] for [α], [α

′] ∈ H2
N(X;A). Then

for any (ϕ, θ) ∈ Aut(X)×Aut(A), we have

Θ(ϕ,θ)
((ϕ,θ)

[α]
)
= [α] and Θ′(ϕ,θ)

((ϕ,θ)
[α′]

)
= [α′].

Since H2
N(X;A) acts transitively on itself by (left) translation, there exists a unique

[β] ∈ H2
N(X;A) such that [β][α′] = [α]. This gives

Θ(ϕ,θ)
((ϕ,θ)[β]((ϕ,θ)

[α′]
))

= [β]
(Θ′(ϕ,θ)((ϕ,θ)

[α′]
))
.

Since [β], Θ(ϕ, θ), (ϕ,θ)[β] and Θ′(ϕ, θ) all lie in H2
N(X;A), which acts freely on itself,

we must have

Θ(ϕ, θ) + (ϕ,θ)[β] = Θ′(ϕ, θ) + [β].

Thus, Θ and Θ′ differ by a 1-coboundary, which completes the proof.

6. Comparison with Wells exact sequence for groups

In [32], Wells derived an exact sequence relating 1-cocycles, automorphisms and
second cohomology of groups corresponding to a given extension of groups. The
sequence has found applications in some long standing problems on automorphisms
of finite groups. We refer the reader to [23, Chapter 2] for a detailed account of
the same, and recall the construction of this exact sequence for central extension of
groups. Consider a central extension

E ′ : 0→ N → G→ H → 0 (27)

of (additively written) groups. In this case N is a trivial H-module, and hence the
group Z1(H;N) of 1-cocycles is simply the group of all homomorphisms from H
to N . Let H2(H;N) be the second group cohomology of H with coefficients in N ,
and g : H ×H → N be a group theoretical normalised 2-cocycle corresponding to the
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extension (27). It follows from classical extension theory of groups that

G ∼= H ×g N,

where H ×g N has underlying set H ×N and group operation

(x, a) + (y, b) = (x+ y, a+ b+ g(x, y))

for x, y ∈ H and a, b ∈ N .
Let AutN (G) be the group of automorphisms of G keeping N invariant as a set.

In view of the identification G ∼= H ×g N , we have

AutN (G) =
{
ψ ∈ Aut(G) | ψ(x, a) = (ϕ(x), λ(x) + θ(a)) for some

(ϕ, θ) ∈ Aut(H)×Aut(N) and map λ : H → N
}
.

There is a monomorphism of groups

ȷ : Z1(H,N)→ AutN (G)

given by ȷ(λ) = ψ, where ψ(x, a) = (x, λ(x) + a) [23, Proposition 2.45]. Also, there is
a natural homomorphism

Φ: AutN (G)→ Aut(H)×Aut(N)

given by

Φ(ψ) = (ϕ, θ).

As in Section 3, there is an action of Aut(H)×Aut(N) on H2(H;N). In fact, given
any (ϕ, θ) ∈ Aut(H)×Aut(N) and [h] ∈ H2(H;N), setting

(ϕ,θ)[h] = [(ϕ,θ)h],

where (ϕ,θ)h(x, y) = θ
(
h
(
ϕ−1(x), ϕ−1(y)

))
for x, y ∈ X, defines this action. Further,

the action restricts to an action on the subgroup H2
sym(H;N) of H2(H;N) consist-

ing of symmetric cohomology classes. Notice that the group H2(H;N) acts freely and
transitively on itself by (left) translation. Now, for each (ϕ, θ) ∈ Aut(H)×Aut(N),
we have cohomology classes (ϕ,θ)[g], [g] ∈ H2(H;N). Thus, there exists a unique ele-
ment Ω(ϕ, θ) ∈ H2(H;N) such that

Ω(ϕ, θ) + (ϕ,θ)[g] = [g].

This gives a map

Ω: Aut(H)×Aut(N)→ H2(H;N), (28)

which depends on the equivalence class of the extension E ′ or equivalently on its
corresponding cohomology class. Further, Ω is a 1-cocycle with respect to the action
of Aut(H)×Aut(N) on H2(H;N) [23, Corollary 2.41]. With the preceding set-up,
Wells derived the following exact sequence of groups

1 −→ Z1(H,N)
ȷ−→ AutN (G)

Φ−→ Aut(H)×Aut(N)
Ω−→ H2(H;N). (29)

Let L and A denote the categories of linear cycle sets and abelian groups, respec-
tively. Then there is a forgetful functor

F : L → A

that maps a linear cycle set to its underlying abelian group. The preceding discussion
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shows that the functor F induces a map from the exact sequence (26) to the exact
sequence (29).

Theorem 6.1. Let (X, ·,+) be a linear cycle set, A an abelian group viewed as a
trivial (X,+)-module and E = X ⊕f,g A the central extension corresponding to the
2-cocycle (f, g) ∈ Z2

N(X;A). Then the following diagram of groups commutes

Z1(X;A)� _

inclusion

��

ι // AutA(E)
Ψ //

� _

inclusion

��

Aut(X)×Aut(A)
Θ //

� _

inclusion

��

H2
N(X;A)

Λ

��

Z1((X,+);A)
ȷ
// AutA((E,+))

Φ // Aut((X,+))×Aut(A)
Ω // H2

sym((X,+);A),

where Λ is as in Proposition 2.6.

7. Extensions of bi-groupoids and dynamical cocycles

During the last decade many new examples of bi-groupoids, namely, bi-racks,
bi-quandles, braces, skew braces, linear cycle sets, etc, have been introduced in
connection to virtual knot theory and solutions of the Yang–Baxter equation. Let
X and S be two non-empty sets, with choices α, α′ : X ×X → Map(S × S, S) and
β, β′ : S × S → Map(X ×X,X) of maps. Then X × S with the binary operations

(x, s) · (y, t) =
(
βs,t(x, y), αx,y(s, t)

)
(30)

and

(x, s) ∗ (y, t) =
(
β′
s,t(x, y), α

′
x,y(s, t)

)
(31)

forms a bi-groupoid. Naturally, to obtain a bi-groupoid of special type it is essential
to have functions α, α′, β, β′ with nice properties. Using defining axioms of a cycle
set, we can deduce a generalisation of [30, Lemma 2.1], which itself is a linear cycle
set analogue of a similar result for quandles [1, Lemma 2.1].

Proposition 7.1. Let X and S be two sets, with α : X ×X → Map(S × S, S) and
β : S × S → Map(X ×X,X) two maps. Then the set X × S with the binary operation

(x, s) · (y, t) =
(
βs,t(x, y), αx,y(s, t)

)
(32)

forms a cycle set if and only if the following conditions hold:

1. the map (y, t) 7→
(
βs,t(x, y), αx,y(s, t)

)
is a bijection for all (x, s) ∈ X × S,

2. βαx,y(s,t),αx,z(s,q)

(
βs,t(x, y), βs,q(x, z)

)
=βαy,x(t,s),αy,z(t,q)

(
βt,s(y, x), βt,q(y, z)

)
and

αβs,t(x,y),βs,q(x,z)

(
αx,y(s, t), αx,z(s, q)

)
=αβt,s(y,x),βt,q(y,z)

(
αy,x(t, s), αy,z(t, q)

)
for all x, y, z ∈ X and s, t, q ∈ S.

If one of the sets is a cycle set, then we obtain

Corollary 7.2. Let (X, ·) be a cycle set, S a set and α : X ×X → Map(S × S, S) a
map. Then the set X × S with the binary operation

(x, s) · (y, t) =
(
x · y, αx,y(s, t)

)
(33)

forms a cycle set if and only if the following conditions hold:
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1. the map (y, t) 7→
(
x · y, αx,y(s, t)

)
is a bijection for each (x, s) ∈ X × S,

2. αx·y,x·z

(
αx,y(s, t), αx,z(s, q)

)
= αy·x,y·z

(
αy,x(t, s), αy,z(t, q)

)
for all choices

x, y, z ∈ X and s, t, q ∈ S.

A map α satisfying condition (2) of the preceding corollary is referred as a dynam-
ical cocycle of X with values in S and the cycle set structure on X × S is called a
dynamical extension of X by α. One can prove a similar result for linear cycle sets.
Before stating the result, note that condition 1 in the definition of a linear cycle set
is redundant [25, Section 3].

Proposition 7.3. Let X and S be two sets, α, α′ : X ×X → Map(S × S, S) and
β, β′ : S × S → Map(X ×X,X) maps. Then the set X × S with the binary opera-
tions

(x, s) · (y, t) =
(
βs,t(x, y), αx,y(s, t)

)
(34)

and

(x, s) + (y, t) =
(
β′
s,t(x, y), α

′
x,y(s, t)

)
(35)

forms a linear cycle set if and only if the following conditions hold:

1. the map (y, t) 7→
(
βs,t(x, y), αx,y(s, t)

)
is a bijection for each (x, s) ∈ X × S,

2. βs,α′
y,z(t,q)

(
x, β′

t,q(y, z)
)
= β′

αx,y(s,t),αx,z(s,q)

(
βs,t(x, y), βs,q(x, z)

)
and

αx,β′
t,q(y,z)

(
s, α′

y,z(t, q)
)
= α′

βs,t(x,y),βs,q(x,z)

(
αx,y(s, t), αx,z(s, q)

)
,

3. βα′
x,y(s,t),q

(
β′
s,t(x, y), z

)
= βαx,y(s,t),αx,z(s,q)

(
βs,t(x, y), βs,q(x, z)

)
and

αβ′
s,t(x,y),z

(
α′
x,y(s, t), q

)
= αβs,t(x,y),βs,q(x,z)

(
αx,y(s, t), αx,z(s, q)

)
for all x, y, z ∈ X and s, t, q ∈ S.

As before, if one of the sets is already a linear cycle set, then we have

Corollary 7.4. Let (X, ·,+) be a linear cycle set, S a set and two choices of maps
α, α′ : X ×X → Map(S × S, S). Then the set X × S with the binary operations

(x, s) · (y, t) =
(
x · y, αx,y(s, t)

)
(36)

and

(x, s) + (y, t) =
(
x+ y, α′

x,y(s, t)
)

(37)

forms a linear cycle set if and only if the following conditions hold:

1. the map (y, t) 7→
(
x · y, αx,y(s, t)

)
is a bijection for each (x, s) ∈ X × S,

2. αx,y+z

(
s, α′

y,z(t, q)
)
= α′

x·y,x·z

(
αx,y(s, t), αx,z(s, q)

)
,

3. αx+y,z

(
α′
x,y(s, t), q

)
= αx·y,x·z

(
αx,y(s, t), αx,z(s, q)

)
for all x, y, z ∈ X and s, t, q ∈ S.
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The pair of maps α, α′ : X ×X → Map(S × S, S) satisfying conditions (2)–(4) of
the preceding corollary is called a dynamical cocycle of the linear cycle set X with val-
ues in S and the linear cycle set structure on X × S is called the dynamical extension
of X by S. Taking

αx,y(s, t) = t+ f(x, y)

and

α′
x,y(s, t) = s+ t+ g(x, y)

for some 2-cocycle (f, g) ∈ Z2
N(X;A), we see that the dynamical extension generalises

the extension obtained in Lemma 2.3.
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