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DUŠKO JOJIĆ, GAIANE PANINA and RADE ŽIVALJEVIĆ
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Abstract
The colored Tverberg theorem of Blagojević, Matschke, and

Ziegler (Theorem 1.4) provides optimal bounds for the colored
Tverberg problem, under the condition that the number of inter-
secting rainbow simplices r = p is a prime number.

Our Theorem 1.6 extends this result to an optimal colored
Tverberg theorem for multisets of colored points, which is valid
for each prime power r = pk, and includes Theorem 1.4 as a spe-
cial case for k = 1. One of the principal new ideas is to replace
the ambient simplex ∆N , used in the original Tverberg theo-
rem, by an “abridged simplex” of smaller dimension, and to
compensate for this reduction by allowing vertices to repeat-
edly appear a controlled number of times in different rainbow
simplices. Configuration spaces, used in the proof, are com-
binatorial pseudomanifolds which can be represented as mul-
tiple chessboard complexes. Our main topological tool is the
Eilenberg-Krasnoselskii theory of degrees of equivariant maps
for non-free actions.

A quite different generalization arises if we consider colored
classes that are (approximately) two times smaller than in the
classical colored Tverberg theorem. Theorem 1.8, which unifies
and extends some earlier results of this type, is based on the
constraint method and uses the high connectivity of the config-
uration space.

1. Introduction

“Tverberg problems” (or Tverberg theorems) is a common name for a class of theo-
rems, problems and conjectures about finite sets of points in Euclidean spaces, more
precisely about intersection patterns of the associated convex sets.

The original Tverberg theorem [Tve66] claims that every setX ⊂ Rd, with at least
(r − 1)(d+ 1) + 1 elements, can be partitioned X = X1 ⊔ · · · ⊔Xr into r nonempty,
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pairwise disjoint subsets X1, . . . , Xr such that the corresponding convex hulls have a
nonempty intersection

r⋂
i=1

conv(Xi) ̸= ∅ . (1)

(Such a partition is usually referred to as a Tverberg partition, while a point in (1) is
often called a Tverberg point.)

For example if r = 3 and d = 2, the Tverberg theorem reduces to an elementary
statement saying that for each collection X of 7 points in the plane, either one of
the points in X is covered by two vertex disjoint triangles, formed by the remaining
6 points, or alternatively, there exist two line segments, with distinct end-points in
X, which intersect in a point covered by the triangle with vertices in the remaining
three points.

At the time when it was proved (1966), Tverberg theorem was an important
achievement in combinatorial geometry, both deep and beautiful. It was however
difficult to predict that it will give birth to a new branch of topological combinatorics
and to the present day inspire its development, see [BBZ, BS, Sk18, Ž17] for more
detailed historical overview and a guide to the literature.

1.1. Tverberg theorem from a topological viewpoint

Sir Christopher Zeeman, in his lecture “A brief history of topology” (Berkeley,
1993), isolated three major problems (the manifold problem, the embedding problem,
and the knotting problem) that shaped early history of topology.

Embedding problem: Given a manifold M , what is the least dimension d such that
M is embeddable in Rd.

In the same vein a map f : M → Rd is an r-embedding (r ∈ N) if for each y ∈ Rd

there are at most (r − 1) points in the pre-image f−1(y). If such a map does not exist
then (by definition)M is not r-embeddable. Otherwise we say thatM is r-embeddable,
where a 2-embedding clearly corresponds to the embedding in the usual sense.

If we replace a manifold by a (geometric realisation of a finite) simplicial complex
K, and “slightly” modify the definitions, the scenery changes and we are in the realm
of combinatorial topology (topological combinatorics). A continuous map f : K → Rd

is called an almost r-embedding if f(∆1) ∩ · · · ∩ f(∆r) = ∅ for each collection {∆i}ri=1

of pairwise disjoint faces of K. If an almost r-embedding of K in Rd does not exist
we say that K is not almost r-embeddable in Rd. The obvious implication

K is not almost r-embeddable in Rd ⇒ K is not r-embeddable in Rd

leads to combinatorial proofs and interesting refinements of important topological
statements. For example the minimal, 6-vertex triangulation of the projective plane
RP 2 does not admit an almost embedding (almost 2-embedding) in R3, see [M03,
Example 5.8.5].

By similar arguments [M03, Section 5.6], one can prove the classical Van Kampen–
Flores theorem which says that the d-skeleton of the (2d+ 2)-dimensional simplex is
not almost embeddable in R2d. Recall that in a very special case d = 1 this reduces
to the non-planarity of K5 (the complete graph on five vertices).
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A new impetus for the study of these concepts came from the area of discrete
and computational geometry, after it was observed that some important, intrinsically
affine results, admit a topological reformulation involving (almost) r-embeddability.

Classical Radon’s theorem (1921), one of the earliest results of combinatorial con-
vexity, claims that every set of d+ 2 points in Rd can be divided into two disjoint
subsets whose convex hulls intersect. Almost sixty years later (1979), Bajmóczy and
Bárány [M03, Section 5.1.3] proved a topological analogue and a generalisation of
Radon’s theorem by showing that the (d+ 1)-dimensional simplex ∆d+1 is not almost
2-embeddable in Rd.

Tverberg theorem includes Radon’s theorem as a special case. It also admits a
“linear mapping” reformulation saying that for each linear (affine) map a : ∆N −→ Rd

(N = (r − 1)(d+ 1)) there exist r nonempty disjoint faces ∆1, . . . ,∆r of the simplex
∆N such that a(∆1) ∩ · · · ∩ a(∆r) ̸= ∅.

It was quite natural to conjecture a non-linear version of this result and, eventually,
the Topological Tverberg theorem was born.

Theorem 1.1 ([BSS, Öz87, V96]). Let r = pk be a prime power, d ⩾ 1, and N =
(r − 1)(d+ 1). Then for every continuous map f : ∆N → Rd, defined on an N -dimen-
sional simplex, there exist disjoint faces ∆1, . . . ,∆r of ∆N such that

f(∆1) ∩ · · · ∩ f(∆r) ̸= ∅ .

In other words the simplex ∆N is not almost r-embeddable in Rd.

The history of this result is also “non-linear”. Bárány, Shlosman, and Szűcs (1981)
obtained the result when r = p is a prime number [BSS], Özaydin proved the gener-
alization to the prime power case r = pk (his preprint [Öz87] was not published in a
journal but it was known to some experts and appeared in reviews such as [Živ96]),
and finally Volovikov [V96] independently discovered and published the result in its
present form.

It is known that the condition on r is essential. Indeed, as demonstrated in [BFZ2],
if r is not a prime power the topological Tverberg theorem fails if d is sufficiently
large.

1.2. Colored Tverberg theorems

From the topological viewpoint, a natural step after the appearance of Theorem 1.1
was to find other non-trivial examples of simplicial complexes K which are not almost
r-embeddable in Rd. An interesting class of complexes comes from higher dimen-
sional analogues and generalizations of the Van Kampen–Flores theorem, see [Ž17,
Section 21.4.3] and [JPZ-1] for examples and references. “Colored Tverberg theo-
rems”, which originated in discrete and computational geometry, provide another,
quite different class of examples.

A coloring of vertices of a simplex ∆N by k + 1 colors is a partition of vertices V =
V ert(∆N ) = C0 ⊔ C1 ⊔ · · · ⊔ Ck into “monochromatic” subsets Ci. A subset ∆ ⊆ V
is called a rainbow simplex or a rainbow face if |∆ ∩ Ci| ⩽ 1 for each i = 0, . . . , k. If
the cardinality of Ci is ti then the join Kt0,t1,...,tk := [t0] ∗ [t1] ∗ . . . ∗ [tk] is isomorphic
to the subcomplex of all rainbow simplices in ∆N . A “colored Tverberg theorem” is
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any statement of the form

Kt0,t1,...,tk is not almost r-embeddable in Rd (2)

and the general “colored Tverberg problem” is to clarify for which values of param-
eters r, d, k and ti the statement (2) is true. Here are some examples.

K3,3 is not almost 2-embeddable in R2, (3)

K3,3,3 is not affinely almost 3-embeddable in R2, (4)

K5,5,5 is not almost 3-embeddable in R3, (5)

K4,4,4,4 is not almost 4-embeddable in R3. (6)

Let T (r, k, d) be defined as the smallest number t such that (2) is true if ti ⩾ t for
each i = 0, . . . , k. Originally even the finiteness of the function T (r, k, d) was under
question (and had important consequences, see Section 1.4).

1.3. A-B-C classification of colored Tverberg theorems

Following [Ž17, Section 21.4], variants of the colored Tverberg problem are clas-
sified as type A, B, or C depending on whether k = d, k < d or k > d, where k + 1 is
the number of colors and d is the dimension of the target space.

The main difference between the types A and C, on one side, and B on the other,
is that in the type B case the number r must satisfy the inequality r−1

r d ⩽ k, while
in the types A and C there are no a priori constraints.

In agreement with this classification, (4) and (6) are illustrative examples of topo-
logical type A colored Tverberg theorems while (3) and (5) are classified as topological
type B colored Tverberg theorems.

The following general results are the main representatives of the first two classes of
colored Tverberg theorems. In particular (3), (5) and (6) are their easy consequences.

Theorem 1.2 (Type A [BMZ]). Suppose that r + 1 is a prime number and d ⩾ 1.
Then the complex Kr,r,...,r := [r]∗(d+1), obtained as a join of d+ 1 copies of the 0-
dimensional complex [r], is not almost r-embeddable in Rd.

Theorem 1.3 (Type B [VŽ94, ŽV92]). Assume that r = pν is a prime power, d ⩾
1, and let k be an integer such that r−1

r d ⩽ k < d. Then the complex

K2r−1,2r−1,...,2r−1 := [2r − 1]∗(k+1)

obtained as a join of k + 1 copies of the 0-dimensional complex [2r − 1], is not almost
r-embeddable in Rd.

Both Theorems 1.2 and 1.3 are optimal in their own kind. For example Theorem 1.3
in the case r = 2 reduces to (3), which is optimal since K2,t is a planar graph for each
t. Similarly [VŽ94], under the conditions of Theorem 1.3 the complex K2r−2,t,...,t =
[2r − 2] ∗ [t]∗k is always r-embeddable in Rd for each integer t.

For this reason these theorems may be referred to as the Optimal type A colored
Tverberg theorem, respectively the Optimal type B colored Tverberg theorem.
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1.4. Historical interlude about the origin of colored Tverberg theorems

The search for “colorful” analogues and relatives of the Tverberg theorem was
originally dictated by some important questions about the asymptotic behavior of
finite collections of points (lines, hyperplanes) in Euclidean spaces, see reviews [Z11]
and [Ž17] for introduction.

Bárány, Füredy, and Lovász [BFL90] were the first (already in 1988) to observe the
importance of the function T (r, d) := T (r, d, d) (defined at the end of Section 1.2), for
the “Halving hyperplanes problem” and related k-set problem [Ž17, Section 21.4.2].

Making a conjecture T (r, d) < +∞ for all r and d, they proved that if hd(n) is the
number of essentially different halving hyperplanes of a set of size n in Rd then

hd(n) = O(nd−ϵd), where ϵd = T (d+ 1, d)−(d+1) .

This was not an isolated example. Soon after that [ABFK] (see also [AK92] for
a subsequent application) Alon, Bárány, Füredy, and Kleitman proved that some of
the, at the time, central problems of discrete and computational geometry (Point
selection problem, Weak ϵ-net problem, Hitting set problem, etc.) can all be reduced
to the Weak colored Tverberg problem, which claims that T (d+ 1, d) < +∞.

The inequality T (d+ 1, d) < 4d+ 1, obtained by Živaljević and Vrećica (1992) as
a consequence of their Topological colored Tverberg theorem [ŽV92], claiming that
T (r, d) ⩽ 2r − 1 if r is a prime number, eventually supplied the missing (topological)
link for all these results.

This influx of topological methods and ideas into discrete and computational geom-
etry was met with enthusiasm in both mathematical and theoretical computer sci-
ence communities. The Handbook of Discrete and Computational Geometry [DCG]
obtained a topological chapter (see [Ž17] for the 3rd-edition version) and computa-
tionally oriented mathematicians were persuaded to learn more topology [M03].

A new wave of excitement came in the Fall of 2009 when Blagojević, Matschke,
and Ziegler proved the Optimal type A colored Tverberg theorem (Theorem 1.2) and
its equally important type C relatives (Theorems 1.4 and 1.5), see [BMZ] and [Z11].

Already in (1992) Bárány and Larman [BL92] raised the question of finding the
exact value of T (r, d) and conjectured that T (r, d) = r. They established this con-
jecture for r = 2 and for d = 2, in particular they proved (4). The Optimal type A
colored Tverberg theorem provides an affirmative answer to the Bárány and Larman
conjecture if r + 1 is a prime number. In particular (6) follows as a special case for
r = 4 and d = 3.

1.5. Optimal type C colored Tverberg theorems

The following relative of Theorem 1.1 is referred to as the Optimal type C colored
Tverberg theorem [BMZ]. (It is not difficult to see that Theorem 1.2 is its easy
consequence.)

Theorem 1.4 ([BMZ]). Let r ⩾ 2 be a prime, d ⩾ 1, and N := (r − 1)(d+ 1). Let
∆N be an N -dimensional simplex with a partition (coloring) of its vertex set into
d+ 2 parts,

V = [N + 1] = C0 ⊔ · · · ⊔ Cd ⊔ Cd+1 ,
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with |Ci| = r − 1 for i ⩽ d and |Cd+1| = 1. Then for every continuous map of a sim-
plex f : ∆N → Rd, there are r disjoint “rainbow simplices” ∆1, . . . ,∆r of ∆N satis-
fying

f(∆1) ∩ · · · ∩ f(∆r) ̸= ∅ ,

where by definition a face ∆ of ∆N is a rainbow simplex if and only if |∆ ∩ Cj | ⩽ 1
for each j = 0, . . . , d+ 1.

Note that Theorem 1.4 does not include Theorem 1.1 as a special case. Indeed, we
need a stronger condition in the colored Tverberg theorem, where r is a prime rather
than a prime power. It remains an interesting question if this condition on r can be
relaxed.

In the following section we argue that a proper extension of Theorem 1.4 (to the
case of prime powers r = pk) may require multisets of colored points. This may not
be an accident, as it appears to be dictated by the topology of a naturally associated
configuration space. For a motivating example, comparing the old and new results,
see Section 1.7.

The following extension of Theorem 1.4 is the main result of [BMZ].

Theorem 1.5 ([BMZ]). Let r ⩾ 2 be a prime, d ⩾ 1, and N := (r − 1)(d+ 1). Let
∆N be an N -dimensional simplex with a partition of its vertex set into m+ 1 parts,

V = [N + 1] = C0 ⊔ · · · ⊔ Cm ,

with |Ci| ⩽ r − 1 for i = 0, . . . ,m. Then for every continuous map f : ∆N → Rd, there
are r disjoint rainbow simplices ∆1, . . . ,∆r in ∆N satisfying

f(∆1) ∩ · · · ∩ f(∆r) ̸= ∅ .

1.6. Optimal colored Tverberg theorem for multisets of points
Our (first) main new result (Theorem 1.6) is valid for each prime power r = pk,

and includes Theorem 1.4 as a special case for k = 1. One of the guiding ideas is to
replace the simplex ∆N (used in both Theorems 1.1 and 1.4) by a simplex of smaller
dimension, and to compensate for this by allowing its vertices to appear a controlled
number of times in different faces of ∆N .

Theorem 1.6. Let r = pk be a prime power, d ⩾ 1, and N := k(p− 1)(d+ 1). Let
∆N be an N -dimensional simplex whose vertices are colored by d+ 2 colors, meaning
that there is a partition V = C0 ⊔ C1 ⊔ · · · ⊔ Cd ⊔ Cd+1 into d+ 2 monochromatic
subsets. We also assume that:

(1) Each of the sets C0, . . . , Cd has (p− 1)k vertices. The vertices in each Ci are
assigned multiplicities, as prescribed by the vector L = (1, p, . . . , pk−1)×(p−1) ∈
Nk(p−1).

(2) The (exceptional) color class Cd+1 contains a single vertex with multiplicity one.

We claim that under these conditions for any continuous map f : ∆N → Rd there
exist r (not necessarily disjoint or even different) faces ∆1, . . . ,∆r of ∆N such that:

(A) f(∆1) ∩ · · · ∩ f(∆r) ̸= ∅.
(B) The number of occurrences of each vertex of ∆N in all faces ∆i does not exceed

the prescribed multiplicity of that vertex.
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(C) All faces ∆i are rainbow simplices, in the sense that their vertices have different
colors, (∀i)(∀j) |V ert(∆i) ∩ Cj | ⩽ 1.

Theorem 1.5 is deduced from Theorem 1.4 by a direct combinatorial argument. By
a similar reduction procedure we obtain a result (Theorem 7.7 in Section 7) which
extends Theorem 1.6, and unifies Theorems 1.4, 1.6, and 1.5 in a single statement.

1.7. Motivating example and a comparison of new and old results

The following example illustrates the optimality of Theorem 1.6 and illuminates
its relationship with other statements of Tverberg type.

Remark 1.7. (On multisets) The multiset terminology and notation used in the paper
is fairly standard and self-explanatory. If X = {xα1

1 , . . . , xαk

k } = xα = xα1
1 . . . xαk

k is
a multiset (in monomial notation) then the associated multiplicity vector is α =
(α1, . . . , αk). (From this point of view the ordinary sets are square-free monomials.)

Most of the time it is sufficient to describe the multiplicity vector α, which itself
can be treated as a multiset! For example if X = {a, a, b, b, b, c, c, c} = a2b3c3 then the
corresponding multiplicity vector is α = (2, 3, 3) which, as a multiset, can be recorded
as α = {2, 32} or even as a monomial α = 232. Another example is the multiplicity
vector L = (1, p, . . . , pk−1)×(p−1) ∈ Nk(p−1), used in the formulation of Theorem 1.6,
which (treated as a multiset) can be recorded as 1p−1pp−1 . . . (pk−1)p−1.

Let S = {Aαi
i }d+1

i=0 be a multiset of points in Rd where {Ai}di=0 are the vertices
of a non-degenerate simplex and Ad+1 its barycenter. Each of the points Ai (i =
0, . . . , d+ 1) is assigned a different color and a multiplicity αi ∈ {1, r − 1}, where
αi = 1 only for i = d+ 1.

If we allow a perturbation of S or informally a “scattering of points”, where each
{Aαi

i } is replaced by a collection {Aj
i}

αi
j=1 of (possibly distinct) points in Rd then:

(1) The classical (affine) Tverberg theorem (Theorem 1.1) guarantees the existence
of a partition S = S1 ⊔ · · · ⊔ Sr such that Conv(S1) ∩ · · · ∩ Conv(Sr) ̸= ∅;

(2) Theorem 1.4 says that, under assumption that r is a prime, such a partition
exists with an additional property that each set Sk has at most one point in
each color;

(3) Theorem 1.6 claims that the conclusion of Theorem 1.4 is true under assumption
that r is a prime power, if we allow only a partial scattering where in each color
the points create clusters (partition) of the type 1p−1pp−1 . . . (pk−1)p−1. (The
clusters themselves can be scattered in an arbitrary fashion.)

Figure 1 symbolically illustrates the similarities and differences between differ-
ent theorems of Tverberg type (Theorems 1.1, 1.4 and 1.6). Each theorem applies
to a specific configuration of points, obtained by a perturbation (scattering) of the
canonical initial configuration S. This perturbation is unconditional (in the case of
Theorems 1.1 and 1.4) or conditional (Theorem 1.6).

Summarizing, the multisets and the corresponding multiplicity vectors in Theo-
rem 1.6 provide information what kind of perturbations of the initial configuration
are allowed, if we want to preserve the conclusion of the Type C colored Tverberg
theorem in the prime power case.
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Figure 1

1.8. Colored Tverberg theorem for small color classes
For comparison we include a quite different extension of the colored Tverberg

theorem to prime powers. We are able to avoid multiple occurrences of points in
different rainbow simplices in Theorem 1.6 (the condition (B)), at a price of increasing
the number of color classes (and decreasing the number of vertices in each color class).

The following theorem can be interpreted as a prime power extension (relative) of
the results from [BFZ1, Section 9].

Theorem 1.8. Let r = pα be a prime power, d ⩾ 1, and N := (r − 1)(d+ 2). Let ∆N

be an N -dimensional simplex with a partition (coloring) of its vertex set into t color
classes,

V = [N + 1] = C1 ⊔ · · · ⊔ Ct ,

with |Ci| ⩽ q = r+1
2 for all i. Then for every continuous map f : ∆N → Rd, there are

r disjoint “rainbow simplices” ∆1, . . . ,∆r of ∆N satisfying

(1)

f(∆1) ∩ · · · ∩ f(∆r) ̸= ∅ ,

where (as before) a face ∆ of ∆N is a rainbow simplex if and only if |∆ ∩ Cj | ⩽ 1
for each j = 1, . . . , t.

(2) The dimension of each of the simplices ∆i is at most k, where k is defined from
rk + s = (r − 1)d, k > 0, and 0 ⩽ s < r.

(3) There are at most s simplices whose dimensions is k.

The organizations of the paper is the following. The proof of Theorem 1.6 is given in
Section 4. The role of chessboard complexes and their generalizations, as configuration
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spaces for theorems of Tverberg type, is briefly reviewed in Section 2. In Section 2
we also formulate our main topological result of Borsuk-Ulam type (Theorem 2.1),
used in the proof of Theorem 1.6, and its companion (Theorem 2.2), about degrees
of maps from multiple chessboard complexes. The proof of Theorems 2.2 and 2.1 is
postponed until Section 6.

In Section 3 we develop the theory of multiple chessboard complexes in the gener-
ality needed for applications in the proofs of Theorems 1.6 and 2.2. The focus is on
multiple chessboard complexes which turn out to be pseudomanifolds (Sections 3.1
and 3.3).

In Section 7 we formulate and prove extensions of Theorem 1.6 (Theorems 7.7
and 7.8). In Section 7.1 we show how the method of “unavoidable complexes” can be
adapted for applications to problems about multisets of points.

In Section 5 we outline the proof of [KB, Theorem 2.1] (slightly extended to
the case of pseudomanifolds), as one of the central result illustrating the Eilenberg-
Krasnoselskii comparison principle for degrees of equivariant maps, in the case of
non-free group actions.

Finally, in Section 8 we give a proof of Theorem 1.8.
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2. Chessboard complexes and equivariant maps

The central role of chessboard complexes, as proper configuration spaces for colored
Tverberg problem and its relatives, was recognized in [ŽV92] almost thirty years ago.
To the present day these complexes remain, together with their generalizations (the
multiple chessboard complexes) in the focus of research in this area of geometric
combinatorics.

Recall that the (standard) chessboard complex ∆p,q is the complex of all non-
attacking placements of rooks in a (p× q)-chessboard (a placement is non-attacking
if it is not allowed to have more than one rook in the same row or in the same column).
More generally, the multiple chessboard complex ∆A,B

p,q (see Section 3), where A ∈ Nq

and B ∈ Np, arises if we allow more than one rook in each row (each column), where
their precise number is determined by vectors A and B.

Among the central results in this area are the topological type C colored Tverberg
theorem (Theorem 2.2 in [BMZ], reproduced here as Theorem 1.4) and the topological
type B colored Tverberg theorem [ŽV92, VŽ94]. Both of these results are obtained
by applications of the Configuration Space/Test Map scheme involving chessboard
complexes (see [Ž17]).

The associated test maps are respectively (7) (in the type C case) and (8) (for the
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type B result),

f : (∆r−1,r)
∗(d+1) ∗ [r] Z/p−→ W⊕(d+1)

r , (7)

f : (∆2r−1,r)
∗(k+1) (Z/p)k−→ W⊕d

r , (8)

where Wr ⊂ Rr is the standard (r − 1)-dimensional representation of the group Sr.
Both theorems are consequences of the corresponding Borsuk–Ulam-type state-

ments claiming that in either case the G-equivariant map f must have a zero, where
in (7) r = p is a prime number and G = Z/p, and in (8) r = pk is a power of a prime
and G = (Z/p)k.

The following theorem extends (7) and serves as a basis for a new type C topo-
logical Tverberg theorem, which extends (in a natural way) the result of Blagojević,
Matschke and Ziegler to the prime power case.

Theorem 2.1. Let G = (Zp)
k be a p-toral group of order r = pk. Let ∆1;L

k(p−1),pk be

the multiple chessboard complex (based on a k(p− 1)× pk chessboard), where 1 =

(1, . . . , 1) ∈ Rpk

and L = (1, p, . . . , pk−1)×(p−1) ∈ Rk(p−1). Let ∂∆[pk]
∼= Spk−2 be the

boundary of a simplex with pk vertices. Then there does not exist a G-equivariant
map

f : (∆1;L
k(p−1),pk)

∗(d+1) ∗ [pk] −→ (∂∆[pk])
∗(d+1) ∼= (Spk−2)∗(d+1) ∼= S(pk−1)(d+1)−1 .

Theorem 2.1 is a consequence of the following theorem about degrees of equivariant
maps.

Theorem 2.2. Let G = (Zp)
k be a p-toral group of order r = pk. Let ∆1;L

k(p−1),pk be

the multiple chessboard complex (based on a k(p− 1)× pk chessboard), where 1 =

(1, . . . , 1) ∈ Rpk

and L = (1, p, . . . , pk−1)×(p−1) ∈ Rk(p−1). Let ∂∆[pk]
∼= Spk−2 be the

boundary of a simplex with pk vertices. Then deg(f) ̸= 0 (mod p) for any G-equivari-
ant map

f : (∆1;L
k(p−1),pk)

∗(d+1) −→ (∂∆[pk])
∗(d+1) ∼= (Spk−2)∗(d+1) ∼= S(pk−1)(d+1)−1 .

3. Chessboard pseudomanifolds

Following [JVZ-1, JVZ-2], a multiple chessboard complex

∆K;L
m,n = ∆k1,...,kn;l1,...,lm

m,n

is an abstract simplicial complex with vertices in [m]× [n], where the simplices have
at most ki elements in the row [m]× {i} and at most lj elements in each column
{j} × [n].

We shall be mainly interested in complexes ∆1;L
m,n = ∆1,...,1;l1,...,lm

m,n where at most
one rook is permitted in each of the rows of the chessboard [m]× [n].

Proposition 3.1. The multiple chessboard complex ∆1;L
m,n is a pseudomanifold if

n = l1 + l2 + · · ·+ lm + 1 . (9)

More precisely, the links of simplices of codimension 1 and 2 are spheres of dimensions
0 and 1, while in codimension 3 both 2-spheres and 2-dimensional tori T 2 may appear.
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Proof. Let S ∈ ∆1;L
m,n and let si := |S ∩ ({i} × [n])|. The link Link(S) is clearly iso-

morphic to the multiple chessboard complex ∆1;T
m,n where T = (t1, . . . , tm) and ti :=

li − si. (Here we allow that tj = 0 for some j ∈ [m].) The proof is completed by an
explicit description of all multiple chessboard complexes that arise as links of simplices
in codimension ⩽ 3.

If codim(S) = 1 then there exists j0 such that lj0 = sj0 + 1 and lj = sj for each
j ̸= j0. The condition (9) guarantees that tj0 = 1, which together with tj = 0 for
j ̸= j0 implies Link(S) ∼= ∆1,2

∼= S0.
If codim(S) = 2 then there are two possibilities. Either (I) there exists j0 such that

lj0 = sj0 + 2 and lj = sj for each j ̸= j0, or (II) there exists j0 ̸= j1 such that both
lj0 = sj0 + 1, lj1 = sj1 + 1 and lj = sj for each j ̸= j0, j1. In the first case Link(S) ∼=
∂∆[3]

∼= S1, while in the second Link(S) ∼= ∆2,3
∼= S1.

If codim(S) = 3 then the number of non-zero entries in the vector T = (t1, . . . , tm)

is 1, 2 or 3. In the first case Link(S) ∼= ∂∆[4]
∼= S2. In the second case Link(S) ∼= ∆1;T

2,4 ,

where T = (2, 1), hence ∆1;T
2,4

∼= S2.

Finally, in the third case Link(S) ∼= ∆3,4
∼= T 2, since ∆3,4 is an orientable surface

which has zero Euler characteristic.

3.1. Hierarchy of pseudomanifolds ∆1;L
m,n

From here on we tacitly assume that the chessboard complex ∆1;L
m,n satisfies the

condition n = l1 + · · ·+ lm + 1. If L = 1 ∈ Nm then ∆1;L
m,n = ∆n−1,n is a standard

chessboard complex [BLVZ], while in the case m = 1 the complex ∆1;L
m,n

∼= ∂∆[n] is

the boundary sphere ∂∆[n]
∼= Sn−2 of the simplex ∆[n] := 2[n].

The pseudomanifolds ∆1;L
m,n form a poset category where the complexes ∆n−1,n

and ∂∆[n] play the role of the initial and terminal object. The morphisms in this
category are the θ-collapse maps Ωθ, described in the following definition.

Definition 3.2. Assuming m′ ⩾ m, choose an epimorphism θ : [m′] → [m], then let

θ̂ : [m′]× [n] → [m]× [n] be the associated map of chessboards where θ̂(i, j)= (θ(i), j).
We say that a sequence B = (b1, . . . , bm) is obtained by a θ-collapse from a sequence

A = (a1, . . . , am′) if bi =
∑

θ(j)=i aj . Define Ωθ : ∆
1;A
m′,n → ∆1;B

m,n as the induced map

of multiple chessboard complexes where Ωθ(S) := θ̂(S), for each simplex S ∈ ∆1;A
m,n.

(Informally, the map Ωθ merges together some columns of ∆1;A
m′,n, as dictated by θ.)

The special cases Ωθ : ∆n−1,n → ∆1;L
m,n and Ωθ : ∆

1;L
m,n → ∂∆[n] are of particular

importance. These maps are completely determined by the vector L and in this case
both the corresponding Ωθ and the associated map θ : [n− 1] → [m] are referred to
as L-collapse maps.

The group Sn, permuting the rows of the chessboard [m]× [n], acts on the multiple

chessboard complex ∆1;L
m,n. The simplicial map Ωθ : ∆

1;L′

m′,n → ∆1;L
m,n, associated to a

collapse map θ : [m′] → [m], is clearly Sn-equivariant.

3.2. Orientability of pseudomanifolds ∆1;L
m,n

Before the calculation of the degree of the collapse map, we check the orientability
of the pseudomanifold ∆1;L

m,n and calculate the associated orientation character. Recall
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that the concordance of two actions is a standard necessary condition in the study of
degrees of equivariant maps, see [KB, Remark 1.1].

Proposition 3.3. The pseudomanifold ∆1;L
m,n is always orientable. It has a fundamen-

tal class τ ∈ Hd(∆
1;L
m,n;Z) ∼= Z where d = dim(∆1;L

m,n) = n− 2. A permutation g ∈ Sn

reverses the orientation (changes the sign of τ) if and only if g is odd.

Proof. Let Ωθ : ∆
1;L
m,n → ∂∆[n] be the collapse map associate to the constant map

θ : [m] → [1] (Definition 3.2). In other words Ωθ is the map induced by the projec-
tion [m]× [n] → [1]× [n] of chessboards, where a simplex S ∈ ∆1;L

m,n is mapped to a
simplex S′ ∈ ∂∆[n] if and only if

(∀i ∈ [n]) [({i} × [m]) ∩ S ̸= ∅ ⇔ i ∈ S′] .

Let Ŝ be the simplex S ∈ ∆1;L
m,n oriented by listing its vertices in the increasing order

of rows. Note that if Ωθ(S) = S′ ∈ ∂∆[n] then Ωθ(Ŝ) = Ŝ′.
Choose an orientation O′ on the sphere ∂∆[n] and use this orientation to define, via

the collapse map Ωθ, an orientation O on ∆1;L
m,n. More explicitly, an ordered simplex

Ŝ is positively oriented with respect to O if and only if Ŝ′ is positively oriented with
respect to the orientation O′. It is not difficult to check that O is indeed an orientation
on the pseudomanifold ∆1;L

m,n which has all the properties listed in Proposition 3.3.

Corollary 3.4. As a consequence of Proposition 3.3 the Sn-pseudomanifolds ∆1;L
m,n

and ∆1;L′

m′,n are concordant in the sense that each g ∈ Sn either changes the orientation
of both of the complexes if none of them.

3.3. Degree of the collapse map Ωθ

In the following proposition we calculate the degree of the map Ωθ. This calculation
will play a central role in the proof of Theorem 2.2.

Proposition 3.5. The degree of the map Ωθ : ∆
1;A
m′,n → ∆1;B

m,n is,

deg(Ωθ) =

(
B
A

)
=

b1! b2! . . . bm!

a1! a2! . . . am′ !
. (10)

In the special case when m = 1 we obtain that the degree of the map Ωθ is the multi-
nomial coefficient,

deg(Ωθ) =
(a1 + a2 + · · ·+ am′)!

a1! a2! . . . am′ !
(11)

and in the special case a1 = a2 = . . . = am′ = 1 (10) reduces to the formula,

deg(Ωθ) = b1! b2! . . . bm!. (12)

Proof. Each simplicial map Ωθ : ∆
1;A
m′,n → ∆1;B

m,n is non-degenerate in the sense that it

maps bijectively the top dimensional simplices of ∆1;A
m′,n to top dimensional simplices

of ∆1;B
m,n. Moreover, it is an orientation preserving map so in order to calculate the

degree of Ωθ it is sufficient to calculate the cardinality of the preimage Ω−1
θ (c0) of the

barycenter c0 of a chosen top dimensional simplex of ∆1;B
m,n.

Since the degree is multiplicative it is sufficient to establish formula (12). A simple
calculation shows that the cardinality of the set Ω−1

θ (c0) is, in the case of a map
Ωθ : ∆n−1,n → ∆1;B

m,n, indeed given by the formula (12).
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4. Proof of Theorem 1.6

By convention ∆ = ∆C is a simplex spanned by a set C, in particular ∆N ∼= ∆C

where C = V ert(∆N ) = C0 ⊔ C1 ⊔ · · · ⊔ Cd ⊔ Cd+1.
Recall that a set S ⊂ C (and the corresponding face ∆S ⊆ ∆C) is called a rainbow

set (rainbow face) if |S ∩ Ci| ⩽ 1 for all i = 0, 1, . . . , d+ 1. It follows that the set of
all rainbow simplices is a subcomplex of ∆C which has a representation as a join of
0-dimensional simplicial complexes:

R = Rainbow := C0 ∗ C1 ∗ · · · ∗ Cd ∗ Cd+1 ⊂ ∆C . (13)

By assumption |Ci| = m := k(p− 1) for i = 0, 1, . . . , d and |Cd+1| = 1, or more explic-
itly Ci = {ciα,β} (0 ⩽ α ⩽ k − 1; 1 ⩽ β ⩽ p− 1) for all 0 ⩽ i ⩽ d, and Cd+1 = {c0}.
Theorem 1.6 claims that for each continuous map f : ∆C → Rd there exist rainbow
faces ∆1, . . . ,∆r ∈ R such that:

(1) Vertex c0 appears in at most one of the faces ∆i;

(2) For all i, α, β the vertex ciα,β may appear in not more than pα faces ∆1, . . . ,∆r;

(3) f(∆1) ∩ · · · ∩ f(∆r) ̸= ∅.
An r-tuple (∆1, . . . ,∆r) of rainbow simplices is naturally associated to the join of
simplices ∆1 ∗ · · · ∗∆r ∈ R∗r. Our immediate objective is to identify the subcomplex
R∗r

L ⊂ R∗r which collects all r-tuples (∆1, . . . ,∆r) satisfying conditions (1) and (2).
By assumption ∆i,ν := ∆i ∩ Cν is either empty or a singleton, for each rainbow

simplex ∆i. A moment’s reflection reveals that the union ∪{∆i,ν}ri=1 is a simplex

in ∆1;L
k(p−1),pk , for 0 ⩽ ν ⩽ d and a simplex in [r] = [pk] if ν = d+ 1. It immediately

follows that

R∗r
L

∼= (∆1;L
k(p−1),pk)

∗(d+1) ∗ [r] .

Let f̂ : R → Rd be the restriction of the map f : ∆C → Rd. The corresponding map
defined on the r-tuples of rainbow simplices, satisfying conditions (1) and (2) is the
map

F̂ : (∆1;L
k(p−1),pk)

∗(d+1) ∗ [r] −→ (Rd)∗r .

By composing with the projection (Rd)∗r → (Rd)∗r/D (whereD ∼= Rd is the diagonal)
and the embedding (Rd)∗r/D ↪→ (Wr)

⊕(d+1), whereWr
∼= Rr/R denotes the standard

(r − 1)-dimensional representation of Sr, we obtain a map

F̆ : (∆1;L
k(p−1),pk)

∗(d+1) ∗ [r] −→ (Wr)
⊕(d+1),

which has a zero in a simplex (∆1, . . . ,∆r) if and only if f(∆1) ∩ · · · ∩ f(∆r) ̸= ∅.
Since the sphere S((Wr)

⊕(d+1)) ∼= (S(Wr))
∗(d+1) is equivariantly homeomorphic to

(∂∆[r])
∗(d+1) a zero exists by Theorem 2.1, which concludes the proof of Theorem 1.6.

□

5. Comparison principle for equivariant maps

The following theorem is proved in [KB, Theorem 2.1 in Section 2]. Note the con-
dition that the Hi-fixed point sets SHi are locally k-connected for k ⩽ dim(MHi)− 1
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is automatically satisfied if S is a representation sphere. So in this case it is suffi-
cient to show that the sphere SHi is (globally) (dim(MHi)− 1)-connected which is
equivalent to the condition

dim(MHi) ⩽ dim(SHi) (i = 1, . . . ,m) . (14)

Theorem 5.1. Let G be a finite group acting on a compact topological manifold M =
Mn and on a sphere S ∼= Sn of the same dimension. Let N ⊂ M be a closed invariant
subset and let (H1), (H2), . . . , (Hm) be the orbit types in M \N . Assume that the set
SHi is both globally and locally k-connected for all k = 0, 1, . . . ,dim(MHi)− 1, where
i = 1, . . . ,m. Then for every pair of G-equivariant maps Φ,Ψ: M −→ S, which are
equivariantly homotopic on N , there is the following relation

deg(Ψ) ≡ deg(Φ) (modGCD{|G/H1|, . . . , |G/Hk|}) . (15)

The proof of the following extension of Theorem 5.1 to manifolds with singularities
doesn’t require new ideas. By a singular topological manifold we mean a topological
manifold with a codimension 2 singular set. In particular Theorem 5.2 applies to
pseudomanifolds ∆1;L

m,n, introduced in Section 3.

Theorem 5.2. Let G be a finite group acting on a compact “singular topological
manifold” M = Mn and on a sphere S ∼= Sn of the same dimension. Let N ⊂ M
be a closed invariant subset and let (H1), (H2), . . . , (Hm) be the orbit types in the
complement M \N . Assume that the set SHi is both globally and locally k-connected
for all k = 0, 1, . . . ,dim(MHi)− 1, where i = 1, . . . ,m. Then for every pair of G-
equivariant maps Φ,Ψ: M −→ S which are equivariantly homotopic on N , there is
the following relation

deg(Ψ) ≡ deg(Φ) (modGCD{|G/H1|, . . . , |G/Hk|}) . (16)

Proof. Following into footsteps of the proof of Theorem 5.1 (see [KB, Theorem 2.1])
we define a G-equivariant map

f0 : (M × {0, 1}) ∪ (N × [0, 1]) −→ B \ {O}, (17)

where B = Cone(S) is a cone over the sphere S (with the apex O), Ψ and Φ are
restrictions of f0 on M × {0} (respectively M × {1}) and the restriction of f0 on
N × [0, 1] is a homotopy between Ψ|N and Φ|N .

If f : M × [0, 1] → B is a G-equivariant extension of f0 then ([KB, Lemma 2.1])
deg(f) = ±(deg(Ψ)− deg(Φ)) and the relation (16) will follow if

deg(f) =

m∑
i=1

ai · |G/Hi| (18)

for some integers ai ∈ Z.
The proof of the following lemma ([KB, Lemma 2.2]) is quite general, in particular

it holds for “singular topological manifolds”.

Lemma 5.3. There exists a G-equivariant extension f : M × [0, 1] → B of the map
f0 satisfying the following conditions:

(α) K = f−1(O) =
⋃m

j=1 Tj where Tu ∩ Tv = ∅ for u ̸= v;
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(β) Tj = G(Kj) for a compact set Kj;

(γ) Kj = Hj(Kj) is Hj-invariant;

(δ) g(Kj) ∩ h(Kj) = ∅ if gh−1 /∈ Hj (j = 1, . . . ,m).

The proof of Theorem 5.2 is completed as in [KB, Section 2.1.3] by observing that
“singular topological manifolds” also have absolute and relative fundamental classes.

More explicitly, if Fj is the restriction f to a sufficiently small neighborhood of Kj

then

deg(f) =

m∑
j=1

deg(Fj) .

By the same argument as in [KB] we deduce from Lemma 5.3 that deg(Fj) = aj ·
|G/Hj | for some aj ∈ Z, and the relation (16) is an immediate consequence.

6. Proof of Theorem 2.2

We are supposed to show that the degree deg(f) of each G-equivariant map

f : (∆1;L
k(p−1),pk)

∗(d+1) −→ (∂∆[pk])
∗(d+1) ∼= (Spk−2)∗(d+1) ∼= S(pk−1)(d+1)−1, (19)

where G = (Zp)
k is a p-toral group, is non-zero modulo p. Following the Comparison

principle for equivariant maps (Section 5) we should:

(A) Exhibit a particular map (19) such that deg(f) ̸= 0 modulo p;

(B) Check if the conditions of Theorem 5.2 are satisfied.

The following proposition provides the needed example for the first part of the
proof.

Proposition 6.1. The θ-collapse map

Ωθ : ∆
1;L
k(p−1),pk −→ ∂∆[pk] , (20)

where θ : [k(p− 1)] → [1] is a constant map, has a non-zero degree modulo p.

Proof. We calculate the degree of the map (20) by applying the formula (11). Recall
that L = (1, p, . . . , pk−1)×(p−1) ∈ Rk(p−1) so in this case

deg(Ωθ) =
(pk − 1)!

[(pk−1)! (pk−2)! . . . p! 1!]p−1
. (21)

The well-known formula for the highest power of p dividing m! is an infinite sum with
a finite number of non-zero terms

ordp(m!) =

⌊
m

p

⌋
+

⌊
m

p2

⌋
+ · · ·+

⌊
m

ps

⌋
+ . . . .

By applying this formula we obtain

ordp((p
k − 1)!) = ordp((p

k)!)− k = pk−1 + pk−2 + · · ·+ 1− k

and by applying the same formula to the denominator of (21) we obtain exactly the
same quantity.
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In light of Proposition 6.1 the map

(Ωθ)
∗(d+1) : (∆1;L

k(p−1),pk)
∗(d+1) −→ (∂∆[pk])

∗(d+1) ∼= (Spk−2)∗(d+1) ∼= S(pk−1)(d+1)−1

(22)
has a non-zero degree deg((Ωθ)

∗(d+1)) = (deg(Ωθ))
d+1 modulo p, which completes

part (A) of the proof.
For the part (B) of the proof of Theorem 2.2 note (Section 5) that it is sufficient

to check the inequality (14). Let us begin with the observation that the boundary
∂∆[r] (r = pk) is Sr-equivariantly homeomorphic to the unit sphere S(Wr) in the stan-
dard Sr-representation Wr := {x ∈ Rr | x1 + · · ·+ xr = 0}. As a consequence, for
each subgroup H ⊆ Sr the corresponding fixed point set ∂∆H

[r]
∼= S(Wr)

H = S(WH
r )

is also a sphere.
The action of H decomposes [r] into orbits [r] = O1 ⊔ · · · ⊔Ot. From here easily

follows a combinatorial description of the fixed point set ∂∆H
[r]. A point x ∈ ∂∆[r],

with barycentric coordinates {λi}ri=1, is fixed by H if and only if the barycentric
coordinates are constant in each of the orbits. Summarising, ∂∆H

[r] is precisely the

boundary of the simplex with vertices {oi}ti=1, where oi is the barycenter of the face
∆Oi

⊂ ∆[r].

Let ∆1;L
m,r be a multiple chessboard complex, where L = (l1, . . . , lm) assuming m =

k(p− 1). It is not difficult to see that the barycenter bi,j of (geometric realization of)
the simplex {i} ×Oj is in the fixed point set (∆1;L

m,r)
H if and only if |Oj | ⩽ li.

More generally, a point x is in (∆1;L
m,r)

H if and only if it can be expressed as a
convex combination

x =
∑

(i,j)∈S

λi,jbi,j ,

where S is a subset of [m]× [t] satisfying

(1) If (i, j), (i′, j) ∈ S then i = i′;

(2) (∀i ∈ [m])
∑

{|Oj | | (i, j) ∈ S} ⩽ li.

The θ-collapse map Ωθ, where θ : [m] → [1] is the constant map, maps (∆1;L
m,r)

H to

∂∆H
[r]. Moreover Ωθ(bi,j) = oj and, in light of (1) and (2), the simplex with vertices

{bi,j}(i,j)∈S is mapped bijectively to a face of ∂∆H
[r]. The following inequality is an

immediate consequence,

dim((∆1;L
m,r)

H) ⩽ dim(∂∆H
[r]) .

From here and (22) we obtain the inequality

dim[(∆1;L
k(p−1),pk)

∗(d+1)]H ⩽ dim[(∂∆[pk])
∗(d+1)]H ,

which finishes the proof of part (B) and concludes the proof of the theorem. □

Remark 6.2. It follows from the part (B) of the proof of Theorem 2.2 that ∆ =
(∆1;L

m,r)
H is also a “chessboard complex”. Indeed, S ⊆ [m]× [t] is a simplex in ∆ if

and only if S has at most one rook in each row [m]× {j} and the total weight of the
set ({i} × [t]) ∩ S is at most li, where the weight of each element (i, j) is |Oj |.

It follows that ∆ can be classified as a complex of the type ∆1,L
m,t (cf. [JVZ-1,

Definition 2.3]), where L is family of threshold (simplicial) complexes.
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6.1. Proof of Theorem 2.1
If such a map f exists, then there is a commutative diagram

(∆1;L
k(p−1),pk)

∗(d+1) ∗ [pk] f−−−−→ (∂∆[pk])
∗(d+1)

π

x ∼=
x

(∆1;L
k(p−1),pk)

∗(d+1) f̂−−−−→ (∂∆[pk])
∗(d+1),

(23)

where π is the inclusion map and f̂ = f ◦ π. The map π is homotopic to a constant
map (since Image(π) is contained in Star(v) for any vertex v ∈ [pk]). It follows that
deg(f) = 0 which contradicts Theorem 2.2.

7. Generalizations by the method of constraints

In this section we prove Theorems 7.7 and 7.8 as extensions and relatives of The-
orem 1.6. Theorem 7.7 unifies the optimal colored Tverberg theorem (Theorem 1.5),
and the (primary) colored Tverberg theorem for multisets of points (Theorem 1.6).

All these results (in agreement with [Ž17]) can be classified as Type C colored
Tverberg theorems (characterized by the condition that the number of colors is at
least d+ 2, where d is the dimension of the ambient euclidean space).

Theorems 7.7 and 7.8 are deduced from Theorem 1.6 by a combinatorial reduction
procedure closely related to the method of “constraining functions” and “unavoidable
complexes” [BFZ1, Sections 3 and 4], see also [JJTVZ], [JMVZ] and the review
paper [Ž17] for more information. Here we show in Section 7.1 how this method can
be modified and extended to yield results about multisets of points.

7.1. Unavoidable complexes
A multiset with vertices in V can be also described as a pair V = (V,m) where

m : V → N is a function assigning non-negative multiplicities to elements of V . If
V = {v1, . . . , vs} and m(vi) = mi we usually write V = {vm1

1 , . . . , vms
s }. We have

introduced L (in Theorem 1.6) as the vector (1, p, . . . , pk−1)×(p−1) ∈ Nk(p−1). With a
mild abuse of language (Remark 1.7) we use the same notation for the corresponding
multiset. More precisely a multiset is of the type L if (1, p, . . . , pk−1)×(p−1) is the
associated multiplicity vector.

Definition 7.1 (Unavoidable complexes). Let V = (V,m) be a multiset and r a pos-
itive integer. A simplicial complex K ⊆ 2V is (r,V)-unavoidable if for each V-proper
collection {∆i}ri=1 of (not necessarily distinct) subsets of V , at least one of the sub-
sets ∆i is in K. By definition a collection {∆i}ri=1 is V-proper if for each v ∈ V the
cardinality of the set {i | v ∈ ∆i} is at most m(v).

Definition 7.2 (Tverberg complexes). Let V = (V,m) be a multiset. Assume that
r and d are positive integers. A simplicial complex K ⊆ 2V is a Tverberg complex
of the type (r, d,V) if for each continuous map f : K → Rd there exists a V-proper
collection {∆i}ri=1 of simplices in K such that

f(∆1) ∩ · · · ∩ f(∆r) ̸= ∅ . (24)
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Example 7.3. In the notation of Theorem 1.6,

Kd := C0 ∗ C1 ∗ · · · ∗ Cd+1
∼= [k(p− 1)]∗(d+1) ∗ [1]

is a Tverberg complex of the type (r, d,V) where r = pk is a prime power and V is a
disjoint union of d+ 1 copies of the multiset (of the type) L and a singleton [1].

Unavoidable complexes, originally introduced in [BFZ1, Definition 4.1] under the
name “Tverberg unavoidable subcomplexes”, play the fundamental role in the “con-
straint method” [BFZ1, Sections 3 and 4]. Here we show how the constraint method
can be extended to the case of multisets.

Proposition 7.4. Let V = (V,m) be a multiset with vertices in V . Assume K ⊆ 2V

is a Tverberg complex of the type (r, d+ 1,V), where r and d are positive integers.
Let L be a (r,V)-unavoidable complex. Then K ∩ L is a Tverberg complex of the type
(r, d,V).

Proof. We are supposed to prove, following Definition 7.2, that for each continuous
map f : K ∩ L → Rd there exists a V-proper collection {∆i}ri=1 of simplices in K ∩ L
which satisfies the condition (24).

The first step is to include f : K ∩ L → Rd into a commutative diagram (25) where
e and i are the inclusion maps.

K
F−−−−→ Rd+1

e

x i

x
K ∩ L

f−−−−→ Rd.

(25)

Let f̄ be an extension (f̄ ◦ e = f) of the map f to K. Suppose that ρ : K → R is
the function ρ(x) := dist(x,K ∩ L), measuring the distance of the point x ∈ K from
K ∩ L. Let F = (f̄ , ρ) : K → Rd+1.

By assumption K ⊆ 2V is a Tverberg complex of the type (r, d+ 1,V) so there
exists a V-proper family {∆1, . . . ,∆r} of faces of K such that

F (∆1) ∩ · · · ∩ F (∆r) ̸= ∅ . (26)

More explicitly, there exist xi ∈ ∆i such that F (xi) = F (xj) for each i, j = 1, . . . , r.
By assumption the complex L is (r,V)-unavoidable, hence ∆i ∈ L for some i ∈ [r].

This implies ρ(xi) = 0 and in turn ρ(xj) = 0 for each j = 1, . . . , r.
If ∆′

i is the minimal face of K containing xi then ∆′
i ∈ L for each i = 1, . . . , r and

f(∆′
1) ∩ . . . ∩ f(∆′

r) ̸= ∅.

The proof of Proposition 7.4 is modeled on the proof of [BFZ1, Lemma 4.3]. The
following result is an immediate corollary, see [BFZ1, Theorem 4.4].

Corollary 7.5. Let V = (V,m) be a multiset with vertices in V . Assume K ⊆ 2V is
a Tverberg complex of the type (r, d+ c,V), where r, d and c are positive integers. Let
L1, . . . , Lc be a family of (r,V)-unavoidable complexes. Then K ∩ L1 ∩ · · · ∩ Lc is a
Tverberg complex of the type (r, d,V).

Proof. By induction, relying on Proposition 7.4, we prove that K ∩ L1 ∩ · · · ∩ Lj is
a Tverberg complex of the type (r, d+ c− j,V) for each j = 1, . . . , c.
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In the following proposition we exhibit a class of (r,V)-unavoidable subcomplexes
of ∆V , suitable for application of Corollary 7.5. (It should be compared to the example
(i) in [BFZ1, Lemma 4.2].)

Proposition 7.6. Let V = (V,m) be a multiset with vertices in V . Let S ⊂ V be a
subset such that

m(S) :=
∑
v∈S

m(v) ⩽ r − 1 . (27)

Then the complex ∆V \S = {A ∈ 2V | A ∩ S = ∅} is (r,V)-unavoidable.

In words, the face ∆V \S of ∆V is a (r,V)-unavoidable subcomplex of ∆V if the
total m-weight of S does not exceed r − 1.

7.2. Extensions and relatives of Theorem 1.6
Our primary example of a Tverberg complex of the type (r, d+ c,V) is the complex

Kd+c := C ′
0 ∗ C ′

1 ∗ · · · ∗ C ′
d+c+1

∼= [k(p− 1)]∗(d+c+1) ∗ [1] (28)

described in Example 7.3 (with a slight change of notation). In this case the ambi-
ent simplex is ∆V

∼= ∆M where M = k(p− 1)(d+ c+ 1), r = pk is a prime power,
and V is a disjoint union of d+ c+ 1 copies of the multiset L with multiplicities
(1, p, . . . , pk−1)p−1 and a singleton [1],

V = L⊕(d+c+1) ⊕ [1] . (29)

Choose pairwise disjoint subsets S1, . . . , Sc of V such that the m-weight (27) of
each Si does not exceed r − 1. Let S := S1 ∪ · · · ∪ Sc and let ∆N := ∆V \S .

By Corollary 7.5 the complex

Kd+c ∩∆V \S1
∩ · · · ∩∆V \Sc

= Kd+c ∩∆V \S

is a Tverberg complex of the type (r, d,V). This result, formally translated in the
language of Theorem 1.6, may be reformulated as follows.

Theorem 7.7. Let r = pk be a prime power, c ⩾ 1, d ⩾ 1 and N := k(p− 1)(d+ 1).
Let ∆N be an N -dimensional simplex whose vertices are colored by d+ c+ 2 colors.
More explicitly there is a partition U = C0 ⊔ C1 ⊔ · · · ⊔ Cd+c+1 of vertices of ∆N into
d+ c+ 2 monochromatic sets (some of the sets Ci are allowed to be empty). Let us
assume that m̂ : U → N is a function assigning positive multiplicities to the vertices
of ∆N , which turns U into a multiset U = (U, m̂). Assume that U = (U, m̂) can be
enlarged to the multiset V = (V,m) = L⊕(d+c+1) ⊕ [1] where U ⊆ V and m : V → N
is an extension of m̂. The enlargement is performed by adding of c (pairwise disjoint)
sets S1, . . . , Sc such that the m-weight (27) of each Si does not exceed r − 1.

Then for any continuous map f : ∆N → Rd there exist r faces ∆1, . . . ,∆r of ∆N

such that:

(A) f(∆1) ∩ · · · ∩ f(∆r) ̸= ∅.
(B) The number of occurrences of each vertex of ∆N in all faces ∆i, does not exceed

the prescribed multiplicity of that vertex.

(C) All faces ∆i are rainbow simplices, in the sense that (∀i)(∀j) |V ert(∆i) ∩ Cj | ⩽
1.
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Theorem 7.7 reduces to Theorem 1.5 in the case k = 1.
If we assume in Theorem 7.7 that Cj = ∅ for j > d+ 1 we obtain the following

extension of Theorem 1.6. More directly it can be obtained from the case c = 1
of Corollary 7.5. Note that the number of colors and the total number of vertices
(counted with multiplicities) is the same as in Theorem 1.6. The main difference is
that the color classes are treated equally (there are no “exceptional” colors).

Theorem 7.8. Let r = pk be a prime power, d ⩾ 1, and N = k(p− 1)(d+ 1). Let
∆ = ∆N be a simplex whose vertices are colored by d+ 2 colors, meaning that there is
a partition V = C0 ⊔ C1 ⊔ · · · ⊔ Cd ⊔ Cd+1 into d+ 2 monochromatic subsets. Assume
that:

(1) The vertices of Ci are assigned multiplicities from the set {1, p, . . . , pk−1} so
that each multiplicity is assigned to not more than p− 1 elements of Ci;

(2) The total sum of all multiplicities over all the vertices of ∆ is (r − 1)(d+ 1) + 1.

Under these conditions for any continuous map f : ∆ → Rd there exist r faces
∆1, . . . ,∆r of ∆ such that:

(A) f(∆1) ∩ · · · ∩ f(∆r) ̸= ∅.
(B) The number of occurrences of each vertex of ∆N in all faces ∆i does not exceed

the prescribed multiplicity of that vertex.

(C) All faces ∆i are rainbow simplices.

8. Proof of Theorem 1.8

The following Borsuk–Ulam type theorem for fixed-point free actions of the group
G = (Zp)

α is a useful tool for proving topological relatives of Tverberg’s theorem, see
[V96], [M03, Section 6.2], or [Ž17, Theorem 21.5.2].

Theorem 8.1. Let p be a prime number and G = (Zp)
α an elementary abelian p-

group. Suppose that X and Y are fixed-point free G-spaces such that H̃i(X,Zp) ∼= 0
for all i ⩽ n and Y is an n-dimensional cohomology sphere over Zp. Then there does
not exist a G-equivariant map f : X → Y .

The following theorem has already been formulated in [JPVZ], in a less general
form. Note that even if r is a prime, it does not immediately follow from Theorem 1.4.

Theorem 8.2. Let r = pα be a prime power, d ⩾ 1, and N := (r − 1)(d+ 1). Let ∆N

be an N -dimensional simplex with a partition (coloring) of its vertex set into t color
classes,

V = [N + 1] = C1 ⊔ · · · ⊔ Ct ,

where |Ci| ⩽ q = r+1
2 for all i. Then for every continuous map f : ∆N → Rd, there

are r disjoint rainbow simplices ∆1, . . . ,∆r of ∆N satisfying

f(∆1) ∩ · · · ∩ f(∆r) ̸= ∅ .

Proof. Ifmi := |Ci| then (by assumption)
∑t

i=1 mi = N + 1. The configuration space
of r-tuples of rainbow simplices is the join C = ∆r,m1

∗ · · · ∗∆r,mt
. It can be visual-

ized as the chessboard complex associated with t “small” chessboards of height r
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positioned side by side. The condition is that in each of these small chessboard the
rooks placement is non-taking.

By assumption r ⩾ 2mi − 1 so by [ŽV92, Proposition 1] it follows that ∆r,mi is

mi − 2-connected. Since
∑t

i=1(mi − 2) + 2(t− 1) = (r − 1)(d+ 1)− 1, it follows that
the complex C is (N − 1)-connected.

The reduction based on the standard configuration space/test map scheme [M03,
Ž17] shows that if f violates the statement of the theorem, then there exists at least
one (Zp)

α-equivariant map

C −→ S(d+1)(r−1)−1 .

This, however, is in contradiction with Theorem 8.1.

One of the difficulties in the proof of Theorem 1.8 is that the configuration space
(naturally associated to the problem) is a “symmetrized deleted join” of complexes
and, as a consequence, it may not be so easy to check all conditions, needed for
application of Theorem 8.1.

Recall that the deleted join [M03, Section 6] of a family

K = ⟨Ki⟩ri=1 = ⟨K1, . . . ,Kr⟩

of subcomplexes of 2[m] is the complex K∗
∆ = K1 ∗∆ · · · ∗∆ Kr ⊆ (2[m])∗r where A =

A1 ⊔ · · · ⊔Ar ∈ K∗
∆ if and only if Aj are pairwise disjoint and Ai ∈ Ki for each i =

1, . . . , r. In the case K1 = · · · = Kr = K this reduces to the usual definition of r-fold
deleted join K∗r

∆ , see [M03].

The symmetrized deleted join of K is, following [JVZ-2, Section 2.2] and [JPZ-1,
Definition 2.2], defined as

SymmDelJoin(K) :=
⋃

π∈Sr

Kπ(1) ∗∆ · · · ∗∆ Kπ(r) ⊆
(
2[m]

)∗r

∆
,

where the union is over the set of all permutations of r elements and (2[m])∗r∆
∼= [r]∗m

is the r-fold deleted join of a simplex with m vertices.

Proof of Theorem 1.8. As in the proof of Theorem 8.2 let C = ∆r,m1 ∗ · · · ∗∆r,mt

be the configuration space of all r-tuples (∆1, . . . ,∆r) of (pairwise vertex disjoint)
rainbow simplices, where mi := |Ci| for each i = 1, . . . , t.

As before
∑t

i=1 mi = N + 1 and the only difference with the setting of Theorem 8.2
is that the dimension of the simplex ∆N is now N = (r − 1)(d+ 2) (rather than
N = (r − 1)(d+ 1)).

Let ∆
(ν)
N = (∆N )(ν) be the ν-dimensional skeleton of the simplex ∆N . It is not

difficult to see that the symmetrized deleted join

Σ = SymmDelJoin
(
∆

(k)
N , . . . ,∆

(k)
N ,∆

(k−1)
N , . . . ,∆

(k−1)
N

)
is precisely the configuration space of all (pairwise vertex disjoint) r-tuples satisfying
the conditions (2) and (3) in Theorem 1.8.
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Suppose (for contradiction) that f is a counterexample, violating the statement of
the theorem. By the standard reduction, f induces an equivariant map

F : C → W⊕(d+1)
r ,

which does not have a zero in Σ. By [F17, Lemma 2.10] there exists an equivariant
map,

Φ: (∆N )∗r∆ → Wr,

which has the remarkable property that Φ−1(0) = Σ. It immediately follows that the
map

(F,Φ): C → W⊕(d+2)
r

has no zeros, however this is in contradiction with Theorem 8.2.
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[ABFK] N. Alon, I. Bárány, Z. Füredi, and D. Kleitman. Point selections and
weak ϵ-nets for convex hulls. Combin. Probab. Comput., 1:189–200, 1992.

[AK92] N. Alon and D.J. Kleitman. Piercing convex sets and the Hadwiger
Debrunner (p, q)-problem. Adv. Math., 96:103–112, 1992.
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[BS] I. Bárány and P. Soberon. Tverberg’s theorem is 50 years old: a survey.
Bull. Amer. Math. Soc., 55(4): 459–492, 2018.

[BLVZ] A. Björner, L. Lovász, S.T. Vrećica, and R.T. Živaljević. Chessboard
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