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Abstract
For a finite group G, G-transfer systems are combinatorial

objects which encode the homotopy category of G-N∞ operads,
whose algebras in G-spectra are E∞ G-spectra with a speci-
fied collection of multiplicative norms. For G finite Abelian, we
demonstrate a correspondence between G-transfer systems and
weak factorization systems on the poset category of subgroups
of G. This induces a self-duality on the lattice of G-transfer
systems.

1. Introduction

In stable homotopy theory, commutative ring spectra are algebras over an E∞
operad. The equivariant story is more subtle. In [BH15], A. Blumberg and M. Hill
introduced N∞ operads to capture the varying classes of multiplicative norm maps
supported by equivariant ring spectra. By work of Blumberg and Hill [BH15], P. Bon-
ventre and L. Pereira [BP21], J. Gutiérrez and D. White [GW18], and J. Rubin
[Rub], we know that the homotopy category of N∞ operads may be identified with
the lattice of indexing systems for the group of equivariance. The indexing system
associated to an operad records which norm maps are being encoded by the operad.
Further work of Rubin [Rub20] and S. Balchin, D. Barnes, and C. Roitzheim [BBR],
identified transfer systems as the essential combinatorial data of indexing systems,
thus proving that the homotopy category of N∞ operads is equivalent to the lattice
of transfer systems. The combinatorics of this lattice thus plays a central role in the
study of equivariant ring spectra.

Fix a finite group G. We recall the basics of G-N∞ operads and G-transfer systems
in Section 3. For the purposes of this introduction, note that a G-transfer system is a
relation R on Sub(G), the subgroup lattice of G, that refines inclusion1 and satisfies
the following conditions:

• (reflexivity) H R H for all H ⩽ G,
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• (transitivity) K R H and L R K implies L R H,

• (closed under conjugation) K R H implies that (gKg−1) R (gHg−1) for all g ∈
G,

• (closed under restriction) K R H and M ⩽ H implies (K ∩M) RM .

In other words, a transfer system is a sub-poset of Sub(G) closed under conjugation
and restriction. These objects form a bounded lattice Tr(G) ordered under refinement
(see Proposition 3.7).

In this paper, we establish that Tr(G) is self-dual whenever G is Abelian. Our
proof proceeds via a surprising connection with weak factorization systems. A weak
factorization system on a category C is a pair of classes of morphisms (L,R) satisfying
the factorization and lifting axioms specified in Definition 4.5. Considering Sub(G)
as a poset category, we show in Theorem 4.13 that there is a bijective correspondence
between transfer systems and weak factorization systems given by

R ←→ (�R,R),

where �R denotes the morphisms in Sub(G) having the left-lifting property with
respect to R.

When G is Abelian, the subgroup lattice Sub(G) carries a self-duality ∇. In The-
orem 4.21, we prove that

ϕ : Tr(G) −→ Tr(G),

R 7−→ ((�R)op)∇

is a self-duality on Tr(G). This generalizes the self-duality on transfer systems for
cyclic groups of squarefree order observed in [BBPR]; see Theorem 4.28. We antic-
ipate that the self-duality of Tr(G) will prove useful in future enumerative work on
transfer systems and N∞ operads.

Organization

Sections 2 and 3 cover necessary background material on partially ordered sets and
transfer systems, respectively.

The real work is contained in Section 4, which is organized into five subsections.
Subsection 4.1 abstracts the notion of a transfer system for an Abelian group to the
context of arbitrary posets. Subsection 4.2 introduces weak factorization systems and
proves that they are in bijection with transfer systems on a poset (Theorem 4.13). In
subsection 4.3, we prove Theorem 4.21 on self-duality of the transfer system lattice.
Subsection 4.5 compares our self-duality (which is defined for every finite Abelian
group) to the self-duality of [BBPR] on Tr(G) for G cyclic of squarefree order. In
Subsection 4.4, we illustrate a numerical symmetry of the duality, namely the number
of “slats” in a transfer system on a cyclic group of order pnq for p, q distinct primes.

Finally, Section 5 produces a direct bijection between transfer systems for a cyclic
group of order pn, p prime, and noncrossing partitions of {0, 1, . . . , n}. This gives a
novel proof of the Catalan enumeration of such transfer systems originally found in
[BBR], and we deduce a new corollary linking minimal generation of transfer systems
to the Narayana numbers. This section is independent of the rest of the paper.
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Notation
We use the following notation throughout.

• G — a finite group, eventually Abelian.

• Sub(G) — the subgroup lattice of G.

• Tr(G) — the lattice of transfer systems on G under refinement.

• P — a poset, considered either as a set with a relation or as a category in which
there is at most one morphism between each pair of objects.

• [n] — the poset {0 < 1 < · · · < n}.
• Bn — the Boolean poset of subsets of {1, 2, . . . , n} under inclusion.
• Dn — the divisor poset of n under divisibility.

• Cn — the cyclic group of order n.

• Pop — the dual of a poset P.
• R — a transfer system, considered either as a relation or a collection of mor-

phisms.

• �M and M� — morphisms with the left (resp. right) lifting property with
respect to a class of morphismsM.

• L�R — the property L ⊆ �R (equivalently, R ⊆ L�).

• ∇ — self-duality on a poset.
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2. Preliminaries on posets

In this section, we briefly collect some well-known facts and examples from the
theory of partially ordered sets and lattices. We refer the reader to [Sta12, Chapter 3]
for a comprehensive reference.

Recall that a partially ordered set or poset (P,⩽) consists of a set P, together with
a binary relation that is reflexive, antisymmetric and transitive. We say that x < y
is a cover relation in P if there is no z ∈ P such that x < z < y.

We represent a finite poset P with a Hasse diagram. This is a directed graph whose
vertices are the elements of P, edges are cover relations, and such that if x < y, then
x is drawn below y.

Example 2.1. Let n be a natural number. See Fig. 1 below for the Hasse diagrams of
the following posets.

2Computer calculations of transfer systems that agreed with A092450 were our first hint at the link
between transfer and weak factorization systems.
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Figure 1: Hasse diagrams for (1) [5], (2) B3, and (3) [3]× [2] ∼= Dp3q2
∼= Sub(Cp3q2)

for p, q distinct primes.

1. We denote by [n] the set {0, 1, . . . , n} with its usual order structure.

2. The Boolean poset Bn is the poset of subsets of {1, 2, . . . , n} under inclusion. It
is isomorphic to the product of n copies of [1] with itself. The Hasse diagram
corresponds to the edges of an n-dimensional cube.

3. The set of positive divisors of n forms a poset Dn under divisibility. If
n = pa1

1 · · · p
ak

k is the prime factorization of n, then Dn is isomorphic to
[a1]× · · · × [ak] by identifying the exponents of the primes. Its Hasse diagram
is a k-dimensional grid.

4. For a groupG, we denote by Sub(G) the poset of subgroups ofG under inclusion.
Note that Sub(Cn) is isomorphic to Dn, where Cn denotes the cyclic group of
order n.

For x and y in a poset P, their least upper bound, if it exists, is denoted by x ∨ y
and is called the join. Similarly, their greatest lower bound is denoted by x ∧ y and is
called the meet. A lattice is a poset for which every pair of elements has both a join
and a meet. A poset is bounded if it has a least and a greatest element.

All of the posets of Example 2.1 are bounded lattices. In the case of Sub(G), the
meet of two subgroups is given by their intersection, while the join is the subgroup
generated by their union.

Remark 2.2. As noted in [Sta12, Proposition 3.3.1], if a finite poset P has all meets
and has a greatest element, then it is a lattice. Dually, if P has all joins and has a
least element, then it is a lattice.

Given a poset P, we consider it as a category whose objects are the elements of P
and whose morphisms are given by the relation ⩽. In other words, there is a unique
morphism from x to y whenever x ⩽ y, and no morphisms otherwise. Note that every
diagram in P commutes.

The dual of P, denoted by Pop, is the poset with the same underlying set but with
relation reversed. Note that as categories, Pop is precisely the opposite category of
P.
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3. Transfer systems and N∞ operads

Transfer systems, as originally and independently defined by J. Rubin [Rub20,
Definition 3.4] and S. Balchin, D. Barnes, and C. Roitzheim [BBR], are meant to
isolate the essential data necessary to record all the norms/transfer maps encoded by
N∞ operads. Here we recall the necessary definitions, make the preceding statement
precise, and record some basic facts about transfer systems.

Let G be a finite group and for n ⩾ 0 let Sn denote the symmetric group on n
letters.

Definition 3.1. A G-N∞ operad is a symmetric operad O on G-spaces satisfying
the following three properties:

• for all n ⩾ 0, O(n) the G×Sn-space is Sn-free,

• for every Γ ⩽ G×Sn, the Γ-fixed point space O(n)Γ is empty or contractible,
and

• for all n ⩾ 0, O(n)G is nonempty.

A map of G-N∞ operads φ : O1 → O2 is a morphism of operads in G-spaces, and as
such, the map at level n is G×Sn-equivariant. The associated category of G-N∞
operads is denoted N∞-OpG.

A map φ : O1 → O2 of G-N∞ operads is a weak equivalence if φ : O1(n)
Γ → O2(n)

Γ

is a weak homotopy equivalence of topological spaces for all n ⩾ 0 and Γ ⩽ G×Sn.
The associated homotopy category (formed by inverting weak equivalences) is denoted
Ho(N∞-OpG).

Remark 3.2. Every G-N∞ operad O is a naive E∞ operad, and thus parametrizes
an operation that is associative and commutative up to coherent higher homotopies.
In addition, O admits a T -norm for those finite H-sets T for which O(|T |)Γ(T ) is
nonempty, where H is a subgroup of G and Γ(T ) ⩽ G×S|T | is the graph of a permu-
tation representation of T , and moreover, these norms are compatible up to coherent
homotopies. For a G-space X, a T -norm is a G-map

G×H XT −→ X,

whereXT denotes theH-space of all maps from T toX, withH acting by conjugation.
In particular, if K ⩽ H and T = H/K, a T -norm induces a “wrong-way map”

XK −→ XH

between fixed-point spaces (see [BH15, §6] and [Rub20, Remark 3.5] for further
discussion). This is the sense in which G-N∞ operads parametrize admissible norms.

We now turn to transfer systems, which we will eventually relate back to N∞
operads. Recall that Sub(G) denotes the poset of subgroups of G under inclusion.
For g ∈ G and H ∈ Sub(G), let gH = gHg−1 ∈ Sub(G) denote the g-conjugate of H.

Definition 3.3. Let G be a finite group. A G-transfer system is a relation R on
Sub(G) that refines the inclusion relation and satisfies the following properties:

• (reflexivity) H R H for all H ⩽ G,

• (transitivity) K R H and L R K implies L R H,
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Figure 2: An example of a transfer system on Cp3q.

• (closed under conjugation) K R H implies that gK R gH for all g ∈ G,
• (closed under restriction) K R H and M ⩽ H implies (K ∩M) RM .

A G-transfer system R can alternatively be described as a partial order on Sub(G)
that refines ⩽ and is closed under conjugation and under restriction.

We represent transfer systems by drawing the corresponding directed graph, ignor-
ing the trivial edges (i.e., self loops), see Fig. 2. Note that this is not the Hasse diagram
for the corresponding poset, as it will include non-covering relations.

Remark 3.4. If G is a Dedekind group (so all subgroups are normal) conjugation is
trivially satisfied. We will later concentrate on Abelian groups, the most common
class of Dedekind groups.

Definition 3.5. Let Tr(G) denote the poset of all G-transfer systems ordered under
refinement. Thus, R1 ⩽ R2 if and only if for all K,H ∈ Sub(G), if K R1 H then
K R2 H.

Note that if we consider a binary relation on a set S as a subset of S × S, refinement
is just set inclusion.

The following construction, based on the work of [BH15, GW18, BP21, Rub20,
Rub, BBR], links G-N∞ operads and G-transfer systems. Given O ∈ N∞-OpG,
define RO by the rule

K RO H ⇐⇒ K ⩽ H and O([H : K])Γ(H/K) ̸= ∅

where Γ(H/K) is the graph of some permutation representationH → S[H:K] ofH/K.

Theorem 3.6. The assignment

N∞-OpG −→ Tr(G),

O 7−→ RO

induces an equivalence

Ho(N∞-OpG) ≃ Tr(G)

(considering the poset Tr(G) as a category).

We conclude this section by recalling a few more facts about transfer systems.
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Proposition 3.7. The poset (Tr(G),⩽) is a bounded lattice.

Proof. The least element in Tr(G) is given by the equality relation in Sub(G), while
the greatest element is given by the inclusion relation, showing Tr(G) is bounded.
The intersection of two transfer systems is a transfer system, thus giving the meet.
By Remark 2.2, we get the desired result.

The join of two transfer systems can be explicitly described as the transfer system
generated by their union [Rub20, Theorem A.2].

Previous work has revealed the cardinality and structure of transfer systems on
the following groups: Cpn [BBR], Cpq and Cpqr [BBPR], Cp × Cp, Q8, S3, D2p

[Rub20]. We expand on the case of Cpn , for which the collection of transfer systems
is enumerated by the Catalan numbers.

Proposition 3.8 ([BBR, Theorems 1 and 2]).

|Tr(Cpn)| = Cat(n+ 1),

where Cat(n+ 1) is the (n+ 1)th Catalan number. Moreover, the lattice structure on
Tr(Cpn) corresponds to the Tamari lattice.

Here the Tamari lattice is the poset of binary trees with n+ 1 leaves ordered
by tree rotation, first explored by D. Tamari [Tam62]. It forms the 1-dimensional
skeleton of Kn+2, the n-dimensional associahedron [Sta63].

The original enumeration of Tr(Cpn) in [BBR] proceeds by checking that |Tr(Cpn)|
satisfies the recurrence formula for the Catalan numbers. In Section 5, we present an
alternate proof based on noncrossing partitions.

4. A categorical approach to transfer systems

In this section we define transfer systems for arbitrary finite posets, generalizing
the definition for Dedekind groups. We show that for a finite lattice P, there is a
one-to-one correspondence between transfer systems on P and weak factorization
systems on P. Using this, we prove that Tr(P) is self-dual whenever P is a finite
self-dual lattice. We compare this result with the involution defined for G = Cp1···pn

in [BBPR].

4.1. Transfer systems on posets
We now generalize the definition of a transfer system to an arbitrary poset and

characterize them in categorical terms.

Definition 4.1. Let P = (P,⩽) be a poset. A transfer system on P consists of a
partial order R on P that refines ⩽ and such that for all x, y, z ∈ P, if x R y, z ⩽ y,
and x ∧ z exists, then (x ∧ z) R z.

As noted above, for a Dedekind group G, a G-transfer system is the same as a
transfer system on Sub(G).

Proposition 4.2. Let P be a poset considered as a category. A collection of mor-
phisms R is a transfer system if and only if R is a subcategory that contains all
objects and is closed under pullbacks.
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Proof. Reflexivity translates to containing the identity morphism for all objects, while
transitivity translates to being closed under composition. Note that for a diagram

x

z y

in P, the pullback, if it exists, is given by x ∧ z. Thus, being closed under restriction
translates precisely to being closed under pullbacks.

4.2. Weak factorization systems
We now explore a surprising connection between transfer systems and weak fac-

torization systems. A standard reference for weak factorization systems is [MP12,
§14.1]. Here we only recall the definitions and basic properties necessary to make the
connection with transfer systems.

Definition 4.3. Let C be a category and let i : A→ B and p : X → Y be morphisms
in C. If for every f and g that make the square

A X

B Y

i

g

p

f

∃λ

commute, there exists a lift λ such that the two triangles above commute, we say i
has the left lifting property with respect to p, or equivalently, p has the right lifting
property with respect to i.

Definition 4.4. LetM and N be a classes of morphisms in C. We define

�M = {i | i has the left lifting property with respect to all p ∈M}

and

M� = {p | has the right lifting property with respect to all i ∈M}.

Note thatM⊂ �N if and only if N ⊂M�; we writeM�N when this holds.

Definition 4.5. A weak factorization system in a category C consists of a pair (L,R)
of classes of morphisms in C such that

1. every morphism f in C can be factored as f = pi with i ∈ L and p ∈ R, and
2. L = �R and R = L�.

The collection of weak factorization systems on a category C forms a poset under
inclusion of the right set R, or equivalently, under reverse inclusion of the left set L.

Remark 4.6. Model categories are closely related to weak factorization systems.
Indeed, as proved in [JT07], a model category can be succinctly described as a
bicomplete category C together with three classes of morphisms, called cofibrations,
fibrations and weak equivalences, such that
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• (cofibrations, fibrations ∩ weak equivalences) and (cofibrations ∩ weak equiva-
lences, fibrations) are weak factorization systems;

• weak equivalences satisfy the 2-out-of-3 property.

Remark 4.7. Recall that if C is a category, the opposite category Cop is constructed
by reversing the direction of morphisms in C. Note that (L,R) is a weak factorization
system on C if and only if (Rop,Lop) is a weak factorization system on Cop.

In order to relate weak factorization systems with transfer systems, we will need a
helpful property of weak factorization systems as well as a re-characterization of weak
factorization systems. Proofs of these results can be found, for example, in [MP12,
§14.1].

Proposition 4.8. Let (L,R) be a weak factorization system on a category C. Then
R contains all isomorphisms in C, and is closed under composition, pullbacks, and
retracts, and dually for L.

Remark 4.9. In a poset P, the only isomorphisms are the identity maps, and the only
retract of a morphism is itself. Thus, Propositions 4.2 and 4.8 imply that if (L,R) is
a weak factorization system in a lattice P, then R is a transfer system on P.

Proposition 4.10. Let L and R be a pair of classes of morphisms in C. Then (L,R)
is a weak factorization system on C if and only if

1. every morphism f in C can be factored as f = pi with i ∈ L and p ∈ R,
2. L�R, and
3. L and R are closed under retracts.

We use this result to construct weak factorization systems from transfer systems
on a poset.

Proposition 4.11. Let P be a finite lattice and let R be a transfer system on P.
Then there is a unique weak factorization system (L,R) on P.

Proof. For a weak factorization system we need L = �R, so L is uniquely determined
by R. Since P is a poset, the only retract of a morphism x→ y is itself. Thus,
by Proposition 4.10, it suffices to show that every morphism can be factored, since
L = �R implies L�R.

Let x→ y be a morphism in P. If x→ y is in L we are done because we can factor
with the identity. Suppose then that x→ y is not in L. This means that there exists
a commutative diagram

x z

y w

with z → w ∈ R that does not admit a lift, meaning that y ̸⩽ z, and hence y ∧ z < y.
Then, since y ⩽ w and R is closed under restriction, we get that y ∧ z → y is in

R. If x→ y ∧ z is in L, we found a factorization of x→ y. If not, we can repeat this
step, and since P is finite, this process must terminate eventually.
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E

R E(R)

Figure 3: A transfer system R and the corresponding E(R) with added edges dotted.

Remark 4.12. The proof makes it clear that one may reformulate Proposition 4.11
so that it applies to infinite lattices if we add the condition that R is closed under
transfinite composition.

Remark 4.9 and Proposition 4.11 combine to give the following result.

Theorem 4.13. Let P be a finite lattice. Then

R ←→ (�R,R)

gives an isomorphism between the poset of transfer systems on P and the poset of
weak factorization systems on P.

We conclude this section with an explicit description of the collection �R for a
transfer system R on P.

Definition 4.14. Let P be a poset. For a transfer system R ∈ Tr(P), define the
downward extension of R to be

E(R) = {z → y | there exists x ∈ P such that z ⩽ x < y and x→ y ∈ R}.

Proposition 4.15. Let R be a transfer system on a finite lattice P. Then
�R = E(R)c,

where (−)c denotes the complement of the collection of morphisms.

Proof. We will begin by showing that E(R)c ⊆ �R. Let a→ b ∈ E(R)c. Then we need
to show that given a commutative diagram

a x

b y

with x→ y ∈ R, there exists a lift. Since we are working with a category coming from
a poset, to satisfy the lifting property it will suffice to show that b ⩽ x in P. Note
that b ⩽ y, so by restriction we have that x ∧ b→ b ∈ R. Moreover, a ⩽ x ∧ b as x ∧ b
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is the pullback of b→ y ← x. Thus, the assumption that a→ b /∈ E(R) implies that
x ∧ b = b, or equivalently, that b ⩽ x as desired.

For the other inclusion, we will proceed by proving the contrapositive. To that
end, suppose that a→ b ∈ E(R). Then there exists x ∈ P such that x ̸= b, a ⩽ x and
x→ b ∈ R. Consider the commutative diagram

a x

b b

in P. Given that x < b, there exists no lift, and hence a→ b is not in �R, as wanted.

4.3. Self-duality

In this section we prove the main result of this paper, namely, that if P is self-dual,
so is its lattice of transfer systems Tr(P).

Definition 4.16. Let P be a poset. We say P is self-dual if there exists a bijection

∇ : P → P

such that x ⩽ y if and only if y∇ ⩽ x∇. We call ∇ a duality for P, and write x∇

instead of ∇(x).

Note that we can consider ∇ as an isomorphism of categories Pop → P. There is
no condition on ∇ being an involution,3 although it will be in the examples of interest
to us.

Example 4.17. For a natural number n, the poset [n] is self-dual by mapping i to
n− i. This duality extends to the product poset [n1]× · · · × [nk].

Example 4.18. Recall the Boolean lattice Bn of Example 2.1 (2). The function that
sends a subset to its complement is an order-reversing involution, and hence a duality
for Bn. Note that under the isomorphism Bn ∼= [1]n, this duality matches with the
one in Example 4.17.

Example 4.19. The poset Dn of positive divisors of n is self-dual by mapping k to
n/k. Recall from Example 2.1 (3) that if n = pa1

1 · · · p
ak
j is the prime decomposition

of n, then Dn is isomorphic to [a1]× · · · × [ak]. Under this isomorphism, the duality
of Dn coincides with the one of Example 4.17.

Example 4.20. As noted in [Sch94, Theorem 8.1.4], the lattice of subgroups Sub(G)
is self-dual for every finite Abelian group G. The bijection ∇ is constructed using
a (non-canonical) isomorphism between G and G∗ = Hom(G,C×). In the case that
G = Cn, there is an explicit order-reversing involution given by Ck 7→ Cn/k, which
coincides with the one in Example 4.19 via the identification of Sub(Cn) with Dn.

3Moreover, there are examples of self-dual posets for which there is no order-reversing involution,
see [Sta12, Chapter 3, Exercise 3].
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Theorem 4.21. If (P,∇) is a self-dual lattice, then Tr(P) is self-dual, with duality

ϕ : Tr(P)→ Tr(P)

given by

ϕ(R) = ((�R)op)∇.

Moreover, if ∇ is an involution so is ϕ.

Proof. Given a transfer system R on P, we consider the weak factorization sys-
tem (�R,R) on P. By Remark 4.7, (Rop, (�R)op) is a weak factorization system
on Pop. Since ∇ is an isomorphism, it takes this to a weak factorization system
((Rop)∇, ((�R)op)∇) on P. Thus, by Remark 4.9 the collection ((�R)op)∇ is a trans-
fer system on P.

IfR′ is another transfer system on P, we have thatR ⊆ R′ if and only if �R′ ⊆ �R.
This shows that R ⊆ R′ if and only if ϕ(R′) ⊆ ϕ(R), since (−)op and (−)∇ preserve
and reflect the containment relation, respectively.

To prove that ϕ is a bijection, let ∆: Pop → P denote the opposite of the inverse of
∇, that is, ∆−1 = ∇op. Using that (�M)op = (Mop)� and that ∇ is an isomorphism,
we get that ϕ can also be expressed as

ϕ(R) = ((R∇op

)op)�.

Thus, the fact that (�R)� = R (see Proposition 4.11) implies that ϕ is a bijection
with inverse

ϕ−1(R) = ((�R)op)∆.

In particular, if ∇ is an involution, so is ϕ.

As a consequence of Proposition 4.15, we obtain an explicit description of the
involution ϕ. See Fig. 4 for an example of this result.

Corollary 4.22. Let (P,∇) be a self-dual lattice. Then the involution ϕ satisfies that

ϕ(R) = ((E(R)op)∇)c.

4.4. Slats — numerical symmetry of the duality
We expect the existence of the duality ϕ to aid in proving enumeration results, as

was done in [BBPR] to count the number of transfer systems for [1]× [1]× [1]. In
fact, we first suspected the existence of an involution when attempting to enumerate
the transfer systems for [n]× [1] and noticed there was a symmetry in the results
when we restricted to counting transfer systems with a given number of “slats”, as
we now explain. Throughout this section we fix n ⩾ 1.

Definition 4.23. Let 0 ⩽ k ⩽ n. The kth slat in the poset [n]× [1] is (k, 0) ⩽ (k, 1).
If R is a transfer system on [n]× [1], by the restriction property, if the kth slat is in
R, so is the ith slat for all 0 ⩽ i < k. We say that the top slat in a transfer system
R on [n]× [1] is the slat with the largest k such that (k, 0) R (k, 1). For 0 ⩽ k ⩽ n,
we let Sk denote the set of all transfer systems for which the kth slat is the top slat.
We let S−1 be the set of transfer systems with no slats.
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ϕ

Figure 4: The involution ϕ acting on a [3]× [1] transfer system. Using Corollary 4.22,
the transfer system on the right is obtained from that on the left by applying E (as
was demonstrated in Fig. 3), rotating the result by 180◦ (this has the effect of taking
the opposite poset), and taking the complement. Note that the involution exchanges
the 3-slat transfer system on the left with the 1-slat transfer system on the right.

Note that we can alternatively describe Sk as the collection of transfer systems
with k + 1 slats.

Recall the involution ∇ on [n]× [1] of Example 4.17. It sends (i, j) to (n− i, 1− j).

Proposition 4.24. The involution ϕ of Theorem 4.21 exchanges the sets Sk and
Sn−k−1.

Proof. We use the explicit description of ϕ from Corollary 4.22. Since slats are cov-
ering relations in [n]× [1], a given slat is in R if and only if it is in E(R). Note
furthermore that ∇ sends the kth slat to the (n− k)th slat. It follows that R con-
tains the kth slat if and only if ϕ(R) does not contain the (n− k)th slat, thus proving
the result.

4.5. Cyclic groups of squarefree order
In [BBPR], Balchin and collaborators define an order-reversing involution on the

lattice of transfer systems for the cyclic group of order p1 · · · pn, where p1, . . . , pn are
distinct primes. In this section we prove that their involution coincides with the one
defined above.

Remark 4.25. Let G = Cp1···pn
. As mentioned in Example 2.1, the lattice Sub(G) is

isomorphic to the Boolean lattice Bn, and the involutions of Examples 4.18 and 4.20
coincide via this isomorphism.

The Hasse diagram of Bn consists of the edges of an n-dimensional cube, and thus
we can consider its 2n facets. Borrowing notation from [BBPR], for all i = 1, . . . , n,
we denote by Bi and Ti the bottom and top facets, respectively. These correspond to
the facets bounded by the vertices a ∈ {0, 1}n with ai = 0 for the bottom and ai = 1
for the top. Given a transfer system R on Bn, we can restrict it to a facet to obtain
a transfer system therein. See Example 4.27 for an explicit example of the restriction
operation.

We now recall the involution Φn : Tr(Bn)→ Tr(Bn) of [BBPR, §4.2]. The presen-
tation here contains a minor clarification communicated to us by the authors.
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Construction 4.26. For n ⩾ 1, the involution Φn on Tr(Bn) is defined inductively
as follows:

• If n = 1, Φ1 exchanges the trivial transfer system with the full transfer system.

• Suppose Φn is defined for some n ⩾ 1, and let R ∈ Tr(Bn+1). Then Φn+1(R) is
obtained by applying Φn to R restricted to each facet, and placing the result
in the opposite facet. Lastly, we add the long diagonal edge 0⃗→ 1⃗ if R did not
contain any nontrivial edges with target 1⃗.

Balchin et al. prove that this function is well defined and is indeed an order-
reversing involution on Tr(Bn) (see [BBPR, Theorem 4.5, Proposition 4.6]).

Example 4.27. We will show how to compute Φ3(R) where R is the following transfer
system on B3, where dotted lines are in the transfer system and dashed lines are not.

111

000 100

010

001

011

101

110

We first perform Φ2 to R restricted to each of the six facets and place the result on
the opposite facet. For example, to obtain the restriction of Φ3(R) to T3, we perform
Φ2 restricted to B3.

000

100010

110

000

100010

110

001

101011

111

Φ2

R|B3 Φ2(R|B3) Φ3(R)|T3

After this is done to each facet, we assemble the results. At the end, we decide
whether or not to include the long diagonal. In this case, since R contains the edge
from (0, 1, 1) to (1, 1, 1), we do not include the long diagonal. The diagram for Φ3(R)
is shown below.

111

000 100

010

001

011

101

110

111

000 100

010

001

011

101

110
Φ3

R Φ3(R)
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Theorem 4.28. Consider the Boolean lattice Bn with duality ∇ given by swapping 0
and 1. Then the involution ϕ of Theorem 4.21 is equal to Φn.

Proof. We proceed by induction, using the explicit description of ϕ from Corol-
lary 4.22, which uses the downward extension of Definition 4.14. A quick calculation
shows that the result holds when n = 1.

Assume the result holds for the n-dimensional Boolean lattice, and let R be a
transfer system on Bn+1. First notice that the long diagonal 0⃗→ 1⃗ is in ϕ(R) if and
only if it is not in E(R). By the definition of E(R), this happens exactly when R
contains no nontrivial edges with target 1⃗, as needed. Thus, it remains to check that
ϕ and Φn coincide on the boundary of the cube.

Let F be a facet of Bn+1, and let F̃ denote its opposite facet, i.e., if F = Ti, then
F̃ = Bi, and vice versa. Recall from Construction 4.26 that the restriction of Φn+1(R)
to F is obtained by taking Φn(R|F̃ ).

Thus, by the inductive hypothesis and Corollary 4.22, we have that, via the canon-
ical identification of F and F̃ with Bn obtained by dropping the ith coordinate,

Φn+1(R)|F = Φn(R|F̃ ) = ϕ(R|F̃ ) = ((EF̃ (R|F̃ )
op)∇F̃ )cF̃ .

Here EF̃ and ∇F̃ denote the downward extension and the duality within F̃ , and cF̃
takes the complement within F̃ as well. Hence it suffices to prove that for each facet
F

(((E(R)op)∇)c)|F = ((EF̃ (R|F̃ )
op)∇F̃ )cF̃ , (4.1)

again, modulo the identification of the facets with Bn.
The map ∇ swaps 0 and 1 in all coordinates, thus, its restriction to a facet F can

be obtained by restricting to F̃ (i.e., swapping the ith coordinate if F is Ti or Bi),
and performing ∇F̃ on it (i.e., swapping all coordinates but the ith one). Thus (4.1)
reduces to

(E(R)c)|F̃ = EF̃ (R|F̃ )
cF̃ . (4.2)

Since F̃ is an interval in Bn+1 (it contains all the vertices between its bottom and
top vertices), we have that

EF̃ (R|F̃ ) = E(R)|F̃ .

Using that the restriction of the complement is the complement of the restriction, we
get (4.2), and hence the inductive step.

5. Transfer systems and noncrossing partitions

While it is already known that Cpn -transfer systems can be counted with Catalan
numbers, we re-prove this result by presenting a natural bijection between noncrossing
partitions of the set {0, . . . , n} and Cpn -transfer systems. Additionally, we will use
this bijection and the structure of noncrossing partitions in order to relate Narayana
numbers and transfer systems. We first recall the definition of a noncrossing partition.

Recall that Sub(Cpn) is isomorphic to the poset [n] = {0 < 1 < · · · < n} of Exam-
ple 2.1(1). Thus for ease of notation we work with transfer systems on [n].
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Definition 5.1. A partition of the set {0, . . . , n} is noncrossing if for all

0 ⩽ a < b < c < d ⩽ n

such that a and c are in the same class and b and d are in the same class, then a,
b, c, and d are all in the same class. We let NCn+1 denote the set of all noncrossing
partitions of the set {0, . . . , n}.

Observe that the index in NCn+1 corresponds to the cardinality of [n]. It is well-
known (see [Sta99, Exercise 6.19(pp)] and [Bec48]) that noncrossing partitions are
counted by Catalan numbers:

|NCn | = Cat(n) =
1

n+ 1

(
2n

n

)
.

In order to construct a bijection between noncrossing partitions and transfer sys-
tems in [n], we need some key definitions.

Definition 5.2. Let R ∈ Tr([n]). We say i→ j ∈ R is a maximal edge in R if i ̸= j
and there exists no k ⩾ j such that i→ k ∈ R. We denote the set of all maximal
edges in R by M(R).

Figure 5: Example of maximal edges in a transfer system in the lattice [6]. The
maximal edges are dotted.

Note that there is at most one maximal edge starting at a given vertex. We now
construct the bijection between Tr([n]) and NCn+1.

Definition 5.3. Let (P,⩽) be a poset, and let F be a binary relation on P that
refines ⩽. We denote by ⟨F⟩ the minimal transfer system that contains F as given in
[Rub20, Construction A.1]. We say F is a generating set for ⟨F⟩.

For a transfer system R on P, we define the minimal generating number of R to be
the minimal cardinality of a generating set for R. Any generating set with minimal
cardinality is called a minimally generating set.

The following lemma tells us that the maximal edges of R form a minimally gen-
erating set for R.

Lemma 5.4. Let R ∈ Tr([n]). Then R = ⟨M(R)⟩, and moreover, M(R) is a mini-
mally generating set for R.

Proof. The equality follows from the fact that any nontrivial edge in R is the restric-
tion of an edge in M(R).

Consider the set S of vertices in [n] that are the sources of nontrivial edges in
R. If i ∈ S then i→ (i+ 1) ∈ R by restriction. Since edges of this form are covering
relations in [n], we know these edges cannot be obtained by closing under transitivity.
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Thus the only edges that could generate the edge i→ (i+ 1) are precisely edges of
the form i→ j where j ⩾ i+ 1. From this it is then clear that in order to generate
R, a generating set must have a size of at least |S|. Note that a vertex i is in S if
and only if it is the source of an edge in M(R). Thus |M(R)| = |S|, and the claim
follows.

Definition 5.5. Let π be a noncrossing partition of [n]. Let J(π) be the set of non-
trivial edges in [n] connecting each element of a block of π with the largest element
in that block.

0 1 2 3 4 5 0 1 2 3 4 5

π J(π)

Figure 6: An example of a noncrossing partition π and edge set J(π). Here π =
{{0, 1, 2}, {3, 5}, {4}} with arcs connecting nearest elements of each block; that these
arcs do not intersect indicates that π is indeed noncrossing.

Lemma 5.6. Let π be a noncrossing partition of [n]. Then the transfer system ⟨J(π)⟩
consists of the closure under restriction of J(π).

Proof. As noted in [Rub20, Construction A.1], ⟨J(π)⟩ is constructed by first closing
under restriction and then under transitivity. Thus, it is enough to prove that the
closure under restriction of J(π) is already closed under transitivity. Suppose i→ j
and j → k are obtained by restriction from J(π). This means that there exist j′ ⩾ j
and k′ ⩾ k such that i and j′ are in the same class and j′ is the largest element therein,
and similarly, j and k′ are in the same class and k′ is the largest element therein.
Since π is noncrossing, we must have that k′ ⩽ j′. Then i→ k is the restriction of
i→ k′, which is in J(π).

Theorem 5.7. Let R ∈ Tr([n]). Let ψ(R) be the partition of [n] associated to the
equivalence relation generated by M(R). Then
1. ψ(R) is a noncrossing partition, and

2. the map ψ : Tr([n])→ NCn+1 is a bijection with inverse χ(π) = ⟨J(π)⟩.

Proof. We denote by ∼R the equivalence relation generated by M(R), i.e., ∼R is
the intersection of all equivalence relations containing M(R) where directed edges in
M(R) are interpreted as relations. Using the transitivity of a transfer system, one can
check that for i < j ∈ [n], i ∼R j if and only if either i→ j ∈M(R) or there exists
k > j such that i→ k ∈M(R) and j → k ∈M(R). Note that in either case, there
exists k ⩾ j such that i→ k ∈M(R) and j → k ∈ R.

To prove that ψ(R) is a noncrossing partition, let a < b < c < d in [n] such that
a ∼R c and b ∼R d. Thus, there exist e ⩾ c and f ⩾ d such that a→ e and b→ f
are in M(R), and c→ e and d→ f are in R. By restriction, we get that a→ b and
b→ c are in R, and thus a→ f and b→ e are also in R by transitivity. Since a→ e
and b→ f are maximal, that implies that e = f , and hence a, b, c, and d are all in
the same equivalence class, as required.
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We now prove that ψ is a bijection. Note that Lemma 5.6 implies that for a
noncrossing partition π,

J(π) =M(χ(π)).

Since the partition generated by J(π) is precisely π, it follows that ψ(χ(π)) = π.
Similarly, the description above of the equivalence relation generated by M(R)

implies that

M(R) = J(ψ(R)).

That combined with Lemma 5.4 proves that χ(ψ(R)) = R, thus showing that ψ and
χ are indeed inverses of each other.

Remark 5.8. The above theorem recovers [BBR, Theorem 1] via a direct bijection
with noncrossing partitions. The original proof in [BBR] proceeds by establishing
the Catalan recurrence relation among the numbers |Tr([n])|.

With ψ established as a bijection, we can now use ψ to directly enumerate transfer
systems minimally generated by edge sets of a certain size. Note that refinement of
partitions gives an order relation on the collection of noncrossing partitions.

Proposition 5.9 ([Kre72], see also [Sim00]). The poset of NCn under refinement
forms a lattice called the Kreweras lattice. It is graded by the function

rank(π) := n− bk(π),

where bk(π) is the number of blocks of π.

Remark 5.10. Beware that the Tamari lattice is a strict extension of the Kreweras
lattice.

Definition 5.11. For n ⩾ 1 and 1 ⩽ k ⩽ n, the (n, k)-th Narayana number is

Nar(n, k) :=
1

n

(
n

k

)(
n

k − 1

)
.

Proposition 5.12 ([Kre72], see also [Sim00]). Let NCn(k) denote the number of
partitions in NCn with rank k. Then NCn(k) is given by the (n, k)-th Narayana num-
ber, i.e.,

NCn(k) =
1

n

(
n

k

)(
n

k − 1

)
.

With this rank property established in the context of noncrossing partitions, we
can then use χ to see what this rank looks like for transfer systems.

Proposition 5.13. Let π ∈ NCn+1. Then the rank of π in the Kreweras lattice is
equal to the minimal generating number for χ(π).

Proof. By Lemma 5.4, the minimal generating number for χ(π) is equal to the car-
dinality of M(χ(π)). As noted in the proof of Theorem 5.7, M(χ(π)) = J(π). Note
that J(π) consists precisely of the elements of [n] that are not maximal within their
block in π, thus, the cardinality of J(π) is n+ 1− bk(π), as desired.
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Let Trk([n]) denote the set of transfer systems on [n] minimally generated by k
edges.

Corollary 5.14. For all 1 ⩽ k ⩽ n+ 1,

|Trk([n])| = NCn+1(k) =
1

n+ 1

(
n+ 1

k

)(
n+ 1

k − 1

)
.

Proof. The bijection χ takes rank k noncrossing partitions of [n] to transfer systems
on [n] minimally generated by k edges. Since the former are counted by the indicated
Narayana numbers, so are the latter.
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