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CARTESIAN FIBRATIONS AND REPRESENTABILITY

NIMA RASEKH

(communicated by Emily Riehl)

Abstract
We use the complete Segal approach to the theory of Carte-

sian fibrations we developed previously to define and study rep-
resentable Cartesian fibrations, generalizing representable right
fibrations which have played a key role in ∞-category theory.
In particular, we give a construction of representable Cartesian
fibrations using over-categories and prove the Yoneda lemma for
representable Cartesian fibrations, which generalizes the estab-
lished Yoneda lemma for right fibrations.

We then use the theory of Cartesian fibrations to study com-
plete Segal objects internal to an ∞-category. Concretely, we
prove the fundamental theorem of complete Segal objects, which
characterizes equivalences of complete Segal objects. Finally
we give two applications of the results. First, we present a
method to construct Segal objects and second we study the
representability of the universal coCartesian fibration.

0. Introduction

0.1. From moduli objects to representability

The concept of representability plays an important result in mathematics and goes
back at least to Riemann, who is claimed to have coined the term moduli space with
the goal of studying Riemann surfaces [Rie57, Rie53]. Since then mathematicians
have defined objects that classify a certain property and have then studied the object.
Further examples in differential geometry includes the classifying space for principal
bundles [Mil56a, Mil56b] and themoduli space of framed manifolds [RW14]. Beside
differential geometry moduli spaces are also very prominent in algebraic geometry :
examples include Chow varieties [Che58a, Che58b], Hilbert schemes [Gro95] and
moduli stacks of elliptic curves [Mum65]. The last example also points to the impor-
tance of moduli objects in algebraic topology, where beside the moduli stack of elliptic
curves [LRS95], the moduli stack of formal groups [Qui69] is used to study homo-
topy groups of spheres. For further discussion of moduli problems in geometry see
[BZ08].
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The study of moduli objects can be formalized via category theory. Starting with
a category of interest C we can often describe the desired property as a functor
to the category of sets F : Cop → Set. A moduli object in C is then precisely an
object that represents the functor F . Hence, the study of moduli objects translates
to the representability of functors. In fact we can use this perspective to category
theory itself by applying the Yoneda lemma [Mac98]. Many categorical notions, such
as the existence of limits, colimits and adjunctions can be articulated via universal
properties, which in turn can be expressed as a certain set-valued functor. Hence
the existence of the desired universal object (the limits or adjunction) translates
to the representability of a certain functor. This has been used effectively to study
arbitrary categories via the category of sets [ML98]. We can use this line of thinking
to introduce new moduli objects inside categories. One important example is the
subobject classifier, which is the key feature of an elementary topos [Tie73].

We can generalize questions about representability from categories to V-enriched
categories. Now for a given V-enriched category C we try to address the representabil-
ity of functors F : Cop → V. This in particular is can be applied to study weighted lim-
its in enriched categories [Kel82, Rie17]. The next logical step would be to generalize
questions of representability from enriched categories to ∞-categories. Unfortunately,
this faces significant challenges, as the non-strict composition in ∞-categories pre-
vents us from easily defining representable functors. The solution is to use fibrations:
We describe moduli problems in higher categories by constructing appropriate right
fibrations and then we try to solve them by relating them to representable right fibra-
tions. Again, we can construct appropriate right fibrations whose solutions give us
∞-categorical limits, colimits and adjunctions [Lur09, RV22].

0.2. From representability to complete Segal objects
Sometimes the functor we are trying to represent does not naturally take value

in sets. A prominent example are cohomology theories, which are classically defined
as functors from the homotopy category of spaces to the category of abelian groups
[ES45]. In this case it does not suffice to determine an object to make this functor
representable. Rather we need an abelian group object : a space A along with a mor-
phism µ : A×A → A that satisfies the axioms of an abelian group. We can in fact
generalize this argument to any category with finite products.

A more complicated example is the representability of functors F : Cop → Cat. As
categories consist of objects and morphisms we need more data to represent such
a functor: Assuming C is finitely complete, we need an object O (representing the
objects), an object M (representing the morphisms) and various morphisms, such
as a composition map µ : M×O M → M. The data will precisely assemble into an
internal category [Rob12], which also have been studied independent of any repre-
sentability concerns in a topos theoretic context [Joh02a, Joh02b, MLM94]. For
example internal categories in the category of sets give us small categories, where as
internal categories in the category of small categories give us small double categories
[Ehr63]. The example of internal categories in the category of sets is instructive: by
characterizing a small category via a set of objects, a set of morphisms and various
diagrams, we could generalize the definition to every finitely complete category.

We want to generalize this analysis to ∞-categories, meaning we want to study the
representability of functors Cop → Cat∞, where C is an ∞-category with finite limits.
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Again, it is immediate that one object does not suffice. However, unlike the classical
case it also would not suffice to choose two objects, as in an∞-category composition is
part of the necessary data. Fortunately, a solution has already been worked out for us:
complete Segal spaces [Rez01]. A complete Segal space is a simplicial object in spaces,
which satisfies two conditions: the Segal condition and the completeness conditions,
both of which can be characterized via finite limit diagrams.1 Moreover a complete
Segal space is a model for an ∞-category [Ber07, Ber10, Ber18, JT07, Toë05].
Using complete Segal spaces as motivation, we can hence define a complete Segal object
inside a finitely complete ∞-category as a simplicial object that satisfies the Segal
and completeness condition and choose that as our model of internal ∞-category.2

Having understood the role of complete Segal objects as internal ∞-categories,
we can now study the representability of functors valued in ∞-categories. Again,
we need to translate our discussion from functors to fibrations: this time we get
Cartesian fibrations [Lur09]. Hence, we want to understand the relationship between
representable Cartesian fibrations and complete Segal objects. This is the goal of this
work.

0.3. Simplicial objects and representable Reedy left fibrations

In fact we will study this relationship as a special case of results that are more gen-
eral in two respects. First, rather than using any specific model of ∞-categories (such
as quasi-categories [Joy08a, Joy08b]), we take a completely model independent
approach: a theory of ∞-categories with fibration structure (Section 1). This includes a
model structureM, which comes with an underlying∞-cosmos [RV17, RV22] (Sub-
section 1.1), along with a model structure of left (right) fibrations (Subsection 1.2).
This will in particular include quasi-categories and complete Segal spaces as examples
(Subsection 1.4).

Next, we will in fact start by studying the representability of fibrations that cor-
respond to functors valued in simplicial spaces, so-called Reedy left (right) fibrations
[Ras21a, Ras21b], which exists in every ∞-category with fibration structure (Sub-
section 1.3). We will prove that for every cosimplicial object x• : ∆ → X, there exists
a Reedy left fibration, we denote Xx•/ → X that we call the representable Reedy left
fibration (Definition 2.1). Moreover, if C is an ∞-category and x• : ∆ → C, then we
can give an explicit construction of the representable Reedy left fibration Cx•/ → C

via cocones (Proposition 2.4), which in particular means that the fiber over an object
y in C is the simplicial space

mapC(x
0, y) mapC(x

1, y) mapC(x
2, y) · · · .

Moreover, these representable fibrations satisfy the Yoneda lemma (Theorem 2.7):

1Here limits should be understood as finite homotopy limits (in the model categorical sense) or,
equivalently, finite limits in ∞-groupoids.
2Complete Segal objects have already been studied under the name Rezk object in [RV17] (with
other applications).
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For two cosimplicial objects x•, y• : ∆ → C we have an equivalence

Map/C(Cx/,Cy/)
≃−−→ mapcosC(y

•, x•).

Having these results we can move on to representable Cartesian fibrations and com-
plete Segal objects (notice here we switched from cosimplicial objects to simplicial
objects as we want to study complete Segal objects, which are in fact simplicial
objects). We prove that a given simplicial object x• : ∆op → C, x• is a complete Segal
object if and only if C/x• is a Cartesian fibration (Proposition 3.4). We use this per-
spective to study the category theory of complete Segal objects, in particular proving
the fundamental theorem of complete Segal objects, which characterizes their weak
equivalences (Theorem 3.13).

0.4. Why representable Cartesian fibrations and complete Segal objects?

What are the benefits of studying representable Cartesian fibrations, complete
Segal objects and their interaction?

1. Constructing Internal ∞-Categories: Let C be a finitely complete category
and O and M be two objects in C such that for every object c in the C, the
sets Hom(c,O),Hom(c,M) are sets of objects and morphisms of a category,
naturally in c. Then O,M are in fact part of an internal category in C. Indeed,
we can use the Yoneda lemma to translate the external maps (such as source,
target and composition) to the objects O,M.
We would like a similar result in the ∞-categorical world, meaning when-
ever we have two objects W0,W1 in a finitely complete ∞-category C and
the structure of an ∞-category (here complete Segal space) on the spaces
mapC(x,W0),mapC(x,W1) then it in fact gives us a complete Segal object in
C. Unfortunately, there is no direct way to prove such result. We can use pull-
backs to construct each level Wn ≃ W1 ×W0

· · · ×W0
W1, however, we cannot

simply construct the maps between the Wn by hand as there are an infinite
number of them and they need to be coherent.
The solution is to translate our problem into the language of fibrations and solve
it there using a powerful strictification result, which we do in Subsection 4.1.

2. Representing the Universal coCartesian Fibration: Applying the logic
of representability (from Subsection 0.1) on left fibrations of ∞-categories,
we would like to know there exists a universal left fibration that classifies all
other left fibrations (via pullback). Fortunately, this question has already been
addressed by many authors: the universal left fibration is the projection map
S∗ → S from pointed spaces to spaces, which is in fact a representable left fibra-
tion, represented by the point [KV14, Lemma 2.2.4] [Cis19, Corollary 5.2.8].
We could ask a similar question regarding coCartesian fibrations. Does there
exists a coCartesian fibration that classifies all other coCartesian fibrations?
We can give an abstract answer [Lur09, Subsection 3.3.2] , however, we like to
be able to explicitly describe the resulting Cartesian fibration, similar to how we
described the universal left fibration. We cannot describe it using a representing
object, however, in Subsection 4.2 we will explain how the universal coCartesian
fibration is represented by a complete Segal object. Note this has also been
discussed extensively in [Ste20, Example 3.26].
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3. Representing the Target Fibration and Topos Theory: An elementary
topos E is characterized via a subobject classifier, which represents the func-
tor Sub: Eop → Set that takes an object c in E to the full subcategory of
monomorphisms in E/c [MLM94]. We want to generalize this definition to
the ∞-categorical setting, which necessitates representing an appropriate ∞-
categorical generalization of Sub. For a finitely complete ∞-category E, the
fibration that corresponds to the functor with value E/− is given by the target
Cartesian fibration from the arrow category t : E2 → E.
As t : E2 → E is a Cartesian fibration its representability has not been studied,
rather the focus has been on the sub-fibration of OE → E, that corresponds to
the functor with value the maximal subgroupoid of E/−. This is in fact a right
fibration, and its representability has been studied extensively, with representing
objects known as object classifiers or universes, and with many applications in
∞-topos theory [Lur09] and homotopy type theory [Shu19].
Developing a functioning theory of representable Cartesian fibrations allows
us to study the representability of the target fibration itself, rather than any
sub-fibration, which results in generalizations of universes which are expected
to play important roles in higher topos theory [Ras18]. Hence studying the
representability of important Cartesian fibrations can enable us define new con-
cepts and universal properties in ∞-category theory, with the example of target
fibrations hopefully being only the first of many.

0.5. Relation to other work

This paper is the third part of a three-paper series which introduces the bisimplicial
approach to Cartesian fibrations:

1. Cartesian Fibrations of Complete Segal Spaces [Ras21a]

2. Quasi-Categories vs. Segal Spaces: Cartesian Edition [Ras21b]

3. Cartesian Fibrations and Representability

In particular, the first paper introduced the complete Segal approach to Cartesian
fibrations in the complete Segal space setting. The second paper translated it to the
setting of quasi-categories and proved it is equivalent to the marked simplicial set
approach. Those papers serve as a foundational backbone of this third paper which
applies it to representable Cartesian fibrations.

It should be noted that after this work first appeared Stenzel [Ste20, Subsection
4.1] studied a lot of the same topics, largely independently, using Cartesian fibrations
in the sense of Lurie [Lur09].
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1. A theory of ∞-categories with fibration structure

In this section we introduce an axiomatic structure we call a theory of ∞-categories
with fibration structure that will serve as our (∞, 1)-categorical foundations in the
coming sections (with the sole exception of Remark 2.3 where we mention Segal
spaces).

A theory of ∞-categories with fibration structure consists of the following data:

(I) A left proper combinatorial model category compatible with Cartesian closure
M [Hov99, Hir03].

(II) Two Quillen equivalences

sSCSS M sSCSS ,
Diag

⊥
Und

Inc

⊥
Row

(1.1)

where the left adjoint Diag preserves binary products of the free complete Segal
space F (n) (Subsection 1.1(9)). Here the category of simplicial spaces has the
model structure for complete Segal spaces [Rez01, Theorem 7.2].

(III) For each object X in M there exists two simplicial combinatorial left proper left
Bousfield localization model structures on the over-category M/X , called the
covariant and contravariant model structures, such that the induced adjunc-
tions

(M/X)cov (sS/Inc(X))
cov

Inc

⊥
Row

,

(M/X)contra (sS/Inc(X))
contra

Inc

⊥
Row

(1.2)

are Quillen equivalences. Here the left hand category of simplicial spaces has the
covariant model structure and the right hand category of simplicial spaces has
the contravariant model structure, both of which have been defined in [Ras17].

For the remainder of this section we establish some important notation and results
regarding M.

1.1. Model structure for ∞-categories
We want to establish some results regarding the theory of ∞-categories.

1. We call the objects in M the generic objects and denote them with letters
X,Y, Z.

2. The existence of the Quillen equivalence (Diag,Und) is precisely the condition
of being a theory of (1,∞)-categories in the sense of [Toë05].

3. The full subcategory of fibrant objects Mf is an ∞-cosmos as defined in [RV17,
Definition 2.1.1]. This follows from the fact that the adjunction

sSet M
Diag◦p∗

1

⊥
i∗1◦Und

satisfies the conditions of [RV17, Proposition 2.2.3], where (p∗1, i
∗
1) is the adjunc-

tion between quasi-categories and complete Segal spaces defined in [JT07, Sec-
tion 4]. Indeed, we only need to check that the left adjoint Diag ◦ p∗1 preserves
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binary products. It suffices to check on generators ∆n in sSet. We know that
p∗1 preserves binary products [RV17, Example 2.2.5], so we can focus on Diag.
However, by definition we have p∗1(∆

n) = F (n) and Diag preserves binary prod-
ucts of F (n) by assumption.

4. Following the previous item we call the fibrant objects in M ∞-categories and
denote them with letters C,D. Moreover, we will use results about ∞-categories
as developed in [RV17, RV22].

5. The fact that M is an ∞-cosmos in particular implies that it is simplicially
enriched (but not necessarily a simplicial model category). We denote the enrich-
ment by Map.

6. For a given ∞-category C, we call the complete Segal space Und(C) the under-
lying complete Segal space.

7. We call an ∞-category an ∞-groupoid if it is a discrete ∞-category [RV22,
Definition 1.2.26], which is equivalent to the underlying complete Segal space
being a homotopically constant simplicial space.

8. Let ∆ be the category of simplices, then using the classifying diagram [Rez01,
Subsection 3.5], we get a complete Segal space N∆ and then applying Row
we get an ∞-category RowN(∆). In order to simplify notation, we will simply
denote this ∞-category by ∆. Moreover, for a given ∞-category C, we denote
the associated ∞-category of cosimplicial objects X : ∆ → C by cosC. Similarly,
we denote the ∞-category of simplicial objects X : ∆op → C by sC. Moreover, we
use s, t : X1 → X0 to denote the source and target map.

9. Let F (n) be the free complete Segal space on the linear graph of length n
0 → 1 → · · · → n− 1 [Rez01, Subsection 2.3]. Then we denote the ∞-category
Row(F (n)) by n following notation in [RS17] [RV22, Definition 1.1.4]. In par-
ticular, 1 is the terminal ∞-category in M and we denote the unique map
by ! : X → 1. Moreover, 2 is the “free arrow”. We use 0, 1: 1 → 2 for the two
inclusion maps.

10. By definition the objects n form a cosimplicial object ∆ → M and the resulting
functor M → sS that takes X to MapsS(n, X) is (equivalent to) Und(X).

11. For a given ∞-category C, an object is a map x : 1 → C and a morphism is a
map f : 2 → C.

12. For an ∞-category C and two objects x, y in C, we define the mapping space
mapC(x, y) as the pullback 1 ×C×C C2 and observe it is an ∞-groupoid [Rez01,
Section 5], [RV22, Definition 3.4.9].

13. An ∞-category C has finite limits if the constant diagram functor has a right
adjoint [RV22, Definition 2.3.2]. This is equivalent to the underlying complete
Segal space Und(C) having finite limits. If C has a terminal object then we
denote it by 1C.

14. An ∞-category C with finite limits is locally Cartesian closed if the pullback
functor has a right adjoint [RV22, Definition 2.1.1]. This is equivalent to Und(C)
being locally Cartesian closed. If C is locally Cartesian closed and X an object
in C, we denote the right adjoint to the product functor −× X : C → C/X as
ΓX : C/X → C.
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15. Let C be an (∞, 1)-category with finite limits. Then mapC(D,−) reflects limits,
meaning that for every diagram F : I → C an object L in C is the limit of the
diagram if and only if for every object D in C, mapC(D,L) is the limit of the
diagram of spaces mapC(D,F) [RV22, Proposition 4.3.1].

16. If C is an established quasi-category (complete Segal space) that appears in the
literature (and is obtained by applying the simplicial nerve [Lur09, Proposi-
tion 1.1.5.10] to an important simplicial model structure), then we will denote
the corresponding ∞-category again by C, instead of Row(t!C) (Row(C)) to
simplify notation. For example, we denote the ∞-category of spaces (given as
the simplicial nerve of Kan complexes) by S and the ∞-category of small ∞-
categories (given as the nerve of M itself) by Cat∞.

1.2. Covariant model structure

Next we review the relevant results regarding the covariant (contravariant) model
structure:

1. We call the fibrant objects in the covariant (contravariant) model structure on
M/X left fibrations (right fibrations).

2. The covariant model structure is functorial in the base. In particular, for any
map of generic objects X → Y and covariant equivalence f : A → B over X,
f : A → B is also a covariant equivalence over Y .

3. If C is an ∞-category and F → C is a left (right) fibration, then F is also an
∞-category (as the covariant (contravariant) model structure is a Bousfield
localization). Notice [RV22, Subsection 5.5] calls them discrete (co)Cartesian
fibrations of ∞-categories.

4. A map F → 1 is a left and right fibration if and only if F is an ∞-groupoid
(Subsection 1.1(7)) [RV22, Lemma 5.5.2]. Hence, the fiber of each left (right)
fibration is an ∞-groupoid.

5. For a generic object X in M and map X : 1 → X we denote a choice of covari-
ant (contravariant) fibrant replacement by LX → X (RX → X) and call it the
representable left (right) fibration represented by X.

6. [RV22, Corollary 5.5.13] If C is an ∞-category and X an object, then the
under-category CX/ = C2 ×C 1 is a covariant fibrant replacement of the map
{idX} : 1 → CX/ [RV22, Theorem 5.7.1]. Notice the fiber over an object Y is the
mapping space mapC(X,Y). Similarly, we use the over-category C/X as the rep-
resentable right fibrations and observe it has fiber mapC(Y,X) over an object Y.
Notice this coincides with the definitions of under-categories for quasi-categories
by [RV22, Proposition D.6.4].

7. [RV22, Proposition D.6.4] For a diagram F : X → C, whereX is a generic object
and C is an ∞-category, we get a left fibration of cocones CF/ → C defined as
the limit of the diagram

1 CX CX×2 CX C
F 0∗ 1∗ !∗

and the left fibration of cocones CF/ is equivalent to a representable left fibration
Cc/ if and only if c is the colimit of the diagram F [RV22, Proposition 4.3.2].
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Similarly, we get a right fibration of cones C/F → C defined as the limit of the
following diagram

C CX CX×2 CX 1!∗ 0∗ 1∗ F

and the right fibration of cones C/F is equivalent to a representable right fibra-
tion C/l if and only if l is the limit of the diagram F.

8. [RV22, Corollary 3.6.10.] Let D be an ∞-category with final object t. Then for
any functor F : D → C, the inclusion map t : 1 → D induces an equivalence of

left fibrations CF/
≃−−→ CF(t)/.

1.3. Reedy covariant model structure
Finally, we use the covariant (contravariant) structure to define the Reedy covari-

ant (contravariant) model structure and review some important properties. Let us
denote simplicial objects in M/X and sS/Inc(X) by sM/X and ssS/Inc(X). Then the
adjunction (1.2) gives us the Quillen equivalences

(sM/X)cov (ssS/Inc(X))
cov

sInc

⊥
sRow

,

(sM/X)contra (ssS/Inc(X))
contra

sInc

⊥
sRow

,

where we are giving the categories the Reedy model structure and sRow, sInc are
define level-wise [Hir03, Proposition 15.4.1].

We want to review several important properties of these two model structures,
which requires the Segal condition ([Rez01, Section 5] also reviewed in Definition 3.1)
and the completeness condition ([Rez01, Section 6], [Rez10, Section 10] also reviewed
in Definition 3.3).

1. A fibrant object is called a Reedy left (right) fibration and the weak equivalences
Reedy covariant (contravariant) equivalences.

2. For a Reedy left fibration L• → X, we denote by LFibk(L) → X the k-th level
left fibration. Similarly, for a Reedy right fibration R• → X, we denote by
RFibk(R) → X the k-th level right fibration.

3. Generalizing Subsection 1.2(2), the Reedy covariant model structure is func-
torial in the base and so for any map of simplicial spaces X → Y and Reedy
covariant equivalence f : A → B over X, f : A → B is also a Reedy covariant
equivalence over Y .

4. Generalizing Subsection 1.2(4), for a Reedy left (right) fibration F• → X, the
fiber 1 ×X F• is a simplicial ∞-groupoid.

5. For a given Reedy right (left) fibration F → X the following are equivalent:

(a) The simplicial object F• satisfies the Segal condition.
(b) The simplicial object in simplicial spaces Und(F•) satisfies the Segal condi-

tion.
(c) For every object X : 1 → X the simplicial ∞-groupoid 1 ×X F satisfies the

Segal condition.
(d) For every object X : 1 → X the underlying simplicial space Und(1 ×X F )

satisfies the Segal condition.
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Indeed, the equivalences (a) ⇔ (b) and (c) ⇔ (d) follow from the fact that Und
is a Quillen right adjoint of a Quillen equivalence. The equivalence (b) ⇔ (d) is
proven in [Ras21a, Theorem 4.7]. If these equivalent conditions hold, then we
call F a Segal (co)Cartesian fibration.

6. For a given Segal (co)Cartesian fibration F• → X the following are equivalent:

(a) The simplicial object F• satisfies the completeness condition.
(b) The simplicial object in simplicial spaces Und(F•) satisfies the completeness

condition.
(c) For every object X : 1 → X the fiber 1 ×X F• satisfies the completeness

condition.
(d) For every object X : 1 → X the underlying simplicial space Und(1 ×X F•)

satisfies the completeness condition.

Again, the equivalences (a) ⇔ (b) and (c) ⇔ (d) follow from using Und and
(b) ⇔ (d) from [Ras21a, Theorem 4.7]. If these equivalent conditions hold, then
we call F• a (co)Cartesian fibration.

Remark regarding Cartesian fibrations. The definition of coCartesian fibration
given here does not directly coincide with the definition in an ∞-cosmos given in
[RV22, Definition 5.2.1], however, they are in fact equivalent. Indeed, it is proven in
[Ras21b, Subsection 3.1] that the definition in (Subsection 1.3(6)) is equivalent to
the definition due to Lurie [Lur09, Definition 2.4.2.1], which itself is equivalent to
the definition in an ∞-cosmos [RV22, Proposition F.4.5]. This chain of equivalences
allows us to translate any Cartesian fibration and equivalence of Cartesian fibrations
as defined here into results about Cartesian fibrations in the ∞-cosmos sense.

In particular this means that results, such as the existence of representable Carte-
sian fibrations (Proposition 2.4/(2.11)) and the Yoneda lemma for representable Car-
tesian fibrations (Theorem 2.7/(2.11)), will also hold for Cartesian fibrations in an
∞-cosmos.

1.4. Examples
Let us provide two examples of a theory of ∞-categories with fibration structure:

1. We want to prove that complete Segal spaces give us a theory of ∞-categories
with fibration structure. We will check the three conditions.

(I) There is a left proper combinatorial model structure compatible with Carte-
sian closure on the category of simplicial spaces with fibrant objects com-
plete Segal spaces [Rez01, Theorem 7.2].

(II) We define the functors in (1.1) to be the identity functors and all conditions
hold evidently.

(III) For every simplicial space there exists a simplicial combinatorial left proper
model structure on the over-category [Ras17, Theorem 3.12] that is in fact
a left Bousfield localization of the complete Segal space model structure
[Ras17, Theorem 5.11]. Moreover the adjunctions (1.2) are just identity
functors and hence evidently Quillen equivalences.

Hence, all conditions hold.

2. Next, we want to show that quasi-categories give us a theory of ∞-categories
with fibration structure. Again, we check the three conditions.
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(I) There is a combinatorial left proper model structure compatible with Carte-
sian closure on the category of simplicial sets, the Joyal model structure with
fibrant objects quasi-categories [Lur09, Theorem 2.2.5.1, Corollary 2.2.5.4].

(II) Next, we define the functors in the diagram (1.1) as follows: (Diag = t!,
Und = t!) [JT07, Section 2], (Inc = p∗1,Row = i∗1) [JT07, Section 4]. Both
(t!, t

!) [JT07, Theorem 4.12] and (p∗1, i
∗
1) [JT07, Theorem 4.11] are proven

to be Quillen equivalences. Finally t!p
∗
1 is the identity functor and so com-

mutes with binary products.
(III) Finally, we also have the combinatorial left proper model structures on

the category of simplicial sets called the covariant and contravariant model
structures [Joy08b, Section 8], [Lur09, Proposition 2.1.4.7] that are sim-
plicial [Lur09, Proposition 2.1.4.8] and Bousfield localizations of the Joyal
model structure [Lur09, Theorem 3.1.5.1]. Finally the adjunction p∗1, i

∗
1

make both adjunctions in (1.2) into a Quillen equivalence of covariant (con-
travariant) model structures [Ras17, Theorem B.12].

Hence, all conditions hold.

2. Representable Reedy left fibrations

In this section we define representable Reedy left fibrations over generic objects.
We then give an explicit description of representable Reedy left fibrations over ∞-
categories, generalizing a similar result for representable left fibrations. Finally, we
prove the Yoneda lemma for representable Reedy left fibrations. We will use the
language of an ∞-category with fibration structure as introduced in Section 1.

Let X be a generic object (Subsection 1.1(1)) and x• : ∆ → X be a cosimplicial
object (Subsection 1.1(8)). We want to construct a Reedy left fibration we denote Lx•

that has the universal property that LFibk(Lx•) is a covariant fibrant replacement
of the map {xk} : 1 → X (Subsection 1.2(6)) and notice this implies this simplicial
object is unique up to equivalence.

Our naive guess might be to simply choose the fibrant replacements level-wise.
However, while this certainly gives us a collection of left fibrations it would not give
us a Reedy left fibration as the various left fibrations do not interact in any way. We
need a more global approach, meaning we need an appropriate analogue of the point
1 that we can use to construct fibrant replacements.

Let π•
i : ∆•/ → ∆ be the Reedy left fibration that is defined level-wise by the formula

LFibk(π
•
i ) = ∆[k]/, and for a map δ : [m] → [n], define δ∗ : ∆[n]/ → ∆[m]/ via precom-

position. This Reedy left fibration has the interesting property that it is level-wise
representable, which justifies following definition and it subsequent lemma.

Definition 2.1. A Reedy left fibration L → X is called representable if there exists
a cosimplicial object x• : ∆ → X and a Reedy covariant equivalence f : ∆•/ → L over
X.

Lemma 2.2. Let L → X be a representable Reedy left fibration represented by
x• : ∆ → X. Then for each k ⩾ 0 we have an equivalence of left fibrations LFibk(L) ≃
Lxk .
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Proof. By Definition 2.1, we have a covariant equivalence ∆[k]/ → LFibk(L) over
X. Moreover, by definition 1 → ∆[k]/ is a covariant equivalence over X (Subsec-
tion 1.2(6)). Hence, 1 → LFibk(L) is a covariant equivalence over X. The result now
follows from the definition of fibrant replacements.

We now want to focus on the case of ∞-categories (Subsection 1.1(4)) and give
an explicit description. As we stated before for an ∞-category C and object c, the
under-category Cc/ is the representable left fibration (Subsection 1.2(6)). We want
to generalize this observation to representable Reedy left fibrations. However, we
again face the problem that for a given cosimplicial object x : ∆ → C, the various
over-categories Cxk/ do not form a simplicial object. We need to expand our diagram
again.

Remark 2.3. If we choose our model of ∞-categories with fibration structure to be
complete Segal spaces (Subsection 1.4), then the results Proposition 2.4, Theorem 2.7
and Corollary 2.10 would also hold for Segal spaces, which is a weaker requirement
than being an ∞-category (in this context complete Segal spaces). Indeed, this follows
from the fact that under-categories are already the representable left fibrations for
Segal spaces as proven in [Ras17, Theorem 3.49].

Let π•
f : ∆/• → ∆ be the cosimplicial ∞-category that is defined level-wise as

∆/[k] → ∆ and for a map δ : [m] → [n], define δ∗ : ∆/[n] → ∆/[m] via post-composition.
For an ∞-category C and a cosimplicial object x : ∆ → C, we can use the cosimplicial
object π•

f to define the Reedy left fibration Cx•/ = Cπ•
f x

•/. We now have following

result.

Proposition 2.4. Let C be an ∞-category and x• : ∆ → C a cosimplicial object. Then
the map Cπf x•/ → C is the representable Reedy left fibration represented by x•.

Proof. Based on Subsection 1.2(6) the map Cπk
f x

k/ → C is a left fibration for each k

and so the map π•
f is a Reedy left fibration. We will now construct a map of simplicial

objects ∆•/ → Cπf x•/ over C and prove it is a level-wise covariant equivalence and this
proves that Cπk

f x
k/ → C is in fact the representable Reedy left fibration represented

by x•.
Define the functor of simplicial categories

comp: ∆•/ → (∆2)
∆/•

given by comp(δ : [k] → [m])(γ : [n] → [k]) = δ ◦ γ : [n] → [m]. We can restrict comp
to a functor of simplicial categories

comp: ∆•/ → ∆π•
f/
.

Indeed, if we restrict the image of comp([k] → [m]) to the domain in ∆2 we get
the projection map π•

f : ∆/• → ∆. Similarly, if we restrict the image of comp to the
codomain we get a constant map ∆/• → ∆ with value [m]. Finally, we get the desired
map ∆•/ → Cπk

f x
k/ by post-composing the map comp with the restricted codomain

with the cosimplicial object x• : ∆ → C.
We will now proceed to prove this map is a Reedy covariant equivalence. It suffices

to prove we have a level-wise equivalence. For each k, we get following diagram over
C.
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1 ∆k/ Cπk
f x

k/ Cxk/

C

xk

idk

≃

idxk ≃

xk◦compk ≃

.

The map 1 → ∆k/ is a covariant equivalence over ∆ (by Subsection 1.2(6)) and so
also a covariant equivalence over C (Subsection 1.2(2)). The map 1 → Cxk/ is directly
a covariant equivalence over C (by Subsection 1.2(6)). The map of left fibrations
Cπk

f x
k/ → Cxk/ is an equivalence because idx is the terminal object in the diagram

(Subsection 1.2(8)). Thus, by 2-out-of-3, the middle map is also a covariant equiva-
lence over C.

Notation 2.5. Given that the fiber of Cπf x•/ → C over an object y is level-wise equiv-

alent to mapC(x
k, y) (Subsection 1.2(6)), we will henceforth denote this fiber by

mapC(x
•, y) or mapC(x, y).

Finally, we want to prove the Yoneda lemma for representable Reedy left fibrations.
We need following lemma.

Lemma 2.6. The following square is a pushout square of categories for each k ⩾ 0

∂2 × ∆[k]/ ∂2 × ∆

2 × ∆[k]/ 2 × ∆

.

Proof. For a category D a diagram of the form

∂2 × ∆[k]/ ∂2 × ∆

2 × ∆[k]/ 2 × ∆

D

F

G

∃!H

has a unique lift. Indeed the fact that the diagram commutes implies that for two
objects [k] → [m], [k] → [n] and i = 0, 1 we have G(i, [k] → [m]) = G(i, [k] → [n]) and
so G factors through 2 × ∆.

Theorem 2.7. Let C be an ∞-category and x• and y• be two cosimplicial objects,
then we have an equivalence

Map/C(Cπ•
f x

•/,Cπ•
fy

•/)
≃
↠ mapcosC(y

•, x•).
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Proof. First, using Proposition 2.4 and the fact that Cπ•
fy

•/ → C is a Reedy left

fibration we have a trivial Kan fibration

Map/C(Cπ•
f x

•/,Cπ•
fy

•/)
≃
↠ Map/C(∆•/,Cπ•

fy
•/), (2.8)

which means we need to understand the space on the right hand side. Before we can
do so we need to make a technical construction.

Define Cone(C) to be the subspace of functors H : 2 × ∆•/ × ∆•/ → C such that H
fits into a diagram of the following shape:

∆•/ × ∆•/ ∆

2 × ∆•/ × ∆•/ C

∆•/ × ∆•/ ∆

π1

F

H

π1

G

. (2.9)

Notice a point in Cone(C) can be characterized as a map out of the pushout of the
diagram

∆ ∆•/ × ∆•/ 2 × ∆•/ × ∆•/ ∆•/ × ∆•/ ∆.
π1 0×id 1×id π1

This means that in order to better understand Cone(C) we need to compute this
colimit. We can reformulate it as the following two pushout squares and compute it
directly

∂2 × ∆•/ × ∆•/ ∂2 × ∆•/ ∂2 × ∆

2 × ∆•/ × ∆•/ 2 × ∆•/ 2 × ∆
⌜ ⌜

,

where the second pushout square follows from applying Lemma 2.6 level-wise. Hence,
we have a bijection of spaces Cone(C) ∼= Map(2 × ∆,C). We can extend this bijection
to a commutative triangle

Cone(C) Map(2 × ∆,C)

Map(∆,C)×Map(∆,C)

∼=

,

where both projections are induced by restricting along the endpoints of 2. Taking
the fiber of the bijection over the points (y, x) in Map(∆,C)×Map(∆,C), we get a
bijection

Cone(C)y,x ∼= mapcosC(y, x),

where the left hand side by definition denotes the fiber and the right hand side follows
from the definition of the mapping space Subsection 1.1(12).

Hence, in order to finish the proof it suffices to prove that the fiber Cone(C)y,x
is bijective to the space Map/C(∆•/,Cπ•

fy
•/) given in Equation (2.8). Using the fact
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that Map(∆•/,−) commutes with limits and the limit description of Cπ•
fy

•/ in Sub-

section 1.2(7), we can describe Map/C(∆•/,Cπ•
fy

•/) as the following limit diagram

Map(∆•/,1) Map(2 × ∆•/,C
∆•/) Map(∆•/,1)

Map(∆•/,C
∆•/) Map(∆•/,C

∆•/)

y

x
.

Now, using the fact that 1 is the final object and the Cartesian closure, we get
following limit diagram of spaces:

1 Map(2 × ∆•/ × ∆•/,C) 1

Map(∆•/ × ∆•/,C) Map(∆•/ × ∆•/,C)

y

x .

Hence, Map/C(∆•/,Cπ•
fy

•/) is precisely the sub-space of Map(2 × ∆•/ × ∆•/,C) con-

sisting of diagrams of the form given in (2.9), such that F = y and G = x, which is
precisely Cone(C)y,x. This finishes the proof.

This theorem also has a valuable corollary.

Corollary 2.10. Let C be an ∞-category and x, y : ∆ → C be two cosimplicial objects.
Then x, y are equivalent in cosC if and only if the corresponding representable Reedy
left fibrations Cx/ and Cy/ are equivalent.

Notice, if x•, y• are discrete simplicial objects in C, then Theorem 2.7 recovers the
classical Yoneda lemma of∞-categories [RV22, Corollary 5.7.16]. We end this section
by observing that all these results also hold in a contravariant setting. We simply use
following table of conversions:

Reedy Left Fibration Reedy Right Fibration
cosimplicial object cosX simplicial object sX

x• : ∆ → X x• : ∆op → X
Lx• Representable Rx• Representable
LFibk(Lx•) ≃ Lxk RFibk(Rx•) ≃ Rxk

π•
i : ∆•/ → ∆ πi

• : (∆
op)/• → ∆op

π•
f : ∆/• → ∆ πf

• : (∆op)•/ → ∆op

Under ∞-Categories: Over ∞-Categories:
Cπ•

f x
•/ → C C/πf

• x•
→ C

Map/C(Cπ•
f x

•/,Cπ•
fy

•/)

mapcosC(y
•, x•)

≃

Map/C(C/πf
• x•

,C/πf
•y•

)

mapsC(x•, y•)

≃

Cπ•
f x

•/ ≃ Cπ•
fy

•/ ⇔ x• ≃ y• C/πf
• x•

≃ C/πf
•y•

⇔ x• ≃ y•

(2.11)
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3. Complete Segal objects and representable Cartesian fibra-
tions

In this section we study a model of internal ∞-categories, complete Segal objects,
using representable Cartesian fibrations. In particular, we develop the category theory
of complete Segal objects generalizing the category theory of complete Segal spaces as
developed in [Rez01]. Throughout this section C is an∞-category (Subsection 1.1(4))
with finite limits (Subsection 1.1(13)).

Definition 3.1. LetW : ∆op → C be a simplicial object in C. ThenW is a Segal object
if the map

Wn → W1 ×W0
· · · ×W0

W1

is an equivalence in C [Rez01, Section 5], meaning Wn is the limit of the diagram

W1 W0 W1 . . . W1 W0 W1,
t s t s

where s, t : W1 → W0 are the source and target map Subsection 1.1(8).

We now want to study the category theory of Segal objects following the definitions
in [Rez01, Section 5]. An object in W is a morphism x : D → W0. We say D is the
context of the object x. A morphism in W is a morphism f : D → W1 in C.

Next we want to define mapping objects, however, for that we need to assume that
C is locally Cartesian closed. With this assumption for two objects x, y : D → W with
context D, define the mapping object mapW(x, y) in C as follows

mapW(x, y) = ΓD(x, y)∗W1,

where ΓD is the global section functor Subsection 1.1(14). Notice, by definition we
have an equivalence

mapC(1C,mapW(x, y)) ≃ map/D(idD, (x, y)∗(s, t)) ≃ map/W0×W0
(D,W1),

where 1C is the terminal object (Subsection 1.1(13)) and s, t : W1 → W0 are the
source target maps (Subsection 1.1(8)). Hence a point in mapW(x, y) is precisely a
map D → W1 over (x, y) : D → W0 ×W0, as we wanted.

We want to proceed to study homotopy equivalences in a Segal object. Let ZW(3)
be the limit of the diagram Z(3) → C of the following shape

W1 W0 W1 W0 W1
s s t t

and notice it comes with maps W1 → ZW(3) and W3 → ZW (3). Define Whoequiv as
the pullback

Whoequiv W3

W1 ZW(3)

i

⌜
(d1d3,d0d3,d1d0)

(s0d1,id,s0d0)

. (3.2)

We say a morphism f : D → W1 is a homotopy equivalence in W if the map factors
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through the map Whoequiv, which is equivalent to saying that

map/W1
(f : D → W1, i : Whoequiv → W1)

is non-empty. Finally, notice the unique maps W0 → W1,W0 → W3 suffice to make
Diagram (3.2) into a commutative square and so we have a map j : W0 → Whoequiv.

Definition 3.3. A Segal object W is a complete Segal object if in addition the map
j : W0 → Whoequiv is an equivalence in C [Rez01, Section 6].

We now want to proceed and prove results about complete Segal objects that we
know hold for complete Segal spaces. For example, if W is a Segal space, then the
map of spaces i : Whoequiv → W1 is in fact an inclusion of path-components [Rez01,
Lemma 5.8]. More importantly, we can effectively characterize equivalences of com-
plete Segal spaces as the fully faithful essentially surjective functors [Rez01, Propo-
sition 7.6]. In order to generalize such results we want to study the relation between
(complete) Segal object to Reedy right fibration it represents, using the material from
Section 2.

Proposition 3.4. Let W : ∆op → C be a simplicial object. Then W is a (complete)
Segal object if and only if C/W → C is a (Segal) Cartesian fibration.

Proof. We already know that C/W is a Reedy right fibration (Proposition 2.4/(2.11)).
By Subsection 1.3(5)/Subsection 1.3(6), C/W is a (Segal) Cartesian fibration if and
only if mapC(D,W) is a (complete) Segal space for all D.

The result now follows from the fact that mapC(D,−) reflects limits Subsec-
tion 1.1(15) and the fact that both conditions of a (complete) Segal object are limits
conditions (Definition 3.1, Definition 3.3).

Combining this result with Corollary 2.10/(2.11), which implies that two complete
Segal objects are equivalent if and only if their corresponding representable Cartesian
fibrations are equivalent, means that we can use Cartesian fibrations to study com-
plete Segal objects. In particular, we can translate the category theory of complete
Segal objects we developed until now into the language of Cartesian fibrations.

Let C be an ∞-category and let W be a Segal object in C, with representable
Segal Cartesian fibration C/W → C. An object x in W with context D, x : D → W0,
corresponds to an object in the complete Segal space mapC(D,W). Similarly, a mor-
phism in W with context D, f : D → W1 corresponds to a morphism in the complete
Segal space mapC(D,W). Finally, for two objects x, y : D → W0, the mapping object
mapW(x, y) satisfies the universal property

mapC(1C,mapW(x, y)) ≃ mapmapC(D,W)(x, y) (3.5)

meaning that a point in mapW(x, y) corresponds precisely to a morphism in the Segal
space mapC(D,W) with domain x and codomain y. Finally, we also have following
relation of homotopy equivalences.

Lemma 3.6. Let W be a Segal object. Then for every object D, there is an equivalence
of spaces mapC(D,Whoequiv) ≃ mapC(D,W)hoequiv. Thus a morphism f : D → W1 is
a homotopy equivalence in W if and only if f is a homotopy equivalence in the complete
Segal space mapC(D,W).
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Proof. This follows directly from the fact that mapC(D,−) reflects limits (Subsec-
tion 1.1(15)) combined with the fact that Whoequiv is characterized via a limit dia-
gram (3.2).

We can now also prove the desired result about homotopy equivalences.

Proposition 3.7. Let W be a Segal object in C. Then the map i : Whoequiv → W1 is
an inclusion.

Proof. The map is an inclusion if and only if the following is a pullback square in C

Whoequiv Whoequiv

Whoequiv W1

=

=
⌜

i

i

.

The result now follows directly from the fact that mapC(D,−) reflects limits (Sub-
section 1.1(15)) and the fact that mapC(D,W) is a Segal space (Proposition 3.4).

We move on to the final goal of this section: Characterizing the equivalences of
complete Segal objects and prove they are analogous to the Dwyer–Kan equivalences
of complete Segal spaces [Rez01, Proposition 7.6]. This result has been called “fun-
damental theorem of quasi-categories” [Rez17], so accordingly we call it the funda-
mental theorem of complete Segal objects.

Let C be an ∞-category with finite limits. A functor of complete Segal objects
F : W → V is fully faithful if the square

W1 V1

W0 ×W0 V0 ×V0

⌜
(3.8)

is a pullback square. Moreover, it is essentially surjective if for any object y : D → V0

with context D, there exists an object x : D → W0 with context D such that Fx is
equivalent to y in V.

These definitions translate appropriately to fibrations.

Lemma 3.9. Let F : W → V be a functor of complete Segal objects. Then F is fully
faithful if and only if for every object D, mapC(D,F) : mapC(D,W) → mapC(D,V)
is a fully faithful map of complete Segal spaces.

Proof. Combining the fact that map(D,−) reflects limits (Subsection 1.1(15)) and
the pullback square (3.8) implies that we have a homotopy pullback square of spaces

mapC(D,W)1 mapC(D,V)1

mapC(D,W)0 ×mapC(D,W)0 mapC(D,V)0 ×mapC(D,V)0

⌜ .
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Hence, it suffices to prove that this pullback square is equivalent to

map(D,F) : map(D,W) → map(D,V)

being fully faithful. We can rephrase this homotopy pullback square as stating that
the top map

mapC(D,W)1

(mapC(D,W)0 ×mapC(D,W)0)×mapC(D,V)0×mapC(D,V)0 mapC(D,V)1

mapC(D,W)0 ×mapC(D,W)0

≃

is an equivalence. This is equivalent to being a fiber-wise equivalence over
mapC(D,W)0 ×mapC(D,W)0. However, for a generic point (x, y) in this product
mapC(D,W)0 ×mapC(D,W)0, the fiber is precisely

mapmapC(D,W)(x, y) → mapmapC(D,V)(Fx,Fy)

giving us the more common definition of being a fully faithful functor of complete
Segal spaces.

Lemma 3.10. Let F : W → V be a functor of complete Segal objects. Then F is essen-
tially surjective if and only if for every object D,

mapC(D,F) : mapC(D,W) → mapC(D,V)

is an essentially surjective functor of complete Segal spaces.

Proof. By Lemma 3.6 weak equivalences in the complete Segal object W and the
complete Segal space mapC(D,W) agree with each other. Hence, the results follows.

We can use our characterizations via complete Segal spaces to give an alternative
characterization of fully faithful functors in the locally Cartesian closed setting.

Lemma 3.11. Let C be locally Cartesian closed and F : W → V be a functor of com-
plete Segal objects. Then F is fully faithful if and only if for every context D and two
objects x, y : D → W in W, the induced map

mapW(x, y) → mapV(Fx,Fy) (3.12)

is an equivalence.

Proof. First assume the maps in (3.12) are equivalences in C, then by the equiv-
alence (3.5) we get an equivalence of mapping spaces of complete Segal spaces for
every object D. Hence, by Lemma 3.9, F is fully faithful.

On the other side, assume that F is fully faithful. Then for any object two objects
x, y : D → W0 we have following pullback squares in C
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(x, y)∗W1 W1 V1

D W0 ×W0 V0 ×V0

⌜

F1

⌜

(x,y) F0×F0

.

By the pasting lemma the rectangle is a pullback as well. Hence we get an equivalence

(x, y)∗W1 → (Fx,Fy)∗V1,

which implies that (3.12) is an equivalence as well.

Theorem 3.13. Let F : W → V be a functor of complete Segal objects. Then the
following are equivalent.

1. F is an equivalence of complete Segal objects.

2. F is fully faithful and essentially surjective.

3. For every object D, the induced map mapC(D,F) is an equivalence of complete
Segal spaces.

4. For every object D, the induced map mapC(D,F) is fully faithful and essentially
surjective.

Proof. (2) ⇔ (4) Follows from combining Lemma 3.9 and Lemma 3.10.

(1) ⇔ (3) Is the statement of Corollary 2.10

(3) ⇔ (4) Due to Rezk [Rez01, Proposition 7.6].

From the perspective of this proof we can see why it would not have sufficed
to consider an object in a complete Segal object W to be a map out of the final
object 1C → W0. We do need to consider objects with different contexts to be able
to understand equivalences of complete Segal object in terms of the corresponding
complete Segal spaces.

We end this section by looking at some examples of complete Segal objects in
various ∞-categories.

1. Let S be the∞-category of spaces (Subsection 1.1(16)). Then a (complete) Segal
object in S corresponds to a (complete) Segal space (up to Reedy fibrancy).

2. Let Cat∞ be the ∞-category of small ∞-categories (Subsection 1.1(16)). In this
case a Segal object is a double ∞-category in the sense of [Hau17, Definition
4.7] and [Mos20, Definition 4.1.7] (up to Reedy fibrancy). A complete Segal
object in Cat∞ has not been studied independently, but is a first step towards
the definition of a 2-fold complete Segal space [Bar05], which is a model of
(∞, 2)-categories [Ber20, BR13, BR20].

3. Stable ∞-Category: An ∞-category is stable if it has finite limits and colim-
its, the initial and final object coincide and the pushout and pullback squares
coincide [Lur17, Proposition 1.1.3.4], [RV22, Theorem 4.4.12]. We want to
show that every complete Segal object W in a stable ∞-category C is discrete.
Indeed, combining Proposition 3.7 and Definition 3.3 implies that W0 → W1 is
an inclusion, which means the square
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W0 W0

W0 W1

=

=
⌜

is a pullback square and so, by stability, also a pushout square. As the map
W0 → W1 is now the pushout of the identity map id: W0 → W0, it is an equiv-
alence and so the simplicial object W is discrete.

4. Two applications: strictification and universality

In this last section we want to study very useful applications of our new found
understanding of complete Segal objects and its interaction with Cartesian fibrations.
The first one helps us construct complete Segal objects. The second one is about
representing and hence better understanding the universal coCartesian fibration.

4.1. Building Segal objects

In this subsection we want to give a precise answer to the following problem (which
was already outlined in Subsection 0.4(1)). Assume we have a Segal Cartesian fibra-
tion R → C such that RFib(R)0 and RFib(R)1 are represented by W0,W1. How can

we construct a Segal object Ŵ representing R?

If we were in the setting of strict categories the answer would be straightforward:
we take the fiber products and then use the Yoneda lemma several times. In the
∞-setting, however, we need a homotopy coherent approach and hence we will use
strictification results for Cartesian fibrations.

Lemma 4.1. Let C be an ∞-category and R → C be a Reedy right fibration that is
level-wise representable. Then there exists a simplicial object X : ∆op → C such that
we have an equivalence of Reedy right fibrations C/X ≃ R.

Proof. By Subsection 1.2(3) R• is a simplicial ∞-category. We can first construct
the underlying complete Segal space Und(R)• → Und(C) (Subsection 1.1(6)) and
then apply i∗1 [JT07, Section 4] to get a Reedy right fibration of quasi-categories
i∗1Und(R)• → i∗1Und(C) (analogous to [Ras21b, Theorem 1.35]).

Applying the straightening construction [Lur09, Theorem 2.2.1.2] level-wise (as
discussed in [Ras21b, Subsection 3.1]), this fibration corresponds to a functor of
simplicially enriched categories

F : C[i∗1Und(C)]
op → Fun(∆op, sSet),

where C[i∗1Und(C)] is the simplicially enriched category defined in [Lur09, Definition
1.1.5.1]. Using the adjunction between products and functor categories this corre-
sponds to a functor

F̂• : ∆op → Fun(C[i∗1Und(C)]
op, sSet).

The fact that the original fibration R → C is level-wise representable implies that each
functor F̂n is representable, meaning there is a natural equivalence of simplicially
enriched functors F̂n ≃ Map(−, Xn). This means the functor F̂ factors through the
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essential image of the Yoneda embedding

F̂• : ∆op → C[i∗1Und(C)] → Fun(C[i∗1Und(C)]
op, sSet).

This gives us a simplicial object X : ∆op → C, which gives us a representable Reedy
right fibration C/X (Proposition 2.4/(2.11)). Finally, notice the straightening of C/X

is also equivalent to F̂ and so C/X and R are equivalent Reedy right fibrations.

Lemma 4.2. Let C be an ∞-category with finite limits and let R → C be a Segal
Cartesian fibration. Then R is representable if and only if RFib0(R) and RFib1(R)
are representable.

Proof. One side is just a special case. So, let us assume RFib0(R) and RFib1(R) are
representable right fibrations. By Lemma 4.1, it suffices to prove that RFibn(R) is
representable for n ⩾ 2, which means we have to show it has a final object. As R is a
Segal Cartesian fibration (Subsection 1.3(5)) we have an equivalence of ∞-categories

RFibn(R) → RFib1(R) ×
RFib0(R)

. . . ×
RFib0(R)

RFib1(R).

Thus it suffices to prove that the right hand side has a final object. However, by the
representability condition we have an equivalence of right fibrations

RFib1(R) ×
RFib0(R)

. . . ×
RFib0(R)

RFib1(R) ≃ C/W1
×

C/W0

. . . ×
C/W0

C/W1
,

where W1 represents R1 and W0 represents R0. Finally the right hand ∞-category
has a final object if and only if the induced diagram of

W1 W0 W1 . . . W1 W0 W1
t s t s

has a limit (by Subsection 1.2(7)), which holds as C has finite limits. Here s, t are the
source target map s, t : W1 → W0 (Subsection 1.1(8)).

Theorem 4.3. Let W0 and W1 be two objects in an ∞-category C with finite limits.
Let R be a Segal Cartesian fibration over C such that R0 is represented by W0 and R1

is represented by W1. Then there exists a Segal object Ŵ• such that Ŵ0 ≃ W0 and

Ŵ1 ≃ W1. Moreover, Ŵ is complete if and only if R is a Cartesian fibration.

Proof. By Lemma 4.2, the Segal Cartesian fibration R is representable. Thus, there

exists a simplicial object Ŵ such that R ≃ C
/Ŵ

and by universality we have Ŵ0 ≃ W0

and Ŵ1 ≃ W1. Moreover, R being a Segal Cartesian fibration implies that Ŵ is
actually a Segal object (Proposition 3.4). Finally, again by Proposition 3.4, R is a

Cartesian fibration if and only if Ŵ is complete.

Remark 4.4. This result is also proven in [Ste20, Proposition 4.10] using different
techniques.

4.2. Universal coCartesian fibrations
In this final subsection we want to give another application: Understanding the

universal coCartesian fibration via complete Segal objects (already mentioned in Sub-
section 0.4(2)). This can also be found in [Ste20, Example 3.26, Example 4.9]. Before
we do so we want to review the analogous result for left fibrations.
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Let C be an ∞-category and define LFib/C as the ∞-category of left fibrations over
C (given via the simplicial nerve [Lur09, Proposition 1.1.5.10] applied to covariant
model structure over C Subsection 1.1(16)). Then various authors ([Lur09, The-
orem 2.2.1.2], [Ste17, HM15, HM16]) have proven a natural equivalence of ∞-
categories

LFib/C ≃ SC. (4.5)

Naturality implies that the universal left fibration is the left fibration over S that
corresponds to the identity functor id : S → S. The problem is that the general con-
struction of such fibrations is very abstract and difficult. We only know for certain
that representable functors correspond to representable fibrations. Fortunately, in this
case we can in fact represent the functor and compute the left fibration: The identity
functor is equivalent to the functor represented by the point, mapS(∗,−) : S → S. The
left fibration constructed out of the representable functor is the under-category pro-
jection S∗/ → S, which more conventionally we think of as the ∞-category of pointed
spaces S∗ → S. For a more thorough discussion of pointed spaces as the universal left
fibration see [Cis19, Corollary 5.2.8], [KV14, Lemma 2.2.4].

We now want to generalize this result to universal coCartesian fibrations. Let
coCartFib/C be the ∞-category of coCartesian fibration over C (Subsection 1.1(16))
and recall it is precisely the ∞-category of simplicial diagrams in LFib/C that satisfy
the complete Segal condition (Subsection 1.3(6)). Similarly let CSS be the ∞-category
of complete Segal spaces and Cat∞, the ∞-category of (small) ∞-categories (again
using the notational convention from Subsection 1.1(16)) and notice we still have an
equivalence Und : Cat∞ → CSS taking every ∞-category to its underlying complete
Segal space (Subsection 1.1(6)).

If we take complete Segal objects in the ∞-category SC we get the ∞-category
CSSC. Indeed a simplicial diagram in space valued functors that satisfies the complete
Segal conditions is precisely a complete Segal space valued functors. Applying these
to the equivalence given in (4.5) we get the equivalence

coCartFib/C ≃ CSSC ≃ (Cat∞)C,

where the second equivalence comes from UndC. (Notice an alternative, far more com-
plicated, method for deducing the equivalence would have been to use the straight-
ening construction for coCartesian fibrations [Lur09, Theorem 3.2.0.1].)

Again, the naturality implies that the universal coCartesian fibration is the coCar-
tesian fibration over Cat∞ that corresponds to the identity functor id : Cat∞ → Cat∞.
Again, we cannot generally compute fibrations for arbitrary functors, however, we
could compute the fibration if the identity map was representable. However, this
is in fact false! There is no ∞-category C such that there is a natural equivalence
mapCat∞(C,D) ≃ D for all ∞-categories D (as the left hand side is an ∞-groupoid).
The non-representability of this coCartesian fibration poses a serious challenge if we
try to study it (as can be observed in [Lur09, Subsection 3.3.2]).

On the other hand, using the theory of representable coCartesian fibrations, we
can in fact express the identity map as a representable functor. Recall that Cat∞ has
a cosimplicial object ∆ → Cat∞ of the following form (Subsection 1.1(9)):

1 2 3 · · · .
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Moreover, recall the object n represents the equivalence Und (Subsection 1.1(10)),
meaning for an ∞-category C, we have an equivalence Map(n,C) ≃ Und(C)n. So
Map(n,−) represents the n-th space of the underlying complete Segal space. Hence,
the functor represented by this cosimplicial object Diag ◦Map(n,−) : Cat∞ → Cat∞
is equivalent to the identity map. This proves that the universal coCartesian fibration
is given by the representable coCartesian fibration (Cat∞)•/ → Cat∞.
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