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Abstract
We describe graded commutative Gorenstein algebras En(p)

over a field of prime characteristic p, and we conjecture that
Ext•Verpn+1

(1,1) ∼= En(p), where Verpn+1 are the new symmetric

tensor categories recently constructed by the current authors,
with Ostrik, and also by Coulembier. We investigate the com-
binatorics of these algebras, and the relationship with Minc’s
partition function, as well as possible actions of the Steenrod
operations on them.

Evidence for the conjecture includes a large number of com-
putations for small values of n. We also provide some theoreti-
cal evidence. Namely, we use a Koszul construction to identify
a homogeneous system of parameters in En(p) with a homoge-
neous system of parameters in Ext•Verpn+1

(1,1). These param-

eters have degrees 2i − 1 if p = 2 and 2(pi − 1) if p is odd, for
1 ⩽ i ⩽ n. This at least shows that Ext•Verpn+1

(1,1) is a finitely

generated graded commutative algebra with the same Krull
dimension as En(p). For p = 2 we also show that Ext•Ver2n+1

(1,1)

has the expected rank 2n(n−1)/2 as a module over the subalgebra
of parameters.

1. Introduction

In our paper [2], we introduced a nested sequence of incompressible symmetric
tensor abelian categories in characteristic two. These were very recently generalised
to all primes in our work with Ostrik [3] and simultaneously by Coulembier [8]. These
categories, Verpn and Ver+pn , seem to be new fundamental objects deserving further
study.

Here, our primary aim is to state a conjecture describing the ring structure of
Ext•Verpn+1

(1,1). We have made large numbers of computations using the computer

algebra system Magma [5], and we conjecture that the answer should be the graded
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commutative k-algebra En(p) introduced below, where k is a field of characteristic p.
After defining these algebras, we prove the following.

Theorem 1.1. For n ⩾ 0, the algebra En(p) is a graded commutative finitely gener-
ated Gorenstein k-algebra of Krull dimension n. If p = 2 then it is an integral domain,

while for p odd it has nilpotent elements. The Poincaré series f(q) =
∑
d⩾0

qd dim En(p)d

is a rational function of q satisfying f(1/q) = (−q)nf(q).

There are natural inclusion maps En−1(p) → En(p), and in each degree the sequence

k = E0(p) → E1(p) → · · · → En−1(p) → En(p) → · · ·

stabilises at some finite stage. So it makes sense to examine the colimit E∞(p) =
lim−→
n

En(p). The Poincaré series of this algebra in the case p = 2 is Minc’s partition

function [19]. We adapt Andrews’ proof of a Rogers–Ramanujan style formula [1] for
the reciprocal of the generating function for this partition function so that it gives us
the Poincaré series for En(p) for all n ⩾ 0 and all primes p.

Theorem 1.2. The dimension of En(p)d is equal to

n∑
m=1

Np(m, d), and the dimension

of E∞(p)d is equal to

∞∑
m=1

Np(m, d), where

∞∑
m,d=0

Np(m, d)t
mqd =

1∑∞
i=0(−1)itiℓi,p(q)

and

ℓi,p(q) =



i∏
j=1

q2
j−1

1− q2j−1
p = 2,

i∏
j=1

q2p
j−1(p−1)−1 + q2(p

j−1)

1− q2(pj−1)
p odd.

The relationship with the symmetric tensor abelian categories constructed in [2, 3,
8] is as follows. Since the subcategory Ver+pn ⊂ Verpn is a direct summand, this inclu-
sion induces an isomorphism Ext•Verpn (1,1)

∼= Ext•
Ver+

pn
(1,1) and so we only consider

Verpn .

Conjecture 1.3. The graded commutative k-algebra Ext•Verpn+1
(1,1) is isomorphic

to En(p). The inclusion Verpn ⊂ Verpn+1 induces the inclusion map En−1(p) → En(p).

We have the following computational evidence for this conjecture. In all char-
acteristics, this is true for n ⩽ 1. In characteristic two, we have checked both the
dimensions and the algebra structure for n = 2 in all degrees, for n = 3 up to degree
40, and for n = 4 up to degree 26. For p = 3, n = 2, 3, and for p = 5, n = 2, we have
checked the dimensions and algebra structure up to degree 40. These computations
were carried out using the computer algebra package Magma.

In a symmetric tensor abelian category, the Steenrod operations act on Ext•(1,1)
and satisfy the Cartan formula and unstable condition, as well as the homogeneous
form of the Adem relations in which it is not assumed that the operation Sq0 (p = 2),
respectively P0 (p odd) acts as the identity (see [18]; the construction there extends



ON COHOMOLOGY IN SYMMETRIC TENSOR CATEGORIES 165

to the setting of symmetric tensor categories). We investigate the possibilities for
their action on En(p). Our conclusions are cleanest when p = 2. In that case, we show
that the only possible action of the Steenrod operations on En(2) compatible with the

inclusions is that all Sqi = 0 except for the mandatory Sq|x|(x) = x2. This makes the
action much more like that on the cohomology of a p-restricted Lie algebra than like
that on the cohomology of a finite group. In the case p odd, the existence of nilpotent
elements interferes with the arguments, and we can only prove a weaker statement.

In the final sections, we provide some theoretical evidence for Conjecture 1.3, and
some tools that may help prove it. Namely, we first consider the Koszul complex of
the generating object V of Verpn+1 and compute its cohomology. Then we use the
Koszul complex to express Ext•Verpn+1

(1, X) as the cohomology of an explicit com-

plex of vector spaces. While we cannot yet compute this cohomology in general, this
construction explains the conjectural shape of the answer and provides upper bounds
for dimensions of the individual Ext spaces. In particular, it implies the existence of
the subalgebra of parameters, k[y1, . . . , yn] ⊂ Ext•Verpn+1

(1,1), where deg(yi) equals

2i − 1 if p = 2 and 2(pi − 1) if p > 2. We show that Ext•Verpn+1
(1,1) is module-finite

over this subalgebra, and for p = 2 show that the rank of this module is 2n(n−1)/2, as
predicted by Conjecture 1.3.

More generally, we at least show the following.

Theorem 1.4. The graded commutative k-algebra Ext•Verpn+1
(1,1) is finitely gener-

ated, with Krull dimension n. Moreover, for any X ∈ Verpn+1 , Ext•Verpn+1
(1, X) is a

finitely generated module over this algebra.

This confirms Conjecture 2.18 of [14] for the categories Verpn+1 .
Once the Ext algebra is better understood, this will be the starting point for

applying support theory to the categories Verpn+1 , along the lines of the theory for
finite groups, developed by Carlson and others [7]. For example, one might hope that
Ext•Verpn+1

(1,1) stratifies the stable category of Verpn+1 as a tensor triangulated cat-

egory, in the sense of Benson, Iyengar and Krause [4]. This would give a classification
of the tensor ideal thick subcategories, as well as the tensor ideal localising subcat-
egories of the stable category of the ind-completion. If Conjecture 1.3 holds, then
the inclusion of the subalgebra of parameters k[y1, . . . , yn] ↪→ Ext•Verpn+1

(1,1) is an

inseparable isogeny. This implies that it induces a bijection on homogeneous prime
ideals, and so ProjExt•Verpn+1

(1,1) is a weighted projective space.
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2. Graded algebras

For a prime p let Z[ 1p ] denote the ring of integers with p inverted. An element of

Z[ 1p ] is a rational number r = m/n where m,n ∈ Z and n is a power of p. We say
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that such an element r is even if r/2 is also in Z[ 1p ] and odd otherwise. So for p = 2,

every element is even. If a ∈ Z[ 1p ], we write (−1)a to denote +1 if a is even and −1
if a is odd.

We consider Z[ 1p ]-graded algebras R over a field k of characteristic p. If x is a

homogeneous element of R, we write |x| for the degree of x. We say that such an
algebra is graded commutative if it satisfies yx = (−1)|x||y|xy.

If R is a Z[ 1p ]-graded k-algebra, we write Int(R) for the Z-graded algebra derived

from R by means of the inclusion of Z in Z[ 1p ]. So for m ∈ Z, the homogeneous part

of degree m is given by Int(R)m = Rm.

Example 2.1. Let k be a field of characteristic two, and let k[X2∗ ] be the algebra gen-

erated by the elements X2n with n ∈ Z, with the obvious relations (X2n)2 = X2n+1

.
This is a Z[ 12 ]-graded commutative k-algebra, with |X2n | = 2n. We have Int(k[X2∗ ]) =
k[X].

Example 2.2. Let k be a field of odd characteristic p, and let k[Xp∗
]⊗ Λ(Y ) be the

algebra generated by elements Xpn

with n ∈ Z and Y with the relations (Xpn

)p =

Xpn+1

, Y 2 = 0, XY = Y X. This is a Z[ 1p ]-graded commutative k-algebra, with

|Xpn | = 2pn and |Y | = 1. We have Int(k[Xp∗
]⊗ Λ(Y )) = k[X]⊗ Λ(Y ).

Definition 2.3. We define the Reynolds operator ρ : R→ Int(R) to be the map which
is the identity on elements of Int(R) and zero on homogeneous elements of R whose
degree is not an integer.

Lemma 2.4. The map ρ is an Int(R)-module homomorphism.

Proof. Multiplication by elements of Int(R) preserves whether or not the degree of
an element is an integer.

Proposition 2.5. If R is a Cohen–Macaulay k-algebra then so is Int(R).

Proof. For every element of R, some power is an element of Int(R). So R is an
integral extension of Int(R). By Lemma 2.4, the Reynolds operator ρ : R→ Int(R) is
an Int(R)-module homomorphism. The proposition now follows from Proposition 12
of Hochster and Eagon [16].

3. The algebra En(p)
We treat separately the cases p = 2 and p odd.

3.1. The algebra En(2)
In this section, we examine the case p = 2, and we let k be a field of characteristic

two.

Definition 3.1. Let R = R(n, 2) be the Z[ 12 ]-graded commutative polynomial alge-

bra k[x1, . . . , xn] with |xi| = 2i−1
2i , and let En(2) = Int(R).

Example 3.2. If n = 1, we have R = k[x1] with |x1| = 1
2 . The algebra Int(R) is gen-

erated by u = x21, so E1(2) = k[u].
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Example 3.3. If n = 2, we have R = k[x1, x2] with |x1| = 1
2 , |x2| =

3
4 . The algebra

Int(R) is generated by u = x21, v = x1x
2
2, w = x42. Then

E2(2) = Int(R) = k[u, v, w]/(uw + v2)

with |u| = 1, |v| = 2, |w| = 3.

Example 3.4. If n = 3, we have R = k[x1, x2, x3] with |x1| = 1
2 , |x2| =

3
4 , |x3| =

7
8 .

Then E3(2) = Int(R) has a homogeneous system of parameters y1 = x21, y2 = x42, y3 =
x83, of degrees 1, 3, 7. The quotient by these parameters has the following basis.

deg 0 1 2 3 4 5 6 7 8

elt 1 x1x
2
2 x1x2x

2
3 x1x

4
3 x22x

4
3 x2x

6
3 x1x

3
2x

6
3

x32x
2
3

The Poincaré series of E3(2) is therefore given by∑
d⩾0

qd dim E3(2)d =
1 + q2 + q3 + 2q4 + q5 + q6 + q8

(1− q)(1− q3)(1− q7)
.

Theorem 3.5. The algebra En(2) is a Gorenstein integral domain. It has a regu-
lar homogeneous sequence of parameters y1 = x21, y2 = x42, y3 = x83, . . . , yn = x2

n

n of
degrees 1, 3, 7, . . . , 2n − 1. Modulo this regular sequence, we get a graded Frobenius

algebra of dimension 2
n(n−1)

2 with dualising element α = x1x
3
2x

7
3 . . . x

2n−1−1
n−1 x2

n−2
n in

degree 2n+1 − 2n− 2. The Poincaré series f(q) =
∑

d⩾0 q
d dim En(2)d is a rational

function of q satisfying f(1/q) = (−q)nf(q).
Proof. It follows from Proposition 2.5 that En(2) = Int(k[x1, . . . , xn]) is a Cohen–
Macaulay integral domain. So the homogeneous sequence of parameters y1, y2, y3, . . . ,
yn is a regular sequence.

If xa1
1 . . . xan

n is a monomial in En(2) then an is even. If such a monomial is not divis-
ible by any of the parameters then ai ⩽ 2i − 1 for 1 ⩽ i < n, and an ⩽ 2n − 2. The

monomial x1−a1
1 x3−a2

2 x7−a3
3 . . . x

2n−1−1−an−1

n−1 x2
n−2−an

n is also a basis element of En(2)
and the product of this with xa1

1 . . . xan
n is equal to α. So En(2)/(x21, x42, x83, . . . , x2

n

n )
is a Frobenius algebra with a basis consisting of these monomials, and with dualising
element α.

It is easy to verify using the Frobenius property that f(1/q) = (−q)nf(q). It then
follows by Theorem 4.4 of Stanley [22] that En(2) is a Gorenstein algebra. Alter-
natively, it is shown in Eisenbud [10, §21.3] that the Gorenstein property holds for
a graded Cohen–Macaulay ring if and only if the quotient by a regular sequence of
parameters is a Frobenius algebra.

There is a natural inclusion map of algebras R(n− 1, 2) → R(n, 2) given by sending
each xi in R(n− 1, 2) to the element with the same name in R(n, 2). It is easy to
check that in each degree the sequence

R(1, 2) → · · · → R(n− 1, 2) → R(n, 2) → · · ·

stabilises at some finite stage. So we take the colimit R(∞, 2) = lim−→
n

R(n, 2). Applying

Int, we obtain inclusion maps E1(2) → · · · → En−1(2) → En(2) → · · · whose colimit we
denote E∞(2) = Int(R(∞, 2)).
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3.2. The algebra En(p), p > 2
For odd primes, we should double the degrees of the polynomial generators and

introduce new exterior generators of degree one smaller.
Let p be an odd prime and let k be a field of characteristic p. Let R = R(n, p) be

the Z[ 1p ]-graded commutative algebra k[x1, . . . , xn]⊗ Λ(ξ1, . . . , ξn) with |xi| = 2(pi−1)
pi

and |ξi| = |xi| − 1 = pi−2
pi . Note that |xi| is even and |ξi| is odd. We define En(p) =

Int(R(n, p)).

Example 3.6. If n = 1, we have R = k[x1]⊗ Λ(ξ1) with |x1| = 2(p−1)
p and |ξ1| = p−2

p .

In this case, the algebra E1(p) = Int(R) is generated by the elements y = xp1 and
η = xp−1

1 ξ1 with |y| = 2p− 2, |η| = 2p− 3, namely, E1(p) = k[y]⊗ Λ(η).

Example 3.7. If p = 3 and n = 2, we have R = k[x1, x2]⊗ Λ(ξ1, ξ2) with |x1| = 4
3 ,

|x2| = 16
9 , |ξ1| = 1

3 , |ξ2| =
7
9 . In this case, the algebra E2(3) = Int(R) is generated by

the following elements:

element degree
x21ξ1 3
x31 4

x1x
2
2ξ1ξ2 6

x1x
3
2ξ1 7

element degree
x21x

2
2ξ2 7

x21x
3
2 8

x52ξ1ξ2 10
x1x

5
2ξ2 11

element degree
x62ξ1 11
x1x

6
2 12

x82ξ2 15
x92 16

A regular homogeneous system of parameters is given by y1 = x31 and y2 = x92, and
the quotient by these parameters is a graded Frobenius algebra with dualising element
x21x

8
2ξ1ξ2 in degree 18. We have∑

d⩾0

qd dim E2(3)d =
1 + q3 + q6 + 2q7 + q8 + q10 + 2q11 + q12 + q15 + q18

(1− q4)(1− q16)
.

Theorem 3.8. The ring En(p) is Gorenstein. It has a homogeneous system of param-

eters y1 = xp1, y2 = xp
2

2 , . . . , yn = xp
n

n of degrees 2(p− 1), 2(p2 − 1), . . . , 2(pn − 1).

Modulo this regular sequence, we get a graded Frobenius algebra of dimension 2np
n(n−1)

2

with dualising element α = xp−1
1 xp

2−1
2 · · ·xpn−1

n ξ1ξ2 · · · ξn, an element which lies in

degree 2
(
pn+1−1
p−1

)
− 3n− 2. The Poincaré series f(q) =

∑
d⩾0 q

d dim En(p)d is a ratio-

nal function of q satisfying f(1/q) = (−q)nf(q).

Proof. It follows from Proposition 2.5 that En(p) is Cohen–Macaulay. Since y1, y2, . . . ,
yn are elements of En(p) which form a regular sequence of parameters in R(n, p), they
also form a regular sequence of parameters in En(p). If xa1

1 · · ·xan
n ξε11 · · · ξεnn (εi ∈ {0, 1}

for 1 ⩽ i ⩽ n) is a monomial in En(p) which is not divisible by any of the parameters
then ai ⩽ pi − 1 for 1 ⩽ i ⩽ n. The monomial

xp−1−a1

1 xp
2−1−a2

2 · · ·xp
n−1−an

n ξ1−ε1
1 · · · ξ1−εn

n

is also a basis element of En(p) and its product with xa1
1 · · ·xan

n ξε11 · · · ξεnn is α.
Again it is easy to verify using the Frobenius property that f(1/q) = (−q)nf(q).

But this time, we cannot show the Gorenstein property as in the proof of Theorem 3.5,
using Theorem 4.4 of [22], because En(p) is not an integral domain. However, the
alternative argument using §21.3 of [10] still shows that En(p) is Gorenstein.
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Remark 3.9. Recall that there is an action of the multiplicative group Gm on the alge-
bras k[x1, . . . , xn] and k[x1, . . . , xn]⊗ Λ(ξ1, . . . , ξn) defined by their Z-grading (the
fractional degrees multiplied by pn). Also we have the semisimple infinitesimal sub-
group scheme µpn ⊂ Gm defined by the equation ap

n

= 1 (i.e., µpn = (Gm)(n), the n-
th Frobenius kernel of Gm). For p > 2, En(p) = (k[x1, . . . , xn]⊗ Λ(ξ1, . . . , ξn))

µpn , the
subring of invariants, and for p = 2 we similarly have the subring of invariants En(2) =
k[x1, . . . , xn−1, xn]

µ2n = k[x1, . . . , xn−1, x
2
n]

µ2n . Since
∑

i deg(xi)−
∑

i deg(ξi) is an
integer, the action of µpn on the super-space spanned by the variables xi, ξi for p > 2
has Berezinian equal to 1 (recall that degrees of odd variables should be counted with
a minus sign). Similarly, for p = 2 the action of µ2n on the variables x1, . . . , xn−1, x

2
n

has determinant equal to 1, as
∑n−1

i=1 deg xi + 2deg xn is an integer. This is related
to the fact that the ring En(p) is Gorenstein. For example, for p = 2 this follows from
a group scheme generalization of Watanabe’s theorem: the algebra of invariants for a
homogeneous unimodular action of a finite semisimple group scheme on a polynomial
algebra is Gorenstein. This is a special case of [17, Theorem 0.1].

4. Generating functions

4.1. Generating functions, p = 2

For an integer d ⩾ 0, the degree d part of En(2) has a basis consisting of the
monomials xa1

1 x
a2
2 . . . xan

n such that the aj are non-negative integers, and

d = 1
2a1 +

3
4a2 + · · ·+ 2n−1

2n an.

The smallest integer degree of a term with aj > 0 is j, which occurs for the monomial
x1x2 . . . xj−1x

2
j . So for d an integer, we must have aj = 0 for j > d. It follows that

the maps of vector spaces E1(2)d → E2(2)d → · · · are eventually isomorphisms, and
E∞(2)d is a finite dimensional vector space, spanned by the monomials xa1

1 x
a2
2 · · ·

with

d = 1
2a1 +

3
4a2 +

7
8a3 + · · · .

Such an expression is a partition of d into parts 1
2 ,

3
4 ,

7
8 , · · · . These are enumer-

ated in sequence A002843 of the On-line Encyclopedia of Integer Sequences (which
is sequence 405 of Sloane’s Handbook [21]). This sequence has been studied by
Minc [19], Andrews [1], and Flajolet and Prodinger [15]; see also Nguyen, Schwartz
and Tran [20] for a context in algebraic topology. The first few terms are

1, 1, 2, 4, 7, 13, 24, 43, 78, 141, 253, 456, 820, 1472, 2645, 4749, 8523, 15299, 27456, 49267,

88407, 158630, 284622, 510683, 916271, 1643963, 2949570, 5292027, 9494758, . . .

A few more terms can be found at https://oeis.org/A002843/b002843.txt. This
sequence grows like Cλn, where

C := 0.74040259366730734 . . . , λ := 1.79414718754168546 . . . (4.1)

Our analysis of the generating function
∑∞

d=0 q
d dim En(2)d follows Andrews [1].

Since there are many misprints in the relevant section of [1], and we are doing some-
thing slightly different, we choose to repeat the argument in our context. The analo-
gous argument for p odd, which we carry out later, is not dealt with in [1].

https://oeis.org/A002843/b002843.txt
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Let N(m, d) be the number of monomials of degree d in x1, . . . , xm with am > 0.
Thus the dimension of En(2)d is

∑n
m=1N(m, d), and the dimension of E∞(2)d is∑∞

m=1N(m, d).

We can rewrite these monomials in terms of new variables z1, z2, . . . as follows.
Set z1 = x21, and zi = x−1

i−1x
2
i for i ⩾ 2. These variables zi are degree one elements of

the larger Z[ 12 ]-graded ring of Laurent polynomials k[x1, x
−1
1 , x2, x

−1
2 , . . . ]. Then we

have xa1
1 x

a2
2 · · · = zb11 z

b2
2 . . . where ai = 2bi − bi+1. The constraints ai ⩾ 0 translate

to 2bi ⩾ bi+1 for i ⩾ 1, and since the bi are eventually zero, they are all non-negative.
Thus N(m, d) is the number of sequences (b1, . . . , bm) of nonnegative integers with∑m

i=1 bi = d, and 2bi ⩾ bi+1 for 1 ⩽ i < m.

Set µm(q) =
∑∞

d=0N(m, d)qd, and µ0(q) = 1. We would like to compute µm(q).

In fact, we will compute a more general generating function, taking into account the
degrees with respect to all zi. Introduce auxiliary variables q1, q2, . . . corresponding
to the statistics b1, b2, . . . ; i.e., we define the multivariate Poincaré series of En(2)

µm(q1, . . . , qm) :=

∞∑
b1,...,bm:2bi⩾bi+1

qb11 · · · qbmm ,

so that the usual Poincaré series of this algebra is µm(q) = µm(q, . . . , q).

Thus we have

µm(q1, . . . , qm) =

∞∑
b1=1

2b1∑
b2=1

· · ·
2bm−1∑
bm=1

qb11 . . . qbmm .

For the last sum we have

2bm−1∑
bm=1

qbmm =
qm

1− qm
(1− q2bm−1

m ) and so we obtain

µm =
qm

1− qm

µm−1 −
∞∑

b1=1

2b1∑
b2=1

· · ·
2bm−2∑
bm−1=1

qb11 · · · qbm−2

m−2 (qm−1q
2
m)bm−1

 .

Now for the last sum we have

2bm−2∑
bm−1=1

(qm−1q
2
m)bm−1 =

qm−1q
2
m

1− qm−1q2m
(1− (qm−1q

2
m)2bm−2)

and so we obtain

µm =
qm

1− qm

(
µm−1−

qm−1q
2
m

1− qm−1q2m

(
µm−2 −

∞∑
b1=1

2b1∑
b2=1

· · ·
2bm−3∑
bm−2=1

qb11 · · · qbm−3
m−3 (qm−2q

2
m−1q

4
m)bm−2

))
.

We continue this way, using induction. At the end, we use µ0 = 1. We obtain

m∑
i=1

(−1)iµm−i

( qm
1− qm

)( qm−1q
2
m

1− qm−1q2m

)
· · ·
( qm−i · · · q2

i

m

1− qm−i · · · q2im

)
=

{
0 m > 0,

1 m = 0.
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So we set

ℓm(q1, . . . , qm) =
q1q

3
2q

7
3 · · · q2

m−1
m

(1− qm)(1− qm−1q2m) · · · (1− q1q22 . . . q
2m−1

m )
,

and we have
∑m

i=0(−1)iµm−iℓi =

{
0 m > 0,

1 m = 0.

Now we introduce another variable t, so

∞∑
m=0

m∑
i=0

tm−iµm−i · (−1)itiℓi = 1. Setting

j = m− i and

µ(t,q) :=

∞∑
m=0

µm(q1, . . . , qm)tm, µ(t, q) := µ(t, q, q, . . . ) =

∞∑
m=0

µm(q)tm,

we rewrite this as

µ(t,q)g(t,q) = 1, g(t,q) :=

∞∑
i=0

(−1)itiℓi(q1, . . . , qi). (4.2)

This yields µ(t,q) = 1
g(t,q) . In particular, µ(t, q) = 1

g(t,q) , where g(t, q) := g(t, q, q, . . . ).

Thus we obtain the following result.

Theorem 4.1. We have

µ(t,q) =

( ∞∑
m=0

(−1)mtmq1q
3
2q

7
3 · · · q2

m−1
m

(1− qm)(1− qm−1q2m) · · · (1− q1q22 . . . q
2m−1

m )

)−1

.

In particular,

∞∑
m,d=0

N(m, d)tmqd = 1

/ ∞∑
i=0

(−1)itiq1+3+7+···+(2i−1)

(1− q)(1− q3)(1− q7) · · · (1− q2i−1)
.

Note that 1 + 3 + 7 + · · ·+ (2i − 1) = 2i+1 − i− 2.

Expanding this out, the reciprocal of the generating function for N(m, d) is

1− tq

1− q
+

t2q4

(1− q)(1− q3)
− t3q11

(1− q)(1− q3)(1− q7)
+ · · ·

which tabulates as follows:

1 q q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18

1 1
t −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

t2 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5

t3 −1 −1 −1 −2 −2 −2 −3 −4
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Taking the reciprocal, we obtain the table of coefficients N(m, d):

1 q q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18

1 1
t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

t2 1 2 2 3 4 4 5 6 6 7 8 8 9 10 10 11 12

t3 1 3 4 6 9 11 14 18 22 26 31 36 41 47 53 60

t4 1 4 7 11 18 25 33 45 59 74 94 116 139 168 199

t5 1 5 11 19 33 51 72 102 141 187 246 319 403 504

t6 1 6 16 31 57 96 146 216 313 436 595 802 1056

t7 1 7 22 48 94 170 278 432 654 954 1353 1888

t8 1 8 29 71 149 287 502 822 1299 1979 2918

t9 1 9 37 101 228 466 867 1497 2470 3922

t10 1 10 46 139 338 732 1442 2623 4520

t11 1 11 56 186 487 1117 2322 4442

t12 1 12 67 243 684 1661 3635

t13 1 13 79 311 939 2413

t14 1 14 92 391 1263

t15 1 15 106 484

t16 1 16 121

t17 1 17

t18 1

The coefficients of the Poincaré series for En(2) are given by adding the first n rows of
this table, while the coefficients of the Poincaré series for E∞(2) are given by adding
all the rows; in other words by setting t = 1. Thus, setting N(d) :=

∑
m⩾0N(m, d),

we get

∞∑
d=0

N(d)qd =
1

ϕ(q)
, ϕ(q) :=

∞∑
i=0

(−1)iq1+3+7+···+(2i−1)

(1− q)(1− q3)(1− q7) · · · (1− q2i−1)
.

Note that the series ϕ(q) defines an analytic function in the disk |q| < 1, and that
the numbers C, λ in (4.1) are determined as follows: λ = 1

α , where α is the smallest
positive zero of ϕ(q), while C = − 1

αϕ′(α) .

It is easy to see from this computation that the reciprocal of the generating function
is much easier to compute than the generating function itself, and has much smaller
coefficients. The same will be true for p odd.

Remark 4.2. Recall [2] that the category Ver+2n+1 is the category of modules in Ver2n
over the algebra A := ΛV , where V = Xn−1 is the generating object of Ver2n . Thus
the group Gm acts on A by scaling V . This action gives rise to an action of Gm

on Ext•Ver2n+1
(1,1), i.e., a Z-grading on each cohomology group. We expect that on

En(2), this grading is given by the degree with respect to the variable zn. In other
words, we expect that the 2-variable Poincaré series of En(2) taking into account this
grading is µm(q, . . . , q, qv).

So let us compute the generating function µ(t, q, v) :=
∑∞

m=0 µm(q, . . . , q, qv)tm.
Arguing as above, we get µ(t, q, v)− µ(t, q) + µ(t, q)g(t, q, v) = 1, where

g(t, q, v) :=

∞∑
i=0

(−1)itiq2
i+1−i−2v2

i−1

(1− qv)(1− q3v2)(1− q7v4) · · · (1− q2i−1v2i−1)
.

Thus, we have

µ(t, q, v) = 1 +
1− g(t, q, v)

g(t, q)
.

4.2. Generating functions, p > 2
The details for p odd are similar to those for p = 2, but are quite a bit harder to

keep straight. So we have chosen to write out the computation again in full.
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For an integer d ⩾ 0, the degree d part of Ep(n) has a basis consisting of the
monomials xa1

1 . . . xan
n ξε11 . . . ξεnn such that the aj are non-negative integers, each εj is

zero or one, and

d = 2p−2
p a1 +

2p2−2
p2 a2 + · · ·+ 2pn−2

pn an + p−2
p ε1 +

p2−2
p2 ε2 + · · ·+ pn−2

pn εn.

Let Np(m, d) be the number of such monomials in degree d with am + εm > 0.
Thus the dimension of En(p)d is

∑n
m=1Np(m, d), and the dimension of E∞(p)d is∑∞

m=1Np(m, d).

Set z1 = xp1, ζ1 = xp−1
1 ξ1, and zi = x−1

i−1x
p
i , ζi = x−1

i−1x
p−1
i ξi for i ⩾ 2. Then we have

|zi| = 2p− 2, |ζi| = 2p− 3 (1 ⩽ i ⩽ n) and

(xa1
1 x

a2
2 · · · )(ξε11 ξ

ε2
2 · · · ) = (zb11 z

b2
2 · · · )(ζε11 ζ

ε2
2 · · · ),

where ai = pbi + (p− 1)εi − bi+1 − εi+1. Then the conditions on the bi and the εi
are that bi are non-negative integers, εi = 0 or 1, and pbi + (p− 1)εi ⩾ bi+1 + εi+1

for i ⩾ 1.

Set µm(q) =
∑∞

d=0Np(m, d)q
d, and µ0(q) = 1. Then we have

µm(q) =

∞∑
b1+ε1=1

pb1+(p−1)ε1∑
b2+ε2=1

· · ·
pbm−1+(p−1)εm−1∑

bm+εm=1

q(2p−2)(b1+···+bm)+(2p−3)(ε1+···+εm).

We would like to compute µm(q). As in the case p = 2, we introduce auxiliary vari-
ables q1, q2, . . . , w1, w2, . . . corresponding to the statistics b1, b2, . . . , ε1, ε2, . . . ; i.e.,
we define the multivariate Poincaré series of En(p)

µm(q1, . . . , qm;w1, . . . , wm) :=

∞∑
b1+ε1=1

pb1+(p−1)ε1∑
b2+ε2=1

· · ·
pbm−1+(p−1)εm−1∑

bm+εm=1

qb11 · · · qbmm wε1
1 · · ·wεm

m

so that the usual Poincaré series of this algebra is

µm(q) = µm(q2p−2, . . . , q2p−2; q2p−3, . . . , q2p−3).

We have
s∑

b+ε=1

qbwε =
(w + q)(1− qs)

1− q
. (4.3)

So, summing over bm, εm, we get

µm =
wm + qm
1− qm

(
µm−1 −

∞∑
b1+ε1=1

pb1+(p−1)ε1∑
b2+ε2=1

. . .

· · ·
pbm−2+(p−1)εm−2∑

bm−1+εm−1=1

qb11 · · · qbm−2

m−2 w
ε1
1 · · ·wεm−2

m−2 (qm−1q
p
m)bm−1(wm−1q

p−1
m )εm−1

)
.
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Thus, summing over bm−1, εm−1 and using (4.3) again, we have

µm =
wm + qm
1− qm

(
µm−1 −

wm−1q
p−1
m + qm−1q

p
m

1− qm−1q
p
m

(
µm−2 −

∞∑
b1+ε1=1

pb1+(p−1)ε1∑
b2+ε2=1

. . .

. . .

pbm−3+(p−1)εm−3∑
bm−2+εm−2=1

qb11 . . . q
bm−3
m−3 wε1

1 . . . w
εm−3
m−3 (qm−2q

p
m−1q

p2

m )bm−2(wm−2q
p−1
m−1q

p2−p
m )εm−2

))
.

Continuing inductively and using that µ0 = 1, we obtain

m∑
i=0

(−1)iµm−iℓi,p =

{
0 m > 0,

1 m = 0,

where

ℓi,p(q) =
(wm + qm

1− qm

)(wm−1q
p−1
m + qm−1q

p
m

1− qm−1q
p
m

)(wm−2q
p−1
m−1q

p2−p
m + qm−2q

p
m−1q

p2

m

1− qm−2q
p
m−1q

p2

m

)
· · ·
(wm−i+1q

p−1
m−i+2 · · · qp

i−1−pi−2

m + qm−i+1q
p
m−i+2q

pi−1

m

1− qm−i+1q
p
m−i+2 · · · q

pi−1

m

)
.

Introducing a new variable t, we rewrite this as
( ∞∑
j=0

tjµj

)( ∞∑
i=0

(−1)itiℓi,p

)
= 1, so

µj can be determined from the generating function

∞∑
j=0

tjµj =
1∑∞

i=0(−1)itiℓi,p
.

In particular, setting wi = q2p−3, qi = q2p−2, we get

ℓi,p(q) = q(2p−2)(pi−1)−i (1 + q)(1 + q2p−1) · · · (1 + q2p
i−1−1)

(1− q2p−2)(1− q2p2−2) · · · (1− q2pi−2)
.

Thus we obtain the following result.

Theorem 4.3. We have

∞∑
m,d=0

Np(m, d)tm =

(
∞∑
i=0

(−1)itiq(2p−2)(pi−1)−i (1 + q)(1 + q2p−1) · · · (1 + q2p
i−1−1)

(1− q2p−2)(1− q2p2−2) · · · (1− q2pi−2)

)−1

.

Remark 4.4. Recall [3, Subsection 4.14] that the principal block of the category
Ver+pn+1 (i.e., the block of the unit object) is equivalent to the category of modules
in Verpn over the algebra A := ΛV , where V = T1 is the generating object of Verpn .
Thus the group Gm acts on A by scaling V . This action gives rise to an action of
Gm on Ext•Verpn+1

(1,1), i.e., a Z-grading on each cohomology group. We expect that

on En(p), this grading is given by the degree with respect to the variables zn and
ζn. In other words, we expect that the 2-variable Poincaré series of En(p) taking into
account this grading is µm(q2p−2, . . . , q2p−2, (qv)2p−2; q2p−3, . . . , q2p−3, (qv)2p−3).
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So let us compute the generating function

µ(t, q, v) :=

∞∑
m=0

µm(q2p−2, . . . , q2p−2, (qv)2p−2; q2p−3, . . . , q2p−3, (qv)2p−3)tm.

Arguing as above, we get µ(t, q, v)− µ(t, q) + µ(t, q)g(t, q, v) = 1, where

g(t, q, v) :=

∞∑
i=0

(−1)itiq(2p−2)(pi−1)−iv(2p−2)(pi−1−1)−1(1 + qv)(1 + q2p−1v2p−2) . . . (1 + q2p
i−1−1v(2p−2)pi−2

)

(1 − q2p−2v2p−2)(1 − q2p2−2v(2p−2)p) . . . (1 − q2pi−2v(2p−2)pi−1 )
.

Thus, we have

µ(t, q, v) = 1 +
1− g(t, q, v)

g(t, q)
,

where g(t, q) := g(t, q, 1).

Here is a table of the coefficients in the reciprocal of the generating function for
Np(m, d) with p = 3.

1q q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19q20q21q22q23q24q25q26q27q28q29q30q31q32q33q34q35q36

1 1
t −1−1 −1−1 −1 −1 −1 −1 −1−1 −1−1 −1−1 −1−1 −1−1

t2 1 1 1 2 1 1 2 1 1 2 1 2 3 1 2 4 2

t3 −1−1

Reciprocating, we obtain the table of coefficients N3(m, d). These tables become
sparser as the prime increases.

5. Action of the Steenrod operations

In this section, we examine possible actions of the Steenrod operations on the
algebra E∞(p).

5.1. Steenrod operations for p = 2

We begin with the easier case p = 2.

Theorem 5.1. There is only one possibility for the action of the Steenrod operations
on E∞(2) in such a way that the Cartan formula

Sqn(xy) =
∑

i+j=n

Sqi(x)Sqj(y)

and the unstable conditions Sqi(x) = x2 for i = |x| and Sqi(x) = 0 for i > |x| hold.
Namely for x ∈ E∞(2), we have Sq|x|(x) = x2, and Sqi(x) = 0 for i ̸= |x|. In partic-
ular, if x has degree greater than zero then Sq0(x) = 0.

Proof. We begin by examining the elements x2
n

n of degree 2n − 1, and we show by
induction on n that Sqi(x2

n

n ) = 0 for i < 2n − 1. Let T = Sq0 + Sq1 + Sq2 + · · · be
the total Steenrod operation, which by the Cartan formula is a ring homomorphism.
In particular, note that Sqi of a 2nth power vanishes when i is not divisible by 2n.
Our goal is to show that T (x2

n

n ) = (x2
n

n )2 for all n ⩾ 1.
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We begin with n = 1. We have (x21)(x
4
2) = (x1x

2
2)

2. Applying Sq3 to this relation,
we obtain

Sq0(x21)(x
4
2)

2 + (x21)
2Sq2(x42) = Sq3((x1x

2
2)

2) = 0.

Therefore Sq0(x21) is divisible by (x21)
2, and is hence zero, and so T (x21) = (x21)

2.

Now for the inductive step. Assume that T (x2
n−1

n−1 ) = (x2
n−1

n−1 )
2. We have the relation

(x2
n−1

n−1 )
2n−1−1 (x2

n

n ) = (x2
n−1−1

n−1 x2n)
2n−1

in E∞(2). Applying T , we get

(x2
n−1

n−1 )
2n−2 T (x2

n

n ) = (T (x2
n−1−1

n−1 x2n))
2n−1

.

The right hand side is zero in degrees not divisible by 2n−1. It follows that T (x2
n

n )
is zero in degrees not congruent to minus two modulo 2n−1. So the only possibilities

for non-zero Steenrod operations on x2
n

n are Sq2
n−1 and Sq2

n−1−1.

We also have the relation

(x2
n

n )(x2
n+1

n+1 )
2n−1 = (xnx

2n+1−2
n+1 )2

n

in E∞(2). Applying T , we get

T (x2
n

n )(T (x2
n+1

n+1 ))
2n−1 = (T (xnx

2n+1−2
n+1 ))2

n

.

The right hand side is zero in degrees not divisible by 2n. So in particular, examining
the term in degree 2n+1(2n − 1)− 2n−1, we have

(x2
n

n )2Sq(2
n+1−1)(2n−1)−2n−1

((x2
n+1

n+1 )
2n−1) + (Sq2

n−1−1(x2
n

n ))(x2
n+1

n+1 )
2n+1−2 = 0.

So Sq2
n−1−1(x2

n

n ) is divisible by (x2
n

n )2, and is hence zero. Hence T (x2
n

n ) = (x2
n

n )2,
and the inductive step is complete.

Finally, given any monomial x = xa1
1 · · ·xan

n ∈ E∞(2), we raise it to the 2nth power
to obtain an element of the subring generated by x21, x

4
2, x

8
3, . . . . Then T (x)2

n

=
T (x2

n

) = (x2
n

)2 = (x2)2
n

, and since we are in an integral domain of characteristic
two, this implies that T (x) = x2.

5.2. Steenrod operations for p > 2

Next, we examine possible actions of the Steenrod operations on the algebra E∞(p)
for p odd. Our conclusions are weaker than in the case p = 2, because of the existence
of nilpotent elements.

Theorem 5.2. Suppose that the Steenrod operations act on E∞(p) with p odd in such
a way that the Cartan formula and unstable conditions hold. Then on the subring
spanned by the monomials not involving any of the ξi, we have Pm(x) = xp and
Pi(x) = 0 for i ̸= n, where |x| = 2m.

Proof. Let T be the total Steenrod operation P0 + P1 + · · · . The argument to show
that T (xp

n

n ) = (xp
n

n )p for p odd is similar to the case p = 2, but involves one more
induction. We therefore write it out in full.
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Our first task is to show that T (xp1) = (xp1)
p. We begin as before with

(xp1)(x
p2

2 )p−1 = (x1x
p(p−1)
2 )p,

a relation of degree 2p2(p− 1). Applying Pp2(p−1)−1 to this, we get

Pp−2(xp1) (x
p2

2 )p(p−1) + (xp1)
p P(p2−1)(p−1)−1((xp

2

2 )p−1) = 0.

Therefore Pp−2(xp1) is divisible by (xp1)
p, and hence it is zero. We work downwards

in degree by induction. Suppose we have shown that Pp−i(xp1), . . . ,Pp−2(xp1) are all

zero. Then applying Pp2(p−1)−i to the above relation, we get

Pp−i−1(xp1) (x
p2

2 )p(p−1) + (xp1)
p P(p2−1)(p−1)−i−1((xp

2

2 )p−1) = 0.

Therefore Pp−i−1(xp1) is divisible by (xp1)
p, and hence it is zero. Once we reach i =

p− 1, we have completed the proof that T (xp1) = (xp1)
p.

Next, we suppose that we have already shown that T (xp
n−1

n−1 ) = (xp
n−1

n−1 )p. We have
the relation

(xp
n−1

n−1 )p
n−1−1(xp

n

n ) = (xp
n−1−1

n−1 xpn)
pn−1

in E∞(p). Applying T , we get

(xp
n−1

n−1 )p
n−p T (xp

n

n ) = (T (xp
n−1−1

n−1 xpn))
pn−1

.

The right hand side is zero in degrees not divisible by pn−1. So the only possibilities
for non-zero Steenrod operations on xp

n

n are Ppn−ipn−1−1 for 0 ⩽ i ⩽ p− 1.
We also have the relation

(xp
n

n )(xp
n+1

n+1 )
pn−1 = (xnx

pn+1−p
n+1 )p

n

in E∞(p). Applying T , we get

T (xp
n

n )(T (xp
n+1

n+1 ))
pn−1 = (T (xnx

pn+1−p
n+1 ))p

n

.

The right hand side is zero in degrees not divisible by pn. We show by induction on i
that Ppn−ipn−1−1(xp

n

n ) = 0 for 1 ⩽ i ⩽ p− 1. If we have proved this for smaller values
of i, then we get

Ppn−ipn−1−1(xp
n

n ) (xp
n+1

n+1 )
pn+1−p + (xp

n

n )p P(pn+1−1)(pn−1)−ipn−1

((xp
n+1

n+1 )
pn−1) = 0.

So Ppn−ipn−1−1(xp
n

n ) is divisible by (xp
n

n )p, and is hence zero. This completes the
proof that T (xp

n

n ) = (xp
n

n )p.

6. The Koszul complex

We assume that pn > 3. We will consider the symmetric tensor categories Verpn

over k defined in [3]. Namely, let Tp := TiltSL2(k) be the category of tilting modules
over SL2(k). Let Ti ∈ Tp be the tilting module for SL2(k) with highest weight i. The
module Tpn−1 generates a tensor ideal In ⊂ Tp spanned by Ti for i ⩾ pn − 1. We define
Tn,p to be the quotient category Tp/In. Then Verpn is the abelian envelope of Tn,p,
i.e., the unique abelian symmetric tensor category containing Tn,p such that faithful
symmetric monoidal functors out of Tn,p into abelian symmetric tensor categories
uniquely factor through Verpn .
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More concretely, Verpn is the category R−mod of finite dimensional modules over

the algebra R := End(⊕pn−2
i=pn−1−1Ti),

1 realized as the homotopy category of projective
resolutions P • in R−mod with the usual tensor product. Namely, it turns out that
the tensor product of resolutions is a resolution (i.e., acyclic in negative degrees),
there is a unit object, and the corresponding tensor category is rigid (with T ∗

i
∼= Ti)

and equipped with a natural faithful symmetric monoidal functor Tn,p → Verpn given
by P • 7→ H0(P •).

Let Ti be the image of Ti in Verpn . In particular, we let V = T1 be the image of
the 2-dimensional irreducible representation T1 of SL2(k), also denoted by V (these
of course depend on n but to lighten the notation we do not indicate this explicitly).
Note that in both categories Λ2V is the unit object and ΛiV = 0 for i ⩾ 3. Recall [11,
13] that we have the Koszul complex K• := S•V ⊗ ΛV in Verpn (i.e., we use the
symmetric power superscript as the cohomological degree). This complex may also
be graded by total degree, which is preserved by the differential. So it splits into a
direct sum of complexes K•

m, m ⩾ 0:

0 → Sm−2V → Sm−1V ⊗ V → SmV → 0

(where we agree that SjV = 0 if j < 0). The map Sm−1V ⊗ V → SmV in this com-
plex is induced by the multiplication map of the algebra SV , so it is surjective when
m ̸= 0.

Proposition 6.1. If 1 ⩽ m ⩽ pn − 2 then the complex K•
m is exact.

Proof. It suffices to show that for any i ∈ [pn−1 − 1, pn − 2] the sequence

0 → HomVerpn (S
mV,Ti) → HomVerpn (S

m−1V ⊗ V,Ti) → HomVerpn (S
m−2V,Ti) → 0

(6.1)
is exact. This sequence can be rewritten as

0 → HomVerpn (V
⊗m,Ti)

Sm → HomVerpn (V
⊗m,Ti)

Sm−1

→ HomVerpn (V
⊗m−2,Ti)

Sm−2 → 0.
(6.2)

By Theorem 4.2 of [3], sequence (6.2) can be rewritten as

0 → HomTn,p(V
⊗m, Ti)

Sm → HomTn,p(V
⊗m, Ti)

Sm−1

→ HomTn,p
(V ⊗m−2, Ti)

Sm−2 → 0.
(6.3)

Now, if 1 ⩽ m ⩽ pn − 2, then by Proposition 3.5 of [3], sequence (6.3) can be rewritten
as follows:

0 → HomTp
(V ⊗m, Ti)

Sm → HomTp
(V ⊗m, Ti)

Sm−1

→ HomTp(V
⊗m−2, Ti)

Sm−2 → 0,
(6.4)

where V now denotes the 2-dimensional irreducible representation of SL2(k). The
Hom spaces in this sequence are just Homs between representations of SL2(k). Thus

1It does not matter whether to take endomorphisms in Tp or Tn,p – the corresponding natural map
of endomorphism rings is an isomorphism.
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sequence (6.4) can be written as

0 → HomSL2(k)(S
mV, Ti) → HomSL2(k)(S

m−1V ⊗ V, Ti)

→ HomSL2(k)(S
m−2V, Ti) → 0.

(6.5)

We will now use the following lemma.

Lemma 6.2. For m ⩽ pn − 1 one has Ext1SL2(k)(S
mV, Ti) = 0.

Proof. Since i ⩾ pn−1 − 1, it suffices to show that for any j,

Ext1SL2(k)(S
mV,Stn−1 ⊗ Tj) = 0,

where Stn−1 := Tpn−1−1 is the (n− 1)st Steinberg module (note that it is self-dual).
We have

Ext1SL2(k)(S
mV,Stn−1 ⊗ Tj) = Ext1SL2(k)(S

mV ⊗ Stn−1, Tj).

By [3, Lemma 3.3], SmV ⊗ Stn−1 has a filtration whose successive quotients are
tilting modules. Thus, since Ext1(Tl, Tj) = 0, SmV ⊗ Stn−1 is a direct sum of Ti, i.e.,
a tilting module. This implies the statement, using again that Ext1(Tl, Tj) = 0.

Now the exactness of (6.5) follows from the fact that the sequence of SL2(k)-
representations

0 → Sm−2V → Sm−1V ⊗ V → SmV → 0

is exact (being a homogeneous part of the ordinary Koszul complex) and Lemma 6.2.
This completes the proof of Proposition 6.1.

Let q = eπi/p
n

.

Corollary 6.3.

(i) For m ⩽ pn − 2 we have

FPdim(SmV ) = [m+ 1]q :=
qm+1 − q−m−1

q− q−1
∈ R

and dim(SmV ) = m+ 1 ∈ k.

(ii) The Jordan–Hölder multiplicities of the objects SmV are the decomposition
numbers of tilting modules into Weyl modules computed in [23] (see [3, Propo-
sition 4.17]).

Proof. (i) It follows from Proposition 6.1 that

FPdim(SmV ) = (q + q−1)FPdim(Sm−1V )− FPdim(Sm−2V ),

dim(SmV ) = 2 dim(Sm−1V )− dim(Sm−2V ).

Thus the statement follows by induction, using that S0V = 1, S1V = V .
(ii) This follows from (i), using [3, Theorem 4.5(iv) and Propositions 4.12, 4.16].

Recall [3] that Verpn has exactly two invertible objects up to isomorphism for
p > 2 and exactly one (the unit) for p = 2. For p > 2 let ψ be the unique non-trivial
invertible object of Verpn (generating the category of supervector spaces). If p = 2,
we agree that ψ = 1.
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Corollary 6.4.

(i) Spn−2V = ψ.

(ii) Spn−3V = V ⊗ ψ.

(iii) SjV = 0 for all j > pn − 2.

Proof. (i) By Corollary 6.3, we have FPdim(Spn−2V ) = 1, which implies that Spn−2V
is invertible (see [12, Ex. 4.5.9]). For p = 2 this implies that S2n−2V = 1, and for
p > 2 that Spn−2V = ψ (as Spn−2V ∈ Ver−pn since pn − 2 is odd).

(ii) Similarly, by Corollary 6.3, FPdim(Spn−3V ) = q + q−1 < 2, so Spn−3V is sim-
ple. But by the results of [3], the only object X ∈ Verpn of Frobenius–Perron dimen-
sion q + q−1 such that ψ is a quotient ofX ⊗ V isX ∼= V ⊗ ψ. Thus Spn−3V ∼= V ⊗ ψ.

(iii) The map Spn−3V → Spn−2V ⊗ V corresponds by adjunction to the surjec-
tive map Spn−3V ⊗ V → Spn−2V , which is nonzero by (i). Hence by (ii) it is an
isomorphism. Thus the morphism Spn−2V ⊗ V → Spn−1V must be 0 (as K•

pn−1 is a

complex). But this map is surjective, so Spn−1V = 0. This implies the statement.

Remark 6.5. In particular, this implies that

∞∑
m=0

dim(SmV )zm = (1− z)p
n−2 ∈ k[[z]].

Also we clearly have

∞∑
m=0

dim(ΛmV )zm = 1 + 2z + z2 = (1 + z)2 ∈ k[[z]].

Thus the p-adic dimensions of V defined in [13] are as follows:

Dim−(V ) = 2 ∈ Zp, Dim+(V ) = 2− pn ∈ Zp.

Similarly, we get

∞∑
m=0

FPdim(SmV )zm =
1 + zp

n

(1− qz)(1− q−1z)
. (6.6)

We also obtain

Corollary 6.6.

(i) The Koszul complex K• is exact in all degrees except 0 and pn − 2. Moreover
H0(K•) = 1 sitting in total degree 0 and Hpn−2(K•) = ψ sitting in total degree
pn.

(ii) The algebra SV is (pn − 2, 2)-Koszul and the algebra ΛV is (2, pn − 2)-Koszul
in the sense of Brenner, Butler and King [6] (see [11, Definition 5.3]).

Corollary 6.7. The algebra SV in Verpn is Frobenius.

Proof. Assume the contrary, and let k be the largest integer such that the left ker-
nel of the pairing SkV ⊗ Spn−2−kV → Spn−2V = ψ is nonzero. Denote this kernel
by N . Then the composite map N ⊗ V → SkV ⊗ V → Sk+1V is zero. Thus the
composite map N → SkV → Sk+1V ⊗ V is zero. But by Proposition 6.1, the map
SkV → Sk+1V ⊗ V is injective. Thus N = 0, a contradiction.
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Remark 6.8. Recall [3, Subsection 4.4] that the category Verpn = Verpn(k) lifts to a
semisimple braided (non-symmetric) category Verpn(K) over a field K of character-
istic zero, corresponding to the quantum group SL−q

2 where q is a primitive root of
unity of order 2pn in K. In Verpn(K) we have the quantum symmetric algebra S−qV ,
which is a lift of SV over K and is also Frobenius (pn − 2, 2)-almost Koszul (see [11,
Subsection 5.5]). In particular, we have the quantum Koszul complex S•

−qV ⊗ Λ−qV
in Verpn(K) which is a flat deformation of the Koszul complex S•V ⊗ ΛV and has
the cohomology as described in Corollary 6.6.

Corollary 6.6 allows us to construct an injective resolution Q•:

Q0 → Q1 → Q2 → · · ·

of the augmentation ΛV -module 1 by free ΛV -modules, which is periodic with period
2n − 1 for p = 2 and antiperiodic with period pn − 1 for p > 2 (where antiperiodic
means that it multiplies by ψ when shifted by this period; in particular, this is
2(pn − 1)-periodic). Namely, for 0 ⩽ i ⩽ pn − 2 we have Q2r(pn−1)+m = SmV ⊗ ΛV ,
and Q(2r+1)(pn−1)+m = SmV ⊗ ψ ⊗ ΛV .

Remark 6.9. If pn = 2 (i.e., p = 2, n = 1) then V = 0, so the Koszul complex reduces
to 1 sitting in degree 0 and hence does not fit the above general pattern; but we will
not consider this trivial case. If pn = 3 (i.e., p = 3, n = 1) then V = ψ, so Λ3ψ ̸= 0 and
hence the Koszul complex S•V ⊗ ΛV still does not fit the general pattern (in fact,
in this case Verpn = Supervec, so the Koszul complex is exact except in degree 0).
However, now this can be remedied by a slight modification of the definition. Namely,
let ΛtrV be the quotient of ΛV by Λ3V (forcing the desired equality Λ3V = 0). Then
we have the truncated Koszul complex K•

tr := S•V ⊗ ΛtrV which is easily shown to
have the same properties as the usual Koszul complex K• for pn > 3. Thus if pn = 3
then, abusing terminology and notation, by ΛV we will mean ΛtrV , and by the Koszul
complex the truncated Koszul complex; then the above results will also apply to this
case.

As an application let us compute the multiplicities of the unit object in the sym-
metric powers of V for p = 2.

Proposition 6.10. If p = 2 then [SmV : 1] = 0 if m is odd and [SmV : 1] = 1 if m
is even. Thus [SV : 1] = 2n−1.

Proof. Notice that for X ∈ Ver2n the multiplicity [X : 1] of 1 in X is equal to
Tr(FPdim(X))/2n−1 (the trace of the algebraic number in the field Q(q + q−1) where
q := eπi/2

n

) ; this follows since by [2], TrFPdim(X) = 0 for any nontrivial simple
X ∈ Ver2n+1 . So we have∑

m

[SmV : 1]zm =
1

2n−1
Tr

(
1 + z2

n

(1− qz)(1− q−1z)

)
.

Thus the result follows from the following lemma.

Lemma 6.11.
1

2n−1
Tr

(
1 + z2

n

(1− qz)(1− q−1z)

)
=

1− z2
n

1− z2
=

2n−1−1∑
j=0

z2j .
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Proof. We have

1

2n−1
Tr

(
1 + z2

n

(1− qz)(1− q−1z)

)
=

1

2n−1

2n−1∑
k=1

1 + z2
n

(1− q2k−1z)(1− q−2k+1z)
.

This is the unique polynomial h(z) ∈ Q[z] of degree 2n − 2 such that h(qj) = 2
1−q2j

for any odd number j. But the polynomial 1−z2n

1−z2 satisfies these conditions, hence the
result.

This completes the proof of Proposition 6.10.

Remark 6.12. Another proof of Proposition 6.10 is obtained by applying Proposi-
tion 4.16 and Theorem 4.42 of [3]. Namely, [SiV : 1] is an entry of the decomposition
matrix of Ver2n , so it is 0 if i is odd and 1 if i is even. This follows since the descendants
of the number 2n − 1 are exactly all the odd numbers between 1 and 2n − 1.

7. Ext computations

7.1. Ext computations for p = 2
Consider now the case p = 2. In this case, we can use the resolution Q• to give

the following recursive procedure of computation of the additive structure of the
cohomology Ext•Ver2n+1

(1, X) (for indecomposable X).

We will denote the generating object of Ver2k+1 by Xk and recall that Ver+2k+2

is the category of ΛXk-modules in Ver2k+1 . Also the resolution Q• in Ver2k+1 will
be denoted by S•Xk[yk+1]⊗ ΛXk, where yk+1 is a variable of degree 2k+1 − 1 for
k ⩾ 0. This is justified by this resolution being periodic with period 2k+1 − 1. Also if
Y •, Z• are complexes in an abelian category A then by Extm(Z•, Y •) we will mean
Hom(Z•, Y •[m]) = Hom(Z•, Y •+m) with Hom taken in the derived category D(A).

Recall that Ver2n+1 = Ver+2n+1 ⊕ Ver−2n+1 . If X ∈ Ver−2n+1 , then Ext•Ver2n+1
(1, X) is

zero. Thus, it suffices to compute Ext•
Ver+

2n+1
(1, X) for X ∈ Ver+2n+1 . In that case, we

have

Ext•
Ver+

2n+1
(1, X) ∼= Ext•ΛXn−1

(1, X) ∼= Ext•ΛXn−1
(1, Q• ⊗X) (7.1)

∼= Ext•ΛXn−1
(1, S•Xn−1[yn]⊗ ΛXn−1 ⊗X)

∼= Ext•Ver2n (1, S
•Xn−1[yn]⊗X)

∼= Ext•
Ver+

2n
(1, (S•Xn−1[yn]⊗X)+),

where the superscript + means that we are taking the part lying in Ver+2n , and in
the last two expressions X is regarded as an object of Ver2n using the corresponding
forgetful functor Ver+2n+1 → Ver2n . Here for the penultimate isomorphism we invoked
the Shapiro lemma, using that the ΛXn−1-module SkXn−1[yn]⊗ ΛXn−1 ⊗X is free
and therefore coinduced (as ΛXn−1 is a Frobenius algebra).

Thus we get a recursion expressing of Ext•
Ver+

2n+1
(1, X) in terms of Ext•

Ver+
2n
(1, X ′).

While this is a good news, unfortunately X ′ is not an object any more but rather
a complex of objects finite in the negative direction. Luckily, the same calculation
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applies if X is such a complex, i.e., an object of the derived category D+(Ver+2n+1)

of Ver+2n+1 , which allows us to iterate this construction. Namely, for an object X ∈
D+(Ver+2n+1), let

En(X) := HomΛXn−1
(1, S•Xn−1[yn]⊗ ΛXn−1 ⊗X)+ = (S•Xn−1[yn]⊗X)+

(the internal Hom taken in the category Ver2n). This gives an additive functor

En : D
+(Ver+2n+1) → D+(Ver+2n).

Lemma 7.1. If X ∈ Ver+2n (i.e., a trivial ΛXn−1-module) then the differential in the
complex En(X) is zero.

Proof. It is easy to see that for a finite dimensional vector space V over k, the
differential on HomΛV (k, S

•V ⊗ ΛV ) = S•V induced by the Koszul differential on
S•V ⊗ ΛV is zero. The lemma is a straightforward generalization of this fact.

Corollary 7.2. Suppose X ∈ Ver2n . Then we have an isomorphism

Ext•
Ver+

2n+1
(1, X) ∼=

⊕
i⩾0

Ext•−i
Ver2n

(1, SiXn−1[yn]⊗X)

=
⊕
i⩾0

Ext•−i

Ver+
2n
(1, (SiXn−1[yn]⊗X)+).

This isomorphism maps the grading induced by the grading on ΛXn−1 to the grading
defined by deg(Xn−1) = 1, deg(yn) = 2n − 1 (i.e., it coincides with the cohomological
grading).

Proof. Follows immediately from Lemma 7.1.

Remark 7.3. Corollary 7.2 does not quite give a recursion to compute the Ext groups,
since the object (SiXn−1 ⊗X)+ may not belong to Ver2n−1 (i.e., it may carry a
nontrivial action of ΛXn−2). However, it has some useful consequences given below.

Now recall that Ver2 = Vec and Ver+22 is the category of k[ξ]-modules where ξ2 = 0.
Define a functor E1 : D

+(Ver+22) → D+(Vec) by

E1(X) := Homk[ξ](k,k[y1, ξ]⊗X) = k[y1]⊗X,

with the differential d(ym1 ⊗ x) = ym+1
1 ⊗ ξx+ ym1 ⊗ dx. We thus obtain the following

proposition.

Proposition 7.4. We have a natural isomorphism

Ext•
D+(Ver+

2n+1 )
(1, X) ∼= Ext•

D+(Ver+
2n

)
(1, En(X))

for n ⩾ 2, and

Ext•
D+(Ver+

22
)
(1, X) ∼= Ext•D+(Vec)(1, E1(X)).

This implies the following corollary. Let

E = E1 ◦ · · · ◦ En : D
+(Ver+2n+1) → D+(Vec).
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Corollary 7.5. We have a linear natural isomorphism

Ext•
D+(Ver+

2n+1 )
(1, X) = H•(E(X)).

The complex of vector spaces E(X) has the following structure:

E(X) = (S•X1 ⊗ · · · ⊗ (S•Xn−2 ⊗ (S•Xn−1 ⊗X)+)+ . . . )+[y1, y2, . . . , yn], (7.2)

and it is easy to see that the differential is linear over k[y1, . . . , yn], since multiplication
by yi is induced by the shift in the corresponding periodic resolution. Thus we get

Proposition 7.6. For any X ∈ Ver2n+1 , Ext•Ver2n+1
(1, X) is a graded finitely gener-

ated module over k[y1, . . . , yn].

In particular, we get that

Ext•Ver2n+1
(1,1) = Ext•

Ver+
2n+1

(1,1) = H•(E(1)),

where

E(1) = (S•X1 ⊗ · · · ⊗ (S•Xn−2 ⊗ (S•Xn−1)
+)+ . . . )+[y1, y2, . . . , yn].

Note that we have 1 ∈ E(1) and d(1) = 0, so we obtain a natural linear map

ϕ : k[y1, . . . , yn] → Ext•Ver2n+1
(1,1).

Proposition 7.7. For 1 ⩽ i ⩽ n multiplication by yi on Ext•Ver2n+1
(1, X) coincides

with the cup product with ϕ(yi). In particular, ϕ is an algebra homomorphism.

Proof. The proof is by induction in n. For i < n the statement follows from the
inductive assumption. For i = n, we see that the cup product with ϕ(yn) can be
realised as the Yoneda product (= concatenation) with the Koszul complexK•, which
represents the class ϕ(yn) in the Yoneda realization of Ext. This proves the first
statement. The second statement then follows since

ϕ(ab) = (ab) · 1 = a · (b · 1) = a · ϕ(b) = ϕ(a)ϕ(b).

Proposition 7.8. For X ∈ Ver+2n the natural map

Ext•Ver2n (1, X)[yn] → Ext•Ver2n+1
(1, X)

is an injective morphism of k[y1, . . . , yn]-modules which is also a morphism of algebras
for X = 1.

Proof. This follows from the isomorphism

Ext•Ver2n+1
(1, X) ∼= Ext•Ver2n (1, (S

evenXn−1 ⊗X)[yn])

since 1 is a direct summand of SevenXn−1.

Proposition 7.9. Let U ∈ Ver2n and X := U ⊗ ΛXn−1 ∈ Ver+2n+1 be a free ΛXn−1-
module. Then yn acts on Ext•Ver2n+1

(1, X) by zero.

Proof. By the Shapiro lemma we have

Ext•Ver2n+1
(1, X) ∼= Ext•ΛXn−1

(1, X) ∼= Ext•Ver2n (1, U).

Therefore, the group Gm scaling Xn−1 acts trivially on Ext•Ver2n+1
(1, X). So the

statement follows, as yn has degree 2n − 1 with respect to this action.
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Let S ⊂ {1, . . . , n− 1} and XS :=
⊗

i∈SXi be the simple object of Ver2n attached
to S in [2].

Proposition 7.10.

(i) If i ∈ S and Y ∈ Ver+2n+1 then multiplication by yi acts by zero on the space
Ext•

Ver+
2n+1

(Y,XS). Hence Ext•
Ver+

2n+1
(Y,XS) is a torsion module over the ring

k[y1, . . . , yn] unless S = ∅ (i.e., XS = 1).

(ii) The annihilator of Ext•
Ver+

2n+1
(XS , XS) in k[y1, . . . , yn] is generated by yi with

i ∈ S.

Proof. (i) The proof is by induction in n. The base is clear, so we just have to justify
the induction step. We have

Ext•
Ver+

2n+1
(Y,XS) ∼= Ext•

Ver+
2n
(1, (XS ⊗ S•Xn−1 ⊗ Y ∗)+[yn]).

If n− 1 /∈ S then XS ∈ Ver+2n so this can be written as

Ext•
Ver+

2n+1
(Y,XS) ∼= Ext•

Ver+
2n
((Y ⊗ S•Xn−1[yn]

∗)+, XS)

and the statement follows from the inductive assumption. On the other hand, if
n− 1 ∈ S then setting S′ = S \ {n− 1}, we have XS = XS′ ⊗Xn−1. So we get

Ext•
Ver+

2n+1
(Y,XS) ∼= Ext•

Ver+
2n
(1, XS′ ⊗Xn−1 ⊗ (S•Xn−1 ⊗ Y ∗)−[yn]),

where the superscript minus sign means that we are taking the part lying in Ver−2n . But
(S•Xn−1 ⊗ Y ∗)− = Xn−1 ⊗W • for some W • ∈ Ver+2n , and Xn−1 ⊗Xn−1 = ΛXn−2

(and some differential on the tensor product whose exact form is not important for
this argument). Thus we get

Ext•
Ver+

2n+1
(Y,XS) ∼= Ext•

Ver+
2n
(1, XS′ ⊗Xn−1 ⊗Xn−1 ⊗W •[yn])

∼= Ext•ΛXn−2
(1, XS′ ⊗ ΛXn−2 ⊗W •[yn])

∼= Ext•Ver2n−1
(W •[yn]

∗, XS′).

So by Proposition 7.9 the element yn−1 acts on this space by zero, and the statement
again follows from the inductive assumption.

(ii) By (i) the annihilator is at least as big as claimed, and we only need to show
that it is not bigger. This is shown again by induction in n. The base is again easy
so we only need to do the induction step. If n− 1 /∈ S then by Proposition 7.8 we
have an inclusion Ext•

Ver+
2n
(XS , XS)[yn] → Ext•

Ver+
2n+1

(XS , XS), so the result follows

from the inductive assumption for n− 1. On the other hand, if n− 1 ∈ S then XS =
XS′ ⊗Xn−1 so

Ext•
Ver+

2n+1
(XS , XS) ∼= Ext•ΛXn−1

(XS′ , XS′ ⊗ ΛXn−2)

∼= Ext•ΛXn−2
(XS′ , XS′ ⊗ ΛXn−2 ⊗ SevenXn−1)

∼= Ext•Ver2n−1
(XS′ , XS′ ⊗ SevenXn−1),

which contains Ext•Ver2n−1
(XS′ , XS′) = Ext•

Ver+
2n−1

(XS′ , XS′) as a direct summand as

SevenXn−1 contains 1 as a direct summand. Thus the result again follows from the
inductive assumption (this time for n− 2).
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Corollary 7.11. The rank rn of the module Ext•Ver2n+1
(1,1) over k[y1, . . . , yn] sat-

isfies the equality rn = rn−1[SXn−1 : 1].

Proof. In view of the isomorphism (7.1) applied to X = 1, this follows from Propo-
sition 7.10 (i).

Corollary 7.12. We have rn = 2
n(n−1)

2 .

Proof. This follows from Corollary 7.11 and Proposition 6.10, using that r1 = 1.

Recall that the algebra Ext•Ver2n+1
(1,1) has a Z-grading coming from the grading

on ΛXn−1, where yn has degree 2n − 1. Define the field Fn := k(y1, . . . , yn−1), and
let rn(v) be the Poincaré polynomial of Ext•Ver2n+1

(1,1)⊗k[y1,...,yn−1] Fn as a module

over the algebra Fn[yn]. Then the above arguments yield

Corollary 7.13. Ext•Ver2n+1
(1,1)⊗k[y1,...,yn−1] Fn is a free Fn[yn]-module, and for

n ⩾ 2

rn(v) = 2
(n−1)(n−2)

2
1− v2

n

1− v2
= 2

(n−1)(n−2)
2

2n−1−1∑
j=0

v2j .

This agrees with Conjecture 1.3. Also the formula rn = 2
n(n−1)

2 is now obtained by
evaluating rn(v) at v = 1.

Remark 7.14. As stated in Conjecture 1.3, we expect that moreover Ext•Ver2n+1
(1,1)

is a free k[y1, . . . , yn]-module (even without localization in y1, . . . , yn−1).

More generally, for every object X ∈ Ver+2n+1 we obtain upper bounds for the
Poincaré polynomials of generators of Ext•Ver2n+1

(1, X),

rn(X, z, v) :=

∞∑
i,j=0

zivj dim
(
Ext•Ver2n+1

(1, X)
/∑n

k=1Im(yk)
)i,j

,

where i is the cohomological degree and j is the v-degree.

Proposition 7.15. For n ⩾ 2 we have rn(X, z, v) ⩽ r∗n(X, z, v), in the sense that
each coefficient on the left is less than or equal to the corresponding coefficient on the
right, where

r∗n(X, z, v) :=
1

2n−1
Tr

(
FPdim(X)

1 + (zv)2
n

(1− qzv)(1− q−1zv)

n−1∏
j=2

1 + z2
j

(1− q2j−1z)(1− q−2j−1z)

)
.

In particular, all generators have degree ⩽ 2n+1 − 2(n+ 1).

Proof. The bound for rn(X, z, v) follows from the form of E(X) given in (7.2) and
formula (6.6) by a direct computation. This implies the bound on the degree of
generators, since the degree of r∗n with respect to z is 2n+1 − 2(n+ 1).

In particular, for X = 1 we get
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Corollary 7.16. Ext•Ver2n+1
(1,1) is a finitely generated module over k[y1, . . . , yn]

with Poincaré polynomial of generators rn(z, v) ⩽ r∗n(z, v), where

r∗n(z, v) :=
1

2n−1
Tr

 1 + (zv)2
n

(1− qzv)(1− q−1zv)

n−1∏
j=2

1 + z2
j

(1− q2j−1z)(1− q−2j−1z)

 .

In particular, all the generators have degree at most 2n+1 − 2(n+ 1), and there is
exactly one generator of that degree. Moreover, the Poincaré polynomial of generators
is palindromic, i.e., satisfies the equation P (z) = z2

n+1−n−1P (z−1).

Proof. It only remains to show that the Poincaré polynomial of the generators is
palindromic, which follows from the fact that the complex E(1) is self-dual.

Remark 7.17. Note that according to Conjecture 1.3, the degree bound of Corol-
lary 7.16 is expected to be sharp: the largest degree of a generator is expected
to equal 2n+1 − 2(n+ 1), with exactly one generator in that degree. On the other
hand, the bound rn ⩽ r∗n is rather poor: we have log2(r

∗
n(1, 1)) ∼ n2 as n→ ∞,

while log2(rn(1, 1)) =
n(n−1)

2 . This is not surprising, as this bound does not take
into account the fact that the complex E(1) has a nontrivial differential for n ⩾ 3
and shrinks drastically when we compute its cohomology.

Example 7.18. 1. Let n = 2. Then we have E(1) = (SX1)
+[y1, y2]. But S

0X1 = S2X1

= 1, S1X1 = X1, and all the other symmetric powers are zero. Thus, (SX1)
+ =

k⊕ kw, where w has cohomological degree 2. Also in this case it is easy to see that
the differential in E(1) is zero (so the bound r∗2(z, v) = 1 + (zv)2 is sharp). Thus
Ext•Ver23 (1,1) is a free k[y1, y2] module of rank 2 with generators of degree 0 and 2,

which agrees with the result of [2].
2. Let n = 3. Let Si := SiX2. Then one can show by a direct computation that

S0 = 1, S1 = X2, S
2 = [1, X1], S

3 = X1 ⊗X2, S
4 = [X1,1], S

5 = X2, S
6 = 1,

and all the other symmetric powers are zero (where Y = [Y1, . . . , Ym] means that Y
is a uniserial object with composition series Y1, . . . , Ym, with head Y1 and socle Ym).
Thus Ext•Ver24 (1,1) is isomorphic to

Ext•Ver23 (1,1)[0]⊕ Ext•Ver23 (1, [1, X])[2]⊕ Ext•Ver23 (1, [X,1])[4]⊕ Ext•Ver23 (1,1)[6],

where X = X1 and the numbers in square brackets are degree shifts. Now, consider
the portion of the long exact sequence

Hom(1, X) → Ext1(1,1) → Ext1(1, [X,1]) → Ext1(1, X) → Ext2(1,1), (7.3)

where Ext groups are taken in Ver23 . It was shown in [2] that the Poincaré series
of Ext•(1, X) is z

1−z3 . Also we have dimExt1(1, [X,1]) ⩾ 2 since we have two dif-
ferent nontrivial extensions of 1 by [X,1], namely [1⊕X,1] and [1, X,1] (both
indecomposable quotients of the projective cover of 1 in Ver23). Thus the dimension
of Ext1(1, [X,1]) is two, and the sequence (7.3) looks like 0 → k → k2 → k → k.
This implies that the last map in this sequence (the connecting homomorphism
Ext1(1, X) → Ext2(1,1)) is zero. Since the map Ext•(1, X) → Ext•+1(1,1) is lin-
ear over k[y2], we see that this map is zero in all degrees (as Ext•(1, X) is a free
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k[y2]-module on one generator in degree 1). Thus, Ext•(1, [X,1]) ∼= Ext•(1, X)⊕
Ext•(1,1), so the Poincaré series of Ext•(1, [X,1]) is 1+z

(1−z)(1−z3) .

Now, the object [X,1,1, X] is the projective cover of X. This implies that

Ext•(1, [1, X]) ∼= Ext•+1(1, [X,1]).

Thus the Poincaré series of Ext•(1, [1, X]) is z+z2

(1−z)(1−z3) . Altogether we obtain that

the Poincaré series of Ext•Ver24 (1,1) is given by the formula

h(z, v) =
(1 + (vz)6)(1 + z2) + (vz)2(z + z2) + (vz)4(1 + z)

(1− z)(1− z3)(1− (vz)7)

=
1 + z2 + v2z3 + (v2 + v4)z4 + v4z5 + v6z6 + v6z8

(1− z)(1− z3)(1− (vz)7)
.

One can check directly that Ext•Ver24 (1,1) is a free module over k[y1, y2, y3]. Thus the
Poincaré polynomial of its generators is

r3(z, v) = 1 + z2 + v2z3 + (v2 + v4)z4 + v4z5 + v6z6 + v6z8.

On the other hand, it is easy to compute that

r∗3(z, v) = 1 + (1 + v2)z2 + 2v2z3 + (v2 + v4)z4 + 2v4z5 + (v4 + v6)z6 + v6z8

= r3(z, v) + v2(z2 + z3) + v4(z5 + z6).

This means that the differential in the complex E(1)/(y1, y2, y3) acts as a rank 1
operator between degrees 2 → 3 and 5 → 6 and otherwise acts by zero. In other
words, when computing the cohomology of this complex, we kill two elements of
cohomological degrees 2, 3 in v-degree 2 and two elements of cohomological degrees
5, 6 in v-degree 4.

It is instructive to write down the complex E(1) explicitly. We have

E(1) =M+[y1, y2, y3], M := SX1 ⊗ (SX2)
+.

The components of M are as follows (with X := X1):

M0 = 1, M1 = X, M2 = 1⊕ [1, X], M3 = X ⊗ [1, X] = [X,1,1],

M4 = [1, X]⊕ [X,1], M5 = X ⊗ [X,1] = [1,1, X],

M6 = 1⊕ [X,1], M7 = X, M8 = 1.

Thus, E(1) has the following components (as Λ1-modules):

E0 = 1, E1 = 0, E2 = 1⊕ 1, E3 = [1,1], E4 = 1⊕ 1,

E5 = [1,1], E6 = 1⊕ 1, E7 = 0, E8 = 1.

The differential maps E2 = 1⊕ 1 → E3 = [1,1], E5 = [1,1] → E6 = 1⊕ 1, both by
rank 1 operators, and is zero in other degrees.

7.2. Ext computations for p > 2
In this section we would like to generalise some of the results of the previous section

to the case p > 2. The constructions and formulas are very similar to the case p = 2
but not exactly the same due to presence of the invertible object ψ and some other
differences, so we chose to repeat them.
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As in the case p = 2, we can use the resolution Q• to give the following recur-
sive procedure for the computation of the additive structure of the cohomology
Ext•Verpn+1

(1, X) (for indecomposable X).

For k ⩾ 1 we will denote the generating object of Verpk by Xk−1 and recall [3,

Subsection 4.14] that the principal block Ver0pk+1 of Verpk+1 is naturally equivalent to
the category of ΛXk−1-modules in Verpk . Let us denote this equivalence by F ; i.e.,

for an object X ∈ Ver0pk+1 we denote the corresponding ΛXk−1-module by FX.

In the Yoneda realization of Ext, the Koszul complex K• = S•Xk−1 ⊗ ΛXk−1 rep-

resents a class τk ∈ Extp
k−1

ΛXk−1
(1, ψ), and the class yk := τ2k of degree 2(pk − 1) is

represented by the concatenation of S•Xk−1 ⊗ ΛXk−1 with S•Xk−1 ⊗ ΛXk−1 ⊗ ψ,
which we will denote by S•Xk−1 ⊗ ΛXk−1 ⊗ S•ψk−1, where ψk−1 is ψ sitting in
degree pk − 1. Thus Q• = S•Xk−1[yk]⊗ ΛXk−1 ⊗ S•ψk−1.

If X ∈ Verpn but X /∈ Ver0pn then we have Ext•Verpn (1, X) = 0. So, it suffices to

compute Ext•Ver0
pn+1

(1, X) for X ∈ Ver0pn+1 . In that case, we have

Ext•Ver0
pn+1

(1, X) ∼= Ext•ΛXn−1
(1, FX) ∼= Ext•ΛXn−1

(1, Q• ⊗ FX)

∼= Ext•ΛXn−1
(1, S•Xn−1[yn]⊗ ΛXn−1 ⊗ S•ψn−1 ⊗ FX)

∼= Ext•Verpn (1, S
•Xn−1[yn]⊗ S•ψn−1 ⊗ FX)

∼= Ext•Ver0
pn
(1, (S•Xn−1[yn]⊗ S•ψn−1 ⊗ FX)0),

where the superscript zero means that we are taking the part lying in Ver0pn , and in
the last two expressions FX is regarded as an object of Verpn using the corresponding
forgetful functor ΛXn−1-mod → Verpn forgetting the structure of a ΛXn−1-module.

The same calculation applies if X is a complex, i.e., an object of the derived
category D+(Ver0pn+1) of Ver0pn+1 . Namely, for an object X ∈ D+(Ver0pn+1), let

En(X) := HomΛXn−1
(1, S•Xn−1[yn]⊗ ΛXn−1 ⊗ S•ψn−1 ⊗ FX)0

= (S•Xn−1[yn]⊗ S•ψn−1 ⊗ FX)0.

This gives an additive functor En : D
+(Ver0pn+1) → D+(Ver0pn).

The following lemma is a straightforward analog of Lemma 7.1.

Lemma 7.19. If X ∈ Verpn (with trivial action of ΛXn−1) then the differential in
the complex En(X) is zero.

Corollary 7.20. Suppose X ∈ Verpn . Then we have an isomorphism

Ext•Ver0
pn+1

(1, X) ∼=
⊕
i⩾0

Ext•Verpn (1, S
iXn−1[yn]⊗ S•ψn−1 ⊗ FX)

=
⊕
i⩾0

Ext•Ver0
pn
(1, (SiXn−1[yn]⊗ S•ψn−1 ⊗ FX)0).

This isomorphism maps the grading induced by the grading on ΛXn−1 to the grading
defined by deg(Xn−1) = 1, deg(yn) = 2pn − 2, deg(ψn−1) = pn − 1 (i.e., it coincides
with the cohomological grading).
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As for p = 2, Corollary 7.20 does not quite give a recursion to compute the Ext
groups, since the object (SiXn−1 ⊗ S•ψn−1 ⊗ FX)0 may not belong to Verpn−1 (i.e.,
may carry a nontrivial action of ΛXn−2). However, it has some useful consequences
given below.

Proposition 7.21. For n ⩾ 1 we have

Ext•D+(Ver0
pn+1 )

(1, X) = Ext•D+(Ver0
pn

)(1, En(X)).

This implies the following corollary. Let E = E1 ◦ · · · ◦ En : Ver
0
pn+1 → Ver0p = Vec.

Corollary 7.22. We have a linear isomorphism

Ext•D+(Ver0
pn+1 )

(1, X) ∼= H•(E(X)).

The complex of vector spaces E(X) has the following structure:

E(X) = (S•X0 ⊗ S•ψ0 ⊗ F (S•X1 ⊗ S•ψ1 ⊗ · · ·
· · · ⊗ F (S•Xn−1 ⊗ S•ψn−1 ⊗ FX)0 . . . )0)0[y1, y2, . . . , yn],

and it is easy to see as in the case p = 2 that the differential is linear over k[y1, . . . , yn].
Thus we get

Proposition 7.23. For any X ∈ Verpn+1 , Ext•Verpn+1
(1, X) is a graded finitely gen-

erated module over k[y1, . . . , yn].

In particular, we get that

Ext•Verpn+1
(1,1) = Ext•Ver0

pn+1
(1,1) = H•(E(1)),

where

E(1) = (S•X0 ⊗ S•ψ0⊗F (S•X1 ⊗ S•ψ1 ⊗ · · ·
⊗ F (S•Xn−1 ⊗ S•ψn−1)

0 . . . )0)0[y1, y2, . . . , yn].

Note that we have 1 ∈ E(1) and d(1) = 0, so we obtain a natural linear map

ϕ : k[y1, . . . , yn] → Ext•Verpn+1
(1,1).

Proposition 7.24. For 1 ⩽ i ⩽ n multiplication by yi on Ext•Verpn+1
(1, X) coincides

with the cup product with ϕ(yi). In particular, ϕ is an algebra homomorphism.

Proof. The proof is the same as that of Proposition 7.7, using that ϕ(yn) can be
realised as Yoneda product with the complex K• ⊗ S•ψn−1, where K

• is the Koszul
complex. The only difference is the presence of the additional factor S•ψn−1.

Proposition 7.25. For X ∈ Ver0pn the natural map

Ext•Verpn (1, X)[yn] → Ext•Verpn+1
(1, X)

is an injective morphism of k[y1, . . . , yn]-modules which is also a morphism of algebras
for X = 1.

Proof. This follows from the isomorphism

Ext•Verpn+1
(1, X) ∼= Ext•Verpn (1, (S

•Xn−1 ⊗ S•ψn−1)
0 ⊗X)[yn]

since 1 is a direct summand of (S•Xn−1 ⊗ S•ψn−1)
0.
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8. Some further computations

In order to search for similar patterns for Ext•Verpn+1
(1, S) with S simple in the

principal block, it makes sense to compute a number of examples. For instance, the
simplest case n = 1 can be computed using the theory of Brauer tree algebras, and
the answer is as follows.

Let X0, . . . , XN−1 label the simple modules for a chain-shaped Brauer tree algebra
of length N , in the order they occur in the Brauer tree (note that in the case of
Verlinde categories N = p− 1 and X0 = 1). Then we have

Proposition 8.1 ([9]). The Poincare series of Ext•(Xi, Xj) is given by the formula

∞∑
k=0

tk dimExtk(Xi, Xj) =
QijN (t) + t2N−1QijN (t−1)

1− t2N
,

where QijN (t) := t|i−j| + t|i−j|+2 + · · ·+ tN−1−|N−1−i−j|.

Example 8.2. If i = 0, Proposition 8.1 gives

∞∑
k=0

tk dimExtk(X0, Xj) =
tj + t2N−1−j

1− t2N
.

We also computed Ext•Verp3 (1, S) for S simple in the cases p = 2 and p = 3. For

p = 2, by the results of [2], we have the following (note that L0 = 1):

∞∑
i=0

ti dimExtiVer23 (1,1) =
1 + t2

(1− t)(1− t3)
,

∞∑
i=0

ti dimExtiVer23 (1, L2) =
t

1− t3
.

For p = 3, the Poincaré series computed using Magma agree at least up to degree
100 with the following (again L0 = 1):

∞∑
i=0

ti dimExtiVer33 (1,1) =
1 + t3 + t6 + 2t7 + t8 + t10 + 2t11 + t12 + t15 + t18

(1− t4)(1− t16)
,

∞∑
i=0

ti dimExtiVer33 (1, L4) =
t+ t4 + t5 + t6 + t8 + 2t9 + t10 + t12 + t13 + t14 + t17

(1− t4)(1− t16)
,

∞∑
i=0

ti dimExtiVer33 (1, L6) =
t2 + t13

1− t16
,

∞∑
i=0

ti dimExtiVer33 (1, L10) =
t2 + 2t3 + t4 + t7 + t8 + t10 + t11 + t14 + 2t15 + t16

(1− t4)(1− t16)
,

∞∑
i=0

ti dimExtiVer33 (1, L12) =
t+ t2 + t4 + t5 + t6 + 2t9 + t12 + t13 + t14 + t16 + t17

(1− t4)(1− t16)
,

∞∑
i=0

ti dimExtiVer33 (1, L16) =
t5 + t10

1− t16
.
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