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Abstract
Formulating geometric flows of space curves using quantities

derived from the Frenet frame restricts the motion to one con-
nected component of the space of locally convex curves. A new
invariant quantity called tangent turning sign is proposed to
determine the nondegenerate homotopy type of the initial curve
and identify its possible shapes during the geometric flow.

1. Introduction

Geometric flows of space curves are useful for understanding and modeling impor-
tant natural phenomena such as turbulence [19] or dynamics of dislocation lines [15],
and can be used to optimize the shape of filaments under topological constraints
[23]. It is often natural and useful to formulate these problems in terms of the local
geometric quantities derived from the Frenet frame. However, as the construction of
the Frenet frame requires positive curvature, this formulation effectively restricts the
resulting motion within the space of locally convex space curves. We aim to further
develop and utilize ideas from regular homotopy theory to better understand the
consequences posed by these limitations.

Besides their practical applications, geometric flows of various types have shown
to be a powerful tool for answering and elucidating topological questions. Along with
the obvious example of the important role of the Ricci flow in Perelman’s proof of
the Poincaré Conjecture [17, 18], one can also point out the recent efforts in using
minimization of geometric functionals for finding the optimal embedding of objects
with prescribed topology. This includes the gradient flows of O’Hara energies [5, 16] or
the optimization of the Willmore energy for finding optimal surfaces, like the Clifford
torus [10]. This work explores the opposite direction by employing Feldman’s results
[6, 9] to gain new insights in the long-term behavior of space curve flows. For other
recent use of topology in the study of geometric flows, see e.g. [11].

The contribution of this work is twofold. First, the connection between a family
of geometric evolution equations and results from nondegenerate homotopy theory is
established. Then, a new invariant quantity called tangent turning sign is introduced
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to help us distinguish between different nondegenerate homotopy classes of space
curves. In this way, the scope of possible trajectories of evolving curves can be inferred
a priori, from the initial geometric configuration.

2. Background

This paper deals with an abstract family of geometric flows of filaments in three
dimensional Euclidean space. Specific examples of such flows model the motion of
scroll waves in excitable media [12, 8], dynamics of elastic rods [4, 3], relaxation of
magnetic field lines in the solar corona [20], movement of dislocation and disclination
loops in crystalline materials [15] or motion of vortex filaments via the localized
induction approximation [19].

This section defines necessary notation and introduces the notion of Frenet frame
dependent geometric flows. Consider a family of regular, closed curves {Γt}t∈[0,tmax),
where tmax > 0 is the terminal time and for each t ∈ [0, tmax) the curve Γt is given by
a map X(·, t) : S1 → R3. The tangent vector T is given by T = ∂sX = ∥∂uX∥−1∂uX,
where ∂s denotes the arclength derivative. Assuming that ∂2

sX is non-zero, we can
define the normal and the binormal vector as N = ∥∂sT∥−1∂sT and B = T ×N ,
respectively. Curves that meet this assumption at each point are called locally convex,
nondegenerate (see [6, 9]) or curves without inflectional points (see [20]). Consider
the following formulation of general geometric flow of space curves:

∂tX = αT + βN + γB on S1 × [0, tmax), (1)

X|t=0 = X0 in S1, (2)

where X0 : S
1 → R3 is parametrization of the initial curve and α, β and γ are func-

tions which may depend on local geometric quantities such as the curvature κ and
the torsion τ or on global geometric quantities such as the length.

The problem with formulation (1) lies in the fact that the vectors N and B and
the torsion τ are undefined when κ = 0. In some cases, the right-hand side of (1) can
be modified in a way that avoids this issue.

Remark 2.1. Consider a geometric flow given by α, β and γ such that for all curves
and all points u0 ∈ S1, where the curvature κ vanishes, we have

lim
u→u0

(β2 + γ2) = 0. (3)

Then equation (1) can be modified to

∂tX =

{
αT + βN + γB, κ > 0,

αT, κ = 0.
(4)

This modification can be applied for example to the curve shortening flow [1, 2]
or the binormal flow [19] given by ∂tX = κN and ∂tX = κB, respectively.

Definition 2.2 (Frenet frame dependent geometric flows). Geometric flow, given by
α, β and γ and the equation (1), which does not satisfy the condition (3) is called
Frenet frame dependent.
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Figure 1: Construction of Γp from Definition 3.2.

3. Tangent turning sign

In Section 2, we introduced the notion of Frenet frame dependent geometric flows
of space curves and provided examples that show their usefulness. The existence of
these flows is, however, limited by the assumption of non vanishing curvature at each
time and point along the curve. This property restricts such motion to one simply
connected component of the space of locally convex space curve. In this section, we
investigate the properties of this space in order to gain new insights into the long
term behavior of this family of geometric motion laws. We introduce a new geometric
quantity called tangent turning sign and show that it remains constant during any
Frenet frame dependent motion. This allows us to infer possible geometric shapes of
space curves which can be obtained by evolving a given initial curve. The notions
from this paragraph are formalized in the following definition.

Definition 3.1 (Nondegenerate homotopy). Let M denote the space of all locally
convex, closed space curves with a C2-class parametrization. A regular homotopy
between two curves from M is called nondegenerate homotopy provided each inter-
mediate curve generated by the homotopy belongs to the space M. The equivalence
between two curves from M, induced by the nondegenerate homotopy is denoted by
∼ and the associated quotient space is denoted by M/∼.

The notion of nondegenerate homotopy is motivated by the fact that a curve
Γ ∈ M may be obtained by a Frenet frame dependent geometric flow from an initial
condition Γ0 only if Γ and Γ0 belong to the same equivalence class in M/∼. This
reasoning naturally leads to the following question: What is the cardinality of M/∼
and how to classify a given curve from M?

The first part of the question has been answered by Feldman in [6]. By considering
the Frenet frame of a locally convex curve as a mapping F : S1 → SO(3) and by
using the properties of the fundamental group of SO(3), namely that π1(SO(3)) ∼= Z2,
Feldman proved that M/∼ has two equivalence classes.

However, this result does not address the second part of the question. Namely, how
to determine the equivalence class for a given curve from M. This section provides
a solution by defining new topological invariant that allows us to easily classify any
locally convex space curve and that also provides a simple intuition for the structure
of M/∼.The invariant is introduced in the following definition.
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Definition 3.2 (Tangent turning sign). Let Γ ∈ M be a space curve with parame-
trization X. Choose any p ∈ S2 \ Ran T and denote by

Φp : S
2 \ {p} → R2

the stereographic projection from the point p. This gives us a new planar curve Γp

(see Figure 1) parametrized by Φp ◦ T . The tangent turning sign TΓ of the original
space curve Γ is then defined as

TΓ = (−1)d(Γ
p), (5)

where d(Γp) is the degree of the Gauss map for the curve Γp, also referred to as the
turning number.

Note that the construction of the tangent turning sign in Definition 3.2 is based
on an arbitrary choice of the point p. This ambiguity is addressed in the following
proposition.

Proposition 3.3. The tangent turning sign is well-defined.

Proof. Let Γ be an arbitrary curve from M. We have to show that the value of TΓ
is independent of the choice of p. Consider two different points p1, p2 ∈ S2 \ Ran T .
To begin, assume that the points p1 and p2 lie in the same connected component
C ⊂ S2 \ Ran T . Then there is a regular path p : [0, 1] → C such that p(0) = p1 and
p(1) = p2. This defines a regular homotopy

ht := Φp(t) ◦ T

between the projected curves Γp1 and Γp2 . Thus, by the Whitney–Graustein Theorem
[22], we have d(Γp1) = d(Γp2).

It remains to show that the definition of TΓ is consistent for points p1 ∈ C1 and
p2 ∈ C2, when C1 and C2 are different connected components of S2 \ Ran T . Without
loss of generality, assume that C1 and C2 share a common border, i.e. ∂C1 ∩ ∂C2 ̸= ∅.
This allows us to find a neighborhood N ⊂ S2 such that p1, p2 ∈ N and

N \ Ran T ⊂ C1 ∪ C2. (6)

Applying the stereographic projections Φp1
and Φp2

leads to configurations depicted
in Figure 3a. The common border of C1 and C2 is projected in two different ways,
which leads to a change of the turning number. However, by adding two circles of
the same orientation to Γp1 as in Figure 3b, the curve can be morphed by a regular
homotopy into Γp2 . Since the addition of the circular parts to Γp1 has changed its
total signed curvature by ±4π, we have

|d(Γp1)− d(Γp2)| = 2.

Thus the sign in (5) does not change and the tangent turning sign is defined properly.

The following example shows the construction of Γp and the corresponding value
of TΓ for several specific curves from M.
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Example 3.4. Consider the following parametric functions:

X1(u) =
1

2

1 + cos(2u)
sin(2u)
2 sinu

 , X2(u) =
1

6

cos(2u)(5 + cos(3u))
sin(2u)(5 + cos(3u))

sin(3u)

 ,

X3(u) =

cos(4u) cosu
sin(4u) cosu

sinu

 , X4(u) =
1

6

cosu(5 + cos(10u))
sinu(5 + cos(10u))

sin(10u)

 ,

for u ∈ 2S1. The curves defined by these parametric functions are shown in Figure 2
along with their tangent indicatrices and their stereographical projections from the
point p = (0, 0, 1)T .

Since the turning numbers read d(Γp
1) = d(Γp

2) = 2, d(Γp
3) = 5 and d(Γp

4) = 11, the
tangent turning sign is positive for the first two curves Γ1 and Γ2, and negative for
the remaining curves Γ3 and Γ4.

As eluded to in the beginning of this section, we wish to show that TΓ does not
change during any Frenet frame dependent flow. The proof is based on the following
statements.

Lemma 3.5. Let ht be a nondegenerate homotopy and let T (·, t) denote the tangent
vector map of the curve given by ht. Then for each t ∈ [0, 1], there is a neighborhood
H of t and p ∈ S2 such that

p /∈ Ran
(
T |S1×(H∩[0,1])

)
. (7)

Proof. Let t be a fixed element of [0, 1]. The tangent indicatrix cannot fill the sphere,
i.e.

Ran T (·, t) ̸= S2,

because T (·, t) is assumed to be differentiable. This follows the fact that there are
no differentiable, space-filling functions (see [14]). Furthermore, since Ran T (·, t) is
closed, there is p ∈ S2 such that

Ran T (·, t) ∩Bε
p = ∅,

for some ε > 0, where

Bε
p = {x ∈ S2 : ∥x− p∥ < ε}.

Since T is continuous and

min
S1

∥T (·, t)− p∥ ⩾ ε,

there must be some neighborhood H of t such that

inf
S1×(H∩[0,1])

∥T − p∥ ⩾
ε

2

and thus we arrive at (7).

For the convenience of the reader, we state the following trivial, but useful, obser-
vation.

Observation 3.6. Closed, C2-class space curve belongs to M iff its tangent indicatrix
is regular.
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Figure 2: Locally convex curves from Example 3.4.
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Figure 3: Ideas from the proof of Proposition 3.3.

Proof. The statement follows immediately from the first Frenet–Serret equation
∂sT = κN .

Lemma 3.5 allows us to prove the invariance of TΓ under nondegenerate homotopy,
which is the main result of this article.

Theorem 3.7. The tangent turning sign TΓ of a locally convex space curve Γ is
invariant with respect to nondegenerate homotopy.

Proof. Consider a nondegenerate homotopy ht and denote by {Γt}t∈[0,1] ⊂ M the
curves generated by ht. From Lemma 3.5, we have an uncountable set of points on a
unit sphere:

P = {pt : t ∈ [0, 1]} ⊂ S2

and the corresponding open cover of [0, 1]:

S = {H∗
t : t ∈ [0, 1]} ⊂ P([0, 1]),

where H∗
t = Ht ∩ [0, 1] and P(M) denotes the powerset of M . Since the closed inter-

val [0, 1] is compact, there exists a finite subcover, i.e. there is a subset {ti}Ni=1 ⊂ [0, 1]
such that N ∈ N, ti < ti+1 for all nonnegative integers i < N and the corresponding
set

S ′ = {H∗
ti}

N
i=1 ⊂ S

is also an open cover of [0, 1]. Denote by P ′ = {pi}Ni=1 the associated subset of P such
that for all nonnegative integers i ⩽ N , we have

pi ∈ S2 \ Ran
(
T |S1×H∗

ti

)
,

where T (·, t) is the parametrization of the tangent vector from the curve Γt. Let
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{ki}N
′

i=1 be a strictly increasing sequence of integers between 1 and N such that the
subsequence

S ′′ = {Htki
}N

′

i=1 ⊂ S ′

is a minimal subcover with respect to inclusion. For each nonnegative integer i < N ′,
choose

si ∈ H∗
tki

∩H∗
tki+1

. (8)

Note that the intersection in (8) is nonempty because S ′′ is a minimal subcover and
the sequence {tki}N

′

i=1 is increasing. The final configuration is depicted in Figure 4.
On each time interval [si, si+1], we can construct a regular homotopy

ĥt := Φpki
◦ T (·, si + t(si+1 − si))

between Γ
pki
si and Γ

pki
si+1 due to Observation 3.6. Thus, we prove that

TΓsi
= TΓsi+1

for all nonnegative integers i < N ′ and consequently TΓ0 = TΓ1 .

4. Ramifications

As a direct consequence of Theorem 3.7 we obtain the following result.

Corollary 4.1. The tangent turning sign TΓ remains constant during any Frenet
frame dependent flow.

One may also use Theorem 3.7 in the opposite direction. Namely, if the tangent
turning sign is flipped during a smooth evolution, the curvature must have vanished
at some point during the motion. This usecase is illustrated in the following example.

Example 4.2. Consider the example of a double circle transforming into a simple circle
from [7]. The parametric function associated with this transformation is given by

X(u, t) =

−t cosu+ (1− t) cos(2u)
t sinu+ (1− t) sin(2u)

−2t(1− t) sinu

 ,

where u ∈ S1 and t ∈ [0, 1]. Since the original curve Γ0 has negative tangent turning
sign and the final curve Γ1 has tangent turning sign 1, there must be (u, t) ∈ S1 × [0, 1]
such that κ(u, t) = 0.
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The notion of Frenet frame dependent geometric flow can be made even stricter as
some flows may require even higher order regularity. For instance, the Minimal surface
generating flow, introduced in [13], requires both the curvature and the torsion to be
non-zero at each point along the curve. Other examples can be found in [21].

The space of third order nondegenerate homotopy classes has been studied in [9].
In this case, there are four different equivalence classes as the orientation of the curve
becomes relevant. The four classes are thus uniquely characterized by the combination
of the tangent turning sigh TΓ and the sign of the torsion τ . Note that since the torsion
is continuous and does not vanish, the sign of τ is the same at each point along the
curve.

References

[1] S.J. Altschuler, Singularities for the curve shortening flow for space curves, J.
Differential Geom., 34 (1991), 491–514.

[2] S.J. Altschuler and M.A. Grayson, Shortening space curves and flow through
singularities, J. Differential Geom., 35 (1992), 283–298.

[3] S. Bartels and P. Reiter, Numerical solution of a bending-torsion model for
elastic rods, Numer. Math., 146 (2020), 661–697.

[4] M. Bergou, M. Wardetzky, S. Robinson, B. Audoly and E. Grinspun, Discrete
elastic rods, ACM SIGGRAPH 63 (2008).

[5] S. Blatt, The Gradient Flow of O’Hara’s Knot Energies, Math. Ann., 370
(2018), 993–1061.

[6] E.A. Feldman, Deformations of closed space curves, J. Differential Geom., 2
(1968), 67–75.

[7] R.E. Goldstein, H.K. Moffatt, A.I. Pesci and R.L. Ricca, Soap-film Möbius
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