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HYPERPLANE RESTRICTIONS OF INDECOMPOSABLE
n-DIMENSIONAL PERSISTENCE MODULES

SAMANTHA MOORE

(communicated by Peter Bubenik)

Abstract
Understanding the structure of indecomposable n-dimen-

sional persistence modules is a difficult problem, yet is foun-
dational for studying multipersistence. To this end, Buchet and
Escolar showed that any finitely presented rectangular (n− 1)-
dimensional persistence module with finite support is a hyper-
plane restriction of an indecomposable n-dimensional persis-
tence module. We extend this result to the following: If M
is any finitely presented (n− 1)-dimensional persistence mod-
ule with finite support, then there exists an indecomposable n-
dimensional persistence module M ′ such that M is the restric-
tion of M ′ to a hyperplane. We also show that any finite zigzag
persistence module is the restriction of some indecomposable
3-dimensional persistence module to a path.

1. Introduction

Understanding the structure of multiparameter persistence modules is an impor-
tant foundational problem in the area of persistent homology. Every finite multipa-
rameter persistence module has a decomposition into indecomposable multiparam-
eter persistence modules. Thus, to understand the structure of all multiparameter
persistence modules, it suffices to understand the structure of the indecomposables.
But the structure of the indecomposable n-dimensional persistence modules is rich
when n > 1; such modules have no complete discrete invariant [CZ]. One might still
hope that finite indecomposable nD modules would have simple ‘substructures’ in
some sense. For example, it would be convenient if the hyperplane restrictions of
such modules are in some restricted set of (n− 1)-dimensional persistence modules.
Buchet and Escolar proved that this is not true when n = 2; any finite 1-dimensional
persistence module is a hyperplane restriction of an indecomposable 2D persistence
module (Theorem 1.1 of [BE2]). Their work was motivated largely by [LW], which
introduced the software RIVET — an important tool for studying 2D persistence
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modules. In particular, one of RIVET’s functions is the ability to find the barcode of
any path in a finite 2D persistence module.

Buchet and Escolar further found that any finite rectangular nD persistence mod-
ule M is a hyperplane restriction of some indecomposable (n+ 1) dimensional persis-
tence module M ′ (Theorem 7.7 of [BE2]). To prove this result, Buchet and Escolar
provided three constructions for M ′. In this paper, we extend their result to further
shed light on how rich the structure of (n+ 1)-dimensional persistence modules can
be. In particular, our primary results are as follows:

• Theorem 3.1 Let M be any finite n-dimensional persistence module. Then
there exists an indecomposable (n+ 1)-dimensional persistence module M ′ such
that M is the restriction of M ′ to a hyperplane.1

• Corollary 3.2 Let M be a finite zigzag persistence module. Then there exists
an indecomposable 3-dimensional persistence module M ′ such that M is the
restriction of M ′ to a path.

The structure of the paper is as follows: Sections 2.1 and 2.2 cover the basic defini-
tions needed from multipersistence, as well as an important lemma about the homo-
morphisms between interval multiparameter persistence modules. In Section 2.3, we
discuss the classification of nD persistence modules and state the constructions/proof
for Theorem 7.7 of [BE2], as our results rely heavily on these. In Section 3, we pro-
vide constructions and proofs for our results stated above and discuss potential future
directions for research.
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2. Background and previous results

2.1. Initial definitions
Let {ej}nj=1 denote the standard basis of Nn. An n-dimensional persistence

module M over a field K is an assignment of a K-vector space Mα to each α ∈ Nn

and a homomorphism

ϕM
α,α+ej : Mα → Mα+ej for each α ∈ Nn and each j ∈ [1, n]

such that the resulting grid-like diagram commutes. If α = (α1, α2, . . . , αn) and β =
(β1, β2, . . . , βn) are points in Nn such that αj ⩽ βj for all j, then we write α ⩽ β. This
yields a partial ordering on Nn. Notice that the definition of an n-dimensional persis-
tence module M implies that there is a well-defined map ϕM

α,β : Mα → Mβ whenever
α ⩽ β.

A homomorphism f : M → N between n-dimensional persistence modules M
and N is a collection of homomorphisms fα : Mα → Nα such that

ϕN
α,α+ej ◦ fα = fα+ej ◦ ϕM

α,α+ej for all α ∈ Nn and all j ∈ [1, n].

Let V = {vi}i be a set of homogeneous elements in M (meaning that for each i,
vi ∈ Mαi

for some αi ∈ Nn). We say that V is a generating set of M if for all β ∈ Nn

1Buchet and Escolar separately proved this result recently, using a similar method [BE3].
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and v ∈ Mβ , there exist coefficients ci ∈ K such that v =
⊕
i

ciϕ
M
αi,β

(vi). If M has a

generating set V with finite cardinality, then we say that M is finitely generated.
All of the nD persistence modules in this paper are assumed to be finite, meaning
they are finitely presented and have finite support (where the support of M , denoted
by Supp(M), is defined to be {α ∈ Nn|Mα ̸= 0}).

There is a bijective correspondence between finitely generated n-dimensional per-
sistence modules M and finitely generated multigraded modules over the polynomial
ring K[x1, x2, · · · , xn]; given a finitely generated n-dimensional persistence module
M , define the finitely generated multigraded module

M ′ :=
⊕
α∈Nn

Mα over K[x1, x2, · · · , xn],

whose K[x1, x2, · · · , xn]-action is given by xj · v : = ϕM
α,α+ej (v) for all v ∈ Mα and

j ∈ [1, n]. This bijection is in fact an equivalence of categories [CZ], which allows us
to utilize definitions and results from commutative algebra.

The direct sum of two n-dimensional persistence modules M and N is the n-
dimensional persistence module M

⊕
N , whose vector spaces are given entrywise by

(M
⊕

N)α := Mα

⊕
Nα and whose maps are given by ϕ

M
⊕

N
α,β = ϕM

α,β

⊕
ϕN
α,β for all

α ⩽ β ∈ Nn. An n-dimensional persistence module M is indecomposable if M can-
not be written as M = M1

⊕
M2 where M1,M2 are both nonzero n-dimensional per-

sistence modules. By the Krull–Schmidt Theorem, any finite nD persistence module
M has an indecomposable decomposition, meaning there exist indecomposable

n-dimensional persistence modules Ii such that M =
m⊕
i=1

Ii. The following lemma will

be important for proving our main results:

Lemma 2.1 (Corollary 4.8 of [ASS]). Let M be a finite n-dimensional persistence
module. Then End(M) is local if and only if M is indecomposable.

2.2. Interval n-dimensional persistence modules

Let M =
m⊕
i=1

Ii be the decomposition of an n-dimensional persistence module M

into its indecomposable summands. Then M is called an interval n-dimensional
persistence module if dim((Ii)α) ∈ {0, 1} for all α ∈ Nn and

ϕIi
α,β =

{
IdK if α ⩽ β and (Ii)α = (Ii)β = K,
0 otherwise.

Interval nD persistence modules are some of the simplest multiparameter persistence
modules, and they will be fundamental to proving the results in Sections 2.3 and 3.
Thus, we use this section to explore the properties of such modules. For additional
properties of interval multiparameter persistence modules, see [ABENY, AENY,
DX].

Remark 2.2. Let I be an indecomposable n-dimensional interval persistence mod-
ule. We claim that α, β ∈ Supp(I) implies γ ∈ Supp(I) whenever α ⩽ γ ⩽ β. Indeed,
α, β ∈ Supp(I) implies that ϕI

α,β = IdK by above. Let γ ∈ Nn such that α ⩽ γ ⩽ β.

Then IdK = ϕI
α,β = ϕI

γ,β ◦ ϕI
α,γ since the ϕI maps must commute with each other.
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Figure 1: The first two images in this figure are 2-dimensional interval persistence
modules M and N . In each module, each dot at α ∈ N2 represents a basis element
of the α-vector space. Thick edges represent the identity map on colored components
(i.e. gray basis elements map to gray basis elements while black basis elements map to
black basis elements), while the thinner edges represent the zero map. The third image
shows M and N overlaid, which makes it clear that there are three components in
Supp(M) ∩ Supp(N). Of these components, only the rightmost is (M,N) viable. The
leftmost component C is (M,N) non-viable because (1, 6) ∈ Supp(N) \ Supp(M) and
(1, 5) ∈ C have the property that (1, 5) < (1, 6). Meanwhile, the middle component
C is (M,N) non-viable because (3, 1) ∈ Supp(M) \ Supp(N) and (4, 1) ∈ C have the
property that (3, 1) < (4, 1).

Thus ϕI
α,γ ̸= 0, implying (by the definition of interval nD persistence modules) that

γ ∈ Supp(I).

An indecomposable nD interval persistence module I is rectangular if its support
is an m-dimensional box for some m ⩽ n. Such modules are denoted by K[α, β] where
α, β ∈ Supp(I) such that α ⩽ γ ⩽ β for all γ ∈ Supp(I). An n-dimensional interval
persistence module M is rectangular if each of its indecomposable summands is.

Suppose M and N are finite n-dimensional interval persistence modules. Let
Ci be an edge-connected component of Supp(M) ∩ Supp(N). Call Ci (M,N) non-
viable if there exists β ∈ Supp(M) \ Supp(N) and α ∈ Ci such that β < α, or if there
exists β ∈ Supp(N) \ Supp(M) and α ∈ Ci such that α < β. Otherwise, refer to Ci

as (M,N) viable. For an example of these concepts, see Fig. 1.

Lemma 2.3. Suppose M and N are finite n-dimensional indecomposable interval
persistence modules. Let m denote the number of (M,N) viable components of the
intersection Supp(M) ∩ Supp(N). Then

Hom(M,N) ∼=
{

Km if m > 0,
0 otherwise.

Proof. Let {Ci}i denote the set of (possibly (M,N) non-viable) components of the
intersection Supp(M) ∩ Supp(N) and suppose f ∈ Hom(M,N). Then f |α is trivially
zero whenever α /∈ Supp(M) ∩ Supp(N). On the other hand, f |α = cα IdK for some
cα ∈ K whenever α ∈ Supp(M) ∩ Supp(N), as Mα = Nα = K. Furthermore, because
f must commute with the maps ϕM and ϕN , it must be the case that cα = cβ whenever
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α, β are in the same component of Supp(M) ∩ Supp(N). That is, f is fully determined
by {ci ∈ K}i, where ci := cα if α ∈ Ci.

We claim that if Ci is (M,N) non-viable, then ci must be zero. That is, for all
α ∈ Ci, f |α is the zero map. Suppose there exists β ∈ Supp(M) \ Supp(N) and α ∈ Ci

such that β < α. Then β /∈ Supp(N) implies f |β is the zero map. Because f must com-
mute with the maps ϕM , ϕN , it must be the case that f |α ◦ ϕM

β,α = ϕN
β,α ◦ f |β = 0. We

know that ϕM
β,α = IdK since M is an indecomposable interval n-dimensional persis-

tence module. Thus it must be the case that f |α = 0. On the other hand, suppose there
exists β ∈ Supp(N) \ Supp(M) and α ∈ Ci such that α < β. Then Mβ = 0 implies
f |β = 0 and commutativity of the f, ϕM , and ϕN maps yields that f |α = f |β = 0.

Alternatively, if Ci is (M,N) viable, then we claim that the f, ϕM , and ϕN maps
are able to commute even if ci is nonzero. Let α ∈ Ci. Notice that α+ ej must be
an element of Ci or Nn \ Supp(N) since Ci is (M,N) viable. If α+ ej ∈ Ci then
f |α+ej ◦ ϕM

α,α+ej = ci IdK = ϕN
α,α+ej ◦ f |α, as desired. On the other hand, if α+ ej ∈

Nn \ Supp(N), then f |α+ej ◦ ϕM
α,α+ej and ϕN

α,α+ej ◦ f |α are maps with codomain equal
to zero, so both compositions are trivially the zero map.

Thus ci may be nonzero whenever Ci is an (M,N) viable component, implying
that any f ∈ Hom(M,N) is determined by {ci ∈ K|Ci is (M,N) viable and f |α =
ci IdK for all α ∈ Ci}.

We will primarily work with pairs of indecomposable interval n-dimensional persis-
tence modules I and J such that Hom(I, J) ∼= K or 0. In the setting that Hom(I, J) ∼=
K, we use the notation fJ

I to indicate a fixed natural nonzero homomorphism from
I to J . Note that it is possible that fL

J ◦ fJ
I = 0 (consider the case where I ∩ L = ∅).

2.3. The structure of indecomposables
Recall that every finite nD persistence module has an indecomposable decompo-

sition. Thus, to understand the structure all n-dimensional persistence modules, it
suffices to understand the set of indecomposable n-dimensional persistence modules.
When n = 1, the indecomposable persistence modules are of a simple form (see [G]);
M is indecomposable if and only if there is an interval [α, β] (with β possibly infinite)
such that

dim(Mγ) =

{
1 if α ⩽ γ ⩽ β,
0 otherwise

and

ϕM
γ,δ =

{
IdK if α ⩽ γ ⩽ δ ⩽ β,
0 otherwise.

That is, every indecomposable 1-dimensional persistence module is rectangular.
Unfortunately, for n > 1, the full set of indecomposable n-dimensional persistence
modules do not have such a simple structure.

Theorem 2.4 ([CZ]). There does not exist a complete discrete invariant for the set
of indecomposable n-dimensional persistence modules whenever n > 1.

In other words, there does not exist a finitely parameterized invariant that can
distinguish between all indecomposable n-dimensional persistence modules. This was
proved in [CZ] by showing the existence of a continuously parameterized family
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of non-isomorphic indecomposable n-dimensional persistence modules. Buchet and
Escolar have found other continuously parameterized families of non-isomorphic inde-
composable nD persistence modules, such as the family shown in Fig. 2 [BE1]. The
following theorem gives insight to how complicated the structure of indecomposable
(n+ 1)-dimensional persistence modules can be.

Figure 2: For each choice of d ∈ N, shown is a continuous family of non-isomorphic
indecomposable 2-dimensional persistence modules, where continuity comes from
allowing λ ∈ K = R to vary. The maps ϕM are written in matrix form with respect to
the bases K[1, 4]d

⊕
K[2, 3]d of layer 0 and K[0, 3]d

⊕
K[1, 2]d of layer 1. The matrix

denoted by Jd(λ) is the d× d Jordan block with λ along its diagonal. This family was
introduced in [BE1].

Theorem 2.5 ([BE2]). Let M =
m⊕
i=1

K[αi, βi] be a finite n-dimensional rectangular

persistence module. Then there exists an indecomposable finite (n+ 1)-dimensional
persistence module M ′ such that M is a hyperplane restriction of M ′.

In fact, Buchet and Escolar provided 3 methods for constructing such M ′ from M .
We repeat these constructions and the proof of indecomposability, as our results rely
heavily on such. Before we begin, we state two key facts which will allow us to easily
define the maps ϕM ′

. First, let M,N be finitely generated n-dimensional persistence

modules and supposeM =
m⊕
i=1

IMi andN =
p⊕

j=1

INj are the indecomposable summands

ofM andN . Then any homomorphism F : M → N can be summarized by a collection
of maps F j

i : I
M
i → INj . Second, Lemma 2.3 implies the following for n-dimensional

rectangular persistence modules:

Hom(K[α1, β1],K[α2, β2]) ∼=
{

K if α2 ⩽ α1 ⩽ β2 ⩽ β1,
0 otherwise.

Let the jth layer of an n-dimensional persistence module M be the restriction of
M to the plane with final coordinate j. We call the first construction from [BE2]
the main rectangular construction, which is as follows: Layer 3 of M ′ is M =
m⊕
i=1

K[αi, βi] =:
m⊕
i=1

I3i. In layer 2, place
m⊕
i=1

K[αi, β
′
i] =:

m⊕
i=1

I2i where {β′
i}i are chosen
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such that βi ⩽ β′
i < β′

i+1 for all i and
αi+β′

i

2 ⩽ β′
j for all i, j (where our partial ordering

on Nn is extended to all of ( 12N)
n in the obvious way). The maps ϕM ′

between layer
2 and layer 3 may be summarized by the direct sum

ϕM ′

2 =

m⊕
i=1

f3i
2i ,

where fsj
ri is shorthand for f

Isj
Iri

(c.f. notation at the end of Section 2.2).

Let αj denote the jth coordinate of α ∈ Nn. Define µ ∈ Nn by µj = maxi(αi +

β′
i)

j . In layer 1 of M ′ place
m⊕
i=1

K[α′
i, β

′
i] =:

m⊕
i=1

I1i where α
′
i := µ− β′

i. Notice that this

causes αi ⩽ α′
i < β′

j for all i, j. Combining this with the fact that β′
i < β′

i+1 implies
that α′

i+1 < α′
i < β′

i < β′
i+1 for all i. We thus have strict inclusions Supp(I1i) ⊊

Supp(I1(i+1)) for all i, a detail that will be critical later. The maps ϕM ′
between

layer 1 and layer 2 are defined by

ϕM ′

1 =

m⊕
i=1

f2i
1i .

Layer 0 of M ′ is K[maxi(α
′
i),maxi(β

′
i)] = I01, and the maps between layer 0 and layer

1 are given by

ϕM ′

0 =

m⊕
i=1

f1i
01.

The second construction from [BE2], which we call the dual rectangular con-

struction, is as follows: Layer 0 of M ′ is M =
m⊕
i=1

K[αi, βi] =:
m⊕
i=1

I0i. In layer 1, place

m⊕
i=1

K[α′
i, βi] =

m⊕
i=1

I1i where {α′
i}i are chosen to be distinct elements of Nn such that

α′
i ⩽ αi for all i and α′

i ⩽
α′

j+βj

2 for all i, j (where our partial ordering on Nn has again
been extended to a partial ordering on ( 12N)

n). Distinctness implies that, without loss
of generality, α′

i < α′
i+1 for all i.

Remark 2.6. Notice that such restrictions on {α′
i}i may force some α′

i to be negative,
which is not allowed. In this case, simply shift M ′ to the right until all {α′

i}i are
non-negative. Due to the triviality of such shifting issues, we will not mention them
in the constructions given henceforth.

The maps ϕM ′
between layer 0 and layer 1 are given by

ϕM ′

0 =

m⊕
i=1

f1i
0i .

Define µ ∈ Nn by µj := mini(α
′
i + βi)

j . Layer 2 is given by
m⊕
i=1

K[α′
i, β

′
i] =:

m⊕
i=1

I2i,

where β′
i := µ− α′

i. This implies that α′
i < α′

i+1 < β′
i+1 < β′

i for all i since α
′
i < α′

i+1.

In particular, we have that Supp(I2(i+1)) ⊊ Supp(I2i) for all i. The maps ϕM ′
between
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Figure 3: This is an example of the three constructions given in [BE2] for creating an
indecomposable 2-dimensional persistence moduleM ′ from a finite 1-dimensional per-
sistence module M such that M is a hyperplane restriction of M ′. In particular, these
2-dimensional persistence modules come from the 1-dimensional persistence module
M = K[3, 3]

⊕
K[0, 4]

⊕
K[1, 2]. In the main rectangular construction, dashed edges

represent the map which sends the white basis vector to (1, 1, 1), (1, 1), or 1, as appli-
cable. In the dual rectangular construction, dashed edges represent the map which
sends each of the gray, black, and ombre basis vectors to the white basis vector.

layer 1 and layer 2 are summarized by

ϕM ′

1 =

m⊕
i=1

f2i
1i .

Layer 3 of M ′ is K[mini(α
′
i),mini(β

′
i)] =: I31. The maps from layer 2 to layer 3 are

given by

ϕM ′

2 =

m⊕
i=1

f31
2i .

The third construction from [BE2], which we call the glued rectangular con-
struction, is to place M in layer 3, then place the main rectangular construction for
M in layers 0− 2 and the dual rectangular construction for M in layers 4− 6. For
an example of these three constructions, see Figure 3.

Proof. We prove that the main rectangular construction results in a finite indecom-

posable (n+ 1)-dimensional persistence module M ′ when M =
m⊕
i=1

K[αi, βi] is a finite

n-dimensional (rectangular) persistence module. The proofs involving the other con-
structions are similar.

Finiteness of M ′ is clear. By Lemma 2.1, to show that M ′ is indecomposable, it
suffices to prove that End(M ′) ∼= K. Let f ∈ End(M ′). Then f is equivalent to a set
of endomorphisms fj on each layer j of M ′ such that the maps ϕM ′

i and fj commute.
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In particular, we need ϕM ′

j−1 ◦ fj−1 = fj ◦ ϕM ′

j−1 for all j. By Lemma 2.3, f0 = cf01
01 for

some c ∈ K. We wish to show that

fj =

m⊕
i=1

f ji
ji

for all j ⩾ 1, which implies that f is determined fully by the choice of c ∈ K.
Note that

ϕM ′

0 ◦ f0 =

m⊕
i=1

cf1i
01.

By Lemma 2.3,

Hom(I1i, I1j) ∼=

{
K if i = j,

0 otherwise,

as I1i = K[α′
i, β

′
i] and α′

i+1 < α′
i < β′

i < β′
i+1 for all i. As such,

f1 =

m⊕
i=1

ciif
1i
1i

for some constants cii ∈ K, which implies that

f1 ◦ ϕM ′

0 =

m⊕
i=1

ciif
1i
01.

Since f1 ◦ ϕM ′

0 = ϕM ′

0 ◦ f0, we may conclude that

f1 =

m⊕
i=1

cf1i
1i ,

as claimed.
Now we wish to show that

f2 =

m⊕
i=1

cf2i
2i .

By Lemma 2.3, f2 =
m⊕
i=1

m⊕
j=1

cjig
2j
2i , where

g2j2i =

{
f2j
2i if Hom(I2i, I2j) ∼= K,
0 if Hom(I2i, I2j) = 0

and each cji ∈ K. The same lemma also guarantees that g2j2j = f2j
2j for all j. Then

ϕM ′

1 ◦ f1 =

m⊕
i=1

cf2i
1i =

m⊕
i=1

m⊕
j=1

cjig
2j
2i ◦ f

2i
1i = f2 ◦ ϕM ′

1

implies that cjig
2j
2i ◦ f2i

1i = cδijg
2j
1i for all i, j. Thus cii = c for all i.

We claim that cjig
2j
2i = 0 if i ̸= j. If g2j2i = 0, then we are done. Otherwise, we

have that g2j2i = f2j
2i ̸= 0 but cjif

2j
2i ◦ f2i

1i = 0. We aim to show that f2j
2i ◦ f2i

1i ̸= 0,
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which would imply cji = 0. Recall that I2i = K[αi, β
′
i] for each i. By Lemma 2.3,

f2j
2i ̸= 0 implies that αj ⩽ αi ⩽ β′

j ⩽ β′
i. Recall that I1i = K[α′

i, β
′
i] where αi ⩽ α′

i.
The definition of α′

i further implies that αj < α′
i < β′

j ⩽ β′
i. By Lemma 2.3, there

thus exists a nonzero homomorphism from I1i into I2j . As such, f2j
2i ◦ f2i

1i = f2j
1i ̸= 0.

Thus cjif
2j
2i ◦ f2i

1i = 0 may only occur if cji = 0, as desired.
It can similarly be shown that

f3 =

m⊕
i=1

cf3i
3i

by paying careful attention to the relationships between the intervals I2i, I3i and I3j
for i ̸= j. Thus f ∈ End(M ′) is uniquely determined by the choice of c ∈ K.

3. Generalizations of Buchet and Escolar’s result

We may now prove our main result:

Theorem 3.1. Let M be any finite n-dimensional persistence module. Then there
exists an indecomposable (n+ 1)-dimensional persistence module M ′ such that M is
the restriction of M ′ to a hyperplane.

We have one construction for M ′, called the main construction. Buchet and
Escolar also introduced two other constructions for this setting in [BE3], which gen-
eralize their dual and glued rectangular constructions.

3.1. Main construction

Our main construction is defined as follows: Place M =
m⊕
i=1

I5i in layer 5 of M ′,

where each I5i is an indecomposable nD persistence module. Choose a minimal gen-
erating set {g5ij}ki

j=1 for I5i, and let g5ij ∈ (I5i)αij
for all i, j. Let I4ij denote the span

of g5ij in I5i, meaning

(I4ij)α : =

{
Span(ϕI5i

αij ,α(g5ij)) ⊂ (I5i)α if αij ⩽ α,

0 otherwise

and

ϕ
I4ij
α,β =

{
IdK if (I4ij)α ∼= (I4ij)β ∼= K,
0 otherwise.

Notice that I4ij is a finite indecomposable interval n-dimensional persistence module
with a single generator g4ij . For each i, j define a homomorphism A5i

4ij : I4ij → I5i by

A5i
4ij(g4ij) = g5ij . In layer 4 of M ′, place

m⊕
i=1

ki⊕
j=1

I4ij and define the maps ϕM ′
between

layers 4 and 5 of M ′ by

ϕM ′

4 =

m⊕
i=1

ki⊕
j=1

A5i
4ij .

For α ∈ Nn, let αk denote the kth coordinate of α. For each i, j, define βi,j ∈ Nn

by βk
i,j = max

α∈Supp(I4ij)
(αk). It follows that α ⩽ βi,j for all α ∈ Supp(I4ij). Define I3ij
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to be the indecomposable n-dimensional interval persistence module whose support
is given by

Supp(I3ij) = {γ ∈ Nn| there exists α ∈ Supp(I4ij) satisfying α ⩽ γ ⩽ βi,j}.

We claim that Hom(I3ij , I4ij) ∼= K for every i, j, which would allow us to define

the maps ϕM ′
from layer 3 to layer 4 via

ϕM ′

3 =

m⊕
i=1

ki⊕
j=1

f4ij
3ij .

By Lemma 2.3, it suffices to show that Supp(I4ij) = Supp(I3ij) ∩ Supp(I4ij) is an
(I3ij , I4ij) viable component. Suppose there exists γ ∈ Supp(I3ij) \ Supp(I4ij) and
δ ∈ Supp(I4ij) such that γ < δ. By the definition of Supp(I3ij), γ ∈ Supp(I3ij) implies
that there exists α ∈ Supp(I4ij) such that α ⩽ γ < δ. By Remark 2.2, it follows that
γ ∈ Supp(I4ij), which is a contradiction. On the other hand, there are no points
γ ∈ Supp(I4ij) \ Supp(I3ij), so the second condition for (I3ij , I4ij) non-viability also
cannot exist in Supp(I3ij) ∩ Supp(I4ij). For an example of constructing layers 3 and
4 of M ′ from M , see Figure 4.

Figure 4: These are the top three layers ofM ′ in the main interval forM = I51. In layer
5, we have M . In layer 4, we have three interval persistence modules corresponding
to the span of each of the three generators of I5i. In the third layer, we extend each
of the interval persistence modules from layer 4 to include the supremum of their
respective supports.

Notice that layer 3 is a finite rectangular n-dimensional persistence module (since
M was finite), so we may perform the main rectangular construction for layer 3 in
layers 0− 2 of M ′. This finishes the main construction of M ′.

3.2. Proof of our main result
Proof of Theorem 3.1. We now show that the main construction yields a finite inde-
composable (n+ 1)-dimensional persistence module M ′. Finiteness is trivial. Let
f ∈ End(M ′). Then f is equivalent to a set of endomorphisms fℓ on each layer ℓ
of M ′ such that ϕM ′

ℓ−1 ◦ fℓ−1 = fℓ ◦ ϕM ′

ℓ−1. By Lemma 2.3, f0 = cf01
01 for some c ∈ K.

The proof of Theorem 2.5 then implies that fℓ =
m⊕
i=1

ki⊕
j=1

cf ℓij
ℓij for each ℓ ∈ [1, 3].



302 SAMANTHA MOORE

We now show that f4 =
m⊕
i=1

ki⊕
j=1

cf4ij
4ij . Because each I4ij in layer 4 is generated by

a single element, Hom(I4ij , I4kℓ) is isomorphic to either 0 or K by Lemma 2.3, as
I4ij ∩ I4kℓ will have at most one connected component. Let

g4kℓ4ij : =

{
0 if Hom(I4ij , I4kℓ) = 0,

f4kℓ
4ij if Hom(I4ij , I4kℓ) ∼= K.

Thus f4 =
m⊕
i=1

ki⊕
j=1

m⊕
k=1

kk⊕
ℓ=1

ckℓij g
4kℓ
4ij for some choice of coefficients ckℓij ∈ K. This implies

f4 ◦ ϕM ′

3 =

m⊕
i=1

ki⊕
j=1

m⊕
k=1

kk⊕
ℓ=1

ckℓij g
4kℓ
4ij ◦ f4ij

3ij .

On the other hand,

f4 ◦ ϕM ′

3 = ϕM ′

3 ◦ f3 =

m⊕
i=1

ki⊕
j=1

cf4ij
3ij .

Comparing the last two equations implies that cijij = c for all i ∈ [1,m] and j ∈
[1, ki] and that ckℓij g

4kℓ
4ij ◦ f4ij

3ij = 0 whenever (i, j) ̸= (k, ℓ). We wish to show that when

(i, j) ̸= (k, ℓ) we have ckℓij g
4kℓ
4ij = 0. If g4kℓ4ij = 0, we are done. If g4kℓ4ij = f4kℓ

4ij , consider

the following: Let g3ij be a generator of I3ij . Then f4ij
3ij (g3ij) = g4ij for some generator

g4ij of I4ij . Because g
4kℓ
4ij = f4kℓ

4ij and g4ij is a generator, it follows that g4kℓ4ij (g4ij) ̸= 0.

Thus g4kℓ4ij ◦ f4ij
3ij ̸= 0, but ckℓij g

4kℓ
4ij ◦ f4ij

3ij = 0. We conclude that ckℓij = 0, and determine

that f4 =
m⊕
i=1

ki⊕
j=1

cf4ij
4ij , as desired.

Now we wish to show that we have f5 =
m⊕
i=1

c IdI5i = c IdM . We may write f5 =

m⊕
i=1

m⊕
k=1

ckiG
5k
5i , where G5k

5i ∈ Hom(I5k5i ) and cki ∈ K for all i, k.

We thus have ϕM ′

4 ◦ f4 =
m⊕
i=1

ki⊕
j=1

cA5i
4ij = f5 ◦ ϕM ′

4 =
m⊕
i=1

m⊕
k=1

ki⊕
j=1

ckiG
5k
5i ◦A5i

4ij . We

conclude that

ciiG
5i
5i ◦A5i

4ij = cA5i
4ij (1)

for all i and

ckiG
5k
5i ◦A5i

4ij = 0 (2)

whenever i ̸= k and j ∈ [1, ki].
We first wish to show that ciiG

5i
5i = c IdI5i for all i. By Equation (1), we have

that ciiG
5i
5i ◦A5i

4ij(g4ij) = cA5i
4ij(g4ij) for all i, j. By the definition of A5i

4ij , this implies

ciiG
5i
5i(g5ij) = cg5ij for all i, j. Because {g5ij}j generates I5i, we may conclude that

ciiG
5i
5i = c IdI5i , as desired.
We also claim that ckiG

5k
5i = 0 for all i ̸= k. If G5k

5i = 0, we are done. Otherwise,
there is a generator g5ij of I5i such that G5k

5i (g5ij) ̸= 0. Thus G5k
5i ◦A5i

4ij(g4ij) ̸= 0.

Comparing to Equation (2) yields that cki = 0. Thus ckiG
5k
5i = 0 for all i ̸= k.
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Thus f5 = c IdM and f is fully determined by the choice of c ∈ K, implying
End(M ′) ∼= K. By Lemma 2.1, M ′ is indecomposable.

3.3. Implications for zigzag persistence modules
Theorem 3.1 has an interesting consequence on zigzag persistence modules, which

are a generalization of 1-dimensional persistence modules that were first introduced
in [CdS].

A zigzag persistence module M over K is an assignment of a vector space Mα

to each α ∈ N and for each α ∈ N, a homomorphism of the form

ϕM
α,α+1 : Mα → Mα+1 or of the form ϕM

α+1,α : Mα+1 → Mα.

A map of the form ϕM
α,α+1 : Mα → Mα+1 is said to be forwards-oriented, whereas

a map of the form ϕM
α+1,α : Mα+1 → Mα is backwards-oriented.

Thus a 1-dimensional persistence module is a zigzag module in which all maps
are forward-oriented. The definitions of finitely generated and finite zigzag per-
sistence modules are analogous to the definitions in the nD persistence module case.
Finite zigzag modules also have indecomposable decompositions (which are again
defined analogously to the nD persistence module case). By [G], a zigzag module M
is indecomposable if and only if there exist some α, β such that

dim(Mγ) =

{
1 if γ ∈ [α, β],

0 otherwise,
and ϕM

γ,δ =

{
IdK if γ, δ ∈ [α, β],

0 otherwise.

Such a zigzag persistence module is denoted by K[α, β].

Corollary 3.2. Let M =
m⊕
i=1

K[αi, βi] be a finite zigzag persistence module. Then

there exists an indecomposable 3-dimensional persistence module M ′ such that M
is the restriction of M ′ to a path.

Proof. Let Q2 denote the directed graph whose vertices are the elements of N2 and
whose edges are of the form α → α+ ei for all α ∈ N2 and i ∈ [1, 2]. Place M in Q2

such that the backwards oriented arrows ofM go along arrows of the form α → α+ e2
in Q2 and forwards oriented arrows in M go along arrows of the form α → α+ e1 in
Q2. See Fig. 5 for examples of these placements. The result is a finite 2-dimensional
interval persistence module. Apply Theorem 3.1.

3.4. Future research directions
Of course, it may be possible to strengthen the results in this paper. Some open

questions are:

1. Can Corollary 3.2 be strengthened to a statement that any finite zigzag persis-
tence module can be embedded into an indecomposable 2-dimensional persis-
tence module, rather than a 3D persistence module?

2. Given a finite n-dimensional persistence module M , what is the smallest sup-
port possible for an indecomposable (n+ 1)-dimensional persistence module M ′

which has M as a hyperplane restriction?
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Figure 5: Shown are three examples of how to place a zigzag module Mi onto Q2.
The orientation of each Mi is given, with ‘f’ indicating a forwards-oriented arrow, and
‘b’ indicating a backwards-oriented arrow. For example, the first four maps in M1

are forwards-oriented, but the map between the final two coordinates is backwards-
oriented. Similar to our depictions of n-dimensional persistence modules, each dot at
α represents a basis vector in Mα. The homomorphisms in Mi are denoted by edges;
an edge between dots indicates which basic vectors map to each other.

3. Is Theorem 3.1 generalizable to nD persistence modules over Rn rather than
Nn? Note that nD persistence modules over Rn have very different properties
than the n-dimensional persistence modules over Nn, so such a generalization
may be highly nontrivial [M].
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