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PERSISTENT HOMOLOGY WITH NON-CONTRACTIBLE
PREIMAGES

KONSTANTIN MISCHAIKOW and CHARLES WEIBEL

(communicated by John R. Klein)

Abstract
For a fixed N , we analyze the space of all sequences z =

(z1, . . . , zN ), approximating a continuous function on the circle,
with a given persistence diagram P , and show that the typical
components of this space are homotopy equivalent to S1. We
also consider the space of functions on Y -shaped (resp., star-
shaped) trees with a 2-point persistence diagram, and show that
this space is homotopy equivalent to S1 (resp., to a bouquet of
circles).

Introduction

Topological Data Analysis (TDA) is a rapidly developing body of techniques for
the analysis of high dimensional data associated with nonlinear structures. Persistent
homology has become one of the primary tools in TDA, for reasons including efficiency
of computation, robustness with respect to perturbations in the data, and dramatic
data compression. The focus of this paper is on understanding the loss of information
due to this compression.

To the best of our knowledge, all applications of persistent homology to experi-
mental data can be characterized as follows. There exists a finite simplicial complex
K and a function φ : K → R such that each sublevel set Kr = φ−1((−∞, r]) defines
a subcomplex of K. With this input, the persistent homology algorithm outputs per-
sistence diagrams P = {Pi}, one for each dimension of homology; we will view them
as point clouds in R2.

With regard to compression, an obvious question is: given a fixed complex K
and persistence diagrams {Pi}, what is the “preimage” space of functions φ that
produce these diagrams? A detailed exposition of the polyhedral structure of these
preimages is given in [LT]. While this geometric structure is clearly valuable, it does
not necessarily translate into an understanding of what information is lost due to
compression. In the smooth setting, e.g., K is a manifold, a natural corresponding
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question is to understand the structure of the space of Morse functions that are
associated with a persistence diagram. See [CCF+] in the context of the two sphere.

We will consider the slightly more restrictive setting in which φ : K → R is com-
pletely determined at σ by its values on the set of adjacent vertices ofK by the formula
φ(σ) = maxv≺σ φ(v). If K has N vertices, then φ can be characterized by the vector
z = (z1, . . . , zN ) ∈ RN . Therefore, for fixed K we can view persistent homology as
inducing a function

PH : RN → Per,

where Per denotes the space of persistence diagrams. Given P ∈ Per, our long term
goal is to understand the preimage dataP = PH−1(P ) as a subset of RN .

In [CMW], we considered the case whereK is a simplicial complex representing an
interval, i.e.,K consists of N vertices, N − 1 edges, and each vertex is the boundary of
at most two edges. The primary result is that each component of dataP is contractible
(for the number of components see [C]). The work in [CMW] was motivated in part to
apply topological fixed point theorems to nonlinear dynamics tracked via persistence
diagrams. In this setting, contractibility is a sufficiently strong condition, and thus,
the collapse of geometry does not result in a loss of information. We hasten to remark
that, even in this simple setting, the geometry of dataP is nontrivial (see [LT]).
However, the machinery of [CMW] that determines the topology of the preimage is
fairly simple and thus worth pursuing in and of itself.

We consider two families of examples in this paper. The first is where K is an N -
gon, representing a circle, and the second is where K is a simple star-like tree, with at
least three branches. In the first case, the typical components of dataP are homotopic
to a circle, reflecting the topology ofK; see Corollary 6.4. The reader might find it sur-
prising that in the second case, when K is a tree with only 3 branches, each of length
at least two, then the preimage dataP is homotopic to a circle; adding more branches
yields a preimage which is homotopic to a bouquet of many circles (see Sections 7–8).

Though based on the same machinery, the details of the proofs of these two exam-
ples are largely independent. As a result it is easy to see that for an arbitrary graph
K the topology of dataP can be quite complicated. In fact, we limit ourselves to
presenting these two examples precisely because we do not have a general description
of the homotopy type of dataP based on K and P .

This paper is organized into two parts. The first part of the paper considers the
circle, modelled by the N -gon. In Sections 2 and 3, we discuss critical value sequences
and the poset Str of cellular strings. In Section 4, we show that the connected com-
ponents of a typical component are homeomorphic to the geometric realization of
Str, and analyze the homotopy type of various sub-posets of Str in Section 5, via a
series of simple moves. Finally, we prove the main result in Section 6.

The second family of examples is studied in Section 7 (3 branches) and Section 8
(many branches). The nontrivial topology in the preimage dataP arises from the fact
that there is a larger family of moves.

1. Preliminaries

As indicated in the introduction, we consider a 1-dimensional complex K and fix a
labelling of the vertices by i = 1, . . . , N . We consider functions φ : K → R determined
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by the values of φ on the vertices, i.e., φ(σ) = maxi≺σ φ(i). This allows us to represent
φ as a vector z = (z1, . . . , zN ) ∈ RN , where zi = φ(i).

Each vector z ∈ RN defines a sublevel-set filtration of K as follows. For r ∈ R,
let Kr(z) denote the subcomplex of K whose vertices i have zi ⩽ r and whose edges
[i, j] satisfy max{zi, zj} ⩽ r. As r varies, the homology Hn of the Kr(z) determines
a persistence diagram PHn(z).

We focus on PH0 in this paper, because we restrict our attention to complexes
that are either an N -gon or a tree, so that each Kr(z) is a subset of either an N -gon
or a tree. In these cases PHn(z) is empty for n > 1, and PH1(z) consists of either the
single point (max{zi},∞) or the empty set, respectively. We write M for the number
of points in PH0(z).

A persistence diagram P is considered typical if the coordinates of its M points
are distinct, and we say that z ∈ RN is a typical point if its coordinates are distinct.
Clearly, typical points have a typical persistence diagram. We leave the proof of the
following lemma to the reader.

Lemma 1.1. Given a complex K of the type discussed in this paper and an associated
typical persistence diagram PH0(z) = {(pbm, pdm)}Mm=1, then there is a typical point z′

with PH0(z) = PH0(z
′).

Definition 1.2. If z is a typical point, we say that a coordinate zi is a local maximum
(resp., a local minimum) if zi ⩾ zj (resp., zi ⩽ zj) for all vertices [j] adjacent to [i].
The vector (zi1 , . . . , ziL) in RL of the local maxima and minima in z is the critical
value sequence of the typical point z ∈ RN .

Digraphs. Given K and z, we define a (vertex-weighted) directed graph with under-
lying graph K as follows. If v and w are adjacent vertices in K and zv ⩾ zw, there is
an edge directed from v to w. Note that if zv = zw then there are two directed edges
between v and w (v ⇌ w); we call this a two-sided edge.

For a typical z, the sources and sinks of the directed graph are local maxima and
minima of z. In particular, a local minimum occurs at a source if and only if it has
out-degree 0 and a local maximum occurs at a source if and only if it has in-degree 0.
A vertex of out-degree 1 (and arbitrary in-degree) plays no role in the persistence
diagram; this applies in particular to local maxima occurring at leaves of the graph.

For any typical z, there is a unique vertex imin for which zimin
is a minimum;

the corresponding point in the persistence diagram PH0(z) is (zimin
,∞). All other

persistence points are finite, and each persistence point occurs exactly once.

Lemma 1.3. Suppose that z is a typical point, and out-degree(i) ̸= 1. Then there is
a persistence point with coordinate zi.

Proof. If i has out-degree 0, then zi is a local minima, and hence there is a persistence
point (pb, pd) with pb = zi. If i has out-degree ⩾ 2 then at least 2 components of Kr

will merge at r = zi, and thus there is a persistence point (pb, pd) with pd = zi.

Remark 1.4. If zi is not a typical point then, after identifying vertices connected by
2-sided edges, a similar argument applies. We leave the verification to the reader.

We say that zi is a critical coordinate if the number of out-edges (after the potential
identification) from i is not exactly one.
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2. Persistence diagrams on an N-gon

Throughout this section K is an N -gon, the vertices are identified with elements
of Z/N (with 0 = N) and there are N edges, [i, i+ 1], 0 ⩽ i < N . Our main result
(Corollary 6.4) concerns the preimage dataP in RN of a typical persistence diagram:
when N/2 is greater than the number M of persistence points of P , the connected
components of dataP are homotopy equivalent to S1.

The following result is analogous to [CMW, Lemma 2.4].

Lemma 2.1. Let z ∈ RN be a typical point with persistence diagram

PH0(z) = {(pb0,∞)} ∪ {(pbm, pdm)}M−1
m=1 and PH1(z) = {pbM ,∞}.

Then z has 2M local extrema; each pdm is a local maximum, each pbm is a local mini-
mum, pb0 is a global minimum, and pbM is a global maximum.

Since there are only finitely many critical value sequences with these local maxima
and minima, only finitely many critical value sequences arise for each persistence
diagram.

Remark 2.2. Conversely, if PH0(z) = {(pbm, pdm)}Mm=1 is a persistence diagram with
distinct values, there is a typical point z′ with PH0(z) = PH0(z

′).

When N = 2M , every zi is a local extremum, so dataP is a finite set. We shall
assume that N > 2M for the rest of the paper.

Example 2.3. When N = 2M + 1, every point (z1, . . . , zN ) has exactly one non-extre-
mal value, every component of dataP is homeomorphic to a circle, and the compo-
nents are indexed by the critical value sequences modulo cyclic rotations.

To see this, fix a critical value sequence v = (a, b, . . . , s, t) using the 2M values
pbm, pdm in Lemma 2.1; there are only N places to insert a non-extremal element. Let
Ci(v), i = 0, . . . , N − 1 denote the subspace of points in dataP with critical value
sequence v, where zi is the non-extremal value. Then Ci(v) is an open interval, whose
closure C̄i(v) meets C̄i−1(v) and C̄i+1(v) in an endpoint when i ̸= 0, N − 1. Writing
Rv for the cyclic rotation (t, a, b, . . . , s) of v, the closure of C0(v) meets C̄1(v) and
C̄N−1(Rv), as z0 is between z1 = a and zN−1 = d. Similarly, the closure of CN−1(v)
meets C̄N−1(v) and C̄0(R

−1v).
To count the number of components, note that the cyclic order of the local extrema

cannot be changed without changing the persistence diagram, all points in C(z) must
have the same critical value sequence as z, up to rotation.

3. The poset Str of cellular circular strings

Throughout this section K is an N -gon. A circular symbol string is a string of
symbols s = s1 · · · sN , where each symbol is either 0, 1 or X. We refer to the symbols 0
and 1 as bits. (Cf. [CMW].) Any circular symbol string has a canonical representation
as the concatenation s = γ1 · · · γJ of blocks γi, each block consisting of the same
symbol, such that adjacent blocks have different symbols. Because of our wrap-around
convention, it is possible that the last block has the same symbol as the first.

Definition 3.1. A circular symbol string s = s1 · · · sN is a circular cellular string of
rank M > 0 if for the canonical representation s = γ1 · · · γJ :
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(i) exactly M blocks have symbol 0, and

(ii) if γj consists of the symbol X and j ̸= 1, J , then the symbols of γj−1 and γj+1

are different.

The dimension of a cellular string s, dim(s), is the number of symbols X in s; it is
at most N − 2M .

Fix N andM < N/2. The set Str = Str(N,M) of circular cellular strings of length
N and rank M is a poset, where s′ < s if the string s is obtained from s′ by replacing
some of the bits 0 and 1 in s′ by X. For example, in Str(3, 1) we have

X01 > 001 < 0X1 > 011 < 01X.

Proposition 3.2. The maximal elements of Str(N,M) are the strings of dimension
N − 2M .

Proof. (Cf. [CMW, Prop. 2.8].) If s has smaller dimension, then there is a block of
length ⩾ 2 of symbols 0 or 1. Replacing the first symbol in the block by X yields a
symbol s′ with s < s′, so s is not maximal.

Lemma 3.3. Every string s′ in Str is the greatest lower bound of the set of maximal
strings s with s′ < s.

Every maximal chain in Str has length N − 2M .

Proof. The proof of [CMW, Lemma 2.9] goes through. Briefly, we proceed by down-
ward induction on the dimension d = dim(s′). Replacing the two end symbols of
a block by X yields two (d+ 1)-dimensional strings whose greatest lower bound is
s′.

4. The polytopes for the N-gon

Throughout this section we work over an N -gon. Fix a critical value sequence
(zn1

, . . . , zn2M
) of a typical point z. To each circular cellular string s, represented in

block form as γ1 · · · γJ , we associate simplices T (γj) and their product, the polytope
T (s) =

∏
T (γj) as in [CMW]:

• if γj is the kth block involving 0 or 1 we set T (γj) = {zk}nk ;

• if γj involves X and γj−1 is the kth block involving 0 or 1, we define T (γj) to
be the simplex of all monotone sequences (x1, . . . , xnj

) of length nj between zk
and zk+1.

Fix a persistence diagram P , and a component C of dataP . Then for any typical
point z in C, it is clear from the definition 1.2 of a critical value sequence that C is
the union of the simplices T (s), where s ∈ Str(N,M). For this, it is convenient to
work with the poset of circular cellular strings.

Let s be a circular cellular string with k blocks with symbols X, of lengths
n1, . . . , nk. Recall from [CMW, Example 2.10, Theorem 2.13] that the geometric
realization of the sub-poset Str/s = {s′ : s′ ⩽ s} is homeomorphic to the product
∆n1 × · · ·∆nk of simplices, i.e., to T (s).

Theorem 4.1. If z is a typical point, the connected component C(z) of dataP is
homeomorphic to the geometric realization of Str.
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Proof. The proof in [CMW, Theorem 2.13] goes through. The key observation is that
for each s1, . . . , sn, the intersection of the realizations of the Str/si is the realization
of Str/s′, where s′ is the greatest lower bound of the si.

Example 4.2. In [LT], a similar problem is studied with a different filtration, interme-
diate between the polygon with N vertices and its subdivision, which has 2N vertices.
The comparison is sketched in Section 5.2 of [LT].

5. Homotopy operations

Let Str0 (resp., Str1) denote the sub-poset of strings in Str whose initial bit is 0
(resp., 1), such that s1 and sN are not both 0 (resp., 1). Recall that X is not a bit.
For example, 0X1X, X0101 and XXX01 are elements of Str0.

Proposition 5.1. The classifying spaces of Str0 and Str1 are contractible.

Proof. This is the content of Proposition 3.5 and Corollary 3.6 in [CMW]. The sub-
poset of Str in loc. cit. consisting of strings such that s1 and sN are not both 0 is our
Str0, and the poset morphisms used in that proof send Str0 to itself. The realizations
of those poset morphisms, when composed, give a homotopy from BStr0 to a point.
The proof for Str1 is the same.

For symbols a, b we write Strab for the sub-poset of strings in Str whose initial
and terminal symbols are a and b, respectively; we abbreviate such a string as aσb,
where σ is a string of length N − 2.

Let Str00 denote the sub-poset of strings in Str whose initial and terminal symbols
are either: both 0; 0 and X; or X and 0. Thus Str00 contains Str00 as well as Str0X
and StrX0 and is disjoint from Str1. Since the initial bit for s = Xσ0 ∈ StrX0 is 1,

Str00 ∩ Str0 = Str0X , Str00 ∩ Str1 = StrX0. (5.2)

We define Str11 similarly, by interchanging 0 and 1. Thus:

Str11 ∩ Str1 = Str1X , Str11 ∩ Str0 = StrX1. (5.3)

Lemma 5.4. BStr00 is a deformation retract of BStr00. By symmetry, BStr11 is a
deformation retract of BStr11.

Proof. Define R : Str00 → Str00 to be the identity on Str00, and R(0σX) = 0σ0,
R(Xσ0) = 0σ0. It is easy to see that R is a poset map, and that R(s) ⩽ s, i.e.,
R ⇒ id is a natural transformation. Taking the geometric realization, we see that R
is a continuous map, and that R is homotopic to the identity on BStr00.

Definition 5.5. If s is a circular cellular string in Str00, we define F1(s) as follows
(cf. [CMW, Def. 3.1]). If s = 0Xσ0, set F1(s) = s. If not, there are two cases. Case
(i): if s has no 00 or 11 preceding the leftmost X, F1(s) transposes that X with the
bit immediately preceding it. Case (ii): if s has the form σ1abbσ2, where σ1a is an
alternating bitstring (beginning with 0) and σ2 is the remainder of the string, we set
F1(s) = σ1aabσ2. Note that in case (ii), σ2 is either empty or ends in 0.

Let Str
(ℓ)
00 denote the sub-poset of Str00 consisting in strings beginning 0X· · ·X

(ℓ−1 symbolsX). The definition of Fℓ : Str
(ℓ)
00 → Str

(ℓ)
00 mimicks that of F1; if s = 0βσ

(where β is a sequence of (ℓ−1) symbols X) then Fℓ(s) = 0βF1(σ).
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Lemma 5.6. F1 : Str00 → Str00 is a poset morphism and F k
1 (Str00) = Str

(2)
00 for

k ≫ 0.

Proof. We proceed by downward induction to show that if s′ < s then F1(s
′) ⩽ F1(s).

If the initial X in s′ is not preceded by a 00 or 11, the same is true for s, and the
inequality is evident. Next, suppose that s′ = σ1abb . . . bσ2, where σ1a is an alternat-
ing bitstring. If s = σ1abb . . . bσ

′
2 with σ2 < σ′

2, we also have F1(s
′) < F1(s). Other-

wise, either s ⩾ s1 or s ⩾ s2, where s1 = σ1aXb · · · bσ2 and s2 = σ1ab · · ·Xσ2. Since
F1(s

′) < F1(s1) and F1(s
′) < F1(s2), the result follows by induction.

Recall that a poset P is said to be contractible if the space BP is.

Proposition 5.7. Str00, Str00, Str11 and Str11 are contractible.

Proof. We give the proof for Str00; it follows by symmetry and Lemma 5.4 that
Str00, Str11 and Str11 are also contractible.

We first show that Str
(2)
00 → Str00 is a homotopy equivalence. As in [CMW,

Proposition 3.5], we filter Str00 by sub-posets Fili, where Fil0 = Str
(2)
00 and Fili

is the full sub-poset on the strings s with F i
1(s) ∈ Str

(2)
00 . Since F1 maps Fili to

Fili−1, the geometric realization BF1 of F1 restricts to a continuous map from BFili
to BFili−1.

To see that BFili−1 ⊆ BFili is a homotopy equivalence, we define a poset endo-
morphism h on Fili as follows. If s ∈ Fili−1 then h(s) = s. Otherwise, define h(s)
to be the greatest lower bound of s and F1(s). Thus Bh is a retract of BFili onto
BFili−1. For s ∈ Fili, the inequalities F1(s) ⩽ h(s) ⩾ s yield natural transforma-
tions from h to F1 and to the identity, and hence homotopies between the identity
map, Bh, and BF1. These homotopies show that BFili−1 ≃ BFili. Composing these

homotopies gives a homotopy equivalence between BStr00 and BFil0 = BStr
(2)
00 .

The same argument, mutatis mutandis, then shows that each inclusion of the

form Str
(ℓ−1)
00 → Str

(ℓ)
00 is a homotopy equivalence. Since BStr

(ℓ)
00 is only the point

{0X · · ·X10 · · · 10} when ℓ = N − 2m+ 1, BStr00 is homotopy equivalent to a point,
as claimed.

Proposition 5.8. Str0X and StrX0 are contractible. By symmetry, Str1X and StrX1

are also contractible.

Proof. Since the posets Str0X and StrX0 are isomorphic (by the front-to-back per-
mutation of strings), it suffices to give the proof for Str0X . By Example 2.3, we may
assume that N > 2M + 1. Definition 5.5 goes through word for word in this setting

to yield a poset endomorphism F1 on Str0X , with the image of FK
1 being Str

(2)
0X

for K ≫ 0. Now the proof of Proposition 5.7 goes through to show that Str0X is
contractible.

6. Circular components

Let Q denote the 8-element poset on the left of diagram (6.1); the 4 corners are
minimal elements, and the 4 side-vertices are maximal. The geometric realization BQ
of Q has a vertex for each element of Q and an edge for each strict inequality; there
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are no higher simplices because the poset Q has no chains q0 < q1 < q2. Thus BQ is
an octagon, homeomorphic to a circle. The sub-posets of Str we have described fit
into the right-hand diagram below, where the arrows indicate inclusion.

0X //

��

0 X1oo

��

Str0X //

��

Str0 StrX1
oo

��
00 Q 11 Str00 Str11

X0 //

OO

1 X1oo

OO

StrX0
//

OO

Str1 Str1Xoo

OO (6.1)

Define f : Str → Q by sending elements of Str0X , Str0X , Str1X and StrX1 to
the corresponding minimal vertices of Q, as indicated by (6.1); strings in Str00 and
Str11 are sent to the vertices indicated by Str00 and Str11, respectively. The strings
in Str0 not in Str0X or StrX1 (resp., in Str1 not in StrX0 or Str1X) are sent to the
other maximal vertices of Q, as indicated. It is clear that f is a poset morphism.

Recall from [WK, IV.3.2.3] that for q ∈ Q, the comma category f/q has objects the
pairs (s, q), where f(s) ⩽ q, i.e., s ∈ Str such that f(s) ⩽ q; and there is a morphism
from (s′, q) to (s, q) if and only if s′ ⩽ s in Str.

Lemma 6.2. The right-hand side of diagram (6.1) is the diagram of the comma cat-
egories f/q for q ∈ Q.

Proof. For the minimal elements q = ab of Q, it is a tautology that f/q = f−1(q) =
Strq. Since Str00 is the union of f−1(00), f−1(0X) and f−1(X1), we see that f/0 =
Str00; by symmetry we also have f/1 = Str11. The definition of f on Str0 and Str1
ensures that we also have f/0 = Str0 and f/1 = Str1.

Theorem 6.3. BStr is homotopic to the circle S1.

Proof. Quillen’s Theorem A says that if the geometric realization of every f/q is con-
tractible, then Bf : BStr → BQ ≃ S1 is a homotopy equivalence (see [WK, IV.3.7]).
By (5.2), (5.3), Propositions 5.7 and 5.8, the geometric realizations of all the f/q are
contractible.

Combining Lemma 1.1 with Theorems 4.1 and 6.3, we obtain:

Corollary 6.4. If P is a typical persistence diagram, every connected component of
dataP is homotopy equivalent to S1.

7. Y -shaped configurations

In this section we show that dataP can still be homotopic to a circle, even for
rooted trees with three branches and persistence diagram P = {(0,∞), (1, 4)} for H0.
(The choice of 0 < 1 < 4 is for concreteness.)

For simplicity, we focus on the case where the tree K has

vertex set V = {i | i = 1, . . . , 7} and edges E = {[1, 2], [2, 3], [3, 4], [4, 5], [3, 6], [6, 7]}.

That is, the central vertex 3 has degree 3, and the endpoints are vertices 1, 5, and
7. The three branches (α, β, and γ) are generated by the vertices {1, 2, 3}, {3, 4, 5},
and {3, 6, 7}, respectively.
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Figure (7.1) illustrates six points zA, zB , . . . in dataP with their directed graphs
Γ(zA),Γ(zB), . . . (as in Section 1). The critical coordinates are marked by their values
0, 1, and 4. The other zi are marked by X; they are not critical coordinates and their
exact value is unimportant.

X

}}
Xoo

0 4oo // 1 Xoo Xoo

zA

X

}}
Xoo

X // X // 0 4oo // 1

zB

4 //

}}
0

X // X // 1 Xoo Xoo

zC

(7.1)

X
}}

Xoo

1 4oo // 0 Xoo Xoo

zA′

X
}}

Xoo

X // X // 1 4oo // 0

zB′

4
}}

1oo

X // X // 0 Xoo Xoo

zC′

Construction 7.2. Consider the point zA ∈ R7, illustrated on the left of (7.1). The
extremal points 0, 4 and 1 all lie on branch α.

It is possible to continuously transform zA to zB by sliding the 041 two places
to the right, from branch α to branch β, without changing the directed edges on
branch γ. This sliding process is explained in [CMW], and is illustrated by steps (i)
through (viii) in Figure (7.3). (Recall that double edges do not impact the persistence
diagram.)

In analogy with [CMW] and as shown in Figure (7.3) in steps (i) through (viii),
it is possible to slide the 041 two places to the right (to zB on branch β) without
changing the directed edges (recall that double edges do not impact the persistence
diagram) on branch γ.

X

}}
Xoo

0 4oo // 1 Xoo Xoo

(i)

X

||
Xoo

0 // 4 // 1 // 1oo // X

(ii)

X //

{{
X

0 // 4 // X // 1 // 1oo

(iii)

X

}}
Xoo

0 4oo // 4oo // X // 1

(iv)

X
~~

Xoo

0 Xoo 4oo // 4oo // 1

(v)

X
}}

Xoo

0 // 0oo Xoo 4oo // 1

(vi)

(7.3)

X

||
Xoo

X // 0 // 0oo 4oooo 1

(vii)

X

{{
Xoo

X // X // 0 4oo // 1

(viii)

Beginning with zB , we can slide 041 clockwise up (to zC on branch γ) without chang-
ing the directed edges on branch α. We now slide 140 two places to the left (to zA′

on branch α) without changing the directed edges on branch β.
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This maneuver (which resembles a clockwise ‘K-turn’ in a car) results in the critical
coordinates 0 and 1 switching places. Following this with a second K-turn of the form
(zA′ to zB′ to zC′ to zA) returns us to the starting configuration.

Construction 7.2 shows that the six points in (7.1) lie on a non-trivial loop; it will
turn out to be a generator of the fundamental group of dataP . While obvious, it
is perhaps worth emphasizing that these sequences of slides are not possible on the
interval or N -gon. These new moves make it possible for the topology of dataP to
be more interesting.

Let Brα be the subspace of dataP consisting of all z with zi = 0 for some vertex i
on branch α, and zj ̸= 4 for all vertices j on branch α further from the central vertex
than vertex i. In Figure (7.1), zA, zB and zC′ are in Brα.

The subspaces Brβ and Brγ are defined similarly.

Lemma 7.4. Brα, Brβ and Brγ are contractible.

Figure (7.5) illustrates the steps in the proof, starting from zC′ .

Proof. By symmetry, it suffices to consider Brα. We shall use three steps to construct
a deformation retraction ofBrα to a point. By definition there exists a vertex i0 closest
to the endpoint iα = 1 of branch α with zi0 = 0. For the first step, continuously
decrease the value of zj to 0 for every vertex between iα and i0 (and do nothing if
i0 = iα). This is a deformation retraction onto the subspace of all z′ which are 0 at
iα.

For the second step of the homotopy, given a point with ziα = 0, consider the set
of vertices j such that the path from vertex iα to vertex j does not contain a vertex
k with zk = 1. We can continuously change the values of zj at all these vertices to 4.
This is a deformation retraction to the subspace of all z′′ where z′′ = 4 at vertex 2
(the vertex adjacent to iα = 1).

Finally, given z′′, we can continuously decrease the value of z′′j to 1 for all vertices
j other than iα and its neighbor. The result is a deformation retraction to the point
z = (0, 4, 1, . . . , 1), showing that Brα is contractible.

4
��

// 1

0 0oo // 0 Xoo Xoo

4
��

// 1

0 4oo // 4 4oo 4oo

1
��

1oo

0 4oo // 1 1oo 1oo
(7.5)

We write Brαγ for Brα ∩Brγ . It is the subspace of all z where z = 0 at the central
vertex, while the vertex with z = 1 (and hence the vertex with z = 4) lies on branch
β. For example, zB is in Brαγ . The subspaces Brαβ and Brβγ are defined similarly.

Lemma 7.6. Brαγ , Brαβ and Brβγ are contractible.

Proof. By symmetry, it suffices to consider Brαγ . For the 7-vertex tree, Brαγ consists
of just the points of the form zB , illustrated by the second diagram of (7.1). In
particular, Brαγ is contractible.

Remark 7.7. The proofs of Lemmas 7.4 and 7.6 go through for longer Y -shaped trees,
i.e., rooted trees with a central vertex of degree 3 with 3 linear branches of length
⩾ 2 attached to it. (The vertices 1, 2, 3 are at the end of branch Brα.)
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By inspection, every point in the preimage dataP lies in one of the subspaces Brα,
Brβ , or Brγ . Since the intersection of any two branches is contractible, we see that
the preimage dataP is path-connected.

Let Q denote the 6-element poset on the left of diagram (7.8); the elements α, β, γ
are maximal and the others are minimal. Thus BQ is a hexagon, homeomorphic to
the circle S1.

Consider the topological poset Br of pairs (x, q) with x ∈ Brq, illustrated by the
right of (7.8). It is clear that there is a poset morphism f : Br → Q sending elements
(x, q) to q.

α //

��

αγ γoo

��

Brα //

��

Brαγ Brγoo

��
αβ βoo // βγ Brαβ Brβ //oo Brβγ

(7.8)

Lemma 7.9. The geometric realization of Br is homotopy equivalent to dataP .

Proof. For each q, the realization |Br| contains a subspace homeomorphic to Brq,
and for each q′ < q the realization contains the mapping cylinder of the inclusion
Brq′ ⊂ Brq. Thus there is a natural map from |Br| onto dataP . Since Brq′ is a
subspace of two subspaces Brq, it is easy to see that |Br| → dataP is a homotopy
equivalence.

Theorem 7.10. The preimage dataP is homotopic to S1.

Proof. By Lemma 7.9, it suffices to show that f induces a homotopy equivalence
|Br| → BQ ≃ S1. By Quillen’s Theorem A, it suffices to show that (the realization
of) each comma category f/q is contractible.

The comma category f/q is the poset of all pairs (x, q′ ⩽ q) with x ∈ Brq′ . If
q is minimal in Q, f/q = f−1(q) = Brq, which is contractible by Lemma 7.6. If q
is maximal, we still have f−1(q) = Brq but f/q contains elements (x, q′ < q). The
geometric realization of the natural transformation η : (x, q′ ⩽ q) ⇒ (x, q) is a defor-
mation retraction from B(f/q) to the subspace B(f−1q), which is contractible by
Lemma 7.4.

8. Star-like configurations

In this section, we generalize from Y -shaped trees to star-like trees, i.e., trees with
a central vertex of degree n ⩾ 3 and n linear branches of length at least 2 attached
to it. (The Y -shaped trees of Section 7 form the case n = 3.)

For q = 1, . . . , n, let Brq be the subspace of all z with zi = 0 for some vertex on
branch q, and zj ̸= 4 for all vertices j on branch q further from the central vertex
than i. The proof of Lemma 7.4 goes through to show that Brq is contractible for
each q = 1, . . . , n.

Set Br′q =
⋂

p ̸=q Brp; it is the subspace of all z where z = 0 at the central vertex,
while there is a vertex with z = 1 (and hence a vertex with z = 4) lying on branch q.
The proof of Lemma 7.6 goes through to show that each Br′q is contractible.

Since each point of dataP lies on one of the branches, which are contractible, and
each Br′q is contractible, dataP is path-connected.
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Theorem 8.1. dataP is homotopy equivalent to a bouquet
∨

S1 of (n2 − 3n+ 1)
circles.

When n = 3, this yields 1 circle, as in Theorem 7.10; for n = 4 branches, dataP is
homotopy equivalent to a bouquet of 5 circles.

Proof. Consider the poset Q whose elements are the 2n branches Brq and Br′q, with

Br′q < Brp for every p ̸= q. The realization of this poset is a bipartite graph Γ such
that every vertex of Γ has degree n− 1. Since Γ has 2n vertices and n2 − n edges, its
Euler characteristic is

χ = V − E = 3n− n2.

Since Γ is connected, and χ = dimH0(Γ)− dimH1(Γ), Γ is homotopy equivalent to
a bouquet of 1− χ = (n2 − 3n+ 1) circles.

Consider the topological poset Br of pairs (x, s), where x ∈ Brs, and pairs (x, s′),
where x ∈ Br′s; there is an obvious poset morphism f : Br → Q, and hence a map
|Br| → Γ. The proof of Lemma 7.9 goes through (with ‘two’ replaced by n− 1) to
show that |Br| is homotopy equivalent to dataP . Finally, the proof of Theorem 7.10
goes through to show that |Br| → Γ is a homotopy equivalence. (One uses the version
of Quillen’s Theorem A for the realization of topological categories; see [WK, IV.3.9].)
The homotopy equivalence of the theorem follows.

Remark 8.2. The proof of Theorem 8.1 breaks down when n = 2 because Br′p = Brq
for p ̸= q, so Q only has 2 elements.
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