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ON THE CONVERGENCE OF THE
ORTHOGONAL SPECTRAL SEQUENCE

CESAR GALINDO and PABLO PELAEZ

(communicated by Charles A. Weibel)

Abstract
We show that the orthogonal spectral sequence introduced by

the second author is strongly convergent in Voevodsky’s trian-
gulated category of motives DM over a field k. In the context of
the Morel–Voevodsky A1-stable homotopy category we provide
concrete examples where the spectral sequence is not strongly
convergent, and give a criterion under which the strong conver-
gence still holds. This criterion holds for Voevodsky’s slices, and
as a consequence we obtain a spectral sequence which converges
strongly to the E1-term of Voevodsky’s slice spectral sequence.

1. Introduction

1.1.
In order to study finite filtrations on the Chow groups of a smooth projective vari-

ety Y over a field k which satisfy some of the properties of the still conjectural Bloch–
Beilinson–Murre filtration [Bĕı87], [Blo80], [Mur93], the second author introduced
a tower of triangulated functors bc⩽• [Pel17]:

· · · → bc⩽n−1 → bc⩽n → bc⩽n+1 · · · → (1.1.1)

in Voevodsky’s triangulated category of motives DM .
The filtration on the Chow groups with coefficients in a commutative ring R is

defined by evaluating the tower (1.1.1) in the motive of a point 1R and then mapping
M(Y )(−q)[−2q] into bc⩽•(1R), where M(Y ) is the motive of Y , and (−q) (resp. [-2q])
is defined in terms of the Tate twist (resp. suspension) in DM , see §2.5. This process
gives a filtration in the Chow groups since [Voe02a]:

CHq(Y )R ∼= HomDM (M(Y )(−q)[−2q],1R).

Given A,B ∈ DM , one may as well evaluate the tower (1.1.1) in A and then map
B into bc⩽•(A). Then one obtains a spectral sequence:

E1
p,q = HomDM (B, (bcp/p−1A)[q − p]) ⇒ HomDM (B,A), (1.1.2)
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where bcp/p−1A is defined in terms of a canonical distinguished triangle inDM [Pel17,
3.2.8]:

bc⩽p−1A → bc⩽pA → bcp/p−1A.

The goal of this paper is to study the convergence properties of the spectral
sequence (1.1.2).

Our main result (4.3) shows that the spectral sequence (1.1.2) is strongly con-
vergent for B = M(X)(r)[s], with r, s ∈ Z and X an arbitrary smooth scheme of
finite type over k. We show as well that the analogous result does not hold in the
Morel–Voevodsky A1-stable homotopy category SH by providing explicit counterex-
amples (5.1)–(5.3). On the other hand, we verify that under suitable conditions for
A ∈ SH the spectral sequence is strongly convergent (5.4), and that this conditions
are satisfied for Voevodsky’s slices smG ∈ SH. As a direct consequence we obtain a
spectral sequence converging strongly to the E1-term of Voevodsky’s slice spectral
sequence (5.5).

In a future work, we will apply the spectral sequence (1.1.2) and its convergence
properties to describe the higher terms for the filtration [Pel17, 6.14] mentioned
above on the Chow groups of smooth projective varieties with rational coefficients.

We refer the reader to [Koh19] and [BK21] for filtrations which are constructed
by a related process.

2. Preliminaries

In this section we fix the notation that will be used throughout the rest of the
paper and collect together facts from the literature that will be necessary to establish
our results.

2.1. Definitions and notation

We fix a base field k. We will write Schk for the category of k-schemes of finite type
and Smk for the full subcategory of Schk consisting of smooth k-schemes regarded
as a site with the Nisnevich topology.

We will use the following notation in all the categories under consideration: 0
will denote the zero object, and ∼= will denote that a map (resp. a functor) is an
isomorphism (resp. an equivalence of categories).

We shall use freely the language of triangulated categories. Our main reference
will be [Nee01]. Given a triangulated category, we will write [1] (resp. [−1]) to
denote its suspension (resp. desuspension) functor; and for n > 0, the composition
of [1] (resp. [−1]) iterated n-times will be [n] (resp. [−n]). If n = 0, then [0] will be
the identity functor. Given an inductive system · · ·Tn → Tn+1 → · · · , its homotopy
colimit, hocolimn→∞ Tn will be defined as in [Nee01].

2.2. Triangulated categories

Let T be a compactly generated triangulated category in the sense of Neeman
[Nee96, Def. 1.7] with set of compact generators G. For G′ ⊆ G, let Loc(G′) denote
the smallest full triangulated subcategory of T which contains G′ and is closed under
arbitrary (infinite) coproducts.
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Definition 2.1. Let T ′ ⊆ T be a triangulated subcategory. We will write T ′⊥ for
the full subcategory of T consisting of the objects E ∈ T such that for every K ∈ T ′:
HomT (K,E) = 0.

If T ′ = Loc(G′) and E ∈ T ′⊥, we will say that E is G′-orthogonal.

2.3. Slice and orthogonal towers
As in (2.2), consider a decreasing family of subsets of G: S = {Gn}n∈Z such that

Gn+1 ⊆ Gn ⊆ G for every n ∈ Z.
Thus, we obtain a tower of full triangulated subcategories of T :

· · · ⊆ Loc(Gn+1) ⊆ Loc(Gn) ⊆ Loc(Gn−1) ⊆ · · · . (2.3.1)

We will call (2.3.1) the slice tower determined by S. The reason for this terminol-
ogy is [Voe02b], [HK06], [Voe10b, p. 18]. If we consider the orthogonal categories
Loc(Gn)

⊥ (see Def. 2.1), we obtain a tower of full triangulated subcategories of T :

· · · ⊆ Loc(Gn−1)
⊥ ⊆ Loc(Gn)

⊥ ⊆ Loc(Gn+1)
⊥ ⊆ · · · . (2.3.2)

2.3.1. Orthogonal covers
Recall [Nee96, Thm. 4.1], [Pel17, 2.1.7(3)] that the inclusion, jn : Loc(Gn)

⊥ → T
admits a right adjoint:

pn : T → Loc(Gn)
⊥,

which is also a triangulated functor. We define bc⩽n = jn+1 ◦ pn+1, where bc stands
for birational cover [Pel17, 3.2].

2.3.2.
The counit bc⩽n = jn+1pn+1

θn→ id of the adjunction in (2.3.1) satisfies the following
universal property (by an argument parallel to [Pel17, 3.2.4]):

For any A in T and for any B ∈ Loc(Gn+1)
⊥, the map θAn : bc⩽nA → A in T induces

an isomorphism of abelian groups:

HomT (B, bc⩽nA) ∼=

θA
n∗ // HomT (B,A) .

2.3.3.
Observe that by construction bc⩽nA is in Loc(Gn+1)

⊥ (2.3.1) and in addition we
have Loc(Gn+1)

⊥ ⊆ Loc(Gn+2)
⊥ (2.3.2). Thus, it follows from (2.3.2) that there exists

a canonical natural transformation bc⩽n → bc⩽n+1 and that bc⩽n ◦ bc⩽n+1
∼= bc⩽n

[Pel17, 3.2.6] (the argument works for any compactly generated triangulated cate-
gory). Hence, for every A in T there is a functorial tower in T [Pel17, 3.2.14, 3.2.15]:

· · · // bc⩽nA

θA
n

$$

// bc⩽n+1A

θA
n+1

��

// · · · // hocolimn→∞ bc⩽nA

c
tt

A,

(2.3.3)

where all the triangles commute. We will call (2.3.3) the orthogonal tower of A.
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Definition 2.2. For A, B in T we consider the increasing filtration F• of the Abelian
group HomT (B,A) (resp. HomT (B, hocolimn→∞ bc⩽nA)), where Fp is given by the
image of

θAp∗ : HomT (B, bc⩽pA) → HomT (B,A),

(resp. λA
p,∗ : HomT (B, bc⩽pA) → HomT (B, hocolim

n→∞
bc⩽nA)),

where λA
p : bc⩽pA → hocolimn→∞ bc⩽nA is the canonical map into the homotopy col-

imit (2.3.3).

2.4. The orthogonal spectral sequence
Let A,B be in T . By an argument parallel to [Pel17, Thm. 3.2.8] for p ∈ Z there

exist canonical triangulated functors bcp/p−1 : T → T , equipped with natural trans-
formations bc⩽p → bcp/p−1 and bcp/p−1 → [1] ◦ bc⩽p−1, which fit in a natural distin-
guished triangle in T :

bc⩽p−1A → bc⩽pA → bcp/p−1A → bc⩽p−1A[1]. (2.4.1)

Then (2.3.3) induces a spectral sequence of homological type [Pel17, Thm. 3.2.16]:

E1
p,q = HomT (B, (bcp/p−1A)[q − p]) ⇒ HomT (B,A) (2.4.2)

with differentials dr : E
r
p,q → Er

p−r,q−r+1 and where the abutment is given by the
associated graded group for the increasing filtration (2.2) F• of HomT (B,A).

Similarly, the horizontal row in (2.3.3) induces a spectral sequence of homological
type:

E1
p,q = HomT (B, (bcp/p−1A)[q − p]) ⇒ HomT (B, hocolim

n→∞
bc⩽nA) (2.4.3)

with exactly the same differentials as (2.4.2) and where the abutment is given
by the associated graded group for the increasing filtration (2.2) F• of the Abelian
group HomT (B, hocolim

n→∞
bc⩽nA).

Now, we observe that the map c in (2.3.3) induces a map of spectral sequences
(2.4.3) → (2.4.2) which is the identity on the E1-terms:

E1
p,q = HomT (B, (bcp/p−1A)[q − p]) +3 HomT (B, hocolim

n→∞
bc⩽nA)

c∗

��
E1

p,q = HomT (B, (bcp/p−1A)[q − p]) +3 HomT (B,A).

(2.4.4)

2.5. Voevodsky’s triangulated category of motives
We will only consider motives with R-coefficients, where R = Z[ 1p ] and p is the

exponential characteristic of the base field k.
Let Cork be the Suslin–Voevodsky category of finite correspondences over k, i.e.

the category with the same objects as Smk and morphisms c(U, V ) given by the
R-module of finite relative cycles on U ×k V over U [SV00] with composition as
in [Voe10a, p. 673 diagram (2.1)]. The graph of a morphism in Smk induces a
functor Γ: Smk → Cork. A Nisnevich sheaf with transfers is an additive contravariant
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functor F from Cork to the category of R-modules such that the restriction F ◦ Γ
is a Nisnevich sheaf. Let Shvtr be the category of Nisnevich sheaves with transfers
which is an abelian category [MVW06, 13.1]. Given X ∈ Smk, we will write Ztr(X)
for the Nisnevich sheaf with transfers represented by X [MVW06, 2.8 and 6.2].

Consider the category K(Shvtr) of chain complexes (unbounded) on this Shvtr,
equipped with the injective model structure [Bek00, Prop. 3.13], and let D(Shvtr) be

its homotopy category. Let KA1

(Shvtr) be the left Bousfield localization [Hir03, 3.3]
of K(Shvtr) with respect to the set of maps

{Ztr(X ×k A1)[n] → Ztr(X)[n] : X ∈ Smk;n ∈ Z}

induced by the projections p : X ×k A1 → X. Voevodsky’s triangulated category of
effective motives DM eff is the homotopy category of KA1

(Shvtr) [Voe00].

Let T ∈ KA1

(Shvtr) denote the chain complex of the from Ztr(Gm)[1] [MVW06,
2.12], where Gm is the k-scheme A1\{0} pointed by 1. We consider the category

SptT (Shv
tr) of symmetric T -spectra on KA1

(Shvtr), equipped with the model struc-
ture defined in [Hov01, 8.7 and 8.11], [Ayo07, Def. 4.3.29]. Voevodsky’s triangulated
category of motives DM is the homotopy category of SptT (Shv

tr) [Voe00].
Given X ∈ Smk, we will write M(X) for the image of Ztr(X) ∈ D(Shvtr), under

the A1-localization map D(Shvtr) → DM eff . Let Σ∞ : DM eff → DM be the suspen-
sion functor [Hov01, 7.3] (denoted by F0 in loc.cit.), we will abuse notation and
simply write E for Σ∞E, where E ∈ DM eff . Given a map f : X → Y in Smk, we will
write f : M(X) → M(Y ) for the map induced by f in DM .

Notice that, DM eff and DM are tensor triangulated categories [Ayo07, Thm.
4.3.76 and Prop. 4.3.77] with unit 1 = M(Spec(k)). Given A ∈ DM , we will write
A(1) for A⊗ Ztr(Gm)[−1], and inductively A(n) = (A(n− 1))(1), when n > 0. We
observe that A 7→ A(1) defines a functor DM → DM , which is an equivalence of cat-
egories [Hov01, 8.10], [Ayo07, Thm. 4.3.38]; we will write A 7→ A(−1) for its inverse,
and inductively A(−n) = (A(−n+ 1))(−1), when n > 0. By convention A(0) = A for
A ∈ DM .

2.5.1. Generators
It is well known that DM is a compactly generated triangulated category (2.2) with
compact generators [Ayo07, Thm. 4.5.67]:

GDM = {M(X)(p) : X ∈ Smk; p ∈ Z}. (2.5.1)

Let Geff ⊆ GDM be the set consisting of compact objects of the form:

Geff = {M(X)(p) : X ∈ Smk; p ⩾ 0}. (2.5.2)

If n ∈ Z, we will write Geff(n) ⊆ GDM for the set consisting of compact objects of
the form:

Geff(n) = {M(X)(p) : X ∈ Smk; p ⩾ n}. (2.5.3)

2.5.2.
By Voevodsky’s cancellation theorem [Voe10a], the suspension functor induces an
equivalence of categories Σ∞ : DM eff → DM betweenDM eff and the full triangulated
subcategory Loc(Geff) of DM (2.2). We will abuse notation and write DM eff for



394 CESAR GALINDO and PABLO PELAEZ

Loc(Geff). Strictly speaking [Voe10a, Cor. 4.10] is only stated for perfect base fields,
but by the work of Suslin [Sus17, Cor. 4.13, Thm. 4.12 and Thm. 5.1] it follows that
the result holds as well for non-perfect base fields.

2.5.3.

We will writeDM eff(n) for the full triangulated subcategoryLoc(Geff(n))ofDM (2.2),
and DM⊥(n) for the orthogonal category Loc(Geff(n))⊥ (see Def. 2.1). Notice that
DM eff(n) is compactly generated with the set of generators Geff(n) [Nee96, Thm.
2.1(2.1.1)].

2.5.4.

We will consider (2.3.1), (2.3.2), (2.3.3), (2.2), (2.4.2), (2.4.3) and (2.4.4) in DM for
the family S = {Geff(n)}n∈Z of subsets of GDM (2.5.3).

2.6. The Morel–Voevodsky A1-stable homotopy category

We refer the reader to [Jar00, §4.2, Thm. 4.15] for the construction of the stable
model structure on the category of symmetric T -spectra. We will write SH for its
homotopy category, which is the Morel–Voevodsky A1-stable homotopy category.

Given X ∈ Smk, let Σ
∞
T X+ ∈ SH denote the infinite suspension of the simplicial

presheaf represented by X with a disjoint base point (written F0(X+) in [Jar00, p.
506]). By [Jar00, Prop. 4.19], SH is a tensor triangulated category with unit 1 =
Σ∞

T Spec k+. When E ∈ SH, we will write E(1) for E ⊗ Σ∞
T (Gm)[−1], and induc-

tively E(n) = (E(n− 1))(1), if n > 0. We observe that E 7→ E(1) then defines a func-
tor SH → SH, which is an equivalence of categories [Hov01, 8.10], [Ayo07, Thm.
4.3.38]; we will write E 7→ E(−1) for its inverse, and inductively we write E(−n) =
(E(−n+ 1))(−1), when n > 0. By convention E(0) = E for E ∈ SH.

As in the case ofDM , it follows from [Ayo07, Thm. 4.5.67] that SH is a compactly
generated triangulated category (2.2) with compact generators:

GSH = {Σ∞
T X+(p) : X ∈ Smk; p ∈ Z}. (2.6.1)

For n ∈ Z, we will write Geff
SH(n) ⊆ GSH for the set consisting of compact objects

of the form:

Geff
SH(n) = {Σ∞

T X+(p) : X ∈ Smk; p ⩾ n}. (2.6.2)

2.6.1.

Let SHeff(n) be the full triangulated subcategory Loc(Geff
SH(n)) of SH (2.2), and

SH⊥(n) be the orthogonal category Loc(Geff
SH(n))⊥ (see Def. (2.1)). Notice that

SHeff(n) is compactly generated with the set of generators Geff
SH(n) [Nee96, Thm.

2.1(2.1.1)].

2.6.2.

We will consider (2.3.1), (2.3.2), (2.3.3), (2.2), (2.4.2), (2.4.3) and (2.4.4) in SH for
the family S = {Geff

SH(n)}n∈Z of subsets of GSH (2.6.2). These were constructed in
[Pel14].
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3. Orthogonality and duality

3.1.
Recall that we are working with Z[ 1p ]-coefficients (2.5). In this section we will

consider Y ∈ Smk connected of dimension d, and s, t ∈ Z.

Proposition 3.1. With the notation and conditions of §3.1. Then:

M(Y )(s)[t] ∈ DM⊥(d+ s+ 1).

(see (2.5.3) and Def. 2.1).

Proof. By [Pel17, 2.1.2] it suffices to show that HomDM (M(X)(a)[b],M(Y )(s)[t]) =
0, for every X ∈ Smk, a, b ∈ Z such that a ⩾ d+ s+ 1. So, by [Sus17, Cor. 4.13,
Thm. 4.12 and Thm. 5.1] we may assume that the base field k is perfect. Now, if the
base field k admits resolution of singularities, it follows from [Voe00, Thm. 4.3.7]
that:

HomDM (M(X)(a)[b],M(Y )(s)[t]) ∼= HomDM (M(X)⊗M c(Y )(e)[f ],1),

where M c(Y ) ∈ DM eff is the motive of Y with compact supports [Voe00, §4.1, Cor.
4.1.6], e = a− s− d and f = b− t− 2d. For an arbitrary perfect base field, we obtain
the same conclusion by [Kel17, Thm. 5.3.14 and Lem. 5.3.6].

Therefore, by [Pel17, 5.1.1] it suffices to check that we haveM(X)⊗M c(Y )(e)[f ]∈
DM eff(1) (2.5.3), which holds by hypothesis: e = a− s− d ⩾ 1.

Corollary 3.2. With the notation and conditions of §3.1. Let E = M(Y )(s)[t] ∈
DM . Then:

1. The natural map (2.3.2):

θEd+s : bc⩽d+sE → E

is an isomorphism in DM .

2. For any A ∈ DM , and any map f : E → A in DM , there exists a unique lifting
g : E → bc⩽d+sA such that the following diagram commutes in DM :

bc⩽d+sA

θA
d+s

��
E

f
//

g
;;

A.

(3.1.1)

3. The map f in (3.1.1) is zero if and only if the map g in (3.1.1) is zero.

Proof. (1): This follows directly by combining Prop. 3.1 with [Pel17, 3.2.7].
(2) and (3) follow from Prop. 3.1 and the universal property of θAd+s (2.3.2).

4. Convergence

4.1.
In this section we will consider objects A, B ∈ DM , where B is of the form B =

M(X)(s)[t] for X ∈ Smk and s, t ∈ Z.
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Theorem 4.1. With the notation and conditions of §4.1. Then the spectral sequence
(2.4.3) is strongly convergent [Boa99, Def. 5.2(iii)].

Proof. Since B = M(X)(s)[t] is compact inDM (2.5.1), it follows from [Nee96, Lem.
2.8] that

HomDM (B, hocolim
n→∞

bc⩽nA) ∼= colimn→∞HomDM (B, bc⩽nA),

which implies that the filtration (2.2) F• on HomDM (B, hocolimn→∞ bc⩽nA) is ex-
haustive.

Now, we observe that B ∈ DM eff(s) for every t ∈ Z (2.5.3) and by construction
bc⩽nA ∈ DM⊥(n+ 1) (2.3.1), so we deduce that HomDM (B, bc⩽nA) = 0 for all n ⩽
s− 1 and every t ∈ Z (see Def. 2.1). Hence, applying the distinguished triangle (2.4.1)
we conclude that E1

p,q = 0 for p ⩽ s− 1. Then, [Boa99, Thm. 6.1(a)] implies that
the spectral sequence is strongly convergent since the differentials are of the form
dr : E

r
p,q → Er

p−r,q−r+1 (notice that our notation is homological while Boardman’s is
cohomological, see [Boa99, (12.1) and Thm. 12.2] for an explicit comparison).

Corollary 4.2. With the notation and conditions of §4.1. Assume that the canonical
map c : hocolimn→∞ bc⩽nA → A (2.3.3) induces an isomorphism of abelian groups:

c∗ : HomDM (B, hocolim
n→∞

bc⩽nA)
∼=→ HomDM (B,A).

Then the spectral sequence (2.4.2) is strongly convergent [Boa99, Def. 5.2(iii)].

Proof. Follows directly by combining (2.4.4) with Thm. 4.1.

The following is the main theorem:

Theorem 4.3. With the notation and conditions of §4.1. Then the canonical map

c : hocolim
n→∞

bc⩽nA
∼=→ A

is an isomorphism in DM . Hence, the spectral sequence (2.4.2) is strongly convergent.

Proof. By (4.2) it is enough to show that c is an isomorphism in DM . In order
to prove this, it suffices to see (2.5.1) that for every a, b ∈ Z and every connected
Y ∈ Smk the induced map:

c∗ : HomDM (M(Y )(a)[b],hocolim
n→∞

bc⩽nA) → HomDM (M(Y )(a)[b], A)

is an isomorphism of abelian groups.
First we show that c∗ is surjective. In effect given f : M(Y )(a)[b] → A we obtain

a lifting by 3.2(2):

bc⩽d+aA

θd+a

��
M(Y )(a)[b]

f
//

88

A,

where d is the dimension of Y . Then the surjectivity follows by (2.3.3).
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Finally we consider the injectivity. Let f : M(Y )(a)[b] → hocolimn→∞ bc⩽nA such
that the composition c∗(f) : M(Y )(a)[b] → A is zero. Since M(Y )(a)[b] is compact in
DM (2.5.1), we conclude that [Nee96, Lem. 2.8]:

HomDM (M(Y )(a)[b],hocolim
n→∞

bc⩽nA) ∼= colimn→∞HomDM (M(Y )(a)[b], bc⩽nA).

Thus we may assume that f factors as:

bc⩽nA

��
M(Y )(a)[b]

f
//

f ′
66

hocolimn→∞ bc⩽nA

for some n ⩾ d+ a. Now, applying again 3.2(2) we may factor f ′ as follows:

bc⩽d+aA ∼= bc⩽d+a(bc⩽nA)

��
M(Y )(a)[b]

f ′
//

f
′′ 55

bc⩽nA,

where the isomorphism follows from [Pel17, 3.2.6] since d+ a ⩽ n. Thus it suffices
to show that f

′′
is zero. But this follows from 3.2(3) since

θAd+a ◦ f
′′
= c∗(f) = 0,

where the first equality follows from (2.3.3) and the two commutative triangles above
while the second equality follows by hypothesis.

Remark 4.4. We observe that Thm. 4.1 and (4.2) hold for a compactly generated
triangulated category T with compact generators G and any choice of a family of
subsets of G: S = {Gn}n∈Z satisfying the conditions in (2.3) and in addition ∪n∈Z Gn =
G.

However, (4.3) does not hold for a general compactly generated triangulated cat-
egory as we will see in the next section.

5. The A1-stable homotopy category

5.1.

In this section we show that (4.3) does not hold for the sphere spectrum in SH. On
the other hand, we show that (4.3) holds for objects in SH⊥(n), n ∈ Z. As a direct
consequence we obtain a spectral sequence converging to the E1-term of Voevodsky’s
slice spectral sequence.

Proposition 5.1. The canonical map c : hocolimn→∞ bc⩽n1 → 1 (2.3.3) is not an
isomorphism in SH.

Proof. We proceed by contradiction, and assume that c is an isomorphism in SH.
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Then, since 1 ∈ SH is compact we conclude [Nee96, Lem. 2.8]:

colimn→∞HomSH(1, bc⩽n1) ∼= HomSH(1,hocolimn→∞ bc⩽n1)
c∗
∼=
// HomSH(1,1).

Thus, for some n ∈ Z the identity map for 1 factors as in the following commutative
diagram in SH:

bc⩽n1

θ1
n

��
1

id
//

<<

1.

Hence, 1⊕ E ∼= bc⩽n1 ∈ SH⊥(n+ 1) (2.3.1) for some E ∈ SH. Since SH⊥(n+ 1) is

closed under direct summands (see Def. 2.1), we deduce that 1 ∈ SH⊥(n+ 1). But
this is a contradiction since it implies that for every m ⩾ n, the slice functors of
Voevodsky [Voe02b, Thm. 2.2] vanish sm1 = 0 for the sphere spectrum, which is
not the case [Voe02b, Conj. 9], [Lev14, p. 350].

Remark 5.2. The argument above shows that Prop. 5.1 holds for any compact object
A ∈ SH such that for every n ∈ Z there exists m ⩾ n with smA ̸= 0.

Corollary 5.3. Consider the spectral sequence (2.4.2) in SH for A = 1. Then the
spectral sequence is not strongly convergent for every B = Σ∞

T X+(s)[t], X ∈ Smk, s,
t ∈ Z.

Proof. We proceed by contradiction and assume that the spectral sequence is strongly
convergent for every B as above. Then combining (2.4.4) and Thm. 4.1 (which also
holds in SH (4.4)) we conclude that

c∗ : HomSH(B, hocolim
n→∞

bc⩽n1) → HomSH(B,1)

is an isomorphism. But this implies that c is an isomorphism since SH is a compactly
generated category with generators GSH (2.6.1).

However, the spectral sequence (2.4.2) is strongly convergent for a large class of
objects in SH:

Proposition 5.4. Let A ∈ SH such that for some r ∈ Z, A ∈ SH⊥(r) (2.6.1). Then
the canonical map

c : hocolim
n→∞

bc⩽nA
∼=→ A

is an isomorphism in SH. Hence, the spectral sequence (2.4.2) is strongly convergent
for every B = Σ∞

T X+(s)[t], X ∈ Smk, s, t ∈ Z.

Proof. By (4.2) (which holds as well in SH (4.4)) it is enough to show that c is an
isomorphism in SH.

Let m ⩾ r be an arbitrary integer. It follows from (2.3.2) that A ∈ SH⊥(m),
so by the universal property (2.3.2) we conclude that θAm : bc⩽mA → A is an
isomorphism in SH (see [Pel17, 2.3.7]). But this implies that the canonical map
c : hocolimn→∞ bc⩽nA → A (2.3.3) is an isomorphism in SH.
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5.1.1.
Let B ∈ SH with B = Σ∞

T X+(s)[t], X ∈ Smk, s, t ∈ Z. Consider Voevodsky’s slice
spectral sequence [Voe02b, §7] for G ∈ SH:

Em,n
1 = HomSH(B, smG[m+ n]) ⇒ HomSH(B,G).

A direct consequence of (5.4) is the fact that we obtain a spectral sequence which
converges strongly to the E1-term of Voevodsky’s slice spectral sequence and which
is compatible with the differentials d1 : E

m,n
1 → Em+1,n

1 :

Corollary 5.5. With the notation and conditions of (5.1.1). Then the spectral se-
quence (2.4.2) for A = smG[m+ n] converges strongly to the E1-term of Voevodsky’s
slice spectral sequence Em,n

1 = HomSH(B, smG[m+ n]). In addition, the differential
d1 : E

m,n
1 → Em+1,n

1 in Voevodsky’s slice spectral sequence induces a map between the
spectral sequences:

E1
p,q = HomSH(B, (bcp/p−1smG[m+ n])[q − p]) +3

d1∗

��

Em,n
1

d1

��
E1

p,q = HomSH(B, (bcp/p−1sm+1G[m+ 1 + n])[q − p]) +3 Em+1,n
1 .

(5.1.1)

Proof. By construction smG ∈ SH⊥(m+ 1) [Voe02b, Thm. 2.2(3)]. Thus the strong
convergence of (2.4.2) for A = smG[m+ n] follows directly from (5.4).

We observe that the differential d1 : d1 : E
m,n
1 → Em+1,n

1 in the slice spectral se-
quence is induced by the map ∂[m+ n] in SH where ∂ is the following composition
[Voe02b, Thm. 2.2(1)]:

smG
σm // fm+1G[1]

πm+1[1]// sm+1G[1].

Since the tower (2.3.3) is functorial in SH we conclude that ∂[m+ n] induces the
desired map of spectral sequences (5.1.1).
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