
Homology, Homotopy and Applications, vol. 25(1), 2023, pp.21–51

FIBER INTEGRATION OF GERBES AND
DELIGNE LINE BUNDLES

ETTORE ALDROVANDI and NIRANJAN RAMACHANDRAN

(communicated by Jonathan Rosenberg)

Abstract
Let π : X → S be a family of smooth projective curves, and

let L and M be a pair of line bundles on X. We show that
Deligne’s line bundle ⟨L,M⟩ can be obtained from the K2-gerbe
GL,M constructed in [AR16] via an integration along the fiber
map for gerbes that categorifies the well known one arising from
the Leray spectral sequence of π. Our construction provides a
full account of the biadditivity properties of ⟨L,M⟩. Our main
application is to the categorification of correspondences on the
self-product of a curve.

The functorial description of the low degree maps in the
Leray spectral sequence for π that we develop is of indepen-
dent interest, and, along the way, we provide an example of
their application to the Brauer group.

1. Introduction

Let S be a smooth variety over a field F , and let π : X → S be a relative curve,
namely, a smooth projective morphism of relative dimension one. Deligne [SGA73,
Del87] has constructed a bi-additive functor of Picard categories [Duc90, Proposi-
tion 4.1.2]

ΨX/S : TorsX(Gm)×TorsX(Gm)→ TorsS(Gm), ΨX/S(L,M) = ⟨L,M⟩ ,

where the bi-additivity means that there are natural isomorphisms

⟨L+ L′,M⟩ ≃−→ ⟨L,M⟩+ ⟨L′,M⟩ , ⟨L,M⟩ ≃−→ ⟨M,L⟩ .

Even though there are multiple approaches to ΨX/S (see §2.2) the proof of bi-
additivity is non-trivial in each one of them.

Let Kj be the usual Zariski sheaf attached to the presheaf U 7→ Kj(U) on X.
A basic result of Bloch-Quillen is that Hj(X,Kj) is isomorphic to the Chow group
CHj(X) of codimension-j cycles on X. Our main result is the following:1

Received August 8, 2021, revised January 15, 2022; published on March 1, 2023.
2020 Mathematics Subject Classification: 14C25, 14F42, 55P20, 55N15.
Key words and phrases: algebraic cycle, gerbe, higher category.
Article available at http://dx.doi.org/10.4310/HHA.2023.v25.n1.a2
Copyright © 2023, Ettore Aldrovandi and Niranjan Ramachandran. Permission to copy for private
use granted.

1Theorem 1.1 was conjectured by Patnaik [Pat08, Remark 21.3.2].

http://intlpress.com/HHA/
http://intlpress.com/HHA/v25/
http://intlpress.com/HHA/v25/n1/


22 ETTORE ALDROVANDI and NIRANJAN RAMACHANDRAN

Theorem 1.1. The functor ΨX/S factorizes as a composition of a bi-additive functor
∪ and an additive functor

∫
π
:

TorsX(Gm)×TorsX(Gm)
∪−→ GerbX(K2)

∫
π−→ TorsS(Gm) .

In the statement, GerbX(K2) denotes the Picard 2-category of gerbes on X with
band K2; the bi-additivity of ΨX/S is a consequence of the bi-additivity of the cup-
product. The functor

∫
π
categorifies the pushforward map

π∗ : CH
2(X)→ CH1(S) ,

and it represents [SGA73, XVIII §1.3] the integration of a gerbe along the fibers
of π. Thus, ΨX/S is actually a categorification of the pairing

CH1(X)× CH1(X)
∪−→ CH2(X)

π∗−→ CH1(S) .

The proof of Theorem 1.1 is obtained by combining the following Theorems 1.2, 1.3,
and 1.4:

Theorem 1.2. On any smooth variety Y over F , there exists a natural bi-additive
functor

TorsY (Gm)×TorsY (Gm)
∪−→ GerbY (K2).

This is essentially proved in [AR16], but for the biadditivity, which we address
below. Biadditivity or additivity is straightforward, but we must contend with the
fact that some of the entities involved are higher categories or stacks.

Let GL,M be the K2-gerbe corresponding to the cup-product of line bundles L and
M on X (viewed as Gm-torsors).

Theorem 1.3. For π : X → S as above of relative dimension one, there exists a nat-
ural additive functor ∫

π

: GerbX(K2) −→ TorsS(Gm) .

The proof of Theorem 1.3 consists in writing the maps in the low degree part of
the Leray spectral sequence for π : X → S directly in terms of the (higher) stacks
they classify. While this can be traced back in some implicit form to [Gir71, §V.3.1–
2], we reprise it here as we need in particular an explicit description of the functors
involved. In particular, the integration map is given by taking the sheaf of connected
components of the pushforward gerbe from X to S. We describe the integration map
in greater generality, by working with a general site morphism.

Finally, we have

Theorem 1.4. One has a natural isomorphism∫
π

GL,M
∼= ⟨L,M⟩ .
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Let Y be a smooth proper variety Y over F ; let CH∗(Y ) = ⊕jCH
j(Y ) for the total

Chow group of Y . Recall that one has a homomorphism [Ful98, Example 16.1.2(c)]

CHdim Y (Y × Y )→ End(CH∗(Y )) (1)

of rings; the ring structure on the former is given by the composition of correspon-
dences. The categorification of (1) is of great interest. We use Theorem 1.1 to provide
a categorification (Theorem 7.1) of (1) when dimY = 1. It should be remarked that
the problem of categorification of (1) seems to be formidable when dimY > 1: for
a surface Y , one needs to endow the Picard 2-category GerbY×Y (K2) with a ring
structure.

Let CH1(Y ) denote the Picard category of line bundles on Y . If C is a smooth
projective curve over an algebraically closed field, then CH1(C × C) can be naturally
enhanced to a categorical ring and the natural functor

CH1(C × C)→ End(CH1(C))

is a functor of categorical rings (Theorem 7.1).

While there are several generalizations [Gor09, Blo89, BS88, Elk89, Fra91,
Fra90, Blo84, Eri13] of Deligne’s construction, they are all restricted to line bundles
or codimension one. However, Theorem 1.1 suggests new generalizations [AR21] of
Deligne’s construction: if f : Y → S is smooth proper of relative dimension two, there
exists a natural bi-additive functor

Ψ2
Y/S : GerbY (K2)×GerbY (K2) −→ GerbS(K2),

which is a categorification of the pairing

CH2(Y )× CH2(Y ) −→ CH4(Y )
f∗−→ CH2(S) .

Organization

In section 3 we analyze in some detail the low-degree terms exact sequence of
the Leray spectral sequence for π : X → S. While this is all well known from [Gir71,
§V.3.1–2], we expand on it as several details were famously left as an exercise ([Gir71,
Exercice V.3.1.9.2]). Since we describe the maps in the sequence fairly explicitly, as
an example we use them to illustrate an application to the Brauer group, which is
of independent interest. In section 4 we prove Theorems 1.2 and 1.3, and, finally,
we prove Theorem 1.4, the comparison with Deligne’s construction, in section 5.
We end with a proof of the main result (Theorem 7.1) about the categorification of
correspondences in §7. The requisite results from the theory of Picard categories are
in §6.

Notation

For any sheaf A of abelian groups on a site we denote by Tors(A) the Picard
category of A-torsors and by Tors(A) the corresponding stack. Similarly, one cat-
egorical level up, for Gerb(A) and Gerb(A), which denote the 2-Picard category
of A-gerbes and the corresponding 2-stack. For any stack F, we denote by π0(F) its
sheaf of connected components and by F the category of its global sections, that is
Hom(pt ,F), where pt is the terminal sheaf.
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2. Norms and Deligne’s construction

We recall some properties of Deligne’s functor ΨX/S , the line bundle ⟨L,M⟩ on S
and examples.

2.1. Norms and finite maps
Let g : V →W be a finite and flat morphism of varieties. Given a line bundle L on

V , its norm (relative to g) [Duc90, §3.1] is a line bundle NV/W (L) on W . One has
an additive functor of Picard categories [Del87, §7.1]

NV/W : TorsV Gm −→ TorsW Gm .

2.2. Characterization of Deligne’s functor ΨX/S

Suppose D ⊂ X is an effective relative Cartier divisor [Sta20, Tag 056P] of
π : X −→ S. Namely, D is an effective Cartier divisor on X and the induced mor-
phism π : D → S is finite and flat. For any line bundle M on X, the norm ND/S(M) is
a line bundle on S. Deligne’s construction ΨX/S is characterized by [SGA73, XVIII
1.3.16]: (i) functoriality, and (ii) for any section of L with zero set an effective Cartier
divisor D on X, a canonical isomorphism

ND/S

(
M

∣∣
D

) ∼= ⟨L,M⟩ . (2)

Another approach to ΨX/S from [SGA73, XVIII 1.3.17.2] is the following: if D and
E are effective relative Cartier divisors on X, then

⟨O(D),O(E)⟩ ∼= detRπ∗(O(D)
L
⊗ O(E)). (3)

If D and E are finite over S, one has [Duc90, (22)]

⟨O(D),O(E)⟩ ∼= ND/S

(
O(E)

∣∣
D

)
.

In this case, ⟨O(D),O(E)⟩ has a canonical section sD,E which is the norm of the
morphism OD → O(E)|D obtained by the restriction to D of the canonical section of
O(E).

2.3. Examples
In general, explicit computations of Deligne’s line bundles are hard to come by.

Example 2.1 (Weng-Zagier [WZ08]). Consider the moduli stack S = Mg,N of curves
of genus g with N ordered marked points P1, . . . , PN , and let π : Cg,N →Mg,N be
the universal curve. Let K be the relative dualizing sheaf of π and let Λ = det Rπ∗K
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be the Mumford bundle. We write Li (for 1 ⩽ i ⩽ N) for the pullback P∗
iK along

the canonical sections Pi : Mg,N → Cg,N of π. Let E = P1 + · · ·+PN , viewed as a
divisor on Cg,N . It is known that

⟨K(E),K(E)⟩ ∼= Λ⊗12

⊗ L1 ⊗ · · · ⊗ LN ;

see Weng-Zagier[WZ08] for this and generalizations.

Example 2.2 (Moret-Bailly [MB85, Corollaire 2.7.6]). Let π : X → S be a smooth
proper morphism of relative dimension one. Given x, y ∈ X(S), considered as divisors
on X and a line bundle L on X with degree zero on the fibers of π, one has

⟨L,O(x− y)⟩ ∼= x∗L⊗ y∗L−1 .

This is also an easy consequence of (2).

Example 2.3 (Ducrot [Duc90, §3.3]). Let A = F [a1, . . . , an, b1, . . . , bm], B = A[T ],
f =

∏
i(T − ai) and g =

∏
j(T − bj). The classical formula [Duc90, (31)]

res(f, g) = NB′/A(g), B′ =
B

(f)

for the resultant res(f, g) of f and g is clearly related to (2).
Let us restate this in geometric terms. Let C = A1 be the affine line over F and

let π : X → S be the relative curve C × Cn × Cm → Cn × Cm. Let D and E be the
canonical relative divisors on X of degree n and m. Namely, we have

S = SpecA , X = A1
S = SpecB , D = Spec

B

(f)
, E = Spec

B

(g)
;

then ⟨O(D),O(E)⟩ is trivial and the section sD,E (an element of A) is the resultant
res(f, g).

3. Fiber Integration of gerbes and the Leray spectral sequence

Let A be an abelian sheaf on X. The spectral sequence

Ei,j
2 = Hi(S,Rjπ∗A)⇒ Hi+j(X,A) (4)

has as low-term exact sequence [Mil80, Appendix II, p. 309]

0 −→ E1,0
2 −→ E1 −→ E0,1

2 −→ E2,0
2 −→ E2

1 −→ E1,1
2 , (5)

where

E1 = H1(X,A) , E2
1 = Ker(H2(X,A) −→ H0(S,R2π∗A)) ,

and, of course, H0(S,R2π∗A) = E0,2
2 .

The maps above arise from functors between categories of torsors and gerbes,
as shown in [Gir71, pp. 324–327]. For our own purposes, and also to rephrase the
arguments in loc. cit. in a more transparent way, we turn to an explicit description
of these functors.

Our arguments below (in the Zariski topology) are easily seen to be also valid in the
étale or analytic topology. In fact, at the beginning they are valid for any morphism
between sites whose underlying functor is assumed for simplicity to preserve finite
limits, and we shall begin our discussion in such generality.
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3.1. Site morphisms, push-forwards and pullbacks of stacks
Let π : D→ C be a morphism of (small) sites. We let u = π−1 : C→ D denote the

underlying functor. Thus, π is a morphism of sites if composition along u preserves
sheaves, and this operation has a left adjoint that is exact [SGA73]; this is implied
by the property that u preserves coverings and if both C and D have finite limits u
preserves them [Jar15], [Sta20, Tag 00X0].

Let G be a category over D. Its push-forward π∗G along π is defined by

π∗G = C×D G

as a category over C via the first projection. It is fibered (resp. a stack) if so is G.
On the other hand, let p : F → C be a stack. The inverse image π∗F is a pair (F′, ϕ),
where F′ is a stack over C, and ϕ : F → π∗F

′ a stack morphism such that, for any
stack G over D, the following composite functor

HomD(F
′,G) −→ HomC(π∗F

′, π∗G) −→ HomC(F, π∗G) ,

is an equivalence of categories [Gir71, Déf. II.3.2.1]. Here Hom denotes the category
of stack morphisms. Thus, the inverse image is truly only defined up to equivalence.

While specific formulas to compute a model of π∗F do exist [Sta20, Tag 04WJ],
the universal property is sufficient to characterize its connected components. Recall
that π0(F) is the sheaf corresponding to the presheaf of connected components: to any
object U ∈ C it assigns the set of connected components π0(FU ) of the fiber category
FU [Bre94, Chap. 7]. (In ref. [Gir71, III.2.1.3.3] this is the “sheaf of maximal sub-
gerbes of F.”) We have [Gir71, Prop. III.2.1.5.5 (iii)] an isomorphism of sheaves
over D:

π0(π
∗F)

≃−→ π∗(π0(F)) .

This follows from the fact that if x, y are any two objects of F over U ∈ C, then there
is a sheaf isomorphism

π∗ HomF(x, y)
≃−→ HomF′(x′, y′) ,

where the objects x′, y′ of F′
π−1(U) are constructed via the above universal property

(ibid.). As a consequence, since a gerbe is locally connected, we have that the inverse
image of a gerbe is a gerbe [Gir71, Cor. III.2.1.5.6]. In fact, assuming, as we shall
do in later sections, that F has band A, for an abelian sheaf A over C, then π∗F has
band π∗A.

On the other hand, even if G→ D is a gerbe, its push-forward will not necessarily
be so. In other words, π0(π∗(G)) may turn out to be a nontrivial sheaf over C. More
precisely, we have the following statement.

Lemma 3.1 ([Gir71, Exercice V.3.1.9.2]). Let π : D→ C be a site morphism as
above. Let G be an A-gerbe on D, where A is an abelian sheaf. Then π0(π∗(G)) is
a pseudo R1π∗A-torsor. It is a torsor if and only if the class [G] ∈ H2(D, A) lies in
the kernel of the map H2(D, A)→ H0(C,R2π∗A), and hence in the term denoted E2

1

above.

An A-gerbe G is horizontal if its class [G] lies in E2
1 . If G is horizontal, then π0(π∗(G))

is an R1π∗A-torsor.

https://stacks.math.columbia.edu/tag/00X0
https://stacks.math.columbia.edu/tag/04WJ
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By Hi(C,−) (same for D) we denote the cohomology of the terminal sheaf pt . In
the concrete case of the Zariski sites, where pt is represented by the site’s terminal
object, this reduces to the groups considered at the beginning of this section.

Definition 3.2. Let GerbX(K2)
′ be the full sub(2-)category of GerbX(K2) con-

sisting of horizontal gerbes. The functor

Θπ : GerbX(K2)
′ → TorsS(R

1π∗K2)

sends a gerbe G to π0(π∗(G)).

We write θ : E2
1 → E1,1

2 for the induced map. (In the previous statement, as well
as in several that follows, the relevant (2-)categories can be upgraded to the corre-
sponding (2-)stacks.)

3.2. Proof of Lemma 3.1
This section is devoted to a complete proof of Lemma 3.1. Several points of the

proof will be explicitly needed in sections 4 and 5 below.2

It is convenient to express the sites’ topologies in terms of local epimorphisms
[SGA73, KS06], and take hypercovers of those, in particular Čech nerves. For
simplicial objects we use the “opposite index convention” [Dus02] (and reverse
the order of the maps for cosimplicial ones) when pulling back by simplicial maps:
d∗i (−) = (−)[n]\i, where [n] is the ordinal [n] = {0 < 1 < · · · < n}.

3.2.1. Objects with operators
Let F be a stack over a site C, and let G be a sheaf of groups over C. The stack
Op(G,F) has objects the pairs (x, η), where x ∈ FU , and η : G|U → AutU (x). Mor-
phisms from (x, η) to (y, θ) are arrows α : x→ y in FU compatible with the structure:
α ◦ η(g) = θ(g) ◦ α, for all sections g ∈ G|U .

Lemma 3.3 ([Gir71, §III.2.3]). There is a stack morphism

t : Tors(G)×C Op(G,F)→ F.

This “twisting” morphism assigns to each pair (P, (x, η)) over U ∈ C an object of
FU , variously denoted as Px or P ∧G x.

Proof. If P = G, the trivial G-torsor, we set Gx = x. To any choice of morphism
(g, α) : (G, (x, η))→ (G, (x′, η′)) (here g ∈ G is identified with an automorphism of
the trivial torsor) we assign the morphism Gx→ Gx′ given by α ◦ η(g) = η′(g) ◦ α.
In general, we regard P ∈ Tors(G)|U and x ∈ FU as defined by descent data relative
to an acyclic fibration ϵ : V• → U covering U . The pullbacks ϵ∗x and ϵ∗P ∼= G|V0

to
V0 are glued over V1 by isomorphisms

α : x1 → x0 , g : G→ G ,

where g ∈ G(V1) is an isomorphism between trivial G|V1
-torsors, satisfying the cocy-

cle conditions α02 = α01 ◦ α12 and g01g12 = g02 over V2. That (x, η) is an object of
Op(G,F) is expressed by the condition α ◦ η1(−) = η0(−) ◦ α over V1.

Pullbacks to V2 along the face maps d0, d1, d2 yield morphisms

2As all the details are famously not available in the original reference as well as in the literature, we
felt compelled to include them here.
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(gij , αij) : (G, (xj , ηj))→ (G, (xi, ηi)) in Op(G,F)V2
,

for 0 ⩽ i < j ⩽ 2, such that αij ◦ ηj(gij) = ηi(gij) ◦ αij , in addition to the other cocy-
cle conditions. Then we have

α02 ◦ η2(g02) = α01 ◦ α12 ◦ η2(g01) ◦ η2(g12) = (α01 ◦ η1(g01)) ◦ (α12 ◦ η2(g12)) ,

showing the gluing data α ◦ η1(g) = η0(g) ◦ α : x1 → x0 satisfy the cocycle identity
and therefore define an object Px of FU .

The most important properties of the twisted objects are listed in the follow-
ing lemma implicit in [Gir71], where for any two objects x, y ∈ FU we denote by
IsomU (x, y) the sheaf of isomorphisms from x to y. Note that IsomU (x, y) is a right
AutU (x)-torsor. (In fact it is an (AutU (y),AutU (x))-bitorsor, but we shall not need
this fact.)

Lemma 3.4 ([Ems17, Bry08]). Let F be a stack and G a sheaf of groups on C.
Let Op(G,F) the stack of objects with G-action. The twisting morphism t has the
following properties:

1. if P ∈ Tors(G)U , and x ∈ FU , then

IsomU (x, P ∧G x) ∼= P ∧G AutU (x) ;

2. if P = IsomU (y, x), then there is a canonical isomorphism P ∧AutU (y) y
≃−→ x,

where the twisting arises from the stack Op(AutU (y),F|U ) over C/U .

Proof. Let (y, θ) be another object of Op(G,F) over U . Using the same notation as
in Lemma 3.3 for descent data relative to V• → U , a morphism Q ∧G y → P ∧G x of
twisted objects over U corresponds to a morphism λ : ϵ∗y → ϵ∗x over V0 such that
the diagram over V1

y1 x1

y0 x0

←→λ1

←→β◦θ1(h) ←→ α◦η1(g)

←→
λ0

(6)

commutes. Here β and h represent the descent data and cocycle for y and the G-torsor
Q, respectively.

In particular, if y = x and Q is the trivial torsor, we get the simpler relation

α ◦ η1(g) ◦ λ1 = λ0 ◦ α .

Rewriting it in the more suggestive way

η1(g) ◦ λ1 = α−1 ◦ λ0 ◦ α

shows that the λ defines a section of P ∧G AutU (x), proving the first point.

If P = IsomU (x, y), λ : ϵ
∗y → ϵ∗x provides a section of P over V0. As λ does not

necessarily descend to U , the two pullbacks λ0 and λ1 to V1 are related by a diagram
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of the form

y1 x1

y1

y0 x0

←→λ1

←→h̄ ←

→

α

←→β

←→
λ0

for an appropriate h̄ ∈ Aut(y1) = AutU (y)(V1). Comparing with (6) (taking θ = id)

shows these data descend to an isomorphism P ∧AutU (y) y
≃−→ x, as wanted.

F is an abelian gerbe with band A if and only if there is a canonical morphism
F → Op(A;F), because, in such case, the correspondence

x ∈ FU ⇝ ηx : A|U
≃−→ AutU (x)

is functorial: the diagram

A|U

AutU (x) AutU (y)

←→ηx

←

→
ηy

← →α∗

commutes whenever α : x→ y [Bre94, Def. 2.9]. (Note that the above diagram em-
bodies a morphism of Op(A;F).) Therefore there is a canonical twisting action of the
form (P, x)⇝ Px resulting from the composite morphism

Tors(A)×C F −→ Tors(A)×C Op(A;F) −→ F .

3.2.2. The pushforward
Let us return to the situation of the site morphism π : D→ C. Recall that u : C→ D
is the underlying functor of π.

Let A be an abelian sheaf and G be an A-gerbe over D. It is convenient to identify
the band with the automorphism sheaves. In this way, Lemma 3.4, statement (1),
simply becomes IsomU (x, P ∧A x) ∼= P .

The action π0(π∗G)×R1π∗A→ π0(π∗G) comes from the twisting action ofTors(A)
on G on D: if x ∈ Gu(U) represents a section of π0(π∗G), and P ∈ Tors(A)u(U) repre-
sents a class of R1π∗A (U), we let the result of the action be the connected component
of the object P ∧A x ∈ Gu(U)

∼= π∗(G)U . This action is free, because if P ∧A x ∼= x,
then by Lemma 3.4 (1) HomU (x, x ∧A x) ∼= P has a global section, hence P ∼= A|u(U).

The action is also transitive. Indeed, if the objects x, y ∈ Gu(U)
∼= π∗(G)U repre-

sent two sections of π0(π∗G), by Lemma 3.4 (2) we have y ∼= P ∧A x, where P =
Homu(U)(x, y). Therefore the section of π0(π∗G) over U defined by y is obtained from
that defined by x via the action of the section of R1π∗A (U) determined by P , as
wanted. Thus, π0(π∗G) is a pseudo-torsor.

Let U be an object of C, and denote by U ′ = u(U) the corresponding object of D. As
a gerbe, G is locally nonempty, hence there will be a local epimorphism V ′ → U ′ cover-
ing U ′ with an object x ∈ GV ′ . The object x ought to be seen as a trivialization of the
restriction G|U ′ , whose characteristic class is an element of H2(U ′, A|U ′) ∼= R2π∗A (U).
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(In effect, this class can be calculated by computing the 2-cocycle determined by x via
a hypercovering V ′

• → U ′ in the usual way [Bre94].) If it is zero, then GU ′ has a global
object (that is, x descends to an object over U ′), which then provides a section of
π0(π∗G) over U ∈ C. Clearly, if R2π∗A vanishes, this argument shows that π0(π∗G) is
locally nonempty. On the other hand, if π0(π∗G) is locally nonempty, for every object
U we can find a local epimorphism V → U such that Gu(V ) has an object and there-
fore H2(u(V ), A|u(V )) = 0. Now writing R2π∗A(U) = lim[V•→U ] H

2(u(−), A|u(−)) we
get R2π∗A = 0. This finishes the proof of Lemma 3.1.

3.3. Maximal subgerbes and pullbacks

The following extra facts (“tautologies” in [Gir71, Cor. V.3.1.9]) are going to be
helpful. Recall that we have a site morphism π : D→ C. Following Giraud, let us say
that a gerbe G over D comes from a gerbe on C, if there is a gerbe F on C and a
morphism of gerbes m : π∗F → G over D.

Lemma 3.5. The gerbe G on D comes from a gerbe on C if and only if the sheaf
π0(π∗G) admits a section.

Proof. If G comes from a gerbe on C, let F be such a gerbe and m : π∗F → G the
corresponding morphism. By adjunction (cf. the universal property that defines the
operation π∗, sect. 3.1) we obtain a morphism n : F → π∗G. Since F is a gerbe, for
the sheaf of connected components we get π0(n) : pt → π0(π∗G), hence a section of
π0(π∗G).

Conversely, if π0(π∗G) has a section, say ξ : pt → π0(π∗G), then we define F =
pt ×π0(π∗G) π∗(G), which is a gerbe on C, and n : F → π0(π∗G) as the second projec-
tion. The latter is by construction fully faithful, hence, again by adjunction, we have
the morphism m : π∗(F)→ G, and so G comes from a gerbe on C.

Remark 3.6. In the previous proof we have used the well known fact (but, again,
ultimately due to Giraud [Gir71, Prop. III.2.1.5.3]) that any stack S the projection
S→ π0(S) makes it a gerbe on the sheaf of its connected components. For a section
ξ ∈ π0(π∗G), the pullback ξ∗(S) is the corresponding maximal sub-gerbe.

Remark 3.7. Using Lemma 3.1, we see that Lemma 3.5 is equivalent to the exactness
at H2(C, π∗A) of the low term sequence

· · · −→ H0(C,R1π∗A) −→ H2(C, π∗A) −→ H2(D, A)′ −→ · · ·

arising from the Leray spectral sequence we recalled above, where we set H2(D, A)′ =
E2

1 .

3.4. Interpretation of the maps

3.4.1. The map E1,0
2 → E1

This is the obvious pull-back map H1(S, π∗A)→ H1(X,π∗π∗A)→ H1(X,A) using the
natural adjunction π∗π∗A→ A of sheaves on X. This is just the composite functor

TorsS(π∗(A))
π∗

−→ TorsX(π∗π∗(A)) −→ TorsX(A)

for the corresponding gerbes.
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3.4.2. The map E1 → E0,1
2

Using that R1π∗A is the sheaf associated to U ⇝ H1(π−1(U), A), the map is obtained
by considering the class of an object P of TorsX(X) under P 7→ π∗P .

3.4.3. The map E0,1
2 → E2,0

2

This is the transgression map relative to the standard sequence arising from an injec-
tive resolution 0→ A→ I• on X. Then it is standard that

0 −→ π∗A −→ π∗I
0 −→ Z1(π∗I

•) −→ R1π∗A −→ 0 .

Viewing it as the splicing of two short exact sequences

0 −→ π∗A −→ π∗I
0 −→ C −→ 0 , 0 −→ C −→ Z1(π∗I

•) −→ R1π∗A −→ 0 ,

the transgression map is the composite

H0(S,R2π∗A) −→ H1(S,C) −→ H2(S, π∗A) .

The latter is obtained by taking the global objects of the composite 2-functor:

A −→ TorsS(C) −→ GerbS(π∗A) .

The map on the right is the well known classifying map of the extension of R1π∗A
by C above [Gir71, §V.3.2] (see also [AR16]).

3.4.4. The map E2,0
2 → E2

1

Analogously to 3.4.1, we have the composite 2-functor

GerbS(π∗A) −→ GerbX(π∗π∗A) −→ GerbX(A) ,

where the arrow on the right is “change of band” functor along π∗π∗A→ A. Taking
isomorphism classes in the global fibers gives the composite

H2(S, π∗A)→ H2(X,π∗π∗A)→ H2(X,A).

Now, thanks to Lemma 3.5 the image is actually in E2
1 .

3.4.5. The map θ : E2
1 → E1,1

2

Let G be a stack on X and consider the correspondence G ; π0(π∗G). This corre-
spondence is easily seen to be a functorial one between the homotopy category of
stacks—as it identifies two naturally isomorphic stack morphisms—on X to that of
sheaves on S. Therefore, by Lemma 3.1, and the subsequent sections, it reduces to
a functor Ho(GerbX(A)′)→ TorsS(R

1π∗(A)), where GerbX(A)′ denotes the sub-
category of those A-gerbes whose fiber categories over opens of the form π−1(U), for
every sufficiently small open neighborhood U ⊂ S around every point of S, are not
empty. By taking classes, we get the map.

3.5. Application: Brauer groups
The map θ : E2

1 → E1,1
2 above plays a very important role in many arithmetical

applications [Kai16, Lic69, Sko07]. To recall this, let F be a perfect field and
consider the étale sheaf Gm on T = SpecF . Fix an algebraic closure F̄ of F and let
T̄ = Spec F̄ ; write Γ for the Galois group of F̄ over F . Let g : Y → T be a smooth
proper map and Ȳ = Y ×T T̄ .
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The group H2
ét(Y,Gm) is the Brauer group Br(Y ). The group E2

1 is the relative
Brauer group Br(Ȳ /Y ), namely, the kernel of the map Br(Y )→ Br(Ȳ ). The map
E2

1 → E1,1
2 then becomes the map

θ : Br(Ȳ /Y ) −→ H1
ét(T,R

1g∗Gm) ,

arising in several contexts. For instance, for any elliptic curve E over F = Q, the map
θ gives the well known isomorphism

Br(E) ≃ H1(Q, E(Q̄)) = H1
ét(SpecQ, E) .

The following explicit description of θ seems to be missing in the literature: Given an
element α of Br(Ȳ /Y ), pick a Gm gerbe G on Y representing α. By definition, the
base change Ḡ on Ȳ is trivial. Fix an equivalence f : Ḡ ≃ TorsȲ (Gm). Then, given
any σ ∈ Γ, the gerbe σ∗Ḡ is equivalent to Ḡ as G comes from Y . Write fσ for the
resulting equivalence of TorsX̄(Gm):

fσ : TorsȲ (Gm)
f←− Ḡ ≃ σ∗Ḡ

σ∗f−−→ σ∗ TorsȲ (Gm) = TorsȲ (Gm) .

Any self-equivalence [Mil03, §5.1]

TorsȲ (Gm) ≃ TorsȲ (Gm)

is a translation by a fixed Gm-torsor L, namely the self-equivalence is of the form
(−) 7→ (−) + L. Therefore, if Lσ is the Gm-torsor on Ȳ corresponding to fσ, then the
map σ 7→ Lσ represents the element θ(α) of H1

ét(T,R
1g∗Gm).

4. Gerbes and categorical intersection of divisors

In this section, we prove Theorems 1.2 and 1.3.

Let Y be a smooth variety over F . Let Ki denote the Zariski sheaf associated with
the presheaf U 7→ Ki(U).

4.1. Heisenberg groups

For any pair abelian sheaves A and B on Y , we have constructed [AR16] a Heisen-
berg sheaf HA,B (of nilpotent groups) which fits into an exact sequence

0 −→ A⊗B −→ HA,B −→ A×B −→ 0 , (7)

providing a categorification of the cup-product

H1(Y,A)×H1(Y,B) −→ H2(Y,A⊗B) (8)

in the following manner. Given an A-torsor P and a B-torsor Q, the A×B-torsor
P ×Q can be lifted locally to a HA,B-torsor in several ways. These local lifts assemble
to a A⊗B-gerbe GP,Q.

Much like the bulk of section 3, we can formulate the result we need in much
greater generality. As in [AR16, §3], we assume A and B are abelian objects of a
topos T. (In the applications, we assume T to be the topos of sheaves on the Zariski,
or other relevant topology, of the scheme.) Recall from loc. cit. that the Heisenberg
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group HA,B is defined by the group law:

(a, b, t) (a′, b′, t′) = (aa′, bb′, t+ t′ + a⊗ b′) ,

where a, a′ are sections of A, b, b′ of B, and t, t′ of A⊗B. The extension (7) is set-
theoretically split, i.e. there is a section of the underlying map of sheaves of sets. The
map

f : (A×B)× (A×B) −→ A⊗B, f(a, b, a′, b′) = a⊗ b′, (9)

is a cocycle representing the class of the extension in

H2(BA×B , A⊗B) ∼= H2(K(A×B, 1), A⊗B),

where on the left we have the cohomology of classifying topos [Gir71], and on the
right that of the corresponding Eilenberg-Mac Lane simplicial object of T. In fact
these cohomologies are in turn isomorphic to [K(A×B, 1),K(A⊗B, 2)], the hom-
set in the homotopy category [Bre78, Ill71], and the cocycle f coincides with the
only non-trivial component of the characteristic map [AR16, Prop. 3.4].

Proposition 4.1. The functor

cA,B : Tors(A)×Tors(B) −→ Gerb(A⊗B) , P ×Q 7−→ GP,Q

is bi-additive. On π0, it induces the cup-product map (8), upon choosing T = Y ∼
Zar.

Remark 4.2 (On bi-additivity). Note that for any (abelian) band L,Gerb(L) is really
a 2-stack. Hence the notion of 2-additivity should be updated with appropriate 2-
coherence data from higher algebra. This is both outside the scope of this note and
inconsequential in the case at hand. Alternatively, we can mod out the 2-morphisms
and consider Gerb(L) as a Picard 1-stack of T. Thus, bi-additivity consists of the
data of functorial equivalences

cA,B(P1 + P2, Q)
≃−→ cA,B(P1, Q) + cA,B(P2, Q)

cA,B(P,Q1 +Q2)
≃−→ cA,B(P,Q1) + cA,B(P,Q2)

subject to the condition that decomposing cA,B(P1 + P2, Q1 +Q2) according to the
two possible ways determined by the above morphisms gives rise to a commutative
(or commutative up to coherent 2-isomorphism) diagram. This would be exactly
the kind of diagram familiar from the theory of biextensions [Gro72, Bre83] (see
also [Del91]).

Proof of Proposition 4.1. Bi-additivity is essentially already implied by the fact that
the cocycle representing the class of the extension is the tensor product, which is
bilinear. It is best to look at this in the universal case, namely over K(A×B, 1)—the
rest follows by pullback—where the bilinearity of the tensor product has the following
interpretation.

By functoriality, from the group operation (A is an abelian object) +A : A×A→ A
we get the map +A : K(A×A×B, 1)→ K(A×B, 1) corresponding to the Baer sum
of torsors. Its composition with the characteristic map c : K(A×B, 1)→ K(A⊗B, 2)
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equals in the homotopy category the sum c1 + c2, where ci, i = 1, 2, is the composition

K(A×A×B, 1)
pi−→ K(A×B, 1)

c−→ K(A⊗B, 2) ;

the first map is induced by the projection onto the first (second) factor, as it follows
from (9) and the form of c computed in [AR16, §3.4].

In turn, the map c ◦ (+A) classifies the extension (+A)
∗HA,B , whereas c1 + c2

classifies the extension p∗1HA,B + p∗2HA,B—the sum is the Baer sum in this case—so
that we obtain the isomorphism

(+A)
∗HA,B

∼= p∗1HA,B + p∗2HA,B (10)

of central extensions of A×A×B by A⊗B. Similarly for the “variable” B. Fur-
thermore, the commutativity of the diagram alluded to in Remark 4.2 is immediately
implied by further pulling back the isomorphism (10) by +B : B ×B → B, its coun-
terpart for B via +A, and again using (9).

4.2. Proof of Theorem 1.2

Consider the map µ : Gm ×Gm → K2 obtained using the identification Gm ≃ K1

and the multiplication K1 ×K1 → K2. The functor ∪ defined as the composite

TorsY (Gm)×TorsY (Gm)
cGm,Gm−−−−−→ GerbY (Gm ⊗Gm)

µ∗−→ GerbY (K2)

is the required bi-additive functor.

The functor ∪ is so-named as it categorifies the cup-product (which can be iden-
tified with the intersection product)

H1(Y,Gm)×H1(Y,Gm) −→ H2(Y,K2) ≃ CH2(Y )←− CH1(Y )× CH1(Y ) .

Remark 4.3. The bi-additivity property of the map cA,B of Proposition 4.1 has the
following conjectural formal interpretation. The maps +A and +B , plus the commu-
tative diagram in Remark 4.2 and the proof of Proposition 4.1 comprise a structure
that can be described as the categorification of a biextension, namely a Tors(A⊗B)-
torsor (hence an A⊗B-gerbe)

H −→ Tors(A)×Tors(B)

equipped with partial addition laws +A (resp. +B) giving it the structure of an
extension of Tors(A) (resp. Tors(B)) by Tors(A⊗B).

4.3. Proof of Theorem 1.3

Our proof will use the results of §3 on (5) for π : X → S with A = K2 on X.
Proposition 4.4 shows that all K2-gerbes are horizontal (Definition 3.2). The functor∫
π
is then defined as the composition of

GerbX(K2)
Θ−→ TorsS(R

1π∗K2)
Norm−−−→ TorsS(K1) .

Our first step is to show that GerbX(K2)
′ is all of GerbX(K2), in other words, every

K2-gerbe on X is horizontal. This is proved by showing R2π∗K2 = 0 which provides
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the isomorphism

E2
1

≃−→ H2(X,K2) .

We start with the following result, implicit in [BS88, A5.1 (iv)], essentially due to
Beilinson-Schechtman.

Proposition 4.4 (Beilinson-Schechtman). The sheaf R2π∗K2 is zero.

This gives a map

θ : H2(X,K2) −→ H1(S,R1π∗K2) (11)

using

H2(X,K2)
≃←− E2

1 −→ H1(S,R1π∗K2) .

Proof. Let N be the dimension of S, so that X has dimension N + 1.
For any s ∈ S, we have to show that the stalk of R2π∗K2 at s is zero. By definition,

this is the direct limit

lim−→
s∈U

R2π∗K2(U) = lim−→
s∈U

H2(π−1(U),K2) = lim−→
s∈U

CH2(π−1(U)) ,

where the last equality comes from the Bloch-Quillen isomorphism (valid for any
smooth variety V )

H2(V,K2)
≃−→ CH2(V ) .

So, we have to show that for any s ∈ S, any open set U containing s, and any codi-
mension two cycle Z in π−1(U) ⊂ X, there exists an open subset U ′ ⊂ U such that
the class of Z goes to zero under the map

CH2(π−1(U)) −→ CH2(π−1(U ′)) .

This is clear when s is the generic point SpecF (S) of S: in this case, we take U ′ to
be the complement of π(|Z|) in U . Here we have written |Z| for the support of Z.

The next the case is when s is a point of codimension i > 0, corresponding to a
codimension i subvariety V of S. Let us write Y ⊂ X for π−1(V ); then Y is a subset
of X with codimension i.

For any open U ⊂ S, the condition s ∈ U means U ∩ V is non-empty. Let U be
such an open set. There are two cases to consider:

Case 1 If |Z| is disjoint from Y , then we can proceed as before as π(Z) is disjoint
from V , so we take U ′ to be the complement of π(|Z|) in U . Since U ′ ∩ V =
U ∩ V , we see that U ′ ∩ V is non-empty.
Since Z is in the kernel of the localization sequence for Chow groups

CH2(π−1(U))→ CH2(π−1(U)− |Z|)→ 0 ,

it is also in the kernel of the composite map

CH2(π−1(U))→ CH2(π−1(U)− |Z|)→ CH2(π−1(U ′)) .

This finishes the proof in this case.

Case 2 If |Z| is not disjoint from Y , we can find a codimension two cycle Z ′ in
π−1(U) with [Z] = [Z ′] ∈ CH2(π−1(U)) which intersects Y transversally. The
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codimension of the cycle Z ′.Y is i+ 2, because its dimension (= maximum of the
dimensions of the irreducible components) is N + 1− i− 2 = N − 1− i. Hence
the dimension of the image π(Z ′.Y ) is at most N − 1− i, and so its support
|π(Z ′.Y )| is a proper closed subset of V = π(Y ). If U ′′ is the complement of
|π(Z ′.Y )| in U , then the intersection of U ′′ and V is empty. By definition, the
cycle Z ′ ∩ π−1(U ′′) is disjoint from Y . This means that the image of Z ′ (which
is the image of Z) under the map

CH2(π−1(U)) −→ CH2(π−1(U ′′))

is a cycle disjoint from Y . By Case 1, we can shrink U ′′ further to U ′ such that
Z ′ (and hence Z also) is in the kernel of the map

CH2(π−1(U ′′)) −→ CH2(π−1(U ′)) ,

as required.

This gives the functor Θ appearing in the definition of∫
π

: GerbX(K2)
Θ−→ TorsS(R

1π∗K2)
Norm−−−→ TorsS(K1).

Our next step is the definition of the map R1π∗K2 −→ O∗
S.

Remark 4.5. The same proof shows that if f : Y → T is a smooth proper map of
dimension n with Y and T smooth, then Rjf∗Kj = 0 for all j > n. This says that the
relative Chow sheaves CHj(Y/T ) vanish for all j > n.

4.4. The norm map R1π∗K2 −→ O∗
S

This well known map [Ros96, 3.4], [Gil05, pp. 262–264] arises from the covariant
functoriality for proper maps of Rost’s cycle modules (Chow groups in our case). We
provide the details for the convenience of the reader. Our description proceeds via
the Gersten sequence (a flasque resolution of the Zariski sheaf K2 on X)

0 −→ K2 −→ η∗K2,η −→
⊕

x∈X(1)

i∗K1(k(x)) −→
⊕

y∈X(2)

i∗K0(k(y))→ 0 ; (12)

here η : SpecF (X)→ X is the generic point of X and X(i) denotes the set of points
of codimension i of X. For any U open in S, the norm map

H1(π−1(U),K2) −→ O∗
S(U)

is obtained as follows. Since the first group is the homology at degree one of (12), we
proceed by constructing a map⊕

x∈π−1(U)(1)

i∗K1(k(x))→ O∗
S(U) .

For each such x ∈ π−1(U) of codimension one, the map x→ π(x) is either finite or
not, and it is zero in the second case. In the first case, there is a norm map

k(x)∗ → k(π(x))∗ ;
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since x has codimension one in X, its image π(x) is the generic point of S and hence
the above norm map is a map

k(x)∗ → F (S)∗ .

An element of H1(π−1(U),K2) arises from a finite collection of functions fx ∈ k(x)∗

(for x ∈ π−1(U) of codimension one which is finite onto its image) which is in the
kernel of the map ⊕

x∈π−1(U)(1)

i∗K1(k(x))→
⊕

y∈π−1(U)(2)

i∗K0(k(y)) .

On each component, this is the ord or valuation map. One checks that this means
that the (finite) product of the norms of fx is an element of F (S)∗ with no poles on
U and hence defines an element of O∗

S(U). This gives the required functor

TorsS(R
1π∗K2)

Norm−−−→ TorsS(K1) ,

completing the definition of the functor
∫
π
of Theorem 1.3.

5. Comparison with Deligne’s construction

Given line bundles L and M (viewed as Gm-torsors) on X, consider the K2-gerbe
GL,M on X. By Proposition 4.4, the element [GL,M ] of H2(X,K2) actually lives in
E2

1 and hence GL,M is horizontal. By Lemma 3.1, Θ(GL,M ) is a R1π∗K2-torsor. By
definition,

∫
π
GL,M is its pushforward along the norm map of §4.4,

Norm: R1π∗K2 −→ O∗
S ,

which gives a line bundle (L,M) on S. In this section, we show that this gives Deligne’s
line bundle ⟨L,M⟩. Since (L,M) is bi-additive and its construction is functorial, this
reduces to showing the identity in Theorem 1.4:

⟨O(D),O(E)⟩ ∼= (O(D),O(E)) ,

for any relative Cartier divisors D and E on X with D effective.

5.1. Comparison

To show that ⟨O(D),O(E)⟩ is isomorphic to (O(D),O(E)), one just has to show
that they are equal in H1(S,O∗). This amounts to showing that the diagram below
is commutative:

H1(X,O∗)

H1(D,O∗) H2(X,K2)

H1(S,O∗) H1(S,R1π∗K2)

←→η

←

→
∪

← →λ

←→ND/S ←→ θ

←→ Norm

(13)
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The map η is the restriction to D of a line bundle O(E). The map ∪ sends O(E) to
its cup-product with O(D). The boundary map λ in the localization sequence

0→ K2,X −→ j∗K2,U −→ i∗K1,D → 0

for X, U = X −D, and D. The map θ is the map (11)

H2(X,K2) −→ H1(S,R1π∗K2) .

The commutativity of (13) is an implicit consequence of the axiomatics of Rost
[Ros96], but we provide a direct proof.

5.1.1. The top triangle of (13)
We first prove the commutativity of the top triangle of (13). Let {Ui} be a Zariski
open cover of X such that D and E are principal divisors on Ui. Let {fi} be defining
equations for D and {gi} be defining equations for E. Then,

{aij :=
fi
fj
∈ O∗(Ui × Uj)}, {bij :=

gi
gj
∈ O∗(Ui × Uj)}

are cocycle representatives for O(D) and O(E). By the explicit description [Bry08,
(1-18)] of the cup-product map in Čech cohomology, the map ∪ sends {bij} to the
2-cocycle

{(aij , bjk)} ∈ K2(Ui × Uj × Uk) . (14)

Given a cocycle sij ∈ O∗(Ui × Uj ×D) relative to the cover {Ui ×D} of D, one
computes its image under λ as follows. Pick s̃ij ∈ K2(Ui × Uj × U) whose tame sym-
bol along D is sij ; then check that its Čech boundary ∂(s̃ij) (a 2-cochain with values
in K2,U ) is zero when viewed as a cochain with values in i∗K1,D. This means that
∂(s̃ij) is a 2-cocycle with values in K2,X ; this is defined to be the image of sij under
λ. Let us apply this to compute the image of O(E)|D under λ.

Let b̄ij be the image of bij under the map

O∗(Ui × Uj)→ O∗(Ui × Uj ×D) .

The cocycle {b̄ij} represents O(E)|D. To compute its image under λ, consider the
element (symbol)

tij = (fi, bij) ∈ K2(U × Ui × Uj).

We know that bij is a unit in Ui × Uj and so defines an element of K1(Ui × Uj); we
know fi is the defining equation of D on Ui and so it is a unit on U × Ui and thus fi
defines an element ofK1(U × Ui). So tij is a well-defined element ofK2(U × Ui × Uj).
If v denotes the valuation

F (X)∗ −→ Z

defined by the divisor D, the tame symbol map is the map

K2(U)→ K1(D), (a, b) 7→ (−1)v(a)v(b) ·
(
av(b)

bv(a)

)
.

Since v(fi) = 1 and v(bij) = 0, we see that tij maps to the element

(−1)1×0 ·
(
f0
i

b1ij

)
= b̄−1

ij .
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So the cochain {tij} lifts the inverse of the cocycle {b̄ij}. Its Čech boundary (which
represents the image under λ of the inverse of {b̄ij})

tij − tik + tjk = (fi, bij)− (fi, bik) + (fj , bjk)

is a 2-cocycle with values in K2. Since{
bij =

gi
gj

}
is a cocycle, the relation

bik = bij + bjk

holds. Using this, the image of the inverse of {b̄ij} under λ is given by the negative
of the element in (14):

(fi, bij)− (fi, bij)− (fi, bjk) + (fj , bjk) = (
fj
fi
, bjk) = −(aij , bjk) .

This says that λ maps {b̄ij} to the class of the cup product of O(D) and O(E) in
H2(X,K2) thus completing the proof of the commutativity of the top triangle in (13).

5.1.2. The bottom square of (13)
We begin with an explicit description of the map

θ : H2(X,K2)→ H1(S,R1π∗K2)

in (11).
Let G be a K2-gerbe on X. As CH2(X) = H2(X,K2) (Bloch-Quillen), we can pick

a codimension-two cycle c representing [G] on X. As G is horizontal, there exists
an open cover {Vα} of S such that [G] = 0 ∈ H2(Wα,K2), with Wα = π−1(Vα); note
{Wα} is an open cover of X. In terms of the Gersten complex

0 −→ K2 −→ η∗K2,η −→
⊕

x∈W
(1)
α

K1(k(x))
ord−−→

⊕
y∈W

(2)
α

K0(k(y))→ 0 ,

which computes the cohomology ofK2 onWα, we have the vanishing inH2(Wα,K2) of
the restriction cα of the codimension-two cycle c representing [G] on Wα. Then, there
exists an element hα ∈

⊕
x∈W

(1)
α

K1(k(x)) such that ord(hα) = cα in the sequence on

Wα. So hα is a collection of divisors inWα whose associated functions cut out together
the codimension-two cycle c. Since ord(hα) = ord(hα′) on Wα ∩Wα′ , we see that the
element rα,α′ :− hα − hα′ on Wα ∩Wα′ defines an element of H1(Wα ∩Wα′ ,K2). The
cocycle condition is a formal consequence:

rα,α′ + rα′,α′′ + rα′′,α = 0 .

Namely, {rα,α′} defines a Čech 1-cocycle on S with values in R1π∗K2; this is the
element θ(G). Taking norms down to S gives a Čech 1-cocycle

r̃α,α′ :− ND/S

(
hα

hα′

)
with values in Gm on S. This completes the description of the maps in the bottom
square of (13).
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With all this in place, it is now easy to show that the bottom square of (13)
commutes. Recall the defining equations gi of E relative to the open cover {Ui} of
X. Restricting O(E) to D and applying λ gives the gerbe G = GO(D),O(E), by the
commutativity of the top triangle of (13). We use the above description to compute
the image of the gerbe under θ; we see that hα can be taken to be the collection of
functions

ḡi,α = ḡi|Dα,i
on Dα,i = D ∩Wα ∩ Ui

which cuts out the codimension-two cycle corresponding to the intersection of D and
E. The norm down to S of the corresponding rα,α′ gives the Čech-cocycle with values
in K1 of S; this is the image of O(E) along one part of the bottom square in (13).

On the other hand, consider the image of O(E) under the left vertical map of (13).
Let

ḡi,α = ḡi|Dα,i
, eα =

∏
i

NDα,i/S

(
ḡi,α

)
.

The image of O(E) under the map ND/S is given by the cocycle

cα,α′ :− eα
eα′
∈ O∗(Vα ∩ Vα′) .

It is clear that cα,α′ is equal to Norm(rα,α′). This shows the commutativity of the dia-
gram (13), since the image of O(E) along the vertical left map of (13) gives Deligne’s
line bundle ⟨O(D),O(E)⟩, and the image along the other side of (13) is

(O(D),O(E)) = Norm ◦Θ ◦ ∪(O(D),O(E))

= Norm ◦Θ ◦ (GO(D),O(E)) =

∫
π

GO(D),O(E).

This proves Theorem 1.4 and therefore Theorem 1.1.

6. Picard stacks and their endomorphisms

Here and elsewhere in this paper “Picard stack,” or “Picard category,” means
“strictly commutative Picard” in the sense of Deligne [Del73]. Namely, if we denote
the monoidal operation of P simply by +: P× P→ P, then the symmetry condition
given by the natural isomorphisms σx,y : x+ y → y + x must satisfy the additional
condition that σx,x = idx+x. Such stacks have the pleasant property that there exists
a two-term complex of abelian sheaves d : A−1 → A0 such that F is equivalent, as a
Picard stack, to the one associated to the action groupoid formed from the complex.
We denote this situation by

P ≃
[
A−1 d−→ A0

]∼
.

A classical example arises from the well known divisor exact sequence of Zariski
sheaves

0→ Gm → η∗F (Y )× →
⊕
y∈Y 1

(iy)∗Z→ 0 , (15)
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where Y is a smooth scheme over a field F and the sum is over the set Y 1 of points
of codimension one in Y . We get the equivalence:

TorsY (Gm) ≃
[
η∗F (Y )× →

⊕
y∈Y 1

(iy)∗Z
]∼

.

In the sequel we shall denote by CH1
Y the Picard stack on the right hand side of the

above relation and by CH1(Y ) the Picard category of its global sections. Therefore
we have TorsY (Gm) ≃ CH1(Y ).

Still from [Del73], we have that morphisms and natural transformations form a
Picard stack Hom(P,Q), where the additive structure is defined pointwise: if F,G are
two objects, then (F +G)(x) :− F (x) +Q G(x), for any object x of P. It is immediate
to verify that this is symmetric and in fact strictly commutative if +Q is.

6.1. Ring structures

We set End(P) = Hom(P,P). By the above considerations, it is a Picard stack,
but the composition of morphisms gives it an additional unital monoidal structure,
with respect to which End(P) acquires the structure of a stack of ring groupoids—
also known as categorical rings—of the sort described in [Ald15] (see also [Dri21]
for a résumé). Note that the “multiplication” monoidal structure, being given by
composition of functors, is strictly associative.

Remark 6.1. If P ≃ [A−1 → A0]∼, then by [AN09] End(P) is equivalent, as a stack of
ring groupoids, to Corr(A•, A•), the stack whose objects are butterfly diagrams: an
object is given by an extension 0→ A• → E → A0 → 0 such that its pullback to A−1

via d : A−1 → A0 is trivial. Morphisms are morphisms of extensions. Corr(A•, A•)
is a stack of ring groupoids: the “+” is given by the Baer sum of extensions; the
“×” is given by concatenation of butterflies described in loc. cit. This structure is
associative, but not strictly so.

6.2. Quotients and colimits

Let F : P→ Q be a morphism of Picard stacks. Its cokernel CokerF is the stack
associated to the following construction, the details of which can be found in the
literature (see, e.g. [Vit02, KV00]).3 Let assume F : P→ Q is a morphism of Picard
categories. The cokernel CokerF is a Picard category defined as follows:

1. its class of objects is the same as that of Q;

2. a morphism [f, a] : x→ y is an equivalence class of pairs (f, a), where f is mor-
phism f : x→ x+ F (a) in Q, a ∈ ObjP, and two pairs (f, a) and (g, b) are
equivalent if there exists an arrow u : a→ b in P and the diagram

x

y + F (a) y + F (b)

←→f ←→g

← →
y+F (u)

commutes.

3This is valid for Picard categories and stacks that not necessarily strictly commutative.
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3. The monoidal structure is defined to be that of Q on objects and by the class
of the composite arrow

x+ y →(x+ F (a)) + (y + F (b))
≃−→ (x+ F (a)) + (y + F (b))

≃−→ (x+ y) + (F (a) + F (b))
≃−→ (x+ y) + F (a+ b)

if [f, a] : x→ x′ and [g, b] : y → y′.

There is a canonical functor pF : Q→ CokerF which is the identity on objects and
sends an arrow f : x→ y in Q to the class of the composite:

x y y + 0Q y + F (0P)

←→f ←→≃ ←→≃ .

There is an isomorphism πF : pF ◦F ⇒ 0: P→ Q given by πF,a : F (a) 0Q + F (a)

←→≃ .
It follows that we have an abelian group isomorphism

π0(CokerF ) ∼= Coker
(
π0(F ) : π0(P)→ π0(Q)

)
.

As mentioned, if F : P→ Q is a morphism of Picard stacks, we define CokerF to be
the Picard stack associated to the pseudo-functor

U ⇝ Coker
(
FU : P(U)→ Q(U)

)
,

where U is in the base site.
In the following section, we apply this construction to the diagram

P1 Q P2
←→F1 →←F2

and the resulting morphism F1 + F2 : P1 × P2 → Q, which is defined on objects by
(F1 + F2)(x1, x2) = F1(x1) + F2(x2). We will shorten our notation and simply write
Coker(F1 + F2) as Q/(P1 + P2). By the above recollection we have

π0

(
Q/(P1 + P2)

) ∼= π0(Q)/(π0(P1) + π0(P2)) .

7. Categorification of correspondences

In this section, S = Spec F and a curve C is a smooth projective connected one-
dimensional scheme over S. For simplicity, we assume (just in this section) that F is
algebraically closed.

The main result (Theorem 7.1) of this section is an application of Theorem 1.1
using §6 to the categorification of well known identities (16) and (19) about corre-
spondences on the self-product of a curve. We will work with the category V whose
objects are curves and the maps are (correspondences) HomV(D,C) = Div(C ×D)
with composition defined by product of correspondences.

In the following we are stating our results for Picard categories, but there are
parallel statements for the corresponding Picard stacks.

7.1. Categorifying CH1(Y )
For any smooth scheme Y over S, it follows from (15) that the Chow group CH1(Y )

is isomorphic to the Picard group Pic(Y ) = H1(Y,Gm) of Y ; the Picard category
CH1(Y ) is canonically equivalent to the Picard category of Gm-torsors or line bundles
on Y .
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The Picard category CH1(Y ) categorifies the Chow group CH1(Y ) of divisors:

1. CH1(Y ) = Pic(Y ) = H1(Y,Gm) = π0(CH1(Y ));

2. Any map f : Y → Y ′ of smooth schemes defines an additive functor of Picard
categories

f∗ : CH1(Y ′)→ CH1(Y ), L 7→ f∗L ;

the induced map on π0 is the pullback of divisors f∗ : CH1(Y ′)→ CH1(Y ).

For a curve C, let Pic0(C) be the kernel of the degree map Pic(C)→ Z. IfCH1(C)0

is the sub-Picard category of CH1(C) consisting of line bundles of degree zero, then
π0(CH1(C)0) = Pic0(C).

7.2. Correspondences
We refer to [Ful98, Chapter 16] for details. Let C and D be curves and let πC and

πD be the two projections on C ×D. A correspondence α : D ⊢ C from D to C is a
divisor α on C ×D. It defines a line bundle O(α) on C ×D. The correspondence α
acts on divisors: it induces a map

α∗ : Pic(D)→ Pic(C) m 7→ (πC)∗(π
∗
Dm.α),

which sends a divisor m on D to the pushforward along πC of the intersection of α
and π∗

Dm on C ×D. It restricts to a map Pic0(D)→ Pic0(C): if m has degree zero,
then so does α∗(m). We get a homomorphism

T : CH1(C ×D)→ Hom(Pic(D),Pic(C))→ Hom(Pic0(D),Pic0(C)) , α 7→ α∗

(16)
as α∗ depends only on the class of α in CH1(C ×D).

Degenerate correspondences [Ful98, Example 16.1.2] constitute the subgroup

I(D,C) = π∗
C(CH1(C)) + π∗

D(CH1(D))

of CH1(C ×D). The map T induces an isomorphism [Sch94, Proposition 3.3, The-
orem 3.9]

T :
CH1(C ×D)

I(D,C)
→ Hom(Pic0(D),Pic0(C)); (17)

see [BL04, Chapter 11, Theorem 5.1] for another proof when F = C. Over a non-
algebraically closed field, the isomorphism holds if C and D have rational points.

Composition of correspondences induces a ring structure on CH1(C × C) with
I(C,C) as an ideal [Ful98, Example 16.1.2]. It is known that

• [Ful98, Corollary 16.1.2] the map

T : CH1(C × C)→ End(CH1(C)) , α 7→ α∗ (18)

is a homomorphism of rings.

• T induces a ring isomorphism [Ful98, Example 16.1.2(c)]

T :
CH1(C × C)

I(C,C)
→ End(Pic0(C)), (19)

as F is algebraically closed; see [BL04, Chapter 11, Theorem 5.1] for a proof
when F = C.
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The following result provides a categorification of the above statements.

Theorem 7.1. There is an additive functor of Picard categories

T̃ : CH1(C ×D)→ Hom(CH1(D),CH1(C))→ Hom(CH1(D)0,CH1(C)0) (20)

which induces (16) on π0. T̃ has the following properties:

(i) Let M(D,C) = Coker(π∗
C + π∗

D) be the cokernel of the additive functors

π∗
C : CH1(C)→ CH1(C ×D)← CH1(D) :π∗

D. (21)

Then T̃ induces an additive functor

T̃D,C : M(D,C)→ Hom(CH1(D)0,CH1(C)0), (22)

which, on π0, is (17).

(ii) CH1(C × C) comes naturally equipped with the structure of a categorical ring
(§6.1) which, on π0, is the composition of correspondences.

(iii) the functors

T̃ : CH1(C × C)→ End(CH1(C)), T̃C,C : M(C,C)→ End(CH1(C)0)
(23)

are functors of categorical rings (§6.1). These induce (18), (19) on π0.

Remark 7.2. The assignment C 7→ CH1(C) and g ∈ Div(C ×D) 7→ T̃ (O(g)) com-
prise a pseudo-functor from V (the category of curves and correspondences) to the
2-category of Picard categories (or stacks).

7.3. Proof of Theorem 7.1

The existence of T̃ is provided by the following lemma.

Lemma 7.3. For any correspondence α : D ⊢ C, the map α∗ : CH1(D)→ CH1(C)
is induced by an additive functor α̃∗ : CH1(D)→ CH1(C). This functor restricts
to a functor CH1(D)0 → CH1(C)0. Further, if β is another correspondence, then

˜(α+ β)
∗
= α̃∗ + β̃∗ as additive functors.

Proof. This is a simple application of Theorem 1.1. Given a line bundle M on D,
consider the pair π∗

DM and O(α) of line bundles on C ×D; [AR16] constructs a
K2-gerbe G(O(α),π∗

DM)on C ×D. As this gerbe is horizontal by Proposition 4.4, one
can integrate it along πC : C ×D → C to get a line bundle on C:

α̃∗M =

∫
πC

G(O(α),π∗
DM) .

Both the additivity of α̃∗ and the property ˜(α+ β)
∗
= α̃∗ + β̃∗ follow from the bi-

additivity (Theorem 1.3) of G. If the line bundle M on D has degree zero, then so
does the line bundle α̃∗M on C as its class in CH1(C) is α∗(M) which has degree
zero.
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This gives us a bi-additive functor of Picard categories

CH1(C ×D)×CH1(D)→ CH1(C), (α,M) 7→ α̃∗M,

and an additive functor

T̃ : CH1(C ×D)→ Hom(CH1(D),CH1(C))→ Hom(CH1(D)0,CH1(C)0)

where, for any pair P , P ′ of Picard categories, Hom(P, P ′) is the Picard category of
additive functors from P to P ′.

Statement (i) of Theorem 7.1 concerns the factorization of T̃ as

T̃ : M(D,C)→ Hom(CH1(D)0,CH1(C)0). (24)

This, in turn, follows from the triviality of T̃ on π∗
CCH1(C) and π∗

DCH1(D):

• T̃ restricted to π∗
DCH1(D).

If g : D ⊢ C is the pullback π∗
Dx of a divisor x on D, then T̃ (g) applied to a

line bundle L on D is defined as
∫
πC

G(O(g),π∗
DL). As the construction of the

K2-gerbe is functorial, we have

G(π∗
Dx,π∗

DL) = π∗
DG(x,L);

as H2(D,K2) = 0, the K2-gerbe G(x,L) on D is trivializable. Since
∫
πC

is an

additive functor, T̃ (g)(L) is trivializable. It follows that

T̃ (g) : CH1(D)0 → CH1(C)0

is the trivial functor.

• T̃ restricted to π∗
CCH1(C).

If g : D ⊢ C is π∗
Cx of a divisor x on C and m =

∑
mjyj is a divisor on D, then

T̃ (g)(m) corresponds to the deg m-th power of the line bundle O(x) and hence
is trivial when m has degree zero. This can be seen as follows: T̃ (g)(m) is the
object corresponding to the line bundle

⟨π∗
Dm,π∗

Cx⟩ = ⊗j⟨π∗
Dyj , π

∗
Cx⟩⊗mj .

Since πC : C × yj ↪→ C ×D → C is an isomorphism for any closed point yj of
D, one has ⟨π∗

Dyj , π
∗
Cx⟩ = O(x) by (2). By bi-additivity,

⟨π∗
Dm,π∗

Cx⟩ = (O(x))deg m.

If m has degree zero, then T̃ (g)(m) is trivializable.
So the functor

g̃∗ = T̃ (g) : CH1(D)0 → CH1(C)0

is trivial.

This completes the proof of (i) of Theorem 7.1.

7.4. Composition

We show that T̃ is compatible with composition of correspondences. Let X =
C1 × C2 × C3 be the product of three curves C1, C2, C3 and let πij : X → Ci × Cj

be the projections. If g : C2 ⊢ C1 is a correspondence on C1 × C2 and h : C3 ⊢ C2
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on C2 × C3, one can compose g and h to get a correspondence g ◦ h : C3 ⊢ C1 on
C1 × C3:

g ◦ h = (π13)∗(π
∗
23h . π∗

12g),

by pulling back g and h to X and intersecting them and pushing forward via π13 to
C1 × C3. This gives a bi-additive map

◦ : CH1(C1 × C2)× CH1(C2 × C3)→ CH1(C1 × C3).

Lemma 7.4. The above bi-additive map is induced by a bi-additive functor

◦̃ : CH1(C1 × C2)×CH1(C2 × C3)→ CH1(C1 × C3).

Proof. The functor is defined as follows: The pair π∗
12O(g) and π∗

23O(h) of line bundles
on X give rise to a K2-gerbe G(π∗

12O(g),π∗
23O(h)) on X. Since it is horizontal (Proposi-

tion 4.4) for the map (a relative curve) π13 : X → C1 × C3, we can integrate it along
π13 to obtain a line bundle ⟨π∗

12O(g), π
∗
23O(h)⟩ on C1 × C3. The functor ◦̃, in the

notation of Theorem 1.1, is

◦̃ : (g, h) 7→
∫
π13

G(π∗
12O(g),π∗

23O(h)) = ⟨π∗
12O(g), π

∗
23O(h)⟩.

It follows from Theorem 1.1 that ◦̃ induces ◦ on π0.

Taking C1 = C2 = C3 = C proves (ii) of Theorem 7.1.

Lemma 7.5. The functor T̃ is compatible with composition: namely, the diagram

CH1(C1 × C2)×CH1(C2 × C3) CH1(C1 × C3)

Hom(CH1(C2),CH1(C1))×Hom(CH1(C3),CH1(C2)) Hom(CH1(C3),CH1(C1))

← →◦̃

←→T̃×T̃ ←→ T̃

←→

(25)

commutes up to natural isomorphisms T̃ (g◦̃h) ∼= T̃ (g) ◦ T̃ (h).

Proof. For any smooth projective morphism f : Y → B of relative dimension one and
line bundles L1, L2 on Y , let ⟨L1, L2⟩f =

∫
f
G(L1,L2) denote the Deligne line bundle on

B. Our task is to prove the existence of a natural isomorphism for any L ∈ CH1(C3):

⟨⟨π∗
12O(g), π

∗
23O(h)⟩π13 , α

∗
3L⟩α1

∼= ⟨O(g), γ∗
2 ⟨O(h), β∗

3L⟩β2⟩γ1 , (26)

where the maps are

C1 × C3 C3, C2 × C3 C3, C1 × C2 C2.

C1 C2 C1

←→α3

←→ α1

←→β3

←→ β2

←→γ2

←→ γ1

By additivity in L, it suffices to consider the case L = O(x) for a single closed point
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x = Spec F of C3. We put

ι1 : C1
∼= D = C1 × x ↪→ C1 × C3, ι2 : C2

∼= E = C2 × x ↪→ C2 × C3,

ι12 : C1 × C2
∼= C1 × C2 × x ↪→ C1 × C2 × C2 = X.

By (2), the left-hand-side of (26) is

⟨⟨π∗
12O(g), π

∗
23O(h)⟩π13 , α

∗
3L⟩α1

∼= ND/C1
(⟨π∗

12O(g), π
∗
23O(h)⟩π13

∣∣
D
)

∼= ι∗1

(
⟨π∗

12O(g), π
∗
23O(h)⟩π13

)
.

On the other hand, by (2), the right-hand-side of (26) is

⟨O(g), γ∗
2 ⟨O(h), β∗

3L⟩β2⟩γ1
∼= ⟨O(g), γ∗

2NE/C2
(O(h)

∣∣
E
)⟩γ1

∼= ⟨O(g), γ∗
2 ι

∗
2O(h)⟩γ1

∼= ⟨O(g), ι∗12π∗
23O(h)⟩γ1 ,

using C2
∼= E for the second isomorphism and the following diagram for the last

isomorphism:

C1 × C2 C1 × C2 × x C1 × C2 × C3 = X

C2 E C2 × C3 ,

←→ γ2

←→
∼= ←→

←→ π23

← →
∼= ← →

where the top row is ι12 and the bottom one is ι2. As π12 ◦ ι12 is the identity map on
C1 × C2, we have

⟨O(g), ι∗12π∗
23O(h)⟩γ1

∼= ⟨ι∗12π∗
12O(g), ι

∗
12π

∗
23O(h)⟩γ1

.

The required natural isomorphism in (26), namely,

⟨ι∗12π∗
12O(g), ι

∗
12π

∗
23O(h)⟩γ1

∼= ι∗1

(
⟨π∗

12O(g), π
∗
23O(h)⟩π13

)
follows from functoriality: use the map of relative curves

C1 × C2 C1 × C2 × x C1 × C2 × C3 = X

C1 D C1 × C3 ,

←→ γ1

←→
∼= ←→

←→ π13

← →
∼= ← →

where the top row is still ι12 and the bottom one is now ι1. This proves Lemma 7.5.

Taking C = C1 = C2 = C3 in the above lemma, we obtain that

◦̃ : CH1(C × C)×CH1(C × C)→ CH1(C × C)

is a monoidal functor of Picard categories and that

T̃ : CH1(C × C)→ End(CH1(C))

is a functor of ring categories proving (iii).

This finishes the proof of Theorem 7.1.
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gie Etale des Schémas (M. Artin, A. Grothendieck, and J. L. Verdier,
eds.), vol. Tome 3, Springer Berlin Heidelberg, 1973, pp. 481–587.
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