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ON THE TOPOLOGICAL K-THEORY OF TWISTED
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Abstract
We construct a comparison map from the topological K-

theory of the dg-category of twisted perfect complexes on cer-
tain global quotient stacks to twisted equivariant K-theory,
generalizing constructions of Halpern-Leistner–Pomerleano
[HLP15] and Moulinos [Mou19]. We prove that this map
is an equivalence if a version of the projective bundle theo-
rem holds for twisted equivariant K-theory. Along the way,
we give a new proof of a theorem of Moulinos that the com-
parison map is an equivalence in the non-equivariant case.

1. Introduction

Let Catdg(C) denote the ∞-category of C-linear dg categories, and let Sp denote
the ∞-category of spectra.

Ktop : Catdg(C)→ Sp,

the topological K-theory functor for C-linear dg categories, based on a proposal of
Toën ([Toë10]). Blanc proves that Ktop enjoys the following properties:

(1) Ktop maps Morita equivalences to weak equivalences,

(2) Ktop maps short exact sequences of dg categories to fiber sequences, and

(3) if X is a separated scheme of finite type over C, there is a natural equivalence

Ktop(Perf(X))
≃−→ KU(Xan)

in Sp, where KU(−) is the (ordinary) topological K-theory functor for topo-
logical spaces, and Xan denotes the complex points of X equipped with the
analytic topology.

A main source of motivation for the construction ofKtop is Katzarkov–Kontsevich–
Pantev’s seminal work [KKP08] on noncommutative Hodge theory. The authors
predict in [KKP08, Section 2.2.6(b)] that there should be a notion of topological
K-theory of a C-linear dg-category C such that, when C is smooth and proper, its
topological K-theory provides a rational lattice inside its periodic cyclic homology,
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just as in the classical setting of smooth proper complex varieties. This prediction is
formulated precisely in Conjecture 1.7 of [Bla16].

Blanc’s comparison theorem (item (3) above) has been extended by Halpern-
Leistner–Pomerleano to quotient stacks. Before stating Halpern-Leistner–Pomerlea-
no’s theorem, we recall that, when X is a C-scheme with action of a complex alge-
braic group G, we sayX is G-quasi-projective if there exists a locally closed immersion
ι : X → P(V ), where V is a finite-dimensionalG-representation and ι is G-equivariant.

Theorem 1.1 ([HLP15] Theorem 3.9). Let G be a complex linear algebraic group,
and let X be a smooth G-quasi-projective scheme over C. Choose a decomposition

G = U ⋊H,

where H is reductive and U is a connected unipotent group. Let M be a maximal
compact subgroup of H, and let KUM (Xan) denote the M -equivariant topological K-
theory spectrum of Xan. There is a canonical equivalence

ρG,X : Ktop(Perf([X/G]))
≃−→ KUM (Xan).

Remark 1.2. It is important to note that KUM (−) denotes the representable M -
equivariant complex topological K-theory spectrum, as defined in [May96, Chap-
ter XIV], as opposed to the K-theory with compact support discussed in [Seg68].

Blanc’s comparison theorem has also been extended by the second author to
twisted perfect complexes:

Theorem 1.3 ([Mou19] Theorem 9.6). Let X be a separated scheme of finite type
over C, and let A be an Azumaya algebra on X. Let α denote the twist of K-theory
determined by A, and let KUα(Xan) denote the α-twisted K-theory spectrum of Xan.
There is a canonical equivalence

Ktop(Perf(X,A)) ≃−→ KUα(Xan).

A useful consequence of these comparison theorems is that equivariant topological
K-theory of smooth G-quasi-projective schemes over C (resp. twisted K-theory of
separated finite type schemes over C) is invariant under Morita equivalences of dg-
categories of equivariant perfect complexes (resp. twisted perfect complexes).

In this article, we study a common generalization of Theorems 1.1 and 1.3. That
is, we ask whether the topological K-theory of the dg-category of twisted equivariant
perfect complexes is equivalent to an associated twisted equivariant topological K-
theory spectrum. While we do not answer this question in this paper, we construct
a comparison map from one to the other, and we reduce the question to a projective
bundle-type formula in twisted equivariant K-theory.

In more detail: let G, X, and M be as in Theorem 1.1, A an Azumaya algebra on
the quotient stack [X/G], and α the twist of the M -equivariant topological K-theory
of Xan determined by A. Denote the α-twisted M -equivariant K-theory spectrum of
Xan by KUαM (Xan). For background on twisted equivariant K-theory, we refer the
reader to [AS04, Section 6] or [FHT11]. Our first goal is to construct a comparison
map

KUαM (Xan)→ Ktop(Perf([X/G],A)). (1)

We briefly outline the construction. Let [P/G]→ [X/G] be the Severi–Brauer stack
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associated to the Azumaya algebra A (see Section 2 for details). By Theorem 1.1, we
have an equivalence

ρG,P : Ktop(Perf[P/G])
≃−→ KUM (P an).

In Theorem 3.1, we prove that there is a semi-orthogonal decomposition

Perf([P/G]) = ⟨Perf([X/G]),Perf([X/G],A), . . . ,Perf([X/G],Ar−1)⟩,

where r is the degree of A, and the Azumaya algebra Aj is the j-fold tensor power
of A. It follows that

Ktop(Perf([P/G])) ≃
r−1⊕
j=0

Ktop(Perf([X/G],Aj)). (2)

We also define in Section 5 a canonical map

r−1⊕
j=0

KUα
j

M (Xan)→ KUM (P an). (3)

When α is trivializable, this is the equivalence from the projective bundle formula
for (untwisted) equivariant K-theory (see Theorem 5.1(1)). We define the map (1)
by mapping KUαM (Xan) to KUM (P an) via (3), applying ρ−1

G,P , and then projecting

onto Ktop(Perf([X/G],A)) via (2). Our main result is:

Theorem 1.4. Let G be a complex linear algebraic group, X a smooth G-quasi-
projective scheme over C, and A an Azumaya algebra on [X/G]. Let M be as in
the statement of Theorem 1.1, and let α be the twist of the M -equivariant topological
K-theory of Xan determined by A. There is a natural comparison map

KUαM (Xan)→ Ktop(Perf([X/G],A)),

and it is an equivalence if the map (3) is an equivalence.

We give a proof that the map (3) is an equivalence in the case where G is triv-
ial (Theorem 5.1(3)). This recovers a result of the second author [Mou19, Theo-
rem 1.3]; combining this with Theorem 1.4 gives a new, simpler proof of the com-
parison theorem for non-equivariant twisted perfect complexes (Theorem 1.3 above);
see Remark 5.6 below for details. We also show in Theorem 5.1(2) that the ques-
tion of whether the map (3) is an equivalence may be reduced to the case where
X = Spec(C).

Remark 1.5. We note that Bergh–Schnürer independently obtained the semi-orthogo-
nal decomposition in Theorem 3.1; this result appeared in the preprint [BS19] a few
days after the first version of this article was posted.
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2. Background on Azumaya algebras over algebraic stacks

Let X be an algebraic stack over a base scheme S. We recall the definition of
the lisse-étale site of X, denoted Lis-Ét(X) ([Ols16, Definition 9.1.6]). The objects of
Lis-Ét(X) are pairs (U, f), where U is a scheme and f : U → X is a smooth morphism.
A morphism (U, f)→ (V, g) is given by a morphism h : U → V of schemes along with
a 2-isomorphism g ◦ h ∼= f . A family {(Ui, fi)→ (U, f)} of morphisms is a covering if⊔

i

fi :
⊔
i

Ui → U

is an étale covering. Denote by Xlis-ét the lisse-étale topos of X. The structure sheaf
OX ∈ Xlis-ét is given by

(U, f) 7→ OU .

Definition 2.1. An Azumaya algebra of degree r over X is a locally free OX-algebra

A such that A is lisse-étale-locally isomorphic to Matr(OX) := EndOX
(O

⊕
r

X ); that is,
for every smooth morphism f : U → X, where U is a scheme, there is an étale covering
{γi : Ui → U} such that (f ◦ γi)∗A ∼= Matr(OUi). We shall say A is trivializable if
there is an isomorphism A ∼= EndOX

(F) for some locally free OX-module F . When
such an isomorphism has been fixed, we will say A is trivial.

We call a morphism p : P→ X of algebraic stacks a Severi–Brauer stack of relative
dimension r if it is lisse-étale-locally isomorphic to a projectivized vector bundle of
relative dimension r. We briefly describe a bijection between isomorphism classes of
Azumaya algebras of degree r and Severi–Brauer stacks of relative dimension r − 1.
Define GLr to be the group of units in Matr(OX) (so GL1 = Gm), and set PGLr :=
GLr /Gm. Conjugation determines an isomorphism

ϕ : PGLr
∼=−→ Aut(Matr(OX)).

For any group object G in Xlis-ét, there are cohomology functors Hi(X,G) for i = 0, 1;
if G is an abelian group object, these functors are defined for all i ⩾ 0. Moreover, the
set H1(X,G) classifies G-torsors on X. The isomorphism ϕ therefore gives a bijection
between isomorphism classes of Azumaya algebras of degree r on X and the set
H1(X,PGLr). Such a torsor determines a Severi–Brauer stack of relative dimension
r − 1. On the other hand, let p : P→ X be a Severi–Brauer stack of relative dimension
r − 1. For each smooth morphism U → X, where U is a scheme, choose an étale cover
{Ui → U} such that, for each i, the pullback of p along Ui → U → X is isomorphic to
Pr−1
Ui
→ Ui. The line bundles OPr−1

Ui

(−1) do not necessarily glue to give a line bundle

on P; however, applying a construction of Quillen in [Qui73, Section 8.4], one may
construct a canonical vector bundle J on P such that, for each Ui, the pullback of

J → P
p−→ X along Ui → X is isomorphic to OPr−1

Ui

(−1)⊕r. In more detail: one uses

that

• the bundle OPr−1
X

(−1)⊕r on Pr−1
X is PGLr-equivariant, and

• P is the bundle associated to a PGLr-torsor

to construct the descent data necessary to glue the bundles OPr−1
Ui

(−1)⊕r into a

bundle J on P (Quillen only works with schemes in [Qui73], but the construction
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adapts to the setting of algebraic stacks). The Azumaya algebra associated to P is
p∗(EndOP

(J ))op = p∗EndOP
(J ∨).

Given an Azumaya algebra A on X, denote by Perf(X,A) the dg-category of perfect
complexes of left A-modules.

3. Semi-orthogonal decompositions for Severi–Brauer stacks

We obtain in this section a semi-orthogonal decomposition of the dg-category of
perfect complexes on a Severi–Brauer stack (Theorem 3.1), generalizing a theorem of
Bernardara ([Ber09] Theorem 5.1). We emphasize that our proof of Theorem 3.1 is
just a matter of concatenating several results of Bergh–Schnürer in [BS20].

Let X be an algebraic stack over a scheme S, and let p : P→ X be a Severi–Brauer
stack of relative dimension r − 1, as defined in Section 2. For each smooth morphism
U → X, where U is a scheme, choose an étale cover {Ui → U} such that we have an
isomorphism

Ui ×X P

p

��

φi

∼=
// P|r−1

Ui

zz
Ui

of schemes over Ui for each i.

As discussed in Section 2, there is a canonical vector bundle J on P such that the

pullback of J → P
p−→ X along Ui → X is isomorphic to OPr−1

Ui

(−1)⊕r for all i, and

A := p∗EndOP
(J ∨)

is the Azumaya algebra on X corresponding to p. For all j ∈ Z, the j-fold tensor
power Aj of A is isomorphic to p∗EndOP

((J ∨)⊗j); note that there is a canonical
isomorphism

p∗(Aj) ∼= EndOP
((J ∨)⊗j).

In particular, p∗(Aj) is a trivial Azumaya algebra. Noting that J⊗j is a right p∗(Aj)-
module, we have an equivalence

Tj : Perf(P, p∗(Aj))→ Perf(P)

given by

F 7→ J⊗j ⊗p∗(Aj) F ,

with inverse Sj given by

G 7→ (J ∨)⊗j ⊗OP
G.

Define dg functors

Φj := Tj ◦ p∗ : Perf(X,A)→ Perf(P).

Note that each Φj has a right adjoint Ψj := p∗ ◦ Sj .
We recall that a dg functor is called quasi-fully faithful if the induced functor on

homotopy categories is fully faithful.
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Theorem 3.1. The dg functors Φj are quasi-fully faithful, and there is a semi-
orthogonal decomposition

Perf(P) = ⟨Im(Φ0), . . . , Im(Φr−1)⟩.

Proof. To prove that the Φj are fully faithful, we will apply Bergh–Schnürer’s “con-
servative descent for fully faithfulness” ([BS20, Proposition 4.12]). We recall that a
functor between ordinary categories is called conservative if it reflects isomorphisms.
Note that a triangulated functor is conservative if and only if it reflects zero objects.

Fix j ∈ Z. We have diagrams∏
Perf(Pr−1

Ui
)

∏
φ∗

i

≃
// ∏Perf(Ui ×X P) Perf(P)oo

∏
Perf(Ui)

∏
Φi,j

OO

∏
(−⊗O⊕rj

Ui
)

≃
// ∏Perf(Ui,Aj |Ui

)

∏
Φi,j

OO

Perf(X,Aj)oo

Φj

OO

and ∏
Perf(Pr−1

Ui
)

∏
Ψi,j

��

∏
φ∗

i

≃
// ∏Perf(Ui ×X P)

∏
Ψi,j

��

Perf(P)oo

Ψj

��∏
Perf(Ui)

∏
(−⊗O⊕rj

Ui
)

≃
// ∏Perf(Ui,Aj |Ui

) Perf(X,Aj),oo

where the products range over each element Ui → U of each of the étale open covers
chosen above. The rightmost horizontal maps are given by pullback, and Φi,j (resp.
Ψi,j) is the evident analogue of Φi (resp. Ψi). It’s easy to check that the diagrams
commute.

The leftmost vertical map
∏

Φi,j in the first diagram is quasi-fully faithful by the
projective bundle theorem for schemes, and therefore the middle vertical map in the
first diagram is as well. Since the triangulated functor induced by the dg functor

Perf(X,Aj)→
∏

Perf(Ui,Aj |Ui
)

on the level of homotopy categories reflects 0 objects, it is conservative. It follows from
Bergh–Schnürer’s conservative descent for fully faithfulness that Φj is also quasi-fully
faithful. The semi-orthogonal decomposition now follows immediately from Bergh–
Schnürer’s conservative descent theorem for semi-orthogonal decompositions ([BS20,
Theorem 5.16]) and their projective bundle theorem for algebraic stacks ([BS20,
Corollary 6.8]).

4. Halpern-Leistner–Pomerleano’s comparison map

In this section, we recall the construction of the equivalence ρG,X in Halpern-
Leistner–Pomerleano’s comparison theorem (Theorem 1.1). Let X, G, and M be as
in the setup of Theorem 1.1. Let

r : K(Perf([X/G]))→ KUM (Xan)

denote the comparison map between the connective G-equivariant algebraic K-theory
of X and the (nonconnective) M -equivariant topological K-theory of Xan ([Tho88,
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Section 5.4]). We fix some notation: denote by

• AffC the category of affine schemes over C,
• Σ∞(−) the suspension spectrum functor,

• (−)+ the operation of adjoining a basepoint to a space, and

• RHomSp(−,−) the internal mapping object in Sp.

The map r induces a morphism

K(Perf([X/G]×C −))→ KUM (Xan × (−)an) ≃ RHomSp(Σ
∞((−)an+ ),KUM (Xan))

(4)
of presheaves of spectra on AffC; in the middle term KUM (Xan × (−)an), the input
(−)an is considered as a space with trivial M -action. The equivalence on the right
follows from [HLP15, Lemma 3.10].

Let PreAffC(Sp) denote the ∞-category of presheaves of spectra on AffC, and let
KU −mod (resp. ku−mod) denote the category of KU -modules (resp. ku-modules).
Let

| − | : PreAffC(Sp)→ Sp

denote the topological realization functor described in [Bla16, Definition 3.13] (Blanc
denotes this functor by | − |S). Given a dg-category T over C, the semi-topological
K-theory of T , denoted Kst(T ), is defined to be |K(T ⊗C −)|. As observed in [Bla16,
Definition 3.13], | − | has a right adjoint given by

E 7→ RHomSp(Σ
∞((−)an+ ), E).

The map (4) therefore induces a map

Kst(Perf([X/G]))→ KUM (Xan). (5)

As proven in [Bla16, Section 4], the semi-topological K-theory spectrum of any
C-linear dg-category T is a ku-module. Ktop(T ) is defined to be Kst(T )⊗ku KU .
Noting that (5) is a morphism of ku-modules, the adjunction between KU −mod
and ku−mod given by extension/restriction of scalars yields a map

ρG,X : Ktop(Perf[X/G])→ KUM (Xan).

This is the map that appears in the Halpern-Leistner–Pomerleano comparison theo-
rem (Theorem 1.1).

5. The comparison map

Let X, G, A, and M be as in the setup of Theorem 1.4. Let p : [P/G]→ [X/G] be
the Severi–Brauer stack of relative dimension r − 1 corresponding to A, and let J be
the vector bundle on [P/G] introduced in Section 2.

5.1. Background on invertible algebra bundles and twists of K-theory
Our reference for this subsection is [Fre12]. We recall that a topological groupoid

Y is a pair of topological spaces Y0, Y1 that form the objects and morphisms, respec-
tively, in a category in which all morphisms are invertible. Denote by p0, p1 : Y1 → Y0
the source and target maps, respectively. For example, the space Xan equipped with
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its M -action determines the global quotient groupoid [Xan/M ] with [Xan/M ]0 = Xan

and [Xan/M ]1 = Xan ×M . In this case, p0(x,m) = x and p1(x,m) = mx.

There is a notion of a bundle of invertible (i.e. finite dimensional central simple) C-
algebras over a topological groupoid; we refer the reader to [Fre12, Definition 1.59]
for details. We observe that, if R is a G-equivariant Azumaya algebra over X, its
analytification Rtop is an invertible algebra bundle over the groupoid [Xan/M ]. Note
that, in [Fre12, Definition 1.59], the fibers in an invertible algebra bundle are allowed
to be Z/2-graded, but, in our setting, all invertible algebra bundles will be trivially
graded. Given M -equivariant Azumaya algebras R and R′ on X, a morphism of the
associated invertible algebra bundles Rtop → R′

top is defined as an M -equivariant
R′

top-Rtop-bimodule. Such a bimodule B determines an isomorphism if there is an
Rtop-R′

top bimodule B′ such that B ⊗Rtop B′ ∼= R′
top and B′ ⊗R′

top
B ∼= Rtop.

Twists of topological K-theory of a groupoid can be defined in terms of invertible
algebra bundles; see [Fre12, Definition 1.78] for the precise definition. In particular,
each Ajtop determines a twist αj of theM -equivariant K-theory of Xan (take the local
equivalence in [Fre12, Definition 1.78] to be the identity on Xan). An isomorphism of
twists of the topological K-theory of [Xan/M ] arising from invertible algebra bundles
on [Xan/M ] in this way is just an isomorphism of the invertible algebra bundles,
in the sense defined above. We note that an isomorphism of twists determines an
equivalence of twisted topological K-theory spectra.

5.2. On the topological K-theory of twisted equivariant projective bun-
dles

Fix j ∈ Z. Recall that Aj = p∗End[P/G]((J ∨)⊗j), and there is a canonical isomor-
phism

p∗(Aj) ∼= End[P/G]((J ∨)⊗j).

The OP an-p∗(Ajtop)-bimodule (J an)⊗j therefore determines a canonical isomorphism

from p∗(Ajtop) to the trivial invertible algebra bundleOP an , and hence an isomorphism

from p∗(αj) to the zero twist. This isomorphism induces an equivalence

T top
j : KU

p∗(αj)
M (P an)

≃−→ KUM (P an).

We define

ϕj := T top
j ◦ p∗ : KUα

j

M (Xan)→ KUM (P an).

The map ϕj is the analogue of the functor Φj on the level of twisted equivariant K-
theory; note that ϕj is natural with respect to pullback along morphisms of Severi–
Brauer stacks. We have a map

KUM (Xan)⊕KUαM (Xan)⊕ · · · ⊕KUα
r−1

M (Xan)

(
ϕ0, . . . , ϕr−1

)
−−−−−−−−−−−→ KUM (P an). (6)

Theorem 5.1.

(1) When the twist α is trivializable, the map (6) recovers the equivalence from the
projective bundle formula in (untwisted) equivariant topological K-theory.
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(2) Suppose

KUH(∗)⊕KUβH(∗)⊕ · · · ⊕KUβ
r−1

H (∗)
(
ϕ0, . . . , ϕr−1

)
−−−−−−−−−−−→ KUH(P ′)

is an equivalence whenever H is a closed subgroup of M and β is an arbitrary
H-equivariant twist of the K-theory of a point; here, P ′ is the projective H-
representation associated to β. In this case, the map (6) is an equivalence.

(3) The map (6) is an equivalence when G is trivial.

Remark 5.2. Theorem 5.1(3) was proven by the second author in [Mou19, Theo-
rem 1.3]; it is a consequence of his comparison theorem for the topological K-theory
of the dg-category of twisted perfect complexes (Theorem 1.3 above). We give here a
direct proof of this fact that does not involve topological K-theory of dg-categories.

Proof. Suppose α is trivializable. We have J an ∼= OP an(−1)⊕r, and so Ajtop is isomor-

phic to the bundle of endomorphisms ofO⊕rj
Xan . Just as above, the OXan-Ajtop-bimodule

O⊕rj
Xan determines an equivalence

UXj : KUα
j

M (Xan)
≃−→ KUM (Xan).

Similarly, the OP an- p∗(Ajtop)-bimodule O⊕rj
P an induces an equivalence

UPj : KU
p∗(αj)
M (P an)

≃−→ KUM (P an).

Now we observe that the diagram

KUα
j

M (Xan)

UX
j

��

p∗ // KUp
∗(αj)
M (P an)

UP
j

��

T top
j // KUM (P an)

KUM (Xan)
p∗ // KUM (P an)

−⊗OPan (−j)

77

commutes on the level of homotopy groups. The commutativity of the square on the
left is clear. As for the triangle on the right, since, in the setup of [Fre12], composi-
tions of morphisms of twists are given by tensor products of bimodules, it’s easy to
check that the map T top

j ◦ (UPj )−1 is induced by the OP an - OP an -bimodule given by
the line bundle OP an(−j). (1) now follows from [FHT11, Proposition 3.4 (ii)].

We now prove (2). Since our space Xan is a smooth manifold, M is compact, and
M acts smoothly on Xan, Xan admits an open cover by M -invariant open subsets
{Ui}i∈I such that each Ui is M -equivariantly homotopy equivalent to an M -space of
the form M/Hi for some closed subgroup Hi of M ([Bre72, Corollary VI.2.4]; see
Section IV.1 for the definition of a “locally smooth” action). Since Xan is second
countable, we can assume this cover is countable; write it as {Ui}i⩾1. There is an
equivalence

KUα
j

M (Ui)
≃−→ KUα

j

H (∗)

for each i and j (here, and throughout the proof, we abuse notation slightly: the
superscripts “αj” really indicate pullbacks of αj). Covering P an with theM -invariant
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open sets Vi := p−1(Ui), we obtain a commutative square

⊕r−1
j=0KU

αj

M (Ui)

(
ϕ0 · · · ϕr−1

)
//

≃
��

KUM (Vi)

≃

��⊕r−1
j=0KU

αj

Hi
(∗)

(
ϕ0 · · · ϕr−1

)
// KUHi

(Pi),

(7)

where Pi is some projective Hi-representation. By assumption, the bottom horizontal
map is an equivalence; it follows that the top horizontal map is an equivalence as well.

For n ⩾ 1, let

An := U1 ∪ · · · ∪ Un

and

Bn := V1 ∪ · · · ∪ Vn.

We observe that each Bn is a projective bundle over An. We have maps

r−1⊕
j=0

KUα
j

(An)

(
ϕ0 · · · ϕr−1

)
−−−−−−−−−−−−−→ KU(Bn) (8)

for each n. Since the top horizontal maps in the squares (7) are equivalences, the
Mayer–Vietoris theorem for twisted K-theory ([FHT11, Section 3]) implies that the
maps (8) are all equivalences. Let

CX :=
⊔
n

An × [n, n+ 1]/ ∼

and

CP :=
⊔
n

Bn × [n, n+ 1]/ ∼

denote the “infinite mapping cylinders”, following the terminology of [FHT11]. The
proof of [FHT11, Proposition A.19] implies that, taking the homotopy limit of (8)
over n, we get the map

r−1⊕
j=0

KUα
j

(CX)

(
ϕ0 · · · ϕr−1

)
−−−−−−−−−−−−−→ KU(CP ); (9)

we conclude that this map is also an equivalence.

Let

gX : CX → Xan, gP : CP → P an

denote the canonical maps. As in the proof of [FHT11, Proposition A.19], choose
a partition of unity subordinate to the open cover {Ui}i⩾1 of Xan, and use it to
construct a section sX of gX . Pulling back along p : P an → Xan, we get an induced
partition of unity subordinate to the open cover {Vi}i⩾1 of P an and therefore an
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induced section sP of gP such that the diagram

P an sP //

p

��

CP

��

gP // P an

p

��
Xan sX // CX

gX // Xan

(10)

commutes. The commutativity of diagram (10) implies that the map (6) is a section
of the equivalence (9), and so (6) is also an equivalence. This proves (2).

Finally, (3) is immediate from (1) and (2), since any twist of the non-equivariant
K-theory of a point is trivializable.

Question 5.3. Is the map (6) an equivalence in general?

Example 5.4. To answer Question 5.3, it suffices, by Theorem 5.1(2), to consider the
case where X = Spec(C). In this case, P an is simply a projective M -representation.
Such an object corresponds to a central extension of the form

1→ S1 → M̃ →M → 1.

This central extension canonically determines a complex M̃ -representation V , and we
have

KUM (P an) ≃ KUM (S(V )/S1) ≃ KU
M̃
(S(V )),

where S(V ) denotes the unit sphere in V . Let B(V ) denote the unit ball in V . By the
Thom isomorphism and the long exact sequence of the pair (B(V ), S(V )), we have
an exact sequence

0→ KU1
M (P an)→ Rep(M̃)

λ−1[V ]−−−−→ Rep(M̃)→ KU0
M (P an)→ 0,

where Rep(M̃) denotes the representation ring of M̃ , and λ−1[V ] =
∑

(−1)iλi[V ].

On the other hand, by [FHT11, Example 1.10], we have

KUα
i,j

M (∗) =

{
Repα

i

(M) j = 0

0 j = 1
,

where Repα
i

(M) denotes the ring of αi-twisted representations of M . So, to prove
the projective bundle formula for twisted equivariant K-theory in the case of a point,
one must show

(a) The map
⊕r−1

i=0 Repα
i

(M)→ Rep(M̃)/(λ−1[V ]) induced by (6) is an isomor-
phism, and

(b) ker(Rep(M̃)
λ−1[V ]−−−−→ Rep(M̃)) = 0.

We have been unable to prove either of these two statements.

We remark that the answer to Question 5.3 is “yes” in the case where X = Spec(C)
and G is a torus. To see this, say M = (S1)d. We have H3

M (∗;Z) = H3(BM ;Z) =
H3((CP∞)d;Z) = 0; thus, every twist of the M -equivariant topological K-theory of
a point is trivializable, and so the statement follows from Theorem 5.1(1).
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5.3. Proof of Theorem 1.4
As discussed in the introduction, we define our comparison map

KUαM (Xan)→ Ktop(Perf([X/G],A))

by mapping KUαM (Xan) to KUM (P an) via (6), applying the inverse of the Halpern-
Leistner–Pomerleano equivalence ρG,P discussed in Section 4, and then projecting
onto the summand Ktop(Perf([X/G],A)) of Ktop(Perf([P/G])) via the equivalence
in Theorem 3.1.

To prove Theorem 1.4, we will need the following

Lemma 5.5. Assume that the answer to Question 5.3 is “yes”. Denote by ψj the
composition

KUM (P an)
(ϕ0···ϕr−1)

−1

−−−−−−−−−→
r−1⊕
l=0

KUα
l

M (Xan)→ KUα
j

M (Xan),

where the second map is projection onto the jth component, so that ψj is a canon-
ical splitting of ϕj. In this case, in the setting of Theorem 1.4, Halpern-Leistner–
Pomerleano’s comparison map ρG,P respects the decompositions of Ktop(Perf[P/G])
and KUM (P an) arising from Theorems 3.1 and the map (6), respectively. More pre-
cisely, if 0 ⩽ j, k ⩽ r − 1 and j ̸= k, the map ψj ◦ ρG,P ◦ Φk is trivial, i.e. it induces
the zero map in the stable homotopy category.

Proof. Recall the comparison map r : K(Perf([P/G]))→ KUM (P an) from Section 4.
Our first step is to show

ψj ◦ r ◦ Φk : K(Perf([X/G],Ak))→ KUα
j

M (Xan)

is trivial. The map r factors as

K(Perf([P/G]))
≃←− K(VectG P )→ K(VecttopM P an)→ KUM (P an),

whereK(VectG(P )) (resp.K(VecttopM (P ))) denotes the connective algebraicK-theory
of the exact category of G-equivariant vector bundles on P (resp. M -equivariant
complex vector bundles on P an). Note that, since P is G-quasi-projective, [P/G] has
the resolution property; this is why the map K(VectG P )→ K(Perf([P/G])) is an
equivalence.

We have a commutative diagram

K(Perf([P/G])) K(VectG P )
≃oo // K(VecttopM P an) // KUM (P an)

K(Perf([X/G],Ak))

Φk

OO

K(VectG(X,Ak))
≃oo //

Φk

OO

K(VecttopM (Xan,Ak
top))

Φk

OO

// KUαk

M (Xan).

ϕk

OO

The middle two vertical maps are given by the same formula as Φk, and we abuse
notation by referring to them with the same symbol. The horizontal maps are all the
canonical ones. Observing that the composition

KUα
k

M (Xan)
ϕk−→ KUM (P an)

ψj−→ KUα
j

M (Xan)

is trivial, we conclude that ψj ◦ r ◦ Φk is trivial.
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We now show ψj ◦ ρG,P ◦ Φk is trivial. Since ψj ◦ r ◦ Φk is trivial, the composition

K(Perf([X/G],Ak)⊗C −)
Φk−−→ K(Perf([P/G])⊗C −)→

RHomSp(Σ
∞((−)an+ ),KUM (P an))

ψj−→ RHomSp(Σ
∞((−)an+ ),KUα

j

M (Xan))

is a trivial map of presheaves of spectra on AffC (i.e. the map is trivial pointwise),
where the middle map is as constructed in Section 4. It follows that the induced map

Kst(Perf([X/G],Ak)) Φk−−→ Kst(Perf([P/G]))→ KUM (P an)
ψj−→ KUα

j

M (Xan)

is also trivial (here, Kst(−) denotes the semi-topological K-theory functor for dg
categories, whose definition is recalled in Section 4). Finally, we conclude that the
induced map

Ktop(Perf([X/G],Ak)) Φk−−→ Ktop(Perf([P/G]))
ρG,P−−−→ KUM (P an)

ψj−→ KUα
j

M (Xan)

is trivial.

Proof of Theorem 1.4. Our hypothesis is that the answer to Question 5.3 is “yes”.
Define maps ψj as in the statement of Lemma 5.5. We have maps

ψj ◦ ρG,P ◦ Φj : Ktop(Perf([X/G],Aj))→ KUα
j

M (Xan),

where ρG,P is Halpern-Leistner–Pomerleano’s comparison map. By Theorems 3.1 and
our assumption that the map (6) is an equivalence, the composition

r−1⊕
j=0

Ktop(Perf([X/G],Aj))

(
Φ0 · · · Φr−1

)
−−−−−−−−−−−−−→ Ktop(Perf([P/G]))

ρG,P−−−→ KUM (P an)


ψ0

...
ψr−1


−−−−−−→

r−1⊕
j=0

KUαj

M (Xan)

is an equivalence, i.e. the induced map

r−1⊕
j=0

Ktop
∗ (Perf([X/G],Aj))


ψ0 ◦ ρG,P ◦ Φ0 · · · ψ0 ◦ ρG,P ◦ Φr−1

...
...

...
ψr−1 ◦ ρG,P ◦ Φ0 · · · ψr−1 ◦ ρG,P ◦ Φr−1


−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

r−1⊕
j=0

KUαj ,∗
M (Xan)

of Z-graded abelian groups is an isomorphism. By Lemma 5.5, the off-diagonal entries
of this matrix are 0, and so the diagonal entries are all isomorphisms; that is, each
comparison map ψj ◦ ρG,P ◦ Φj : Ktop(Perf([X/G],Aj))→ KUα

j

M (Xan) is an equiva-
lence. Finally, observe that our equivalence is the inverse of ψ1 ◦ ρG,P ◦ Φ1.

Remark 5.6. In the construction of the comparison map, the smoothness assumption
is only necessary so that we can (1) use Halpern-Leistner–Pomerleano’s comparison
map, and (2) choose an equivariantly contractible open cover of Xan. In particular,
the smoothness assumption is not necessary when G is trivial, as we can just use
Blanc’s comparison map in this case, and, of course,Xan is locally contractible as well.
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Similarly, “quasi-projective” can be replaced with “separated of finite type” when G
is trivial. With this in mind, notice that Theorem 5.1(3) and Theorem 1.4 imply that
our comparison map is an equivalence in the non-equivariant case. This gives a new,
simpler proof of the second author’s comparison theorem for the topological K-theory
of the dg-category of (non-equivariant) twisted perfect complexes (Theorem 1.3).
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