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THE HOMOTOPY TYPES OF Sp(n)-GAUGE GROUPS OVER CP?
SAJJAD MOHAMMADI
(communicated by Jelena Grbic)

Abstract
Let n > 2 and G (CP?) be the gauge groups of the principal
Sp(n)-bundles over CP2. In this article we partially classify the
homotopy types of G, (CP?) by showing that if there is a homo-
topy equivalence Gi(CP?) ~ G (CP?) then (k,4n(2n+1)) =
(K',4n(2n + 1)).

In memory of Professor Mohammad Ali Asadi-Golmankhaneh.

1. Introduction

Let M be a simply-connected closed four-manifold and G be a topological group.
Let P — M be a principal G-bundle over M. The gauge group of this principal G-
bundle, denote by G(P), is the topological group of automorphisms of P, where an
automorphism of P is a G-equivariant self map of P covering the identity map of
M. The main problem is to classify the homotopy types of G(P) as P ranges over all
principal G-bundles over M for fixed G and M.

Let G be a simply-connected, simple compact Lie group. As [M, BG] = Z, there are
countably many equivalence classes of principal G-bundles over M. Each has a gauge
group, so there are potentially countably many distinct gauge groups. While there
are countably many inequivalent principal G-bundles, Crabb and Sutherland in [3]
showed that their gauge groups have only finitely many distinct homotopy types. Let
P, — M represent the equivalence class of principal G-bundle whose second Chern
class is k and G (M) be the gauge group of this principal G-bundle. In recent years
there has been considerable interest in determining the precise number of homotopy
types of these gauge groups and explicit classification results have been obtained.
When M is a spin 4-manifold, Theriault in [20] showed that there is a homotopy
equivalence

¢
Gr(M) ~ Gr(S*) x [[2°G,
i=1
where ¢ is the second Betti number of M. Thus the homotopy type of G (M) depends
on the special case Gi(S?). Let (a,b) be the their greatest common divisor of two
integers a and b. The first classification was done by Kono [9] for G = SU(2). He
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showed that there is a homotopy equivalence Gy ~ Gy if and only if (k,12) = (k/,12).
Results formally similar to that of Kono have been obtained for principal bundles
over S* with different structure groups. In the following, we mention some results

[6];
23];
e Sp(2)-gauge group [21];

e SU(3)-gauge group
e SU(5)-gauge group

e Sp(3)-gauge group [2].

There are also several classification results for gauge groups of principal bundles with
base spaces other than S* as follow

SU (3)-gauge groups over S° [7];

SU (n)-gauge groups over S6 [14];

Sp(2)-gauge groups over S® [8];

SU (4)-gauge groups over S8 [13];

SU (n)-gauge groups over S>™ [12].

Furthermore, when M is a non-spin 4-manifold, So [17] showed that there is a homo-
topy equivalence

t—1

Gr(M) ~ Gx(CP?) x [ 2°G,

i=1
therefore to study the homotopy type of Gi(M) it suffices to study Gi(CP?). Only
four cases of the homotopy types of gauge groups over simply-connected non-spin
four-manifolds have been studied, which are

SU(2)-gauge groups [11];

SU (3)-gauge groups [22];

SU(n)-gauge groups [18];

Sp(2)-gauge groups [19].

In this article, we will study the homotopy types of Sp(n)-gauge groups over CP?,
for n > 2. Let Gi,(CP?) be the gauge group of the principal Sp(n)-bundles over CP?
with second Chern class k. We partially classify the homotopy types of Gi(CP?) by
using unstable K-theory to give a better lower bound for the number of homotopy
types. We will prove the following theorem.

Theorem 1.1. Let n > 2. If there is a homotopy equivalence Gx(CP?) ~ G, (CP?)
then we have (k,4n(2n + 1)) = (K',4n(2n + 1)).
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2. Preliminaries

Let BG and BGy (M) be the classifying spaces of G and Gy (M) respectively. Let
Mapi(M, BG) be the component of the space of continuous unbased maps from
M to BG which contains the map inducing P, similarly let Mapj; (M, BG) be the
component of the space of pointed continuous maps from M to BG which contains
the map inducing P. We observe that there is a fibration

Map},(M, BG) — Mapy(M, BG) <% BG,

where the map ev is evaluation map at the basepoint of M. Atiyah, Bott and Gottlieb
[1, 4] showed that there is a homotopy equivalence

BG,(M) ~ Mapy(M, BG).
The evaluation fibration therefore determines a homotopy fibration sequence
G — Mapj (M, BG) — BGp(M) =% BG. (1)

According to [16], for any k € Z, there exists a homotopy equivalence connecting
Map} (M, BG) and Mapy(M, BG). So for G = Sp(n) and M = CP?, we rewrite (1)
as a homotopy fibration sequence

Sp(n) L5 Map;(CP?, BSp(n)) — BGi(CP?) <% BSp(n), (2)

where S, is the fibration connecting map. Note that when M = S™, Map§(M, BG) is
an H-group so [G, Map§(M, BG)] is a group and we can discuss the order of the map
G — Map§(M, BG) that is important for finding the homotopy types of G (S™).
But when M = CP™ then Map{(M, BG) is not an H-space so |G, Map§(M, BG)] is
not a group and the order of the map G — Mapf(M, BG) makes no sense. However,
Theriault in [22] defined the “order” of the map G — Mapy(M, BG), for M = CP?.
In this paper, we study the classification of the homotopy types of the gauge groups
of the principal Sp(n)-bundles over CP?, for n > 2 and will give a lower bound for
the number of homotopy types of this gauge groups. Since to find the “order” of the
map [ is very hard, we do not prove the converse.

Let Q2 = S® U e be the symplectic quasi-projective space for Sp(2). This article
is organized as follows. In Section 3, in separate cases where n is even and n is odd we
calculate [CP? A A, Sp(n)], where A = %4"=9Q; and n > 2. In Section 4 we compute
[YA, BGx(CP?)] and prove Theorem 1.1.

3. The group [CP? A A, Sp(n)]

Our main goal in this section to compute the group [CP% A X4 ~2Q5, Sp(n)], where
n > 2. We denote Sp(c0)/Sp(n) by X,, and [X, Sp(n)] by Sp,(X). We recall that the
symplectic quasi projective space Q2 has the cellular structure
QQ = 53 U’Ul 677
where vy € m6(S%) =2 Z1o. Put X = CP? A A, where A = X4"79Q,. Note that X has
a cellular structure

X ~ S4n—4 U e4n—2 U e4n U e4n+2.
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Recall that as an algebra
H*(Sp(n); Z) = /\(yg,y7, s Yan—1),
H*(Sp(00); Z) = \ (s, 97, - ),
H*(BSp(c0); Z) = Zlq1, 42, - - -,

where y4,_1 = 0¢;, o is the cohomology suspension and ¢; is the i—th universal sym-
plectic Pontrjagin class. Consider the projection map 7 : Sp(co) — X,,, as an algebra
we have

H*(Xn;Z) = \Want3, Jans7, - - )
H*(QXR, Z) = Z{b4n+2, b4n+6; ey bgn+2} (* < 8n + 2),

where 7*(J4i43) = Yai+3 and banyaj—2 = 0(Yantaj—1). Consider the following fibre
sequence

QSp(oo) 25 QX, 2 Sp(n) L5 Sp(co) 5 X, (3)

Note that for n > 3, A is a suspension, implying that X is a suspension as well.
Therefore, applying the functor [X, —] to fibration (3), there is an exact sequence of
groups

X, Q28p(00)] O X, 0X0] 25 Spa(X) 25 (X, Sp(oo)] =5 (X, Xu) (%)

Note that X, has a cellular structure as following

X, o S4B, It T yedntil
where 7’ is the generator of my,16(S4"3) and

OX,, ~ §4nF2yetnt6 yeintlo ...
According to the CW-structure of X,, we have the following isomorphisms

mi(Xn) =0 (for i<4n+2), Tan+3(Xn) = Z.
Observe that
X, 8p(00)] = [£X, BSp(oo)] = KSp (X).

Since 1757971(84’”_2) =0, for every m > 1, applying I/(_:S’;)il to the homotopy cofi-

bration 24"~6CP? — X — ¥4 ~2CP? shows that I?S?) 1(X) = 0. On the other hand
we know that QX,, is (4n + 1)-connected and H*""2(Q2X,,) = Z which is generated
by bant2 = 0(Jants3). The map bapio : X, = K(Z,4n + 2) is a loop map and is a
(4n + 3)-equivalence. Since dim X < 4n + 2, it follows that the postcomposition map
(bant2)« 1 [X,QX,,] — H**2(X) is an isomorphism of groups. Thus we rewrite ()
as the following exact sequence

——2
KSp (X) -5 H™2(X) = Spa(X) — 0, (4)
where we use the isomorphism

KSp (X)) [2°X, BSp(co)].
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So we have the exact sequence
0 — Coker 1) — Sp,,(X) — 0.

Therefore we get the following lemma.
Lemma 3.1. Sp,(X) = Coker . O

In the following we will calculate the image of .
Let Y be a CW-complex with dim Y < 4n + 2, we will denote [Y,U(2n + 1)] by
Usn+1(Y). By [5, Theorem 1.1] there is an exact sequence

K=2(Y) 5 H™2(Y) = Uspr (V) = K71(Y) — 0,
where, for any f € K~2(Y), the map ¢ is defined by
¢(f) = 2n+1)lchany1(f),
where chan12(f) is the 4n + 2-th part of ch(f). Also, we use the isomorphism
K~H(Y) 2 [2'Y, BU(0)].
The map of I?S;;(X) — K*(X) is induced by the map Sp(co) — U(co) obtained by

taking the direct limit of the maps Sp(n) — U(2n) as n increases. In this paper, we
use the same symbol ¢’ for the canonical inclusion Sp(n) < U(2n) and the induced

map I/(TS?)*(X ) — K*(X). By [15, Theorem 1.3] there is a commutative diagram

I/{B‘;_Q(X) v, HA+2(X)
1 o 0

- ®

K72(X) LN H4n+2 (X)

Therefore to calculate the image of 1) we first calculate the image of . The calculation
of the image of ¢ will appear as part of the proof of Proposition 3.3. We denote the
free abelian group with a basis eq, e, ..., by Z{ej,ea,...}. We have the following
lemma.

Lemma 3.2. The following hold:

2
(a): KSp (X) is a free abelian group that includes the subgroup generated by &,
&4, where

& eKSp (S™?) and € e KSp (52,
(b): K~%(X) = Z{&, &, .}, where
& e K721, ¢ e K 2(s2),
& e K2(5™) and & e K2(5F?),

d(&) =28, d(&)=¢ if n is even,

d(&) =&, (&) =2 if n is odd.
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Proof. First, the cofibration sequences
S4n74 N E4n76(cp2 N S4n72 S4n N E4n72CP2 N S4n+2

induce the following commutative diagrams of exact sequences

—_~——2 -2 9
0o— KSp (S4n72) — KSp (247176@]32) — KSp (S4n74) —90

JCI s ch Ja — (6)

0—— K72(S4n72) _ X72(24n76cp2) _ R72(S4n74) [N 07
and

—_— 2 —_— 2 -2
0—— KSp (S*+2)—— KSp (S 2CP?)—— KSp (S*)——0

la e, JC/ Jcl — s (7)

0o—— f(72(s4n+2) [N f(72(24n72CP2) [N K72(54n) —0,
respectively, where the zeroes that appear on the left and right of the two I?S?)

—_— 2 —~—1
sequences are due to the fact that KSp (S*™3) = KSp (S*"~2) =0, for every
m > 1. Since

. _ o o 7/27 if n is even,
K2(8*)=7Z, KSp (S%7?)=Z, KSp (S'")=
0 if n is odd,
2
we have two cases. If n is even then KSp (X4 SCP?) = Z{&} and &, generates a

—~—2
subgroup of KSp (X4"~2CP?), where & and &4 are generators of
—_——2 e~ —2
KSp (8" %) =7 and KSp (S'""?) =7,

respectively. We have ¢/; = ¢/3 =0 and as in [10], ¢o =2,¢4 = 1. If n is odd then

—_— 2 —~—2
KSp (X*=5CP?) includes the subgroup generated by &, and KSp (24" ~2CP?) =
Z{&4}. Also, in this case we have ¢’; = /3 =0,¢'s = 1,¢'4 = 2. In the two cases we
have

K2(2*SCcP?) = Z{¢], &}, K 2(2*"2CP?) = Z{&, &},

where & € K—2(8*4), &, € K~2(58*2), ¢, € K~2(5§*") and &, € K~2(5%"*?),
Note that there is a cofibration sequence 34" 6CP? - X — ¥47~2CP?, which
induces an exact sequence

——2 e~ -2 2
KSp (2*75CP?) —-KSp (2 72CP?) — KSp (X)—
KSp (£ 5CP?) - KSp (S 3CP?).

——2 ——2
We need to study groups KSp (X4"=5CP?) and KSp (X4"~3CP?). Consider the
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following cofibration sequence

S4n S4n 1 E4n_3CP2 — S4n+1.

This sequence induces an exact sequence

(411,3

—_——2 — 2 —_— 2
KSp (™) = KSp (3P = KSp (st CILY ke Y (50,
Since

o o Z/2Z if n is even,
KSp (S4n+1) ~ 0’ KSp (S4n—1) ~
0 if n is odd,

we have two cases. If n is even then we get the following exact sequence

(4713)

——2
0— KSp (X' 3CP?) = Zy ~—" Zs.
Since Sp(o0o) is homotopy equivalent to Q*O(o0), we can determine the map

( 4n dn)*

5 st P i s
by
(E4n_377)*3 Tan+4(SO(0)) = Tan45(SO(0)).

Let 1 be a generator of 14, 4+4(SO(00)) & Zs. Then the composition

S4n+5 sAnt? 77 S4n+4 SO( )

generates m4,15(S0(00)). Since the map (34" 73n)* sends I; to o so (L4 73n)* is
— 2
injective. Therefore we can conclude that KSp (X" ~3CP?) is zero. If n is even
/\/72
then we have KSp (Z4"=3CP?) 0.

2
Similarly, to calculate the group KSp (24" ~°CP?), we have the following exact
sequence

(4n4

—_——2 ——2 —_——2
KSp (st CIY Ky (541 S KSp (S SCP?) — KSp (SM9).
If n is even then we get the following exact sequence

(E4n 4 ) 4
7" —" 7, KSp (2 "=SCP?%) — 0.

Let I’y be a generator of m4,13(SO(00)) = Z. Then the composition

S4n+4E 54n+3_>50( ) generates 7T4n+4(SO(OO))'

Since the map (£4"~4n)* sends I’y to I’y so (24" ~%n)* is surjective. Therefore we can
——2 —_—2
conclude that KSp (34" ~5CP?) is zero. If n is even, we have KSp (X4"=5CP?)=20
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Therefore in both cases, we get the following commutative diagram of exact sequences

—~——2 —_——2 —_—— 2
0— KSp (2% 2CP?)— KSp (X)— KSp (¥ 6CP2%)— 0
cll cfj aj (8)

0 — K~2(8472CP?) —— K~3(X) —— K 2(24"~6CP?) — 0.

Thus, we can conclude that KSp 2(X ) is a free abelian group that includes the
subgroup generated by & and &4 and also K ~2(X) is a free abelian group generated
by &1, &, & and &}. Now according to the definition of the maps ¢ = ¢/;, for 1 <14 < 4,
we can choose &1, &1, &2, &, &3, &, &4 and &) such that

d(§2) = 26, d(&) =¢&, if n is even,

(&) =&, d(E) =2  ifnisodd
Consider the map ¢’ : Sp(2) — SU(4). The composite

Qs — Sp(2) < SU(4)

factors through the 7-skeleton of SU(4), which is XCP3. Thus, we obtain the map
& : Qy — YCP3. The cohomologies of Q2 and XCP? are given by

H*(Q2) = Z{y3, 97}, H*(SCP?) = Z{Z3, %5, T1},

such that & (Z3) = 73, & (Z5) = 0 and & (Z7) = 7. Denote by ¢, a generator of K (S>"),
recall that

H*(CP?) = Z[t)/(t"),  K(CP?®) = Z[z]/(z%),

where |t| = 2. Note that K~2(CP? A X4"—8CP?3) = KO(CP? A £*"~SCP?) is a free
abelian group generated by (2,_3 ® ' ® 27, where 1 <4 < 2 and 1 < j < 3, with the
following Chern characters

1
chant1(Can—a ® ¢ @ x) = chap—4Con—a ® chox ® chzx = Edm_gt2 ®t3,
similarly

1
Ch2n+1(<2n—4 ®r & 332) = 10'4n_8t2 ® t3,

chon1(Con-a @z @ 2) = 0" 82 @ 3,

1
chant1(Gon—1 ®2° @ 1) = 604”_8152 ® 3,
1
Ch2n+1(c2n74 & $2 X -’172) = §U4n_8t2 ® t37
choni1(Con—a @ 22 @ 2%) = 204" 312 @ 3.

Consider the map & : K~2(CP? A 24" ~8CP3) — K—2(CP2 A £*"~9Q,), we can put
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&1, &, & and &) such that
£ =C(Gn-1®2®1), &=7C(Cn-1®2°®2),
§=7(Cna®ra®) and & =7 ((na®@2” @2°%).
We have the following proposition.
Proposition 3.3. The Image of i is generated by

$2n + Do 2 @ g if n is even,

+(2n + Do @ gy if n is odd.

Proof. Consider the following commutative diagram

K=2(CP? A £4n-3CP3) i HA+2(CP? A 2480 P3)
g : o
I~(_2((CP2 A TA=9Q,) ® HA+2(CP2 A $4=9Q,)
where the map ¢’ is defined similarly to the map ¢. That is, when 1 <4 < 2 and
1 <7 <3, we have

¢ (Gn-1®a’ ®a?) = (2n+1)lchapi1(Gon—a @ 2" @ 27).
By definition of the map of ¢’ we have
1
12
O (Con_s @ @2%) = 3(271 + D)o 82 @ 13,

O (lon—a@r@2) = —(2n+ 1)!0_4n—8t2 @13

O (Con_a@r @) = 2n+ Dlc" 32 @ 3,
¢ (Cn-1®@r* @) = %(Qn +1)lo* 32 @ 3,
¢ (Cn-a ®2° ®27) = %(2n + D)o 82 @ 13,
@ (Con—sa @ 22 @ 2%) = 2(2n+ Do 82 @ 13
Therefore according to the commutativity of diagram (9) we get

1
E(2n + Do %2 @ gy,

1
o(&h) = ¢ (lon—a®2* @ 1) = g2+ Do @ gy,

p(€) =¥ (Gnavzer) =

P(&) = @' (Con-a @z @2°) = 2n+ Do 1? @ g,
0(&h) = ¢ (Gn-a @ 2” @2°) = 2(2n + Do 12 © g7
Thus by the commutativity of diagram (5) when n is even then we get
1
—§(2n + Do %2 @ gy,

(d (&) = —2(2n + Do %2 @ g7,

< <
~ =
™~ ™
N ©
o 2
I I
€ €
—
Q\
—~
I
o
N
=
I
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and when n is odd then we get
1
Y(&2) = 6(271 + Dot @ g,
Y(&) = 4t'(2n + Do @ gy
Thus we can conclude that
Z{3(2n + 1)l %t @ 7} if n is even,
Imy = O
Z{t@2n+ Do @ 5;}  if nis odd.
Therefore by Lemma 3.1 and Proposition 3.3 we get the following theorem.

Theorem 3.4. There is an isomorphism

Z%(Q,Hl), if n is even,
[X, Sp(n)] = O
Zé(2n+1)! if n is odd.

4. Proof of Theorem 1.1

In this section we will prove Theorem 1.1. Recall A = £4"~2Q,. Since the dimen-
sion of A is equal to 4n — 2, we have

[SA, BSp(n)] = [SA, BSp(c0)] = KSp(SA).
The cofibration sequence S~ — ¥ A — S4"~! induces the following exact sequence
— KSp(S*"~1) = KSp(SA) — KSp(S*"%) = ...

Since K Sp(S4~1) = 0 for all i > 1, this implies that K Sp(SA) = 0. Thus we get the
following lemma.

Lemma 4.1. There is an isomorphism [SA, BSp(n)] = 0. O
Apply the functor [XA, —] to fibration (2) to obtain the following exact sequence
(24, Sp(n)] ©E5 (24, Mapy (CP?, BSp(n))] — [£A, BG(CP?)] — [S4, BSp(n)],  (10)

where by Lemma 4.1, [ A, BSp(n)] = 0. Note that

(B4, Sp(n)] = [S2A, BSp(n)] = KSp(SA).
Also by adjunction,
[YA, Mapi(CP?, BSp(n))] = [SA A CP?, BSp(n)] = [CP? A A, Sp(n)].
Thus the exact sequence becomes
KSp(s24) D% [CP? A A, Sp(n)] — [EA, BG,(CP?)] — 0, (11)
therefore we get the following lemma.

Lemma 4.2. There is an isomorphism

[ZA, BG(CP?)] = [A, GrL(CP?)] = Coker(B )« O
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In what follows we will calculate Im (8 ). For this, we need the following lemmas.

Lemma 4.3. Let 1 : A — Sp(n) be an element of I/(\S/p(EQA) and &' : S3 — Sp(n)
be the inclusion of bottom cell. If ' : CP?> A A — Sp(n) is the adjoint of the following
composition

(’7) P'U

CP2ASA P4 553 A £ A4 N 2.5p(n) A Sp(n) %) BSp(n),

where q is the quotient map. Then there is a lift i of p'

QXx,

7

CP2AA - Spin)

such that " (aans2) = 2 @ X 0 (Yan_1).

Proof. Nagao in [15, Lemma 3.1] showed that there is a lift
A:ESp(n) ASp(n) — X,

of [ev, ev] such that

XN (ants) = Y, Syaic1 @Y1
i+j=n+1

Now let A be the following composition

X:CP2ASA P 553 A A =N $5p(0) A Sp(n) 25 X,
We have

A (Fant3) = (g A1) (Ze" A M)*/\*(§4n+3)

= (gA1)* (2’ A p)* Z YYsi-1 @ Yaj—1)
i+j=n+1

= (g A1) (Zuz @ p* (Yan—1)) = 12 @ p* (yan—1),
where u3 is the generator of H3(S%). We take fi : CP? A A — QX,, to be the adjoint
of the following composition
SCPPAA - CPPATA S X,

that is [ : ad(;\ 0 S), where the map S : XCP? A A — CP? A XA is the swapping
map and the map ad : [ECP? A A, X,,] — [CP? A A,QX,,] is the adjunction. Then
i is a lift of u. Note that

(A0 8)* (Fan+3) = 5% 0 N (fan+s) = S (1 ® p* (yan—1)) = £t* @ E7 17 (yan—1),
thus we get

[ (aans2) = 2 @ 7 0 (Yan—1)- O
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Consider the map 6 : ©A — Sp(n), then by Lemma 4.3 there is a lift 6 of (55).(6)
such that
0~*(a4n+2) =t?@ ¥ le* (y4n—1)-

We define the map Ay : KSp(324) — H¥2(X) by \(0) = 0" (a4ns2) = Guanto 0 0.
Now consider the following commutative diagram

K5p(z24) 25 (X, Sp(n)] — [A, 6]
3 H -
KSp  (X) = Hn2(X) — [X, Sp(n)] —— 0,

we have Im (B)« = Im A /Im. Note that in Proposition 3.3 we calculated Im 1,
thus we need to calculate Im \j.
Let a : ¥Q2 — BSp(c0) be the adjoint of the composition of the inclusions

Q2 — Sp(2) — Sp(c0)
and also b : Qo — BSp(co) be the pinch map of the bottom cell ¢ : Qo — S® fol-

lowed by a generator of mg(BSp(c0)) = Z. Note that K/:\S?)(EQQ) is a free abelian
group with a basis a,b. Then we have

1
h(c(@) = Bys — TSyr, () = 2y,
Let 61 = q(Can_ac'(a)) € KSp(S47=7Q,), where q : K — K Sp is the quaternioniza-
tion.
Also let 6, : X4"~7Qy — BSp(oo) be the composite of the pinch map to the top
cell X4=7Qy — S and a generator of 7y, (BSp(c0)) = Z. Then K Sp(X2A) is a free
abelian group with a basis 61, 6,. We have

STy — 234y, if n is even,
ch(c'(61)) =
284 Ty + 2540 =Ty if s odd,
—oyAn—Ty, if n is even,
ch(c'(62)) =
YA =Ty, if n is odd.

Lemma 4.4. Im A\ is isomorphic to

Z{£(2n — 1)kt* @ £y, } if n is even,

Z{E2n — Dt @ 24 %, if nis odd.

Proof. For i = 1,2, by Lemma 4.3, (8x)«(6;) has a lift élk :CP?ANA — QX,, such
that

0; 1 (aans2) = kt*> @ B0, (yan—1).
Since y4;—1 = 0(g;) and q; = ¢’"(ca;) so we get

eiyk(a4n+2) = kt? ® E_Qqn(@) = kt? ® Z_QCQn(C/(ei)).
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On the other hand we have

/ $2n —1)IS Ty, if nis even,
con(¢'(01)) =
$(2n — 1)IDIn=Ty, if n is odd,
2(2n — 1184 Ty, if n is even,
can(c'(02)) =

(2n — 1)IX4n=Ty, if n is odd.
Therefore we get

kt? @ §(2n — 1)I54n 9y, if n is even,

05 (auns2) =
kt? @ £(2n — 1)I54n 9, if n is odd,

and
kt? @ 2(2n — 1)IX4 9, if n is even,

05 1 (aant2) =
kt? @ (2n — 1)124n 9%, if n is odd.

If n is even, then Im A\ = Z{«, 8}, where
1
a= 6(271 — Dk @2 %,  and  f=2(2n— 1)kt* @ 21"y,

Also Im )\ is generated by 2a — %B = %(Qn — Dlkt? @ 349, If n is odd, then
Im A\, = Z{«, B}, where

1
o= §(Qn ~ D2 %y, and B = (2n — 1)kt? @ 2%,

Also Im A\ is generated by o — %5 = 1—12(271 — 1)1kt? @ 4= 9%,. Therefore we can
conclude
Z{3(2n — 1)kt? @ T4 Oy} if n is even,
Im >\k = O

Z{E(2n — Dkt @ £4 %} if nis odd.

Therefore by Proposition 3.3 and Lemma 4.4 we obtain the following proposition.

Proposition 4.5. There is an isomorphism

Z/((2n+ 1)1/ (3(k,4n(2n + 1)))) if n is even,
Z/((2n+ 1)1/ (6(k,4n(2n + 1)))) if n is odd.

Therefore by Theorem 3.4, Lemma 4.2 and Proposition 4.5 we get the following
theorem.

Theorem 4.6. There is an isomorphism [LA, BG,(CP?)] = Lk an(2n+1))- O

Now we prove Theorem 1.1.
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Proof of Theorem 1.1. Consider the exact sequence (11). Suppose that Gp(CP?) ~
Gi-(CP?), then there is an isomorphism of groups

[ZA, BG,(CP?)] = [L A, BGi (CP?)].

Thus the order of [L A, BG(CP?)] is equal to the order of [L A, BGy/ (CP?)]. Therefore

by Theorem 4.6 we can conclude Theorem 1.1. O
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