THE HOMOTOPY TYPES OF $S p(n)$-GAUGE GROUPS OVER $\mathbb{C} P^{2}$

SAJJAD MOHAMMADI
(communicated by Jelena Grbić)

Abstract

Let $n>2$ and $\mathcal{G}_{k}\left(\mathbb{C} P^{2}\right)$ be the gauge groups of the principal $S p(n)$-bundles over $\mathbb{C} P^{2}$. In this article we partially classify the homotopy types of $\mathcal{G}_{k}\left(\mathbb{C} P^{2}\right)$ by showing that if there is a homotopy equivalence $\mathcal{G}_{k}\left(\mathbb{C} P^{2}\right) \simeq \mathcal{G}_{k^{\prime}}\left(\mathbb{C} P^{2}\right)$ then $(k, 4 n(2 n+1))=$ $\left(k^{\prime}, 4 n(2 n+1)\right)$.

In memory of Professor Mohammad Ali Asadi-Golmankhaneh.

1. Introduction

Let M be a simply-connected closed four-manifold and G be a topological group. Let $P \rightarrow M$ be a principal G-bundle over M. The gauge group of this principal G bundle, denote by $\mathcal{G}(P)$, is the topological group of automorphisms of P, where an automorphism of P is a G-equivariant self map of P covering the identity map of M. The main problem is to classify the homotopy types of $\mathcal{G}(P)$ as P ranges over all principal G-bundles over M for fixed G and M.

Let G be a simply-connected, simple compact Lie group. As $[M, B G]=\mathbb{Z}$, there are countably many equivalence classes of principal G-bundles over M. Each has a gauge group, so there are potentially countably many distinct gauge groups. While there are countably many inequivalent principal G-bundles, Crabb and Sutherland in [3] showed that their gauge groups have only finitely many distinct homotopy types. Let $P_{k} \rightarrow M$ represent the equivalence class of principal G-bundle whose second Chern class is k and $\mathcal{G}_{k}(M)$ be the gauge group of this principal G-bundle. In recent years there has been considerable interest in determining the precise number of homotopy types of these gauge groups and explicit classification results have been obtained. When M is a spin 4-manifold, Theriault in [20] showed that there is a homotopy equivalence

$$
\mathcal{G}_{k}(M) \simeq \mathcal{G}_{k}\left(S^{4}\right) \times \prod_{i=1}^{t} \Omega^{2} G
$$

where t is the second Betti number of M. Thus the homotopy type of $\mathcal{G}_{k}(M)$ depends on the special case $\mathcal{G}_{k}\left(S^{4}\right)$. Let (a, b) be the their greatest common divisor of two integers a and b. The first classification was done by Kono [9] for $G=S U(2)$. He

[^0]showed that there is a homotopy equivalence $\mathcal{G}_{k} \simeq \mathcal{G}_{k^{\prime}}$ if and only if $(k, 12)=\left(k^{\prime}, 12\right)$. Results formally similar to that of Kono have been obtained for principal bundles over S^{4} with different structure groups. In the following, we mention some results

- $S U(3)$-gauge group [6];
- $S U(5)$-gauge group [23];
- $S p(2)$-gauge group [21];
- $S p(3)$-gauge group [2].

There are also several classification results for gauge groups of principal bundles with base spaces other than S^{4} as follow

- $S U(3)$-gauge groups over $S^{6}[7]$;
- $S U(n)$-gauge groups over S^{6} [14];
- $\operatorname{Sp}(2)$-gauge groups over $S^{8}[8]$;
- $S U(4)$-gauge groups over S^{8} [13];
- $S U(n)$-gauge groups over $S^{2 m}$ [12].

Furthermore, when M is a non-spin 4-manifold, So [17] showed that there is a homotopy equivalence

$$
\mathcal{G}_{k}(M) \simeq \mathcal{G}_{k}\left(\mathbb{C} P^{2}\right) \times \prod_{i=1}^{t-1} \Omega^{2} G,
$$

therefore to study the homotopy type of $\mathcal{G}_{k}(M)$ it suffices to study $\mathcal{G}_{k}\left(\mathbb{C} P^{2}\right)$. Only four cases of the homotopy types of gauge groups over simply-connected non-spin four-manifolds have been studied, which are

- $S U(2)$-gauge groups [11];
- $S U(3)$-gauge groups [22];
- $S U(n)$-gauge groups [18];
- $S p(2)$-gauge groups [19].

In this article, we will study the homotopy types of $S p(n)$-gauge groups over $\mathbb{C} P^{2}$, for $n>2$. Let $\mathcal{G}_{k}\left(\mathbb{C} P^{2}\right)$ be the gauge group of the principal $S p(n)$-bundles over $\mathbb{C} P^{2}$ with second Chern class k. We partially classify the homotopy types of $\mathcal{G}_{k}\left(\mathbb{C} P^{2}\right)$ by using unstable K-theory to give a better lower bound for the number of homotopy types. We will prove the following theorem.

Theorem 1.1. Let $n>2$. If there is a homotopy equivalence $\mathcal{G}_{k}\left(\mathbb{C} P^{2}\right) \simeq \mathcal{G}_{k^{\prime}}\left(\mathbb{C} P^{2}\right)$ then we have $(k, 4 n(2 n+1))=\left(k^{\prime}, 4 n(2 n+1)\right)$.

Acknowledgments

I am deeply grateful to the referee for a careful reading of the paper and valuable suggestions that greatly improved the paper, especially the Proof of Lemma 3.2.

2. Preliminaries

Let $B G$ and $B \mathcal{G}_{k}(M)$ be the classifying spaces of G and $\mathcal{G}_{k}(M)$ respectively. Let $\operatorname{Map}_{k}(M, B G)$ be the component of the space of continuous unbased maps from M to $B G$ which contains the map inducing P, similarly let $M a p_{k}^{*}(M, B G)$ be the component of the space of pointed continuous maps from M to $B G$ which contains the map inducing P. We observe that there is a fibration

$$
M a p_{k}^{*}(M, B G) \rightarrow \operatorname{Map}_{k}(M, B G) \xrightarrow{e v} B G
$$

where the map $e v$ is evaluation map at the basepoint of M. Atiyah, Bott and Gottlieb $[1,4]$ showed that there is a homotopy equivalence

$$
B \mathcal{G}_{k}(M) \simeq \operatorname{Map}_{k}(M, B G) .
$$

The evaluation fibration therefore determines a homotopy fibration sequence

$$
\begin{equation*}
G \longrightarrow M a p_{k}^{*}(M, B G) \rightarrow B \mathcal{G}_{k}(M) \xrightarrow{e v} B G . \tag{1}
\end{equation*}
$$

According to [16], for any $k \in \mathbb{Z}$, there exists a homotopy equivalence connecting $M a p_{k}^{*}(M, B G)$ and $M a p_{0}^{*}(M, B G)$. So for $G=S p(n)$ and $M=\mathbb{C} P^{2}$, we rewrite (1) as a homotopy fibration sequence

$$
\begin{equation*}
S p(n) \xrightarrow{\beta_{k}} M a p_{0}^{*}\left(\mathbb{C} P^{2}, B S p(n)\right) \rightarrow B \mathcal{G}_{k}\left(\mathbb{C} P^{2}\right) \xrightarrow{e v} B S p(n), \tag{2}
\end{equation*}
$$

where β_{k} is the fibration connecting map. Note that when $M=S^{n}, M a p_{0}^{*}(M, B G)$ is an H-group so [$\left.G, M a p_{0}^{*}(M, B G)\right]$ is a group and we can discuss the order of the map $G \longrightarrow M a p_{0}^{*}(M, B G)$ that is important for finding the homotopy types of $\mathcal{G}_{k}\left(S^{n}\right)$. But when $M=\mathbb{C} P^{n}$ then $\operatorname{Map}_{0}^{*}(M, B G)$ is not an H-space so $\left[G, M a p_{0}^{*}(M, B G)\right]$ is not a group and the order of the map $G \longrightarrow M a p_{0}^{*}(M, B G)$ makes no sense. However, Theriault in [22] defined the "order" of the map $G \longrightarrow M a p_{0}^{*}(M, B G)$, for $M=\mathbb{C} P^{2}$. In this paper, we study the classification of the homotopy types of the gauge groups of the principal $S p(n)$-bundles over $\mathbb{C} P^{2}$, for $n>2$ and will give a lower bound for the number of homotopy types of this gauge groups. Since to find the "order" of the $\operatorname{map} \beta_{k}$ is very hard, we do not prove the converse.

Let $Q_{2}=S^{3} \cup e^{7}$ be the symplectic quasi-projective space for $S p(2)$. This article is organized as follows. In Section 3, in separate cases where n is even and n is odd we calculate $\left[\mathbb{C} P^{2} \wedge A, S p(n)\right]$, where $A=\Sigma^{4 n-9} Q_{2}$ and $n>2$. In Section 4 we compute $\left[\Sigma A, B \mathcal{G}_{k}\left(\mathbb{C} P^{2}\right)\right]$ and prove Theorem 1.1.

3. The group $\left[\mathbb{C} P^{2} \wedge A, S p(n)\right]$

Our main goal in this section to compute the group $\left[\mathbb{C} P^{2} \wedge \Sigma^{4 n-9} Q_{2}, S p(n)\right]$, where $n>2$. We denote $S p(\infty) / S p(n)$ by X_{n} and $[X, S p(n)]$ by $S p_{n}(X)$. We recall that the symplectic quasi projective space Q_{2} has the cellular structure

$$
Q_{2}=S^{3} \cup_{v_{1}} e^{7},
$$

where $v_{1} \in \pi_{6}\left(S^{3}\right) \cong \mathbb{Z}_{12}$. Put $X=\mathbb{C} P^{2} \wedge A$, where $A=\Sigma^{4 n-9} Q_{2}$. Note that X has a cellular structure

$$
X \simeq S^{4 n-4} \cup e^{4 n-2} \cup e^{4 n} \cup e^{4 n+2}
$$

Recall that as an algebra

$$
\begin{aligned}
& H^{*}(S p(n) ; \mathbb{Z})=\bigwedge\left(y_{3}, y_{7}, \ldots, y_{4 n-1}\right), \\
& H^{*}(S p(\infty) ; \mathbb{Z})=\bigwedge\left(y_{3}, y_{7}, \ldots\right), \\
& H^{*}(B S p(\infty) ; \mathbb{Z})=\mathbb{Z}\left[q_{1}, q_{2}, \ldots\right],
\end{aligned}
$$

where $y_{4 i-1}=\sigma q_{i}, \sigma$ is the cohomology suspension and q_{i} is the $i-$ th universal symplectic Pontrjagin class. Consider the projection map $\pi: S p(\infty) \rightarrow X_{n}$, as an algebra we have

$$
\begin{aligned}
& H^{*}\left(X_{n} ; \mathbb{Z}\right)=\bigwedge\left(\bar{y}_{4 n+3}, \bar{y}_{4 n+7}, \ldots\right), \\
& H^{*}\left(\Omega X_{n} ; \mathbb{Z}\right)=\mathbb{Z}\left\{b_{4 n+2}, b_{4 n+6}, \ldots, b_{8 n+2}\right\} \quad(* \leqslant 8 n+2),
\end{aligned}
$$

where $\pi^{*}\left(\bar{y}_{4 i+3}\right)=y_{4 i+3}$ and $b_{4 n+4 j-2}=\sigma\left(\bar{y}_{4 n+4 j-1}\right)$. Consider the following fibre sequence

$$
\begin{equation*}
\Omega S p(\infty) \xrightarrow{\Omega \pi} \Omega X_{n} \xrightarrow{\delta} S p(n) \xrightarrow{j} S p(\infty) \xrightarrow{\pi} X_{n} . \tag{3}
\end{equation*}
$$

Note that for $n \geqslant 3, A$ is a suspension, implying that X is a suspension as well. Therefore, applying the functor [$X,-$] to fibration (3), there is an exact sequence of groups

$$
\begin{equation*}
[X, \Omega S p(\infty)] \xrightarrow{(\Omega \pi)_{*}}\left[X, \Omega X_{n}\right] \xrightarrow{\delta_{*}} S p_{n}(X) \xrightarrow{j_{*}}[X, S p(\infty)] \xrightarrow{\pi_{*}}\left[X, X_{n}\right] . \tag{*}
\end{equation*}
$$

Note that X_{n} has a cellular structure as following

$$
X_{n} \simeq S^{4 n+3} \cup_{\eta^{\prime}} e^{4 n+7} \cup e^{4 n+11} \cup \cdots
$$

where η^{\prime} is the generator of $\pi_{4 n+6}\left(S^{4 n+3}\right)$ and

$$
\Omega X_{n} \simeq S^{4 n+2} \cup e^{4 n+6} \cup e^{4 n+10} \cup \cdots
$$

According to the $C W$-structure of X_{n} we have the following isomorphisms

$$
\pi_{i}\left(X_{n}\right)=0 \quad(\text { for } \quad i \leqslant 4 n+2), \quad \pi_{4 n+3}\left(X_{n}\right) \cong \mathbb{Z}
$$

Observe that

$$
[X, S p(\infty)] \cong[\Sigma X, B S p(\infty)] \cong \widetilde{K S p}^{-1}(X)
$$

Since $\widetilde{K S p}^{-1}\left(S^{4 m-2}\right)=0$, for every $m \geqslant 1$, applying $\widetilde{K S p}^{-1}$ to the homotopy cofibration $\Sigma^{4 n-6} \mathbb{C} P^{2} \rightarrow X \rightarrow \Sigma^{4 n-2} \mathbb{C} P^{2}$ shows that $\widetilde{K S p}^{-1}(X)=0$. On the other hand we know that ΩX_{n} is $(4 n+1)$-connected and $H^{4 n+2}\left(\Omega X_{n}\right) \cong \mathbb{Z}$ which is generated by $b_{4 n+2}=\sigma\left(\bar{y}_{4 n+3}\right)$. The map $b_{4 n+2}: \Omega X_{n} \rightarrow K(\mathbb{Z}, 4 n+2)$ is a loop map and is a $(4 n+3)$-equivalence. Since $\operatorname{dim} X \leqslant 4 n+2$, it follows that the postcomposition map $\left(b_{4 n+2}\right)_{*}:\left[X, \Omega X_{n}\right] \rightarrow H^{4 n+2}(X)$ is an isomorphism of groups. Thus we rewrite $(*)$ as the following exact sequence

$$
\begin{equation*}
\widetilde{K S p}^{-2}(X) \xrightarrow{\psi} H^{4 n+2}(X) \rightarrow S p_{n}(X) \rightarrow 0 \tag{4}
\end{equation*}
$$

where we use the isomorphism

$$
\widetilde{K S p}^{-i}(X) \cong\left[\Sigma^{i} X, B S p(\infty)\right]
$$

So we have the exact sequence

$$
0 \rightarrow \text { Coker } \psi \xrightarrow{\iota} S p_{n}(X) \rightarrow 0 .
$$

Therefore we get the following lemma.
Lemma 3.1. $S p_{n}(X) \cong \operatorname{Coker} \psi$.
In the following we will calculate the image of ψ.
Let Y be a $C W$-complex with $\operatorname{dim} Y \leqslant 4 n+2$, we will denote $[Y, U(2 n+1)]$ by $U_{2 n+1}(Y)$. By [5, Theorem 1.1] there is an exact sequence

$$
\tilde{K}^{-2}(Y) \xrightarrow{\varphi} H^{4 n+2}(Y) \rightarrow U_{2 n+1}(Y) \rightarrow \tilde{K}^{-1}(Y) \rightarrow 0
$$

where, for any $f \in \tilde{K}^{-2}(Y)$, the map φ is defined by

$$
\varphi(f)=(2 n+1)!c h_{2 n+1}(f),
$$

where $c h_{4 n+2}(f)$ is the $4 n+2$-th part of $c h(f)$. Also, we use the isomorphism

$$
\tilde{K}^{-i}(Y) \cong\left[\Sigma^{i} Y, B U(\infty)\right]
$$

The map of $\widetilde{K S p}^{*}(X) \rightarrow \tilde{K}^{*}(X)$ is induced by the map $S p(\infty) \rightarrow U(\infty)$ obtained by taking the direct limit of the maps $S p(n) \rightarrow U(2 n)$ as n increases. In this paper, we use the same symbol c^{\prime} for the canonical inclusion $S p(n) \hookrightarrow U(2 n)$ and the induced map $\widetilde{K S p}^{*}(X) \rightarrow \tilde{K}^{*}(X)$. By [15, Theorem 1.3] there is a commutative diagram

$$
\begin{gather*}
\widetilde{K S p}^{-2}(X) \xrightarrow{\psi} H^{4 n+2}(X) \\
c^{\prime} \downarrow \tag{5}\\
\tilde{K}^{-2}(X) \xrightarrow{\varphi} \xrightarrow{\mid}(-1)^{n+1} \\
H^{4 n+2}(X)
\end{gather*}
$$

Therefore to calculate the image of ψ we first calculate the image of φ. The calculation of the image of φ will appear as part of the proof of Proposition 3.3. We denote the free abelian group with a basis e_{1}, e_{2}, \ldots, by $\mathbb{Z}\left\{e_{1}, e_{2}, \ldots\right\}$. We have the following lemma.

Lemma 3.2. The following hold:
(a): $\widetilde{K S p}^{-2}(X)$ is a free abelian group that includes the subgroup generated by ξ_{2}, ξ_{4}, where

$$
\xi_{2} \in \widetilde{K S p}^{-2}\left(S^{4 n-2}\right) \quad \text { and } \quad \xi_{4} \in \widetilde{K S p}^{-2}\left(S^{4 n+2}\right)
$$

(b): $\tilde{K}^{-2}(X)=\mathbb{Z}\left\{\xi_{1}^{\prime}, \xi_{2}^{\prime}, \xi_{3}^{\prime}, \xi_{4}^{\prime}\right\}$, where

$$
\begin{aligned}
& \xi_{1}^{\prime} \in \tilde{K}^{-2}\left(S^{4 n-4}\right), \quad \xi_{2}^{\prime} \in \tilde{K}^{-2}\left(S^{4 n-2}\right) \\
& \xi_{3}^{\prime} \in \tilde{K}^{-2}\left(S^{4 n}\right) \quad \text { and } \quad \xi_{4}^{\prime} \in \tilde{K}^{-2}\left(S^{4 n+2}\right)
\end{aligned}
$$

(c):

$$
\begin{cases}c^{\prime}\left(\xi_{2}\right)=2 \xi_{2}^{\prime}, & c^{\prime}\left(\xi_{4}\right)=\xi_{4}^{\prime} \\ c^{\prime}\left(\xi_{2}\right)=\xi_{2}^{\prime}, & c^{\prime}\left(\xi_{4}\right)=2 \xi_{4}^{\prime} n \text { is even } \\ \text { if } n \text { is odd }\end{cases}
$$

Proof. First, the cofibration sequences

$$
S^{4 n-4} \rightarrow \Sigma^{4 n-6} \mathbb{C} P^{2} \rightarrow S^{4 n-2}, \quad S^{4 n} \rightarrow \Sigma^{4 n-2} \mathbb{C} P^{2} \rightarrow S^{4 n+2}
$$

induce the following commutative diagrams of exact sequences

$$
\begin{equation*}
0 \longrightarrow \tilde{K}^{-2}\left(S^{4 n-2}\right) \longrightarrow \tilde{K}^{-2}\left(\Sigma^{4 n-6} \mathbb{C} P^{2}\right) \longrightarrow \tilde{K}^{-2}\left(S^{4 n-4}\right) \longrightarrow 0 \tag{6}
\end{equation*}
$$

and

$$
\begin{array}{r}
0 \longrightarrow \widetilde{K S p}^{-2}\left(S^{4 n+2}\right) \longrightarrow \widetilde{K S p}^{-2}\left(\Sigma^{4 n-2} \mathbb{C} P^{2}\right) \longrightarrow \widetilde{K S p}^{-2}\left(S^{4 n}\right) \longrightarrow 0 \\
\downarrow_{c^{\prime}=c_{4}^{\prime}} \quad{ }^{\prime} c^{\prime} \tag{7}\\
0 \longrightarrow c^{\prime}=c^{\prime}{ }_{3}
\end{array}
$$

respectively, where the zeroes that appear on the left and right of the two $\widetilde{K S p}$ sequences are due to the fact that $\widetilde{K S p}^{-2}\left(S^{4 m-3}\right)=\widetilde{K S p}^{-1}\left(S^{4 m-2}\right)=0$, for every $m \geqslant 1$. Since

$$
\tilde{K}^{-2}\left(S^{2 i}\right) \cong \mathbb{Z}, \quad \widetilde{K S p}^{-2}\left(S^{4 i+2}\right) \cong \mathbb{Z}, \quad \widetilde{K S p}^{-2}\left(S^{4 n}\right) \cong \begin{cases}\mathbb{Z} / 2 \mathbb{Z} & \text { if } n \text { is even } \\ 0 & \text { if } n \text { is odd }\end{cases}
$$

we have two cases. If n is even then $\widetilde{K S p}^{-2}\left(\Sigma^{4 n-6} \mathbb{C} P^{2}\right)=\mathbb{Z}\left\{\xi_{2}\right\}$ and ξ_{4} generates a subgroup of $\widetilde{K S p}^{-2}\left(\Sigma^{4 n-2} \mathbb{C} P^{2}\right)$, where ξ_{2} and ξ_{4} are generators of

$$
\widetilde{K S p}^{-2}\left(S^{4 n-2}\right) \cong \mathbb{Z} \text { and } \widetilde{K S p}^{-2}\left(S^{4 n+2}\right) \cong \mathbb{Z}
$$

respectively. We have $c^{\prime}{ }_{1}={c^{\prime}}^{3}=0$ and as in [10], $c^{\prime}{ }_{2}=2, c^{\prime}{ }_{4}=1$. If n is odd then $\widetilde{K S p}^{-2}\left(\Sigma^{4 n-6} \mathbb{C} P^{2}\right)$ includes the subgroup generated by ξ_{2} and $\widetilde{K S p}^{-2}\left(\Sigma^{4 n-2} \mathbb{C} P^{2}\right)=$ $\mathbb{Z}\left\{\xi_{4}\right\}$. Also, in this case we have $c^{\prime}{ }_{1}=c^{\prime}{ }_{3}=0, c^{\prime}{ }_{2}=1, c^{\prime}{ }_{4}=2$. In the two cases we have

$$
\tilde{K}^{-2}\left(\Sigma^{4 n-6} \mathbb{C} P^{2}\right)=\mathbb{Z}\left\{\xi_{1}^{\prime}, \xi_{2}^{\prime}\right\}, \quad \tilde{K}^{-2}\left(\Sigma^{4 n-2} \mathbb{C} P^{2}\right)=\mathbb{Z}\left\{\xi_{3}^{\prime}, \xi_{4}^{\prime}\right\}
$$

where $\xi_{1}^{\prime} \in \tilde{K}^{-2}\left(S^{4 n-4}\right), \xi_{2}^{\prime} \in \tilde{K}^{-2}\left(S^{4 n-2}\right), \xi_{3}^{\prime} \in \tilde{K}^{-2}\left(S^{4 n}\right)$ and $\xi_{4}^{\prime} \in \tilde{K}^{-2}\left(S^{4 n+2}\right)$.
Note that there is a cofibration sequence $\Sigma^{4 n-6} \mathbb{C} P^{2} \rightarrow X \rightarrow \Sigma^{4 n-2} \mathbb{C} P^{2}$, which induces an exact sequence

$$
\begin{aligned}
\widetilde{K S p}^{-2}\left(\Sigma^{4 n-5} \mathbb{C} P^{2}\right) \rightarrow & \rightarrow \widetilde{K S p}^{-2}\left(\Sigma^{4 n-2} \mathbb{C} P^{2}\right) \rightarrow \widetilde{K S p}^{-2}(X) \rightarrow \\
& \widetilde{K S p}^{-2}\left(\Sigma^{4 n-6} \mathbb{C} P^{2}\right) \rightarrow \widetilde{K S p}^{-2}\left(\Sigma^{4 n-3} \mathbb{C} P^{2}\right) .
\end{aligned}
$$

We need to study groups $\widetilde{K S p}^{-2}\left(\Sigma^{4 n-5} \mathbb{C} P^{2}\right)$ and $\widetilde{K S p}^{-2}\left(\Sigma^{4 n-3} \mathbb{C} P^{2}\right)$. Consider the
following cofibration sequence

$$
S^{4 n} \stackrel{\Sigma^{4 n-3} \eta}{\longrightarrow} S^{4 n-1} \rightarrow \Sigma^{4 n-3} \mathbb{C} P^{2} \rightarrow S^{4 n+1} .
$$

This sequence induces an exact sequence

$$
\widetilde{K S p}^{-2}\left(S^{4 n+1}\right) \rightarrow \widetilde{K S p}^{-2}\left(\Sigma^{4 n-3} \mathbb{C} P^{2}\right) \rightarrow \widetilde{K S p}^{-2}\left(S^{4 n-1}\right){\stackrel{\Sigma}{4 n-3} \eta)^{*} \widetilde{K S p}^{-2}\left(S^{4 n}\right)}
$$

Since

$$
\widetilde{K S p}^{-2}\left(S^{4 n+1}\right) \cong 0, \quad \widetilde{K S p}^{-2}\left(S^{4 n-1}\right) \cong \begin{cases}\mathbb{Z} / 2 \mathbb{Z} & \text { if } n \text { is even } \\ 0 & \text { if } n \text { is odd }\end{cases}
$$

we have two cases. If n is even then we get the following exact sequence

$$
0 \rightarrow \widetilde{K S p}^{-2}\left(\Sigma^{4 n-3} \mathbb{C} P^{2}\right) \rightarrow \mathbb{Z}_{2} \stackrel{\left(\Sigma^{4 n-3} \eta\right)^{*}}{\longrightarrow} \mathbb{Z}_{2}
$$

Since $S p(\infty)$ is homotopy equivalent to $\Omega^{4} O(\infty)$, we can determine the map

$$
\widetilde{K S p}^{-2}\left(S^{4 n-1}\right){\stackrel{\left(\Sigma^{4 n-3} \eta\right)^{*}}{\longrightarrow K S p}}^{-2}\left(S^{4 n}\right)
$$

by

$$
\left(\Sigma^{4 n-3} \eta\right)^{*}: \pi_{4 n+4}(S O(\infty)) \rightarrow \pi_{4 n+5}(S O(\infty))
$$

Let l_{1} be a generator of $\pi_{4 n+4}(S O(\infty)) \cong \mathbb{Z}_{2}$. Then the composition

$$
l_{2}: S^{4 n+5} \stackrel{\Sigma^{4 n+2} \eta}{\longrightarrow} S^{4 n+4} \xrightarrow{l_{1}} S O(\infty)
$$

generates $\pi_{4 n+5}(S O(\infty))$. Since the map $\left(\Sigma^{4 n-3} \eta\right)^{*}$ sends l_{1} to l_{2} so $\left(\Sigma^{4 n-3} \eta\right)^{*}$ is injective. Therefore we can conclude that $\widetilde{K S p}^{-2}\left(\Sigma^{4 n-3} \mathbb{C} P^{2}\right)$ is zero. If n is even then we have $\widetilde{K S p}^{-2}\left(\Sigma^{4 n-3} \mathbb{C} P^{2}\right) \cong 0$.

Similarly, to calculate the group $\widetilde{K S p}^{-2}\left(\Sigma^{4 n-5} \mathbb{C} P^{2}\right)$, we have the following exact sequence

$$
\widetilde{K S p}^{-2}\left(S^{4 n-2}\right){\left.\stackrel{\Sigma}{ } \Sigma^{4 n-4} \eta\right)^{*}}_{K_{S p}}{ }^{-2}\left(S^{4 n-1}\right) \rightarrow \widetilde{K S p}^{-2}\left(\Sigma^{4 n-5} \mathbb{C} P^{2}\right) \rightarrow \widetilde{K S p}^{-2}\left(S^{4 n-3}\right)
$$

If n is even then we get the following exact sequence

$$
\mathbb{Z}^{\left(\Sigma^{4 n-4} \eta\right)^{*}} \mathbb{Z}_{2} \rightarrow \widetilde{K S p}^{-2}\left(\Sigma^{4 n-5} \mathbb{C} P^{2}\right) \rightarrow 0
$$

Let $l^{\prime}{ }_{1}$ be a generator of $\pi_{4 n+3}(S O(\infty)) \cong \mathbb{Z}$. Then the composition

$$
l^{\prime}{ }_{2}: S^{4 n+4} \xrightarrow{\Sigma^{4 n+1} \eta} S^{4 n+3} \xrightarrow{l^{\prime} 1} S O(\infty) \quad \text { generates } \quad \pi_{4 n+4}(S O(\infty)) .
$$

Since the map $\left(\Sigma^{4 n-4} \eta\right)^{*}$ sends $l^{\prime}{ }_{1}$ to $l^{\prime}{ }_{2}$ so $\left(\Sigma^{4 n-4} \eta\right)^{*}$ is surjective. Therefore we can conclude that $\widetilde{K S p}^{-2}\left(\Sigma^{4 n-5} \mathbb{C} P^{2}\right)$ is zero. If n is even, we have $\widetilde{K S p}^{-2}\left(\Sigma^{4 n-5} \mathbb{C} P^{2}\right) \cong 0$.

Therefore in both cases, we get the following commutative diagram of exact sequences

Thus, we can conclude that $\widetilde{K S p}^{-2}(X)$ is a free abelian group that includes the subgroup generated by ξ_{2} and ξ_{4} and also $\widetilde{K}^{-2}(X)$ is a free abelian group generated by $\xi_{1}^{\prime}, \xi_{2}^{\prime}, \xi_{3}^{\prime}$ and ξ_{4}^{\prime}. Now according to the definition of the maps $c^{\prime}=c^{\prime}{ }^{\prime}$, for $1 \leqslant i \leqslant 4$, we can choose $\xi_{1}, \xi_{1}^{\prime}, \xi_{2}, \xi_{2}^{\prime}, \xi_{3}, \xi_{3}^{\prime}, \xi_{4}$ and ξ_{4}^{\prime} such that

$$
\left\{\begin{array}{lll}
c^{\prime}\left(\xi_{2}\right)=2 \xi_{2}^{\prime}, & c^{\prime}\left(\xi_{4}\right)=\xi_{4}^{\prime} & \text { if } n \text { is even } \\
c^{\prime}\left(\xi_{2}\right)=\xi_{2}^{\prime}, & c^{\prime}\left(\xi_{4}\right)=2 \xi_{4}^{\prime} & \text { if } n \text { is odd }
\end{array}\right.
$$

Consider the map $c^{\prime}: S p(2) \rightarrow S U(4)$. The composite

$$
Q_{2} \rightarrow S p(2) \xrightarrow{c^{\prime}} S U(4)
$$

factors through the 7 -skeleton of $S U(4)$, which is $\Sigma \mathbb{C} P^{3}$. Thus, we obtain the map $\bar{c}^{\prime}: Q_{2} \rightarrow \Sigma \mathbb{C} P^{3}$. The cohomologies of Q_{2} and $\Sigma \mathbb{C} P^{3}$ are given by

$$
H^{*}\left(Q_{2}\right)=\mathbb{Z}\left\{\bar{y}_{3}, \bar{y}_{7}\right\}, \quad H^{*}\left(\Sigma \mathbb{C} P^{3}\right)=\mathbb{Z}\left\{\bar{x}_{3}, \bar{x}_{5}, \bar{x}_{7}\right\}
$$

such that $\bar{c}^{\prime}\left(\bar{x}_{3}\right)=\bar{y}_{3}, \bar{c}^{\prime}\left(\bar{x}_{5}\right)=0$ and $\bar{c}^{\prime}\left(\bar{x}_{7}\right)=\bar{y}_{7}$. Denote by ζ_{n} a generator of $\tilde{K}\left(S^{2 n}\right)$, recall that

$$
H^{*}\left(\mathbb{C} P^{3}\right)=\mathbb{Z}[t] /\left(t^{4}\right), \quad K\left(\mathbb{C} P^{3}\right)=\mathbb{Z}[x] /\left(x^{4}\right)
$$

where $|t|=2$. Note that $\tilde{K}^{-2}\left(\mathbb{C} P^{2} \wedge \Sigma^{4 n-8} \mathbb{C} P^{3}\right) \cong \tilde{K}^{0}\left(\mathbb{C} P^{2} \wedge \Sigma^{4 n-6} \mathbb{C} P^{3}\right)$ is a free abelian group generated by $\zeta_{2 n-3} \otimes x^{i} \otimes x^{j}$, where $1 \leqslant i \leqslant 2$ and $1 \leqslant j \leqslant 3$, with the following Chern characters

$$
c h_{2 n+1}\left(\zeta_{2 n-4} \otimes x \otimes x\right)=c h_{2 n-4} \zeta_{2 n-4} \otimes c h_{2} x \otimes c h_{3} x=\frac{1}{12} \sigma^{4 n-8} t^{2} \otimes t^{3}
$$

similarly

$$
\begin{aligned}
& c h_{2 n+1}\left(\zeta_{2 n-4} \otimes x \otimes x^{2}\right)=\frac{1}{4} \sigma^{4 n-8} t^{2} \otimes t^{3} \\
& c h_{2 n+1}\left(\zeta_{2 n-4} \otimes x \otimes x^{3}\right)=\sigma^{4 n-8} t^{2} \otimes t^{3} \\
& c h_{2 n+1}\left(\zeta_{2 n-4} \otimes x^{2} \otimes x\right)=\frac{1}{6} \sigma^{4 n-8} t^{2} \otimes t^{3} \\
& c h_{2 n+1}\left(\zeta_{2 n-4} \otimes x^{2} \otimes x^{2}\right)=\frac{1}{2} \sigma^{4 n-8} t^{2} \otimes t^{3} \\
& c h_{2 n+1}\left(\zeta_{2 n-4} \otimes x^{2} \otimes x^{3}\right)=2 \sigma^{4 n-8} t^{2} \otimes t^{3} .
\end{aligned}
$$

Consider the map $\bar{c}^{\prime}: \tilde{K}^{-2}\left(\mathbb{C} P^{2} \wedge \Sigma^{4 n-8} \mathbb{C} P^{3}\right) \rightarrow \tilde{K}^{-2}\left(\mathbb{C} P^{2} \wedge \Sigma^{4 n-9} Q_{2}\right)$, we can put
$\xi_{1}^{\prime}, \xi_{2}^{\prime}, \xi_{3}^{\prime}$ and ξ_{4}^{\prime} such that

$$
\begin{aligned}
& \xi_{1}^{\prime}=\bar{c}^{\prime}\left(\zeta_{2 n-4} \otimes x \otimes x\right), \quad \xi_{2}^{\prime}=\bar{c}^{\prime}\left(\zeta_{2 n-4} \otimes x^{2} \otimes x\right) \\
& \xi_{3}^{\prime}=\bar{c}^{\prime}\left(\zeta_{2 n-4} \otimes x \otimes x^{3}\right) \quad \text { and } \quad \xi_{4}^{\prime}=\bar{c}^{\prime}\left(\zeta_{2 n-4} \otimes x^{2} \otimes x^{3}\right)
\end{aligned}
$$

We have the following proposition.
Proposition 3.3. The Image of ψ is generated by

$$
\begin{cases}\frac{1}{3}(2 n+1)!\sigma^{4 n-9} t^{2} \otimes \bar{y}_{7} & \text { if } n \text { is even } \\ \frac{1}{6}(2 n+1)!\sigma^{4 n-9} t^{2} \otimes \bar{y}_{7} & \text { if } n \text { is odd }\end{cases}
$$

Proof. Consider the following commutative diagram

where the $\operatorname{map} \varphi^{\prime}$ is defined similarly to the map φ. That is, when $1 \leqslant i \leqslant 2$ and $1 \leqslant j \leqslant 3$, we have

$$
\varphi^{\prime}\left(\zeta_{2 n-4} \otimes x^{i} \otimes x^{j}\right)=(2 n+1)!c_{2 n+1}\left(\zeta_{2 n-4} \otimes x^{i} \otimes x^{j}\right)
$$

By definition of the map of φ^{\prime} we have

$$
\begin{aligned}
& \varphi^{\prime}\left(\zeta_{2 n-4} \otimes x \otimes x\right)=\frac{1}{12}(2 n+1)!\sigma^{4 n-8} t^{2} \otimes t^{3} \\
& \varphi^{\prime}\left(\zeta_{2 n-4} \otimes x \otimes x^{2}\right)=\frac{1}{4}(2 n+1)!\sigma^{4 n-8} t^{2} \otimes t^{3} \\
& \varphi^{\prime}\left(\zeta_{2 n-4} \otimes x \otimes x^{3}\right)=(2 n+1)!\sigma^{4 n-8} t^{2} \otimes t^{3} \\
& \varphi^{\prime}\left(\zeta_{2 n-4} \otimes x^{2} \otimes x\right)=\frac{1}{6}(2 n+1)!\sigma^{4 n-8} t^{2} \otimes t^{3} \\
& \varphi^{\prime}\left(\zeta_{2 n-4} \otimes x^{2} \otimes x^{2}\right)=\frac{1}{2}(2 n+1)!\sigma^{4 n-8} t^{2} \otimes t^{3} \\
& \varphi^{\prime}\left(\zeta_{2 n-4} \otimes x^{2} \otimes x^{3}\right)=2(2 n+1)!\sigma^{4 n-8} t^{2} \otimes t^{3}
\end{aligned}
$$

Therefore according to the commutativity of diagram (9) we get

$$
\begin{aligned}
& \varphi\left(\xi_{1}^{\prime}\right)=\varphi^{\prime}\left(\zeta_{2 n-4} \otimes x \otimes x\right)=\frac{1}{12}(2 n+1)!\sigma^{4 n-9} t^{2} \otimes \bar{y}_{7} \\
& \varphi\left(\xi_{2}^{\prime}\right)=\varphi^{\prime}\left(\zeta_{2 n-4} \otimes x^{2} \otimes x\right)=\frac{1}{6}(2 n+1)!\sigma^{4 n-9} t^{2} \otimes \bar{y}_{7} \\
& \varphi\left(\xi_{3}^{\prime}\right)=\varphi^{\prime}\left(\zeta_{2 n-4} \otimes x \otimes x^{3}\right)=(2 n+1)!\sigma^{4 n-9} t^{2} \otimes \bar{y}_{7} \\
& \varphi\left(\xi_{4}^{\prime}\right)=\varphi^{\prime}\left(\zeta_{2 n-4} \otimes x^{2} \otimes x^{3}\right)=2(2 n+1)!\sigma^{4 n-9} t^{2} \otimes \bar{y}_{7}
\end{aligned}
$$

Thus by the commutativity of diagram (5) when n is even then we get

$$
\begin{aligned}
& \psi\left(\xi_{2}\right)=\varphi\left(c^{\prime}\left(\xi_{2}\right)\right)=-\frac{1}{3}(2 n+1)!\sigma^{4 n-9} t^{2} \otimes \bar{y}_{7} \\
& \psi\left(\xi_{4}\right)=\varphi\left(c^{\prime}\left(\xi_{4}\right)\right)=-2(2 n+1)!\sigma^{4 n-9} t^{2} \otimes \bar{y}_{7}
\end{aligned}
$$

and when n is odd then we get

$$
\begin{aligned}
& \psi\left(\xi_{2}\right)=\frac{1}{6}(2 n+1)!\sigma^{4 n-9} t^{2} \otimes \bar{y}_{7} \\
& \psi\left(\xi_{4}\right)=4 t^{\prime}(2 n+1)!\sigma^{4 n-9} t^{2} \otimes \bar{y}_{7}
\end{aligned}
$$

Thus we can conclude that

$$
\operatorname{Im} \psi \cong \begin{cases}\mathbb{Z}\left\{\frac{1}{3}(2 n+1)!\sigma^{4 n-9} t^{2} \otimes \bar{y}_{7}\right\} & \text { if } n \text { is even } \\ \mathbb{Z}\left\{\frac{1}{6}(2 n+1)!\sigma^{4 n-9} t^{2} \otimes \bar{y}_{7}\right\} & \text { if } n \text { is odd }\end{cases}
$$

Therefore by Lemma 3.1 and Proposition 3.3 we get the following theorem.
Theorem 3.4. There is an isomorphism

$$
[X, S p(n)] \cong \begin{cases}\mathbb{Z}_{\left.\frac{1}{3}(2 n+1)\right)} & \text { if } n \text { is even, } \\ \mathbb{Z}_{\frac{1}{6}(2 n+1)!} & \text { if } n \text { is odd. }\end{cases}
$$

4. Proof of Theorem 1.1

In this section we will prove Theorem 1.1. Recall $A=\Sigma^{4 n-9} Q_{2}$. Since the dimension of A is equal to $4 n-2$, we have

$$
[\Sigma A, B S p(n)] \cong[\Sigma A, B S p(\infty)] \cong \widetilde{K S p}(\Sigma A)
$$

The cofibration sequence $S^{4 n-5} \rightarrow \Sigma A \rightarrow S^{4 n-1}$ induces the following exact sequence

$$
\rightarrow \widetilde{K S p}\left(S^{4 n-1}\right) \rightarrow \widetilde{K S p}(\Sigma A) \rightarrow \widetilde{K S p}\left(S^{4 n-5}\right) \rightarrow \cdots
$$

Since $\widetilde{K S p}\left(S^{4 i-1}\right)=0$ for all $i \geqslant 1$, this implies that $\widetilde{K S p}(\Sigma A)=0$. Thus we get the following lemma.
Lemma 4.1. There is an isomorphism $[\Sigma A, B S p(n)] \cong 0$.
Apply the functor [$\Sigma A,-$] to fibration (2) to obtain the following exact sequence

$$
\begin{equation*}
[\Sigma A, S p(n)] \xrightarrow{\left(\beta_{k}\right)_{*}}\left[\Sigma A, M a p_{0}^{*}\left(\mathbb{C} P^{2}, B S p(n)\right)\right] \rightarrow\left[\Sigma A, B \mathcal{G}_{k}\left(\mathbb{C} P^{2}\right)\right] \rightarrow[\Sigma A, B S p(n)], \tag{10}
\end{equation*}
$$

where by Lemma 4.1, $[\Sigma A, B S p(n)] \cong 0$. Note that

$$
[\Sigma A, S p(n)] \cong\left[\Sigma^{2} A, B S p(n)\right] \cong \widetilde{K S p}\left(\Sigma^{2} A\right)
$$

Also by adjunction,

$$
\left[\Sigma A, M a p_{0}^{*}\left(\mathbb{C} P^{2}, B S p(n)\right)\right] \cong\left[\Sigma A \wedge \mathbb{C} P^{2}, B S p(n)\right] \cong\left[\mathbb{C} P^{2} \wedge A, S p(n)\right]
$$

Thus the exact sequence becomes

$$
\begin{equation*}
\widetilde{K S p}\left(\Sigma^{2} A\right) \xrightarrow{\left(\beta_{k}\right)_{*}}\left[\mathbb{C} P^{2} \wedge A, S p(n)\right] \rightarrow\left[\Sigma A, B \mathcal{G}_{k}\left(\mathbb{C} P^{2}\right)\right] \rightarrow 0 \tag{11}
\end{equation*}
$$

therefore we get the following lemma.
Lemma 4.2. There is an isomorphism

$$
\left[\Sigma A, B \mathcal{G}_{k}\left(\mathbb{C} P^{2}\right)\right] \cong\left[A, \mathcal{G}_{k}\left(\mathbb{C} P^{2}\right)\right] \cong \operatorname{Coker}\left(\beta_{k}\right)_{*}
$$

In what follows we will calculate $\operatorname{Im}\left(\beta_{k}\right)_{*}$. For this, we need the following lemmas.
Lemma 4.3. Let $\mu: \Sigma A \rightarrow S p(n)$ be an element of $\widetilde{K S p}\left(\Sigma^{2} A\right)$ and $\varepsilon^{\prime}: S^{3} \rightarrow S p(n)$ be the inclusion of bottom cell. If $\mu^{\prime}: \mathbb{C} P^{2} \wedge A \rightarrow S p(n)$ is the adjoint of the following composition

$$
\mathbb{C} P^{2} \wedge \Sigma A \xrightarrow{q \wedge 1} \Sigma S^{3} \wedge \Sigma A \xrightarrow{\Sigma \varepsilon^{\prime} \wedge \mu} \Sigma S p(n) \wedge S p(n) \xrightarrow{[e v, e v]} B S p(n),
$$

where q is the quotient map. Then there is a lift $\tilde{\mu}$ of μ^{\prime}

such that $\tilde{\mu}^{*}\left(a_{4 n+2}\right)=t^{2} \otimes \Sigma^{-1} \mu^{*}\left(y_{4 n-1}\right)$.
Proof. Nagao in [15, Lemma 3.1] showed that there is a lift

$$
\lambda: \Sigma S p(n) \wedge S p(n) \longrightarrow X_{n}
$$

of $[e v, e v]$ such that

$$
\lambda^{*}\left(\bar{y}_{4 n+3}\right)=\sum_{i+j=n+1} \Sigma y_{4 i-1} \otimes y_{4 j-1} .
$$

Now let $\tilde{\lambda}$ be the following composition

$$
\tilde{\lambda}: \mathbb{C} P^{2} \wedge \Sigma A \xrightarrow{q \wedge \mathbb{1}} \Sigma S^{3} \wedge \Sigma A \xrightarrow{\Sigma \varepsilon^{\prime} \wedge \mu} \Sigma S p(n) \wedge S p(n) \xrightarrow{\lambda} X_{n} .
$$

We have

$$
\begin{aligned}
\tilde{\lambda}^{*}\left(\bar{y}_{4 n+3}\right) & =(q \wedge \mathbb{1})^{*}\left(\Sigma \varepsilon^{\prime} \wedge \mu\right)^{*} \lambda^{*}\left(\bar{y}_{4 n+3}\right) \\
& =(q \wedge \mathbb{1})^{*}\left(\Sigma \varepsilon^{\prime} \wedge \mu\right)^{*}\left(\sum_{i+j=n+1} \Sigma y_{4 i-1} \otimes y_{4 j-1}\right) \\
& =(q \wedge \mathbb{1})^{*}\left(\Sigma u_{3} \otimes \mu^{*}\left(y_{4 n-1}\right)\right)=t^{2} \otimes \mu^{*}\left(y_{4 n-1}\right)
\end{aligned}
$$

where u_{3} is the generator of $H^{3}\left(S^{3}\right)$. We take $\tilde{\mu}: \mathbb{C} P^{2} \wedge A \longrightarrow \Omega X_{n}$ to be the adjoint of the following composition

$$
\Sigma \mathbb{C} P^{2} \wedge A \xrightarrow{S} \mathbb{C} P^{2} \wedge \Sigma A \xrightarrow{\tilde{\lambda}} X_{n}
$$

that is $\tilde{\mu}: a d(\tilde{\lambda} \circ S)$, where the map $S: \Sigma \mathbb{C} P^{2} \wedge A \longrightarrow \mathbb{C} P^{2} \wedge \Sigma A$ is the swapping map and the map $a d:\left[\Sigma \mathbb{C} P^{2} \wedge A, X_{n}\right] \longrightarrow\left[\mathbb{C} P^{2} \wedge A, \Omega X_{n}\right]$ is the adjunction. Then $\tilde{\mu}$ is a lift of μ. Note that

$$
(\tilde{\lambda} \circ S)^{*}\left(\bar{y}_{4 n+3}\right)=S^{*} \circ \tilde{\lambda}^{*}\left(\bar{y}_{4 n+3}\right)=S^{*}\left(t^{2} \otimes \mu^{*}\left(y_{4 n-1}\right)\right)=\Sigma t^{2} \otimes \Sigma^{-1} \mu^{*}\left(y_{4 n-1}\right)
$$

thus we get

$$
\tilde{\mu}^{*}\left(a_{4 n+2}\right)=t^{2} \otimes \Sigma^{-1} \mu^{*}\left(y_{4 n-1}\right) .
$$

Consider the map $\theta: \Sigma A \rightarrow S p(n)$, then by Lemma 4.3 there is a lift $\tilde{\theta}$ of $\left(\beta_{k}\right)_{*}(\theta)$ such that

$$
\tilde{\theta}^{*}\left(a_{4 n+2}\right)=t^{2} \otimes \Sigma^{-1} \theta^{*}\left(y_{4 n-1}\right)
$$

We define the map $\lambda_{k}: \widetilde{K S p}\left(\Sigma^{2} A\right) \rightarrow H^{4 n+2}(X)$ by $\lambda_{k}(\theta)=\tilde{\theta}^{*}\left(a_{4 n+2}\right)=a_{4 n+2} \circ \tilde{\theta}$. Now consider the following commutative diagram

we have $\operatorname{Im}\left(\beta_{k}\right)_{*}=\operatorname{Im} \lambda_{k} / \operatorname{Im} \psi$. Note that in Proposition 3.3 we calculated $\operatorname{Im} \psi$, thus we need to calculate $\operatorname{Im} \lambda_{k}$.

Let $a: \Sigma Q_{2} \rightarrow B S p(\infty)$ be the adjoint of the composition of the inclusions

$$
Q_{2} \rightarrow S p(2) \rightarrow S p(\infty)
$$

and also $b: \Sigma Q_{2} \rightarrow B S p(\infty)$ be the pinch map of the bottom cell $q: \Sigma Q_{2} \rightarrow S^{8}$ followed by a generator of $\pi_{8}(B S p(\infty)) \cong \mathbb{Z}$. Note that $\widetilde{K S p}\left(\Sigma Q_{2}\right)$ is a free abelian group with a basis a, b. Then we have

$$
\operatorname{ch}\left(c^{\prime}(a)\right)=\Sigma y_{3}-\frac{1}{6} \Sigma y_{7}, \quad \operatorname{ch}\left(c^{\prime}(b)\right)=-2 \Sigma y_{7} .
$$

Let $\theta_{1}=\mathbf{q}\left(\zeta_{2 n-4} c^{\prime}(a)\right) \in \widetilde{K S p}\left(\Sigma^{4 n-7} Q_{2}\right)$, where $\mathbf{q}: K \rightarrow K S p$ is the quaternionization.

Also let $\theta_{2}: \Sigma^{4 n-7} Q_{2} \rightarrow B S p(\infty)$ be the composite of the pinch map to the top cell $\Sigma^{4 n-7} Q_{2} \rightarrow S^{4 n}$ and a generator of $\pi_{4 n}(B S p(\infty)) \cong \mathbb{Z}$. Then $\widetilde{K S p}\left(\Sigma^{2} A\right)$ is a free abelian group with a basis θ_{1}, θ_{2}. We have

$$
\begin{aligned}
& \operatorname{ch}\left(c^{\prime}\left(\theta_{1}\right)\right)= \begin{cases}\Sigma^{4 n-7} y_{3}-\frac{1}{6} \Sigma^{4 n-7} y_{7} & \text { if } n \text { is even }, \\
2 \Sigma^{4 n-7} y_{3}+\frac{1}{3} \Sigma^{4 n-7} y_{7} & \text { if } n \text { is odd },\end{cases} \\
& \operatorname{ch}\left(c^{\prime}\left(\theta_{2}\right)\right)= \begin{cases}-2 \Sigma^{4 n-7} y_{7} & \text { if } n \text { is even, } \\
\Sigma^{4 n-7} y_{7} & \text { if } n \text { is odd. }\end{cases}
\end{aligned}
$$

Lemma 4.4. $\operatorname{Im} \lambda_{k}$ is isomorphic to

$$
\begin{cases}\mathbb{Z}\left\{\frac{1}{6}(2 n-1)!k t^{2} \otimes \Sigma^{4 n-9} y_{7}\right\} & \text { if } n \text { is even } \\ \mathbb{Z}\left\{\frac{1}{12}(2 n-1)!k t^{2} \otimes \Sigma^{4 n-9} y_{7}\right\} & \text { if } n \text { is odd }\end{cases}
$$

Proof. For $i=1,2$, by Lemma 4.3, $\left(\beta_{k}\right)_{*}\left(\theta_{i}\right)$ has a lift $\tilde{\theta}_{i, k}: \mathbb{C} P^{2} \wedge A \rightarrow \Omega X_{n}$, such that

$$
\tilde{\theta}_{i, k}^{*}\left(a_{4 n+2}\right)=k t^{2} \otimes \Sigma^{-1} \theta_{i}{ }^{*}\left(y_{4 n-1}\right)
$$

Since $y_{4 i-1}=\sigma\left(q_{i}\right)$ and $q_{i}=c^{\prime *}\left(c_{2 i}\right)$ so we get

$$
\tilde{\theta}_{i, k}^{*}\left(a_{4 n+2}\right)=k t^{2} \otimes \Sigma^{-2} q_{n}\left(\theta_{i}\right)=k t^{2} \otimes \Sigma^{-2} c_{2 n}\left(c^{\prime}\left(\theta_{i}\right)\right) .
$$

On the other hand we have

$$
\begin{aligned}
& c_{2 n}\left(c^{\prime}\left(\theta_{1}\right)\right)= \begin{cases}\frac{1}{6}(2 n-1)!\Sigma^{4 n-7} y_{7} & \text { if } n \text { is even }, \\
\frac{1}{3}(2 n-1)!\Sigma^{4 n-7} y_{7} & \text { if } n \text { is odd },\end{cases} \\
& c_{2 n}\left(c^{\prime}\left(\theta_{2}\right)\right)= \begin{cases}2(2 n-1)!\Sigma^{4 n-7} y_{7} & \text { if } n \text { is even } \\
(2 n-1)!\Sigma^{4 n-7} y_{7} & \text { if } n \text { is odd. }\end{cases}
\end{aligned}
$$

Therefore we get

$$
\tilde{\theta}_{1, k}^{*}\left(a_{4 n+2}\right)= \begin{cases}k t^{2} \otimes \frac{1}{6}(2 n-1)!\Sigma^{4 n-9} y_{7} & \text { if } n \text { is even } \\ k t^{2} \otimes \frac{1}{3}(2 n-1)!\Sigma^{4 n-9} y_{7} & \text { if } n \text { is odd }\end{cases}
$$

and

$$
\tilde{\theta}_{2, k}^{*}\left(a_{4 n+2}\right)= \begin{cases}k t^{2} \otimes 2(2 n-1)!\Sigma^{4 n-9} y_{7} & \text { if } n \text { is even } \\ k t^{2} \otimes(2 n-1)!\Sigma^{4 n-9} y_{7} & \text { if } n \text { is odd }\end{cases}
$$

If n is even, then $\operatorname{Im} \lambda_{k} \cong \mathbb{Z}\{\alpha, \beta\}$, where

$$
\alpha=\frac{1}{6}(2 n-1)!k t^{2} \otimes \Sigma^{4 n-9} y_{7} \quad \text { and } \quad \beta=2(2 n-1)!k t^{2} \otimes \Sigma^{4 n-9} y_{7}
$$

Also $\operatorname{Im} \lambda_{k}$ is generated by $2 \alpha-\frac{1}{12} \beta=\frac{1}{6}(2 n-1)!k t^{2} \otimes \Sigma^{4 n-9} y_{7}$. If n is odd, then $\operatorname{Im} \lambda_{k} \cong \mathbb{Z}\{\alpha, \beta\}$, where

$$
\alpha=\frac{1}{3}(2 n-1)!k t^{2} \otimes \Sigma^{4 n-9} y_{7} \quad \text { and } \quad \beta=(2 n-1)!k t^{2} \otimes \Sigma^{4 n-9} y_{7}
$$

Also $\operatorname{Im} \lambda_{k}$ is generated by $\alpha-\frac{1}{4} \beta=\frac{1}{12}(2 n-1)!k t^{2} \otimes \Sigma^{4 n-9} y_{7}$. Therefore we can conclude

$$
\operatorname{Im} \lambda_{k} \cong \begin{cases}\mathbb{Z}\left\{\frac{1}{6}(2 n-1)!k t^{2} \otimes \Sigma^{4 n-9} y_{7}\right\} & \text { if } n \text { is even } \\ \mathbb{Z}\left\{\frac{1}{12}(2 n-1)!k t^{2} \otimes \Sigma^{4 n-9} y_{7}\right\} & \text { if } n \text { is odd }\end{cases}
$$

Therefore by Proposition 3.3 and Lemma 4.4 we obtain the following proposition.
Proposition 4.5. There is an isomorphism

$$
\operatorname{Im}\left(\beta_{k}\right)_{*} \cong \begin{cases}\mathbb{Z} /((2 n+1)!/(3(k, 4 n(2 n+1)))) & \text { if } n \text { is even, } \\ \mathbb{Z} /((2 n+1)!/(6(k, 4 n(2 n+1)))) & \text { if } n \text { is odd. }\end{cases}
$$

Therefore by Theorem 3.4, Lemma 4.2 and Proposition 4.5 we get the following theorem.

Theorem 4.6. There is an isomorphism $\left[\Sigma A, B \mathcal{G}_{k}\left(\mathbb{C} P^{2}\right)\right] \cong \mathbb{Z}_{(k, 4 n(2 n+1))}$.
Now we prove Theorem 1.1.

Proof of Theorem 1.1. Consider the exact sequence (11). Suppose that $\mathcal{G}_{k}\left(\mathbb{C} P^{2}\right) \simeq$ $\mathcal{G}_{k^{\prime}}\left(\mathbb{C} P^{2}\right)$, then there is an isomorphism of groups

$$
\left[\Sigma A, B \mathcal{G}_{k}\left(\mathbb{C} P^{2}\right)\right] \cong\left[\Sigma A, B \mathcal{G}_{k^{\prime}}\left(\mathbb{C} P^{2}\right)\right]
$$

Thus the order of $\left[\Sigma A, B \mathcal{G}_{k}\left(\mathbb{C} P^{2}\right)\right]$ is equal to the order of $\left[\Sigma A, B \mathcal{G}_{k^{\prime}}\left(\mathbb{C} P^{2}\right)\right]$. Therefore by Theorem 4.6 we can conclude Theorem 1.1.

References

[1] M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann Surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), 523-615.
[2] T. Cutler, The homotopy type of $S p(3)$-gauge groups, Topology Appl. 236 (2018), 44-58.
[3] M. C. Crabb and W. A. Sutherland, Counting homotopy types of gauge groups, Proc. London Math. Soc. 83 (2000), 747-768.
[4] D. H. Gottlieb, Applications of bundle map theory, Trans. Am. Math. Soc. 171 (1972), 23-50.
[5] H. Hamanaka, A. Kono, On $[X, U(n)]$ when $\operatorname{dim} X=2 n$, J. Math. Kyoto Univ. 43 (2) (2003) 333-348.
[6] H. Hamanaka and A. Kono, Unstable K^{1}-group and homotopy type of certain gauge groups, Proc. Roy. Soc. Edinburgh Sect. A 136 (2006), 149-155.
[7] H. Hamanaka and A. Kono, Homotopy type of gauge groups of $S U(3)$-bundles over S^{6}, Topology Appl. 154 (2007), 1377-1380.
[8] H. Hamanaka, S. Kaji and A. Kono, Samelson products in $S p(2)$, Topology Appl. 155 (2008), 1207-1212.
[9] A. Kono, A note on the homotopy type of certain gauge groups, Proc. Roy. Soc. Edinburgh Sect. A 117 (1991), 295-297.
[10] D. Kishimoto and A. Kono, On the homotopy types of $S p(n)$ gauge groups, Algebr. Geom. Topol. 19 (2019), 491-502.
[11] A. Kono and S. Tsukuda, A remark on the homotopy type of certain gauge groups. J. Math. Kyoto Univ. 36 (1996), 115-121.
[12] S. Mohammadi, The homotopy types of $S U(n)$-gauge groups over $S^{2 m}$, Homology Homotopy Appl. 24(1) (2022), 55-70.
[13] S. Mohammadi and M. A. Asadi-Golmankhaneh, The homotopy types of $S U(4)$-gauge groups over S^{8}, Topology Appl. 266 (2019).
[14] S. Mohammadi and M. A. Asadi-Golmankhaneh, The homotopy types of $S U(n)$-gauge groups over S^{6}, Topology Appl. 270 (2020).
[15] T. Nagao, On the groups $[X, S p(n)]$ with $\operatorname{dim} X \leqslant 4 n+2$, Kyoto J. Math. 48 (2008), 149-165.
[16] W. A. Sutherland, Function spaces related to gauge groups, Proc. R. Soc. Edinb. Sect. A 121 (1-2) (1992), 185-190.
[17] T. So, Homotopy types of gauge groups over non-simply-connected closed 4manifolds, Glasgow Math J. 61 (2) (2019), 349-371.
[18] T. So, Homotopy types of $S U(n)$-gauge groups over non-spin 4-manifolds, J. Homotopy Relat. Struct. 14 (2019), 787-811.
[19] T. So and S. D. Theriault, The homotopy types of $S p(2)$-gauge groups over closed, simply-connected four-manifolds, Proc. Steklov Inst. Math. 305 (2019), 309-329.
[20] S. D. Theriault, Odd primary homotopy decompositions of gauge groups, Algebr. Geom. Topol. 10 (2010), 535-564.
[21] S. D. Theriault, The homotopy types of $S p(2)$-gauge groups, Kyoto J. Math. 50 (2010), 591-605.
[22] S. D. Theriault, The homotopy types of $S U(3)$-gauge groups over simply connected 4-manifolds, Publ. Res. Inst. Math. Sci. 48 (2012), 543-563.
[23] S. D. Theriault, The homotopy types of $S U(5)$-gauge groups, Osaka J. Math. 52 (2015), 15-31.

Sajjad Mohammadi sj.mohammadi@urmia.ac.ir
Department of Mathematics, Faculty of Sciences, Urmia University, P.O. Box 5756151818, Urmia, Iran

[^0]: Received December 19, 2021, revised April 22, 2022; published on April 12, 2023.
 2020 Mathematics Subject Classification: Primary 55P15; Secondary 54C35.
 Key words and phrases: gauge group, homotopy type, Symplectic group.
 Article available at http://dx.doi.org/10.4310/HHA.2023.v25.n1.a11
 Copyright © 2023, International Press. Permission to copy for private use granted.

