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THE HOMOTOPY TYPES OF Sp(n)-GAUGE GROUPS OVER CP 2
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(communicated by Jelena Grbić)

Abstract
Let n > 2 and Gk(CP 2) be the gauge groups of the principal

Sp(n)-bundles over CP 2. In this article we partially classify the
homotopy types of Gk(CP 2) by showing that if there is a homo-
topy equivalence Gk(CP 2) ≃ Gk′(CP 2) then (k, 4n(2n+ 1)) =
(k′, 4n(2n+ 1)).

In memory of Professor Mohammad Ali Asadi-Golmankhaneh.

1. Introduction

Let M be a simply-connected closed four-manifold and G be a topological group.
Let P →M be a principal G-bundle over M . The gauge group of this principal G-
bundle, denote by G(P ), is the topological group of automorphisms of P , where an
automorphism of P is a G-equivariant self map of P covering the identity map of
M . The main problem is to classify the homotopy types of G(P ) as P ranges over all
principal G-bundles over M for fixed G and M .

Let G be a simply-connected, simple compact Lie group. As [M,BG] = Z, there are
countably many equivalence classes of principal G-bundles over M . Each has a gauge
group, so there are potentially countably many distinct gauge groups. While there
are countably many inequivalent principal G-bundles, Crabb and Sutherland in [3]
showed that their gauge groups have only finitely many distinct homotopy types. Let
Pk →M represent the equivalence class of principal G-bundle whose second Chern
class is k and Gk(M) be the gauge group of this principal G-bundle. In recent years
there has been considerable interest in determining the precise number of homotopy
types of these gauge groups and explicit classification results have been obtained.
When M is a spin 4-manifold, Theriault in [20] showed that there is a homotopy
equivalence

Gk(M) ≃ Gk(S4)×
t∏
i=1

Ω2G,

where t is the second Betti number ofM . Thus the homotopy type of Gk(M) depends
on the special case Gk(S4). Let (a, b) be the their greatest common divisor of two
integers a and b. The first classification was done by Kono [9] for G = SU(2). He
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showed that there is a homotopy equivalence Gk ≃ Gk′ if and only if (k, 12) = (k′, 12).
Results formally similar to that of Kono have been obtained for principal bundles
over S4 with different structure groups. In the following, we mention some results

• SU(3)-gauge group [6];

• SU(5)-gauge group [23];

• Sp(2)-gauge group [21];

• Sp(3)-gauge group [2].

There are also several classification results for gauge groups of principal bundles with
base spaces other than S4 as follow

• SU(3)-gauge groups over S6 [7];

• SU(n)-gauge groups over S6 [14];

• Sp(2)-gauge groups over S8 [8];

• SU(4)-gauge groups over S8 [13];

• SU(n)-gauge groups over S2m [12].

Furthermore, when M is a non-spin 4-manifold, So [17] showed that there is a homo-
topy equivalence

Gk(M) ≃ Gk(CP 2)×
t−1∏
i=1

Ω2G,

therefore to study the homotopy type of Gk(M) it suffices to study Gk(CP 2). Only
four cases of the homotopy types of gauge groups over simply-connected non-spin
four-manifolds have been studied, which are

• SU(2)-gauge groups [11];

• SU(3)-gauge groups [22];

• SU(n)-gauge groups [18];

• Sp(2)-gauge groups [19].

In this article, we will study the homotopy types of Sp(n)-gauge groups over CP 2,
for n > 2. Let Gk(CP 2) be the gauge group of the principal Sp(n)-bundles over CP 2

with second Chern class k. We partially classify the homotopy types of Gk(CP 2) by
using unstable K-theory to give a better lower bound for the number of homotopy
types. We will prove the following theorem.

Theorem 1.1. Let n > 2. If there is a homotopy equivalence Gk(CP 2) ≃ Gk′(CP 2)
then we have (k, 4n(2n+ 1)) = (k′, 4n(2n+ 1)).
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2. Preliminaries

Let BG and BGk(M) be the classifying spaces of G and Gk(M) respectively. Let
Mapk(M,BG) be the component of the space of continuous unbased maps from
M to BG which contains the map inducing P , similarly let Map∗k(M,BG) be the
component of the space of pointed continuous maps from M to BG which contains
the map inducing P . We observe that there is a fibration

Map∗k(M,BG) →Mapk(M,BG)
ev−→ BG,

where the map ev is evaluation map at the basepoint ofM . Atiyah, Bott and Gottlieb
[1, 4] showed that there is a homotopy equivalence

BGk(M) ≃Mapk(M,BG).

The evaluation fibration therefore determines a homotopy fibration sequence

G −→Map∗k(M,BG) → BGk(M)
ev−→ BG. (1)

According to [16], for any k ∈ Z, there exists a homotopy equivalence connecting
Map∗k(M,BG) and Map∗0(M,BG). So for G = Sp(n) and M = CP 2, we rewrite (1)
as a homotopy fibration sequence

Sp(n)
βk−→Map∗0(CP 2, BSp(n)) → BGk(CP 2)

ev−→ BSp(n), (2)

where βk is the fibration connecting map. Note that whenM = Sn,Map∗0(M,BG) is
an H-group so [G,Map∗0(M,BG)] is a group and we can discuss the order of the map
G −→Map∗0(M,BG) that is important for finding the homotopy types of Gk(Sn).
But when M = CPn then Map∗0(M,BG) is not an H-space so [G,Map∗0(M,BG)] is
not a group and the order of the map G −→Map∗0(M,BG) makes no sense. However,
Theriault in [22] defined the “order” of the map G −→Map∗0(M,BG), forM = CP 2.
In this paper, we study the classification of the homotopy types of the gauge groups
of the principal Sp(n)-bundles over CP 2, for n > 2 and will give a lower bound for
the number of homotopy types of this gauge groups. Since to find the “order” of the
map βk is very hard, we do not prove the converse.

Let Q2 = S3 ∪ e7 be the symplectic quasi-projective space for Sp(2). This article
is organized as follows. In Section 3, in separate cases where n is even and n is odd we
calculate [CP 2 ∧A,Sp(n)], where A = Σ4n−9Q2 and n > 2. In Section 4 we compute
[ΣA,BGk(CP 2)] and prove Theorem 1.1.

3. The group [CP 2 ∧ A, Sp(n)]

Our main goal in this section to compute the group [CP 2 ∧ Σ4n−9Q2, Sp(n)], where
n > 2. We denote Sp(∞)/Sp(n) by Xn and [X,Sp(n)] by Spn(X). We recall that the
symplectic quasi projective space Q2 has the cellular structure

Q2 = S3 ∪v1 e7,

where v1 ∈ π6(S
3) ∼= Z12. Put X = CP 2 ∧A, where A = Σ4n−9Q2. Note that X has

a cellular structure

X ≃ S4n−4 ∪ e4n−2 ∪ e4n ∪ e4n+2.
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Recall that as an algebra

H∗(Sp(n);Z) =
∧

(y3, y7, . . . , y4n−1),

H∗(Sp(∞);Z) =
∧

(y3, y7, . . . ),

H∗(BSp(∞);Z) = Z[q1, q2, . . . ],

where y4i−1 = σqi, σ is the cohomology suspension and qi is the i−th universal sym-
plectic Pontrjagin class. Consider the projection map π : Sp(∞) → Xn, as an algebra
we have

H∗(Xn;Z) =
∧

(ȳ4n+3, ȳ4n+7, . . . ),

H∗(ΩXn;Z) = Z{b4n+2, b4n+6, . . . , b8n+2} (∗ ⩽ 8n+ 2),

where π∗(ȳ4i+3) = y4i+3 and b4n+4j−2 = σ(ȳ4n+4j−1). Consider the following fibre
sequence

ΩSp(∞)
Ωπ−→ ΩXn

δ−→ Sp(n)
j−→ Sp(∞)

π−→ Xn. (3)

Note that for n ⩾ 3, A is a suspension, implying that X is a suspension as well.
Therefore, applying the functor [X,−] to fibration (3), there is an exact sequence of
groups

[X,ΩSp(∞)]
(Ωπ)∗−→ [X,ΩXn]

δ∗−→ Spn(X)
j∗−→ [X,Sp(∞)]

π∗−→ [X,Xn]. (∗)

Note that Xn has a cellular structure as following

Xn ≃ S4n+3 ∪η′ e4n+7 ∪ e4n+11 ∪ · · · ,

where η′ is the generator of π4n+6(S
4n+3) and

ΩXn ≃ S4n+2 ∪ e4n+6 ∪ e4n+10 ∪ · · · .

According to the CW -structure of Xn we have the following isomorphisms

πi(Xn) = 0 (for i ⩽ 4n+ 2), π4n+3(Xn) ∼= Z.

Observe that

[X,Sp(∞)] ∼= [ΣX,BSp(∞)] ∼= K̃Sp
−1

(X).

Since K̃Sp
−1

(S4m−2) = 0, for every m ⩾ 1, applying K̃Sp
−1

to the homotopy cofi-

bration Σ4n−6CP 2 → X → Σ4n−2CP 2 shows that K̃Sp
−1

(X) = 0. On the other hand
we know that ΩXn is (4n+ 1)-connected and H4n+2(ΩXn) ∼= Z which is generated
by b4n+2 = σ(ȳ4n+3). The map b4n+2 : ΩXn → K(Z, 4n+ 2) is a loop map and is a
(4n+ 3)-equivalence. Since dim X ⩽ 4n+ 2, it follows that the postcomposition map
(b4n+2)∗ : [X,ΩXn] → H4n+2(X) is an isomorphism of groups. Thus we rewrite (∗)
as the following exact sequence

K̃Sp
−2

(X)
ψ−→ H4n+2(X) → Spn(X) → 0, (4)

where we use the isomorphism

K̃Sp
−i
(X) ∼= [ΣiX,BSp(∞)].
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So we have the exact sequence

0 → Cokerψ
ι−→ Spn(X) → 0.

Therefore we get the following lemma.

Lemma 3.1. Spn(X) ∼= Cokerψ.

In the following we will calculate the image of ψ.
Let Y be a CW -complex with dim Y ⩽ 4n+ 2, we will denote [Y, U(2n+ 1)] by

U2n+1(Y ). By [5, Theorem 1.1] there is an exact sequence

K̃−2(Y )
φ−→ H4n+2(Y ) → U2n+1(Y ) → K̃−1(Y ) → 0,

where, for any f ∈ K̃−2(Y ), the map φ is defined by

φ(f) = (2n+ 1)!ch2n+1(f),

where ch4n+2(f) is the 4n+ 2-th part of ch(f). Also, we use the isomorphism

K̃−i(Y ) ∼= [ΣiY,BU(∞)].

The map of K̃Sp
∗
(X) → K̃∗(X) is induced by the map Sp(∞) → U(∞) obtained by

taking the direct limit of the maps Sp(n) → U(2n) as n increases. In this paper, we
use the same symbol c′ for the canonical inclusion Sp(n) ↪→ U(2n) and the induced

map K̃Sp
∗
(X) → K̃∗(X). By [15, Theorem 1.3] there is a commutative diagram

K̃Sp
−2

(X) H4n+2(X)

K̃−2(X) H4n+2(X)

ψ

c′ (−1)n+1

φ

(5)

Therefore to calculate the image of ψ we first calculate the image of φ. The calculation
of the image of φ will appear as part of the proof of Proposition 3.3. We denote the
free abelian group with a basis e1, e2, . . . , by Z{e1, e2, . . . }. We have the following
lemma.

Lemma 3.2. The following hold :

(a): K̃Sp
−2

(X) is a free abelian group that includes the subgroup generated by ξ2,
ξ4, where

ξ2 ∈ K̃Sp
−2

(S4n−2) and ξ4 ∈ K̃Sp
−2

(S4n+2),

(b): K̃−2(X) = Z{ξ′1, ξ′2, ξ′3, ξ′4}, where

ξ′1 ∈ K̃−2(S4n−4), ξ′2 ∈ K̃−2(S4n−2),

ξ′3 ∈ K̃−2(S4n) and ξ′4 ∈ K̃−2(S4n+2),

(c):  c′(ξ2) = 2ξ′2, c′(ξ4) = ξ′4 if n is even,

c′(ξ2) = ξ′2, c′(ξ4) = 2ξ′4 if n is odd.
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Proof. First, the cofibration sequences

S4n−4 → Σ4n−6CP 2 → S4n−2, S4n → Σ4n−2CP 2 → S4n+2,

induce the following commutative diagrams of exact sequences

0 K̃Sp
−2

(S4n−2) K̃Sp
−2

(Σ4n−6CP 2) K̃Sp
−2

(S4n−4) 0

0 K̃−2(S4n−2) K̃−2(Σ4n−6CP 2) K̃−2(S4n−4) 0,

c′ = c′2 c′ c′ = c′1 (6)

and

0 K̃Sp
−2

(S4n+2) K̃Sp
−2

(Σ4n−2CP 2) K̃Sp
−2

(S4n) 0

0 K̃−2(S4n+2) K̃−2(Σ4n−2CP 2) K̃−2(S4n) 0,

c′ = c′4 c′ c′ = c′3 (7)

respectively, where the zeroes that appear on the left and right of the two K̃Sp

sequences are due to the fact that K̃Sp
−2

(S4m−3) = K̃Sp
−1

(S4m−2) = 0, for every
m ⩾ 1. Since

K̃−2(S2i) ∼= Z, K̃Sp
−2

(S4i+2) ∼= Z, K̃Sp
−2

(S4n) ∼=

 Z/2Z if n is even,

0 if n is odd,

we have two cases. If n is even then K̃Sp
−2

(Σ4n−6CP 2) = Z{ξ2} and ξ4 generates a

subgroup of K̃Sp
−2

(Σ4n−2CP 2), where ξ2 and ξ4 are generators of

K̃Sp
−2

(S4n−2) ∼= Z and K̃Sp
−2

(S4n+2) ∼= Z,

respectively. We have c′1 = c′3 = 0 and as in [10], c′2 = 2, c′4 = 1. If n is odd then

K̃Sp
−2

(Σ4n−6CP 2) includes the subgroup generated by ξ2 and K̃Sp
−2

(Σ4n−2CP 2) =
Z{ξ4}. Also, in this case we have c′1 = c′3 = 0, c′2 = 1, c′4 = 2. In the two cases we
have

K̃−2(Σ4n−6CP 2) = Z{ξ′1, ξ′2}, K̃−2(Σ4n−2CP 2) = Z{ξ′3, ξ′4},

where ξ′1 ∈ K̃−2(S4n−4), ξ′2 ∈ K̃−2(S4n−2), ξ′3 ∈ K̃−2(S4n) and ξ′4 ∈ K̃−2(S4n+2).

Note that there is a cofibration sequence Σ4n−6CP 2 → X → Σ4n−2CP 2, which
induces an exact sequence

K̃Sp
−2

(Σ4n−5CP 2) →K̃Sp
−2

(Σ4n−2CP 2) → K̃Sp
−2

(X) →

K̃Sp
−2

(Σ4n−6CP 2) → K̃Sp
−2

(Σ4n−3CP 2).

We need to study groups K̃Sp
−2

(Σ4n−5CP 2) and K̃Sp
−2

(Σ4n−3CP 2). Consider the
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following cofibration sequence

S4n Σ4n−3η−→ S4n−1 → Σ4n−3CP 2 → S4n+1.

This sequence induces an exact sequence

K̃Sp
−2

(S4n+1) → K̃Sp
−2

(Σ4n−3CP 2) → K̃Sp
−2

(S4n−1)
(Σ4n−3η)∗−→ K̃Sp

−2
(S4n).

Since

K̃Sp
−2

(S4n+1) ∼= 0, K̃Sp
−2

(S4n−1) ∼=

 Z/2Z if n is even,

0 if n is odd,

we have two cases. If n is even then we get the following exact sequence

0 → K̃Sp
−2

(Σ4n−3CP 2) → Z2
(Σ4n−3η)∗−→ Z2.

Since Sp(∞) is homotopy equivalent to Ω4O(∞), we can determine the map

K̃Sp
−2

(S4n−1)
(Σ4n−3η)∗−→ K̃Sp

−2
(S4n)

by

(Σ4n−3η)∗ : π4n+4(SO(∞)) → π4n+5(SO(∞)).

Let l1 be a generator of π4n+4(SO(∞)) ∼= Z2. Then the composition

l2 : S
4n+5 Σ4n+2η−→ S4n+4 l1−→ SO(∞)

generates π4n+5(SO(∞)). Since the map (Σ4n−3η)∗ sends l1 to l2 so (Σ4n−3η)∗ is

injective. Therefore we can conclude that K̃Sp
−2

(Σ4n−3CP 2) is zero. If n is even

then we have K̃Sp
−2

(Σ4n−3CP 2) ∼= 0.

Similarly, to calculate the group K̃Sp
−2

(Σ4n−5CP 2), we have the following exact
sequence

K̃Sp
−2

(S4n−2)
(Σ4n−4η)∗−→ K̃Sp

−2
(S4n−1) → K̃Sp

−2
(Σ4n−5CP 2) → K̃Sp

−2
(S4n−3).

If n is even then we get the following exact sequence

Z (Σ4n−4η)∗−→ Z2 → K̃Sp
−2

(Σ4n−5CP 2) → 0.

Let l′1 be a generator of π4n+3(SO(∞)) ∼= Z. Then the composition

l′2 : S
4n+4 Σ4n+1η−→ S4n+3 l′1−→ SO(∞) generates π4n+4(SO(∞)).

Since the map (Σ4n−4η)∗ sends l′1 to l′2 so (Σ4n−4η)∗ is surjective. Therefore we can

conclude that K̃Sp
−2
(Σ4n−5CP 2) is zero. If n is even, we have K̃Sp

−2
(Σ4n−5CP 2)∼=0.
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Therefore in both cases, we get the following commutative diagram of exact sequences

0 K̃Sp
−2

(Σ4n−2CP 2) K̃Sp
−2

(X) K̃Sp
−2

(Σ4n−6CP 2) 0

0 K̃−2(Σ4n−2CP 2) K̃−2(X) K̃−2(Σ4n−6CP 2) 0.

c′ c′ c′ (8)

Thus, we can conclude that K̃Sp
−2

(X) is a free abelian group that includes the

subgroup generated by ξ2 and ξ4 and also K̃−2(X) is a free abelian group generated
by ξ′1, ξ

′
2, ξ

′
3 and ξ

′
4. Now according to the definition of the maps c′ = c′i, for 1 ⩽ i ⩽ 4,

we can choose ξ1, ξ
′
1, ξ2, ξ

′
2, ξ3, ξ

′
3, ξ4 and ξ′4 such that

c′(ξ2) = 2ξ′2, c′(ξ4) = ξ′4 if n is even,

c′(ξ2) = ξ′2, c′(ξ4) = 2ξ′4 if n is odd.

Consider the map c′ : Sp(2) → SU(4). The composite

Q2 → Sp(2)
c′→ SU(4)

factors through the 7-skeleton of SU(4), which is ΣCP 3. Thus, we obtain the map
c̄′ : Q2 → ΣCP 3. The cohomologies of Q2 and ΣCP 3 are given by

H∗(Q2) = Z{ȳ3, ȳ7}, H∗(ΣCP 3) = Z{x̄3, x̄5, x̄7},

such that c̄′(x̄3) = ȳ3, c̄
′(x̄5) = 0 and c̄′(x̄7) = ȳ7. Denote by ζn a generator of K̃(S2n),

recall that

H∗(CP 3) = Z[t]/(t4), K(CP 3) = Z[x]/(x4),

where |t| = 2. Note that K̃−2(CP 2 ∧ Σ4n−8CP 3) ∼= K̃0(CP 2 ∧ Σ4n−6CP 3) is a free
abelian group generated by ζ2n−3 ⊗ xi ⊗ xj , where 1 ⩽ i ⩽ 2 and 1 ⩽ j ⩽ 3, with the
following Chern characters

ch2n+1(ζ2n−4 ⊗ x⊗ x) = ch2n−4ζ2n−4 ⊗ ch2x⊗ ch3x =
1

12
σ4n−8t2 ⊗ t3,

similarly

ch2n+1(ζ2n−4 ⊗ x⊗ x2) =
1

4
σ4n−8t2 ⊗ t3,

ch2n+1(ζ2n−4 ⊗ x⊗ x3) = σ4n−8t2 ⊗ t3,

ch2n+1(ζ2n−4 ⊗ x2 ⊗ x) =
1

6
σ4n−8t2 ⊗ t3,

ch2n+1(ζ2n−4 ⊗ x2 ⊗ x2) =
1

2
σ4n−8t2 ⊗ t3,

ch2n+1(ζ2n−4 ⊗ x2 ⊗ x3) = 2σ4n−8t2 ⊗ t3.

Consider the map c̄′ : K̃−2(CP 2 ∧ Σ4n−8CP 3) → K̃−2(CP 2 ∧ Σ4n−9Q2), we can put
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ξ′1, ξ
′
2, ξ

′
3 and ξ′4 such that

ξ′1 = c̄′(ζ2n−4 ⊗ x⊗ x), ξ′2 = c̄′(ζ2n−4 ⊗ x2 ⊗ x),

ξ′3 = c̄′(ζ2n−4 ⊗ x⊗ x3) and ξ′4 = c̄′(ζ2n−4 ⊗ x2 ⊗ x3).

We have the following proposition.

Proposition 3.3. The Image of ψ is generated by
1
3 (2n+ 1)!σ4n−9t2 ⊗ ȳ7 if n is even,

1
6 (2n+ 1)!σ4n−9t2 ⊗ ȳ7 if n is odd.

Proof. Consider the following commutative diagram

K̃−2(CP 2 ∧ Σ4n−8CP 3) H4n+2(CP 2 ∧ Σ4n−8CP 3)

K̃−2(CP 2 ∧ Σ4n−9Q2) H4n+2(CP 2 ∧ Σ4n−9Q2)

φ′

c̄′ ∼=
φ

(9)

where the map φ′ is defined similarly to the map φ. That is, when 1 ⩽ i ⩽ 2 and
1 ⩽ j ⩽ 3, we have

φ′(ζ2n−4 ⊗ xi ⊗ xj) = (2n+ 1)!ch2n+1(ζ2n−4 ⊗ xi ⊗ xj).

By definition of the map of φ′ we have

φ′(ζ2n−4 ⊗ x⊗ x) =
1

12
(2n+ 1)!σ4n−8t2 ⊗ t3,

φ′(ζ2n−4 ⊗ x⊗ x2) =
1

4
(2n+ 1)!σ4n−8t2 ⊗ t3,

φ′(ζ2n−4 ⊗ x⊗ x3) = (2n+ 1)!σ4n−8t2 ⊗ t3,

φ′(ζ2n−4 ⊗ x2 ⊗ x) =
1

6
(2n+ 1)!σ4n−8t2 ⊗ t3,

φ′(ζ2n−4 ⊗ x2 ⊗ x2) =
1

2
(2n+ 1)!σ4n−8t2 ⊗ t3,

φ′(ζ2n−4 ⊗ x2 ⊗ x3) = 2(2n+ 1)!σ4n−8t2 ⊗ t3.

Therefore according to the commutativity of diagram (9) we get

φ(ξ′1) = φ′(ζ2n−4 ⊗ x⊗ x) =
1

12
(2n+ 1)!σ4n−9t2 ⊗ ȳ7,

φ(ξ′2) = φ′(ζ2n−4 ⊗ x2 ⊗ x) =
1

6
(2n+ 1)!σ4n−9t2 ⊗ ȳ7,

φ(ξ′3) = φ′(ζ2n−4 ⊗ x⊗ x3) = (2n+ 1)!σ4n−9t2 ⊗ ȳ7,

φ(ξ′4) = φ′(ζ2n−4 ⊗ x2 ⊗ x3) = 2(2n+ 1)!σ4n−9t2 ⊗ ȳ7.

Thus by the commutativity of diagram (5) when n is even then we get

ψ(ξ2) = φ(c′(ξ2)) = −1

3
(2n+ 1)!σ4n−9t2 ⊗ ȳ7,

ψ(ξ4) = φ(c′(ξ4)) = −2(2n+ 1)!σ4n−9t2 ⊗ ȳ7,
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and when n is odd then we get

ψ(ξ2) =
1

6
(2n+ 1)!σ4n−9t2 ⊗ ȳ7,

ψ(ξ4) = 4t′(2n+ 1)!σ4n−9t2 ⊗ ȳ7.

Thus we can conclude that

Imψ ∼=


Z{ 1

3 (2n+ 1)!σ4n−9t2 ⊗ ȳ7} if n is even,

Z{ 1
6 (2n+ 1)!σ4n−9t2 ⊗ ȳ7} if n is odd.

Therefore by Lemma 3.1 and Proposition 3.3 we get the following theorem.

Theorem 3.4. There is an isomorphism

[X,Sp(n)] ∼=


Z 1

3 (2n+1)! if n is even,

Z 1
6 (2n+1)! if n is odd.

4. Proof of Theorem 1.1

In this section we will prove Theorem 1.1. Recall A = Σ4n−9Q2. Since the dimen-
sion of A is equal to 4n− 2, we have

[ΣA,BSp(n)] ∼= [ΣA,BSp(∞)] ∼= K̃Sp(ΣA).

The cofibration sequence S4n−5 → ΣA→ S4n−1 induces the following exact sequence

→ K̃Sp(S4n−1) → K̃Sp(ΣA) → K̃Sp(S4n−5) → · · · .

Since K̃Sp(S4i−1) = 0 for all i ⩾ 1, this implies that K̃Sp(ΣA) = 0. Thus we get the
following lemma.

Lemma 4.1. There is an isomorphism [ΣA,BSp(n)] ∼= 0.

Apply the functor [ΣA,−] to fibration (2) to obtain the following exact sequence

[ΣA,Sp(n)]
(βk)∗−→ [ΣA,Map∗0(CP 2, BSp(n))] → [ΣA,BGk(CP 2)] → [ΣA,BSp(n)], (10)

where by Lemma 4.1, [ΣA,BSp(n)] ∼= 0. Note that

[ΣA,Sp(n)] ∼= [Σ2A,BSp(n)] ∼= K̃Sp(Σ2A).

Also by adjunction,

[ΣA,Map∗0(CP 2, BSp(n))] ∼= [ΣA ∧ CP 2, BSp(n)] ∼= [CP 2 ∧A,Sp(n)].

Thus the exact sequence becomes

K̃Sp(Σ2A)
(βk)∗−→ [CP 2 ∧A,Sp(n)] → [ΣA,BGk(CP 2)] → 0, (11)

therefore we get the following lemma.

Lemma 4.2. There is an isomorphism

[ΣA,BGk(CP 2)] ∼= [A,Gk(CP 2)] ∼= Coker(βk)∗.
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In what follows we will calculate Im (βk)∗. For this, we need the following lemmas.

Lemma 4.3. Let µ : ΣA→ Sp(n) be an element of K̃Sp(Σ2A) and ε′ : S3 → Sp(n)
be the inclusion of bottom cell. If µ′ : CP 2 ∧A→ Sp(n) is the adjoint of the following
composition

CP 2 ∧ ΣA
q∧1−→ ΣS3 ∧ ΣA

Σε′∧µ−→ ΣSp(n) ∧ Sp(n) [ev,ev]−→ BSp(n),

where q is the quotient map. Then there is a lift µ̃ of µ′

ΩXn

CP 2 ∧A Sp(n)
µ′

µ̃

such that µ̃∗(a4n+2) = t2 ⊗ Σ−1µ∗(y4n−1).

Proof. Nagao in [15, Lemma 3.1] showed that there is a lift

λ : ΣSp(n) ∧ Sp(n) −→ Xn

of [ev, ev] such that

λ∗(ȳ4n+3) =
∑

i+j=n+1

Σy4i−1 ⊗ y4j−1.

Now let λ̃ be the following composition

λ̃ : CP 2 ∧ ΣA
q∧1−→ ΣS3 ∧ ΣA

Σε′∧µ−→ ΣSp(n) ∧ Sp(n) λ−→ Xn.

We have

λ̃∗(ȳ4n+3) = (q ∧ 1)∗(Σε′ ∧ µ)∗λ∗(ȳ4n+3)

= (q ∧ 1)∗(Σε′ ∧ µ)∗(
∑

i+j=n+1

Σy4i−1 ⊗ y4j−1)

= (q ∧ 1)∗(Σu3 ⊗ µ∗(y4n−1)) = t2 ⊗ µ∗(y4n−1),

where u3 is the generator of H3(S3). We take µ̃ : CP 2 ∧A −→ ΩXn to be the adjoint
of the following composition

ΣCP 2 ∧A S−→ CP 2 ∧ ΣA
λ̃−→ Xn,

that is µ̃ : ad(λ̃ ◦ S), where the map S : ΣCP 2 ∧A −→ CP 2 ∧ ΣA is the swapping
map and the map ad : [ΣCP 2 ∧A,Xn] −→ [CP 2 ∧A,ΩXn] is the adjunction. Then
µ̃ is a lift of µ. Note that

(λ̃ ◦ S)∗(ȳ4n+3) = S∗ ◦ λ̃∗(ȳ4n+3) = S∗(t2 ⊗ µ∗(y4n−1)) = Σt2 ⊗ Σ−1µ∗(y4n−1),

thus we get

µ̃∗(a4n+2) = t2 ⊗ Σ−1µ∗(y4n−1).
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Consider the map θ : ΣA→ Sp(n), then by Lemma 4.3 there is a lift θ̃ of (βk)∗(θ)
such that

θ̃∗(a4n+2) = t2 ⊗ Σ−1θ∗(y4n−1).

We define the map λk : K̃Sp(Σ2A) → H4n+2(X) by λk(θ) = θ̃∗(a4n+2) = a4n+2 ◦ θ̃.
Now consider the following commutative diagram

K̃Sp(Σ2A) [X,Sp(n)] [A,Gk]

K̃Sp
−2

(X) H4n+2(X) [X,Sp(n)] 0,

(βk)∗

λk

ψ

(12)

we have Im (βk)∗ = Imλk/Imψ. Note that in Proposition 3.3 we calculated Imψ,
thus we need to calculate Imλk.

Let a : ΣQ2 → BSp(∞) be the adjoint of the composition of the inclusions

Q2 → Sp(2) → Sp(∞)

and also b : ΣQ2 → BSp(∞) be the pinch map of the bottom cell q : ΣQ2 → S8 fol-

lowed by a generator of π8(BSp(∞)) ∼= Z. Note that K̃Sp(ΣQ2) is a free abelian
group with a basis a, b. Then we have

ch(c′(a)) = Σy3 −
1

6
Σy7, ch(c′(b)) = −2Σy7.

Let θ1 = q(ζ2n−4c
′(a)) ∈ K̃Sp(Σ4n−7Q2), where q : K → KSp is the quaternioniza-

tion.
Also let θ2 : Σ4n−7Q2 → BSp(∞) be the composite of the pinch map to the top

cell Σ4n−7Q2 → S4n and a generator of π4n(BSp(∞)) ∼= Z. Then K̃Sp(Σ2A) is a free
abelian group with a basis θ1, θ2. We have

ch(c′(θ1)) =

 Σ4n−7y3 − 1
6Σ

4n−7y7 if n is even,

2Σ4n−7y3 +
1
3Σ

4n−7y7 if n is odd,

ch(c′(θ2)) =

 −2Σ4n−7y7 if n is even,

Σ4n−7y7 if n is odd.

Lemma 4.4. Imλk is isomorphic to Z{ 1
6 (2n− 1)!kt2 ⊗ Σ4n−9y7} if n is even,

Z{ 1
12 (2n− 1)!kt2 ⊗ Σ4n−9y7} if n is odd.

Proof. For i = 1, 2, by Lemma 4.3, (βk)∗(θi) has a lift θ̃i,k : CP 2 ∧A→ ΩXn, such
that

θ̃∗i,k(a4n+2) = kt2 ⊗ Σ−1θi
∗(y4n−1).

Since y4i−1 = σ(qi) and qi = c′
∗
(c2i) so we get

θ̃∗i,k(a4n+2) = kt2 ⊗ Σ−2qn(θi) = kt2 ⊗ Σ−2c2n(c
′(θi)).
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On the other hand we have

c2n(c
′(θ1)) =


1
6 (2n− 1)!Σ4n−7y7 if n is even,

1
3 (2n− 1)!Σ4n−7y7 if n is odd,

c2n(c
′(θ2)) =

 2(2n− 1)!Σ4n−7y7 if n is even,

(2n− 1)!Σ4n−7y7 if n is odd.

Therefore we get

θ̃∗1,k(a4n+2) =

 kt2 ⊗ 1
6 (2n− 1)!Σ4n−9y7 if n is even,

kt2 ⊗ 1
3 (2n− 1)!Σ4n−9y7 if n is odd,

and

θ̃∗2,k(a4n+2) =

 kt2 ⊗ 2(2n− 1)!Σ4n−9y7 if n is even,

kt2 ⊗ (2n− 1)!Σ4n−9y7 if n is odd.

If n is even, then Imλk ∼= Z{α, β}, where

α =
1

6
(2n− 1)!kt2 ⊗ Σ4n−9y7 and β = 2(2n− 1)!kt2 ⊗ Σ4n−9y7.

Also Imλk is generated by 2α− 1
12β = 1

6 (2n− 1)!kt2 ⊗ Σ4n−9y7. If n is odd, then
Imλk ∼= Z{α, β}, where

α =
1

3
(2n− 1)!kt2 ⊗ Σ4n−9y7 and β = (2n− 1)!kt2 ⊗ Σ4n−9y7.

Also Imλk is generated by α− 1
4β = 1

12 (2n− 1)!kt2 ⊗ Σ4n−9y7. Therefore we can
conclude

Imλk ∼=


Z{ 1

6 (2n− 1)!kt2 ⊗ Σ4n−9y7} if n is even,

Z{ 1
12 (2n− 1)!kt2 ⊗ Σ4n−9y7} if n is odd.

Therefore by Proposition 3.3 and Lemma 4.4 we obtain the following proposition.

Proposition 4.5. There is an isomorphism

Im (βk)∗ ∼=


Z/((2n+ 1)!/(3(k, 4n(2n+ 1)))) if n is even,

Z/((2n+ 1)!/(6(k, 4n(2n+ 1)))) if n is odd.

Therefore by Theorem 3.4, Lemma 4.2 and Proposition 4.5 we get the following
theorem.

Theorem 4.6. There is an isomorphism [ΣA,BGk(CP 2)] ∼= Z(k,4n(2n+1)).

Now we prove Theorem 1.1.
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Proof of Theorem 1.1. Consider the exact sequence (11). Suppose that Gk(CP 2) ≃
Gk′(CP 2), then there is an isomorphism of groups

[ΣA,BGk(CP 2)] ∼= [ΣA,BGk′(CP 2)].

Thus the order of [ΣA,BGk(CP 2)] is equal to the order of [ΣA,BGk′(CP 2)]. Therefore
by Theorem 4.6 we can conclude Theorem 1.1.
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